JP2004344748A - Polymer coagulant - Google Patents

Polymer coagulant Download PDF

Info

Publication number
JP2004344748A
JP2004344748A JP2003143563A JP2003143563A JP2004344748A JP 2004344748 A JP2004344748 A JP 2004344748A JP 2003143563 A JP2003143563 A JP 2003143563A JP 2003143563 A JP2003143563 A JP 2003143563A JP 2004344748 A JP2004344748 A JP 2004344748A
Authority
JP
Japan
Prior art keywords
anionic
sludge
polymer flocculant
nonionic
polymer coagulant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003143563A
Other languages
Japanese (ja)
Other versions
JP4156441B2 (en
Inventor
Shigeru Tanabe
茂 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dianitrix Co Ltd
Original Assignee
Dianitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dianitrix Co Ltd filed Critical Dianitrix Co Ltd
Priority to JP2003143563A priority Critical patent/JP4156441B2/en
Publication of JP2004344748A publication Critical patent/JP2004344748A/en
Application granted granted Critical
Publication of JP4156441B2 publication Critical patent/JP4156441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer coagulant which can form large flocks without increasing the amount of it added in sludge produced from a wastewater treatment facility, especially excess sludge or sludge which contains sludge subjected to a coagulation treatment with an inorganic coagulant and is produced in a paper-making industry or the like. <P>SOLUTION: The polymer coagulant comprises a nonionic or anionic polymer coagulant and an ampholytic polymer coagulant in an amount the same as or more than that of the nonionic or anionic polymer coagulant. The nonionic or anionic polymer coagulant contains 20 mol% or lower anionic structural units and preferably comprises acrylamide monomer units and the anionic structural units derived from a vinyl compound having a carboxy group or its alkali metal salt. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は下水処理場あるいは製紙工業、食品工業等の廃水処理施設より生じる汚泥の脱水処理に用いる高分子凝集剤に関する。
【0002】
【従来の技術】
下水処理場、製紙工業、食品工業等では、沈降分離、生物処理等の方法により廃水の浄化処理を行っている。この処理の際に発生する汚泥は一般にスクリュウデカンター、ベルトプレス等で脱水処理した後に、焼却処分をしている。
汚泥の脱水処理を効率的に行う目的で、汚泥に高分子凝集剤を添加し混合して汚泥粒子をフロック化する方法が広く用いられている。この際、高分子凝集剤は水溶液の形態で使用するため、高分子凝集剤の水溶解性が高いことが必要である。
汚泥に対し良好で安定した脱水処理を行う為には、第一に大きなフロックを形成して、汚泥粒子と水を容易に分離させることが重要である。
しかし、例えば下水処理場の場合は近年の水処理の高度化、汚泥の集中処理等による腐敗、合流処理から分流式への変化により、また製紙工業等の産業廃水の場合は生産品目の変動にともなう汚泥の質の大きな変化により、汚泥に安定したフロックを形成させることが困難となっている。
【0003】
かかる状況のなかで、大きく、安定したフロックを形成させ、良好な脱水処理を実現する目的で様々な種類の高分子凝集剤が上市され、その数は数十品目以上に達している。
例えば、高分子凝集剤の分子量を高くすると、形成されるフロックは大きくなる。
また、高分子凝集剤の組成あるいは構造を変えることにより大きなフロックを形成させる試みがなされている。
高分子凝集剤としてアニオン性凝集剤とカチオン性凝集剤の混合物を用いると、フロックは粗大になる(例えば、特許文献1参照。)。
3級カチオン原料、アクリル酸、アクリルアミドの共重合物を用いた高分子凝集剤を用いる方法もある(例えば、特許文献2参照。)。
アクリレート系カチオン性高分子凝集剤と両性高分子凝集剤の混合物を用いると、アニオン荷電を有したコロイド物質を比較的多く含有する下水汚泥等の凝集に有効である(例えば、特許文献3参照。)。
【0004】
【特許文献1】
特開昭58−215454号公報
【特許文献2】
特開昭62−205112号公報
【特許文献3】
特開平02−31899号公報
【0005】
【発明が解決しようとする課題】
しかしながら、高分子凝集剤の分子量を高くすると、汚泥と凝集剤の反応性が低下することによりフロックの粘性が増加し、脱水効率がむしろ低下することが多々ある。また特許文献1に記載の発明では、凝集剤の水溶解性が低いことにより凝集剤の使用量が標準の数倍以上まで増加し、経済的でない。特許文献2に記載の発明では、汚泥の質が変動すると安定したフロックを形成することが困難になる。特許文献3に記載の発明では、カチオン性物質である無機凝集剤を用いて凝集処理をした汚泥及びその他製造工程で添加される種々薬品が混合された製紙工業等の汚泥において大きなフロックを形成しづらい。
上記のように、高分子凝集剤の水溶解性を良好に保ち、かつ安定で大きなフロックを形成させることは困難であった。
【0006】
本発明は前記課題を解決するためになされたもので、汚泥に対する凝集剤添加率を増加させることなく、特に余剰汚泥、或いは無機凝集剤を用いて凝集処理をした汚泥等が混合された製紙工業等の汚泥に対し、安定で大きなフロックを形成させることができる高分子凝集剤を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明者は、高分子凝集剤水溶液において種々イオン性の高分子凝集剤を特定の比率で混在させることにより相乗効果を発揮させ、安定で大きなフロックを形成させることが可能になることを見出した。
すなわち本発明の高分子凝集剤は、ノニオン性又はアニオン性高分子凝集剤と、該ノニオン性又はアニオン性高分子凝集剤と同量以上の両性高分子凝集剤とを含有し、前記ノニオン性又はアニオン性高分子凝集剤中のアニオン構成単位が20モル%以下であることを特徴とする。
前記ノニオン性又はアニオン性高分子凝集剤は、アクリルアミド系モノマー単位と、アニオン構成単位としてカルボキシル基又はそのアルカリ金属塩を有するビニル化合物とからなることが好ましい。
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の高分子凝集剤は、ノニオン性又はアニオン性高分子凝集剤と、両性高分子凝集剤とを含有する。
ノニオン性又はアニオン性高分子凝集剤としては、アクリルアミド系組成物を用いる。アクリルアミド系組成物は、アクリルアミドモノマーあるいはアクリルアミドの同時加水分解物と、アクリルアミドモノマーと共重合しうる重合性モノマーとの混合物を重合させて重合体を得ることにより製造されうる。ノニオン性高分子凝集剤とはアニオン構成単位が2モル%以下のものである。
アクリルアミドモノマーの濃度は10〜35質量%であり、好ましくは20〜30質量%である。重合方法は、沈殿重合、塊状重合、分散重合、水溶液重合等が挙げられるが、特に限定されるものではない。
前記ノニオン性又はアニオン性高分子凝集剤の分子量は数百万以上で広く高分子凝集剤として用いられているものであり、特に限定されるものではない。
【0009】
本発明において用いられるノニオン性又はアニオン性高分子凝集剤は、アクリルアミド系モノマーと、アニオン構成単位とからなる。前記アニオン構成単位としては、カルボキシル基、スルホン酸基等を有する重合性モノマーが挙げられるが、特にカルボキシル基またはそのアルカリ金属塩を有するビニル化合物が好ましい。前記アニオン構成単位としては、例えばアクリル酸、メタクリル酸、マレイン酸等が挙げられ、中でもアクリル酸の使用が好ましい。また、これらの1種もしくは2種以上を使用することができる。
本発明においては、ノニオン性又はアニオン性高分子凝集剤中のアニオン構成単位は20モル%以下である。20モル%より高いと両性高分子凝集剤との混合物が溶解不良となり好ましくない。
【0010】
本発明において用いられる両性高分子凝集剤とは、分子内にアニオン性基としてカルボキシル基、スルホン酸基を有し、カチオン性基として第三級アミン、その中和塩、四級塩等を有する高分子凝集剤をいい、これらのイオン成分の他にノニオン性成分が含まれているものであってもよい。
両性高分子凝集剤に用いられるカチオン性モノマー単位としては、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリルアミド、ジエチルアミノプロピル(メタ)アクリルアミド、アリルジメチルアミンもしくはこれらの中和塩、四級塩等が挙げられ、またノニオン性のモノマー単位としては(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド等を挙げることができる。重合方法は、沈殿重合、塊状重合や、分散重合、水溶液重合等が挙げられるが、特に限定されるものではない。
両性高分子凝集剤の分子量は数百万以上で広く高分子凝集剤として用いられているものであり、特に限定されるものではない。
【0011】
本発明におけるノニオン性又はアニオン性高分子凝集剤と両性高分子凝集剤との混合比率は、ノニオン性又はアニオン性高分子凝集剤に対して両性高分子凝集剤が同量以上である。さらに、ノニオン性又はアニオン性高分子凝集剤対両性高分子凝集剤が、質量比で1対99から50対50であることが好ましい。
また高分子凝集剤の他に、水溶解性を向上させるために固体酸を加えても構わない。固体酸としてはスルファミン酸、酸性亜硫酸ソーダ等が挙げられる。
【0012】
一般的に、アニオン性高分子凝集剤と両性高分子凝集剤を混合すると不溶化し凝集効果をなくしてしまうが、本発明の高分子凝集剤によれば、良好な水溶性を長期にわたって維持し、凝集効果を発揮することができる。本発明の高分子凝集剤により汚泥に形成したフロックは、強度が高く安定であり、フロック形成後のろ過性能に優れている。
したがって本発明の高分子凝集剤は、汚泥に対し効果的な脱水処理を可能にする。
【0013】
本発明の高分子凝集剤は、下水処理場あるいは製紙工業、食品工業等の廃水処理施設より生じる汚泥の脱水処理に好適である。
【0014】
【実施例】
以下、本発明を実施例および比較例によってさらに詳細に説明するが、これらは本発明を何ら限定するものではない。
実施例および比較例において、高分子凝集剤の水溶解性は、高分子凝集剤0.5%水溶液を目視にて観察し、イクラ状の不溶物を観察することにより評価した。水溶解性は○、△、×で示し、○は不溶物なし、△は数個以内の不溶物あり、×は10個以上の不溶物ありとした。
高分子凝集剤の粘度は、高分子凝集剤0.5%水溶液の粘度を25℃に保持しブルックフィールド粘度計(ローター回転数6rpm、ローターNo.2)にて測定することにより評価した。なお、得られた指示値を粘度計の補正式に従い計算し、高分子凝集剤の溶液粘度(単位mPa・s)とした。
【0015】
(実施例1〜4)
ノニオン性又はアニオン性高分子凝集剤として表1に記載のN1、A1、A2を用い、両性高分子凝集剤として表1に記載のR1、R2を用いて、表2に記載のように調製した試料の水溶解性を評価した。結果を表2に示す。実施例1ないし4の何れの試料も良好に溶解した。また溶解液を長期間保存しておいても溶解液の粘性低下或いは不溶化をきたすことがなく、すなわち溶解液の経時安定性が優れていた。
(実施例5)
アニオン性高分子凝集剤として、アニオン構成単位が20モル%である表1に記載のA3を用いた。結果を表2に示す。両性高分子凝集剤と混合した際の水溶解性が若干低下したが、使用上は特に問題がなかった。
【0016】
【表1】

Figure 2004344748
【0017】
【表2】
Figure 2004344748
【0018】
(実施例6〜8)
アニオン性高分子凝集剤として表1に記載のA2を用い、両性高分子凝集剤R2に対し表2に記載の比率で混合して、混合物の水溶解性を評価した。その結果、混合物は何れの混合比率においても良好に溶解し、溶解液の経時安定性も優れていた。
【0019】
(比較例1、2)
アニオン性高分子凝集剤として、アニオン構成単位が25モル%である表1に記載のA4を用いると、両性高分子凝集剤と混合した際に水溶解性が不良となった。また、スルファミン酸を加えても溶解しなかった。
【0020】
(比較例3)
アニオン性高分子凝集剤の混合比率を両性高分子凝集剤より多くすると水溶解性が不良となった。
【0021】
(実施例9)
製紙工場の汚泥を用い、次のように凝集試験を実施した。
前記汚泥を500mlのビーカーに300ml採取した中に、0.3%に溶解した高分子凝集剤水溶液を表3に記載の濃度になるよう添加した後、スパチュラで30秒間攪拌混合してフロックを形成させた。
フロックを形成させた後に攪拌を止め、フロック粒径を目視により測定した。その後、凝集した汚泥をろ布を敷いたヌッチェに移し、ろ過性能(10秒間のろ液量)を測定した。試験結果を表3に示す。
実施例2の組成の高分子凝集剤を用いた結果、粗大なフロックを生成させることができ、しかもろ過性に優れた結果が得られた。
(比較例4、5)
表1に記載のR2、K3をそれぞれ用い、実施例9と同じ方法で凝集試験を実施した。結果を表3に示す。実施例9よりもフロックが小さく、ろ過性能も劣っていた。
(比較例6、7)
A1/K3の混合液及びR2/K3の混合液を用い、実施例9と同じ方法で凝集試験を実施した。結果を表3に示す。実施例9よりもフロックが小さく、ろ過性能も劣っていた。
【0022】
【表3】
Figure 2004344748
【0023】
(実施例10〜13)
食品の余剰汚泥を用い、次のように脱水試験を実施した。
実施例9と同様の方法で前記汚泥にフロックを形成させた。その後、実施例9と同様にフロック粒径およびろ過性能を測定した。
さらに、ろ過濃縮した汚泥をろ布上で30回転がしてフロックの強度(団粒性)を評価した。フロックの強度は◎、○、△、×で示した。
◎:濾布上で転がすことにより水が切れ、凝集汚泥が数個の団子状になる
○:濾布上で転がすことにより水が切れ、凝集汚泥が一塊状になる
△:濾布上で転がすことにより水が切れるが、凝集汚泥が崩れ塊状にならない
×:濾布上で転がすことにより、凝集汚泥が崩れ流れ、ドロドロになる
その後0.1MPaの圧力でプレス脱水し、脱水ケーキの含水率を求めた。
試験結果を表4に示す。
実施例1、2、3、4の混合比率の高分子凝集剤を用いた結果、粗大なフロックを生成させることができた。しかもろ過性に優れるとともに、生成フロックの強度に優れ、脱水ケーキの含水率の低い結果が得られた。
【0024】
(比較例8〜10)
K3、R2及びA1/K3混合品を用い実施例10と同じ方法で脱水試験を実施したが、フロックが小さく、ろ過性能が低く、脱水ケーキの含水率が高かった。
【0025】
(比較例11)
アニオン性高分子凝集剤として、アニオン構成単位が25モル%である表1に記載のA4を用いて、実施例10と同じ方法で脱水試験を実施した。その結果、フロックが小さく、ろ過性能が低く、脱水ケーキの含水率が高かった。
【0026】
【表4】
Figure 2004344748
【0027】
【発明の効果】
以上説明したように、本発明の高分子凝集剤を用いることにより、良好な水溶解性を保持しながら、従来の高分子凝集剤では効果的な脱水処理が困難であった余剰汚泥等に大きく強いフロックを形成させて、脱水ケーキの含水率が低い処理を可能にすることができた。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymer flocculant used for dewatering sludge generated from a sewage treatment plant or a wastewater treatment facility such as a papermaking industry or a food industry.
[0002]
[Prior art]
Sewage treatment plants, the paper industry, the food industry, and the like purify wastewater by methods such as sedimentation and biological treatment. Sludge generated during this treatment is generally incinerated after being dehydrated by a screw decanter, belt press or the like.
In order to efficiently perform dewatering treatment of sludge, a method of adding a polymer flocculant to sludge and mixing the sludge to floc sludge particles is widely used. In this case, since the polymer flocculant is used in the form of an aqueous solution, it is necessary that the polymer flocculant has high water solubility.
In order to perform good and stable dehydration treatment on sludge, it is important to first form large flocs to easily separate sludge particles and water.
However, for example, in the case of sewage treatment plants, due to the recent sophistication of water treatment, decay due to centralized treatment of sludge, change from combined treatment to split flow, and in the case of industrial wastewater such as the paper industry, fluctuations in production items The accompanying large change in the quality of sludge makes it difficult to form stable flocs in the sludge.
[0003]
Under such circumstances, various types of polymer flocculants have been put on the market for the purpose of forming large and stable flocs and realizing good dehydration treatment, and the number of them has reached several tens of items.
For example, when the molecular weight of the polymer flocculant is increased, the formed flocks increase.
Attempts have been made to form large flocs by changing the composition or structure of the polymer flocculant.
When a mixture of an anionic flocculant and a cationic flocculant is used as the polymer flocculant, the floc becomes coarse (for example, see Patent Document 1).
There is also a method using a polymer flocculant using a tertiary cation raw material, a copolymer of acrylic acid and acrylamide (for example, see Patent Document 2).
The use of a mixture of an acrylate-based cationic polymer flocculant and an amphoteric polymer flocculant is effective for flocculation of sewage sludge or the like containing a relatively large amount of anion-charged colloidal substances (see, for example, Patent Document 3). ).
[0004]
[Patent Document 1]
JP-A-58-215454 [Patent Document 2]
JP-A-62-205112 [Patent Document 3]
Japanese Patent Application Laid-Open No. 02-31899
[Problems to be solved by the invention]
However, when the molecular weight of the high-molecular flocculant is increased, the reactivity between the sludge and the flocculant is reduced, so that the viscosity of the floc is increased, and the dewatering efficiency is rather lowered in many cases. Moreover, in the invention described in Patent Document 1, the water solubility of the coagulant is low, so that the usage amount of the coagulant increases to several times or more of the standard, which is not economical. In the invention described in Patent Document 2, it is difficult to form a stable floc when the quality of the sludge fluctuates. In the invention described in Patent Document 3, a large floc is formed in sludge subjected to coagulation treatment using an inorganic coagulant which is a cationic substance and sludge of the paper industry where various chemicals added in the production process are mixed. It is difficult.
As described above, it has been difficult to maintain good water solubility of the polymer flocculant and to form stable and large flocs.
[0006]
The present invention has been made in order to solve the above-mentioned problems, and it is an object of the present invention to increase the coagulant addition rate to sludge, and particularly to mix the excess sludge or the sludge subjected to coagulation treatment using an inorganic coagulant. It is an object of the present invention to provide a polymer flocculant capable of forming a stable and large floc for sludge such as the above.
[0007]
[Means for Solving the Problems]
The present inventor has found that by mixing various ionic polymer flocculants in a specific ratio in a polymer flocculant aqueous solution, a synergistic effect can be exhibited, and a stable and large floc can be formed. .
That is, the polymer coagulant of the present invention contains a nonionic or anionic polymer coagulant and an amphoteric polymer coagulant in the same amount or more as the nonionic or anionic polymer coagulant, and the nonionic or It is characterized in that the anionic constitutional unit in the anionic polymer coagulant is 20 mol% or less.
The nonionic or anionic polymer coagulant preferably comprises an acrylamide monomer unit and a vinyl compound having a carboxyl group or an alkali metal salt thereof as an anionic constituent unit.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The polymer flocculant of the present invention contains a nonionic or anionic polymer flocculant and an amphoteric polymer flocculant.
As the nonionic or anionic polymer flocculant, an acrylamide-based composition is used. The acrylamide-based composition can be produced by polymerizing a mixture of an acrylamide monomer or a simultaneous hydrolyzate of acrylamide and a polymerizable monomer copolymerizable with the acrylamide monomer to obtain a polymer. The nonionic polymer flocculant has an anionic constitutional unit of 2 mol% or less.
The concentration of the acrylamide monomer is 10 to 35% by mass, preferably 20 to 30% by mass. Examples of the polymerization method include precipitation polymerization, bulk polymerization, dispersion polymerization, aqueous solution polymerization, and the like, but are not particularly limited.
The nonionic or anionic polymer coagulant has a molecular weight of several millions or more and is widely used as a polymer coagulant, and is not particularly limited.
[0009]
The nonionic or anionic polymer flocculant used in the present invention comprises an acrylamide monomer and an anionic constituent unit. Examples of the anionic constitutional unit include a polymerizable monomer having a carboxyl group, a sulfonic acid group and the like, and a vinyl compound having a carboxyl group or an alkali metal salt thereof is particularly preferable. Examples of the anionic structural unit include acrylic acid, methacrylic acid, and maleic acid, and among them, acrylic acid is preferred. One or more of these can be used.
In the present invention, the anionic constitutional unit in the nonionic or anionic polymer coagulant is 20 mol% or less. If it is higher than 20 mol%, the mixture with the amphoteric polymer coagulant is unfavorably unsatisfactory in dissolution.
[0010]
The amphoteric polymer flocculant used in the present invention has a carboxyl group or a sulfonic acid group as an anionic group in the molecule, and has a tertiary amine, a neutralized salt thereof, a quaternary salt or the like as a cationic group. It refers to a polymer flocculant, and may contain a nonionic component in addition to these ionic components.
Examples of the cationic monomer unit used in the amphoteric polymer flocculant include dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, dimethylaminopropyl (meth) acrylamide, diethylaminopropyl (meth) acrylamide, allyl dimethylamine and And nonionic monomer units such as (meth) acrylamide and N, N-dimethyl (meth) acrylamide. Examples of the polymerization method include precipitation polymerization, bulk polymerization, dispersion polymerization, aqueous solution polymerization, and the like, but are not particularly limited.
The molecular weight of the amphoteric polymer flocculant is several millions or more and is widely used as a polymer flocculant, and is not particularly limited.
[0011]
The mixing ratio of the nonionic or anionic polymer flocculant and the amphoteric polymer flocculant in the present invention is such that the amount of the amphoteric polymer flocculant is equal to or greater than the amount of the nonionic or anionic polymer flocculant. Further, it is preferable that the mass ratio of the nonionic or anionic polymer flocculant to the amphoteric polymer flocculant is 1:99 to 50:50.
Further, in addition to the polymer coagulant, a solid acid may be added in order to improve water solubility. Examples of the solid acid include sulfamic acid and acidic sodium sulfite.
[0012]
In general, mixing an anionic polymer coagulant and an amphoteric polymer coagulant insolubilizes and eliminates the coagulation effect.However, according to the polymer coagulant of the present invention, good water solubility is maintained for a long time, An aggregation effect can be exhibited. The floc formed in the sludge by the polymer flocculant of the present invention has high strength and is stable, and has excellent filtration performance after floc formation.
Therefore, the polymer flocculant of the present invention enables an effective dewatering treatment for sludge.
[0013]
The polymer flocculant of the present invention is suitable for the dewatering treatment of sludge generated from a sewage treatment plant or a wastewater treatment facility in the paper industry, food industry, or the like.
[0014]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, which do not limit the present invention at all.
In Examples and Comparative Examples, the water solubility of the polymer flocculant was evaluated by visually observing a 0.5% aqueous solution of the polymer flocculant, and observing the insoluble matter in the shape of a grime. The water solubility was indicated by ○, Δ, and ×, ○ indicates no insoluble matter, △ indicates that there was no more than several insoluble matters, and × indicates that there were 10 or more insoluble matters.
The viscosity of the polymer flocculant was evaluated by measuring the viscosity of a 0.5% aqueous solution of the polymer flocculant at 25 ° C. with a Brookfield viscometer (rotor rotation speed 6 rpm, rotor No. 2). In addition, the obtained indicated value was calculated according to the correction formula of the viscometer, and was set as the solution viscosity of the polymer flocculant (unit: mPa · s).
[0015]
(Examples 1 to 4)
It prepared as described in Table 2 using N1, A1, A2 of Table 1 as a nonionic or anionic polymer flocculant, and using R1, R2 of Table 1 as an amphoteric polymer flocculant. The water solubility of the sample was evaluated. Table 2 shows the results. All the samples of Examples 1 to 4 dissolved well. In addition, even if the solution was stored for a long period of time, the viscosity of the solution was not reduced or insolubilized, that is, the stability of the solution over time was excellent.
(Example 5)
As the anionic polymer coagulant, A3 shown in Table 1 having an anionic constitutional unit of 20 mol% was used. Table 2 shows the results. Although the solubility in water when mixed with the amphoteric polymer flocculant was slightly reduced, there was no particular problem in use.
[0016]
[Table 1]
Figure 2004344748
[0017]
[Table 2]
Figure 2004344748
[0018]
(Examples 6 to 8)
A2 shown in Table 1 was used as the anionic polymer flocculant, and mixed with the amphoteric polymer flocculant R2 at the ratio shown in Table 2 to evaluate the water solubility of the mixture. As a result, the mixture was well dissolved at any mixing ratio, and the stability of the solution over time was excellent.
[0019]
(Comparative Examples 1 and 2)
When A4 described in Table 1 having an anionic constitutional unit of 25 mol% was used as the anionic polymer flocculant, the water solubility became poor when mixed with the amphoteric polymer flocculant. In addition, it did not dissolve even when sulfamic acid was added.
[0020]
(Comparative Example 3)
When the mixing ratio of the anionic polymer flocculant was larger than that of the amphoteric polymer flocculant, the water solubility became poor.
[0021]
(Example 9)
Using a sludge from a paper mill, a coagulation test was performed as follows.
300 ml of the sludge was collected in a 500 ml beaker, and a 0.3% aqueous solution of a polymer flocculant was added to the concentration shown in Table 3, followed by stirring and mixing with a spatula for 30 seconds to form flocs. I let it.
After the floc was formed, the stirring was stopped, and the floc particle size was measured visually. Thereafter, the aggregated sludge was transferred to Nutsche covered with a filter cloth, and the filtration performance (filtrate amount for 10 seconds) was measured. Table 3 shows the test results.
As a result of using the polymer flocculant having the composition of Example 2, coarse flocs could be generated, and furthermore, results excellent in filterability were obtained.
(Comparative Examples 4 and 5)
Using R2 and K3 shown in Table 1, respectively, an agglutination test was performed in the same manner as in Example 9. Table 3 shows the results. The floc was smaller than in Example 9, and the filtration performance was inferior.
(Comparative Examples 6 and 7)
Using the mixed liquid of A1 / K3 and the mixed liquid of R2 / K3, an aggregation test was performed in the same manner as in Example 9. Table 3 shows the results. The floc was smaller than in Example 9, and the filtration performance was inferior.
[0022]
[Table 3]
Figure 2004344748
[0023]
(Examples 10 to 13)
Using the excess sludge of food, a dehydration test was performed as follows.
In the same manner as in Example 9, flocs were formed in the sludge. Thereafter, the floc particle size and the filtration performance were measured in the same manner as in Example 9.
Further, the sludge filtered and concentrated was rotated 30 times on a filter cloth to evaluate the strength (agglomeration) of the floc. The floc strength was indicated by ◎, △, Δ, and ×.
◎: Water is cut off by rolling on the filter cloth and coagulated sludge is formed into several dumplings ○: Water is cut off by rolling on the filter cloth and coagulated sludge is formed into a lump △: Rolled on filter cloth The coagulated sludge does not break down into a lump, but the coagulated sludge rolls on the filter cloth, causing the coagulated sludge to crumble and become muddy. Then, press dewatering is performed at a pressure of 0.1 MPa to reduce the water content of the dewatered cake. I asked.
Table 4 shows the test results.
As a result of using the polymer flocculants in the mixing ratios of Examples 1, 2, 3, and 4, coarse flocs could be generated. Moreover, the filterability was excellent, the strength of the generated floc was excellent, and the result that the water content of the dehydrated cake was low was obtained.
[0024]
(Comparative Examples 8 to 10)
A dehydration test was carried out using the mixture of K3, R2 and A1 / K3 in the same manner as in Example 10, but the floc was small, the filtration performance was low, and the water content of the dehydrated cake was high.
[0025]
(Comparative Example 11)
A dehydration test was performed in the same manner as in Example 10 using A4 described in Table 1 having an anionic constitutional unit of 25 mol% as an anionic polymer flocculant. As a result, the floc was small, the filtration performance was low, and the water content of the dehydrated cake was high.
[0026]
[Table 4]
Figure 2004344748
[0027]
【The invention's effect】
As described above, by using the polymer flocculant of the present invention, while maintaining good water solubility, the conventional polymer flocculant greatly reduces excess sludge and the like, for which effective dehydration treatment was difficult. Strong flocs could be formed, allowing treatment of the dewatered cake with low moisture content.

Claims (2)

ノニオン性又はアニオン性高分子凝集剤と、該ノニオン性又はアニオン性高分子凝集剤と同量以上の両性高分子凝集剤とを含有し、前記ノニオン性又はアニオン性高分子凝集剤中のアニオン構成単位が20モル%以下であることを特徴とする高分子凝集剤。A nonionic or anionic polymer coagulant, comprising the same amount or more of an amphoteric polymer coagulant as the nonionic or anionic polymer coagulant, the anionic constitution in the nonionic or anionic polymer coagulant A polymer flocculant characterized in that the unit is 20 mol% or less. 前記ノニオン性又はアニオン性高分子凝集剤がアクリルアミド系モノマー単位と、アニオン構成単位としてカルボキシル基又はそのアルカリ金属塩を有するビニル化合物とからなることを特徴とする請求項1に記載の高分子凝集剤。The polymer flocculant according to claim 1, wherein the nonionic or anionic polymer flocculant comprises an acrylamide monomer unit and a vinyl compound having a carboxyl group or an alkali metal salt thereof as an anionic constituent unit. .
JP2003143563A 2003-05-21 2003-05-21 Polymer flocculant Expired - Fee Related JP4156441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143563A JP4156441B2 (en) 2003-05-21 2003-05-21 Polymer flocculant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143563A JP4156441B2 (en) 2003-05-21 2003-05-21 Polymer flocculant

Publications (2)

Publication Number Publication Date
JP2004344748A true JP2004344748A (en) 2004-12-09
JP4156441B2 JP4156441B2 (en) 2008-09-24

Family

ID=33531318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143563A Expired - Fee Related JP4156441B2 (en) 2003-05-21 2003-05-21 Polymer flocculant

Country Status (1)

Country Link
JP (1) JP4156441B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194677A (en) * 2007-01-17 2008-08-28 Hymo Corp Method for dehydrating papermaking sludge
KR101371405B1 (en) 2013-08-02 2014-03-12 정순우 Algae collection method
JP2014181147A (en) * 2013-03-19 2014-09-29 Aizawa Koatsu Concrete Kk Ready mixed concrete flocculant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008194677A (en) * 2007-01-17 2008-08-28 Hymo Corp Method for dehydrating papermaking sludge
JP2014181147A (en) * 2013-03-19 2014-09-29 Aizawa Koatsu Concrete Kk Ready mixed concrete flocculant
KR101371405B1 (en) 2013-08-02 2014-03-12 정순우 Algae collection method

Also Published As

Publication number Publication date
JP4156441B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
JPH08225621A (en) Amphoteric water-soluble polymer dispersion, its production and treatment comprising thin dispersion
JP5117228B2 (en) Sewage sludge treatment method
JP5042057B2 (en) Sludge dewatering method
JP5172372B2 (en) Sludge dewatering method
JP5649279B2 (en) Dewatering method for sewage digested sludge
JP2006291024A (en) Sludge dehydrating agent composition and method for dehydrating sludge
JP6134940B2 (en) Coagulation treatment method for oil-containing cleaning wastewater
JP4684980B2 (en) Amphoteric polymer flocculant and sludge treatment method using the same
JP4156441B2 (en) Polymer flocculant
JP4479095B2 (en) Polymer flocculant and sludge dewatering method
JP4804707B2 (en) Sludge dewatering method
JPH0231899A (en) Method for dehydrating sludge
JPWO2008047739A1 (en) Sewage sludge dewatering method
JP3906636B2 (en) Amphoteric polymer flocculant and sludge dewatering method
JP3064878B2 (en) Organic sludge treatment
JP4175062B2 (en) Composition, amphoteric polymer flocculant and use thereof
JP4161559B2 (en) Composition, amphoteric polymer flocculant and method for dewatering sludge
JPS6043800B2 (en) Sludge dewatering agent
JP2004210986A (en) Composition, polymer coagulant and method of sludge dewatering
JP2002045900A (en) Method for dewatering sludge
JP2004283716A (en) Method for dehydrating sludge
JPH0871599A (en) Sludge dehydrating agent
JP3924011B2 (en) Dewatering method for sewage digested sludge
JP2002097236A (en) Production method of block copolymer, polymeric coagulant having the same copolymer and dewatering method of sludge
JPH05269500A (en) Dehydration of sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4156441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees