JP7062222B2 - Acid water treatment condition design method and acid water treatment method - Google Patents

Acid water treatment condition design method and acid water treatment method Download PDF

Info

Publication number
JP7062222B2
JP7062222B2 JP2018052565A JP2018052565A JP7062222B2 JP 7062222 B2 JP7062222 B2 JP 7062222B2 JP 2018052565 A JP2018052565 A JP 2018052565A JP 2018052565 A JP2018052565 A JP 2018052565A JP 7062222 B2 JP7062222 B2 JP 7062222B2
Authority
JP
Japan
Prior art keywords
volume
neutralizing agent
acidic water
neutralizing
cumulative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018052565A
Other languages
Japanese (ja)
Other versions
JP2019162595A (en
Inventor
知昭 鷲尾
英二 丸屋
英喜 中田
正人 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Corp filed Critical Ube Corp
Priority to JP2018052565A priority Critical patent/JP7062222B2/en
Publication of JP2019162595A publication Critical patent/JP2019162595A/en
Application granted granted Critical
Publication of JP7062222B2 publication Critical patent/JP7062222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Description

本発明は酸性水の処理条件設計方法及び酸性水の処理方法に関する。 The present invention relates to a method for designing treatment conditions for acidic water and a method for treating acidic water.

硫化鉱の鉱床がある地域において、酸化した硫化鉱が地下水に溶解することにより鉱床付近の河川が硫酸酸性を示し、酸性の河川水となることがある。このような酸性河川水は、生物や植物に対して有害であり、また、橋やダムなどの土木構造物を腐食させる傾向にある。そのため、生態系の維持や土木構造物の長寿命化を目的として、酸性河川水を中和する必要がある。 In an area with a sulfide ore deposit, the oxidized sulfide ore dissolves in groundwater, causing the river near the deposit to become acidic with sulfuric acid, which may become acidic river water. Such acidic river water is harmful to living organisms and plants, and tends to corrode civil engineering structures such as bridges and dams. Therefore, it is necessary to neutralize acidic river water for the purpose of maintaining the ecosystem and extending the life of civil engineering structures.

一方で、鉱床付近の河川は半永久的に酸性状態となっていることが多く、これに伴って、酸性河川水の処理場では半永久的に中和処理する必要がある。このような中和処理方法としては、従来から、自然資源である石灰石(炭酸カルシウム)を中和剤として、処理対象の酸性水に投入する方法が行われていた。また、その他の中和処理方法として、酸化マグネシウム及び/又は水酸化マグネシウムを酸性水に添加する方法(特許文献1)や、カルシウム化合物とマグネシウム化合物とを一度に酸性水に添加する方法(特許文献2)、炭酸カルシウムを添加した後にマグネシウム化合物を添加する2段階中和法(特許文献3)が提案されている。 On the other hand, rivers near the ore deposits are often in an acidic state semi-permanently, and along with this, it is necessary to neutralize semi-permanently at the acid river water treatment plant. As such a neutralization treatment method, a method of adding limestone (calcium carbonate), which is a natural resource, as a neutralizing agent into acidic water to be treated has been conventionally used. Further, as other neutralization treatment methods, a method of adding magnesium oxide and / or magnesium hydroxide to acidic water (Patent Document 1) and a method of adding a calcium compound and a magnesium compound to acidic water at once (Patent Document 1). 2), a two-step neutralization method (Patent Document 3) in which a magnesium compound is added after addition of calcium carbonate has been proposed.

特開2003-190969号公報Japanese Patent Application Laid-Open No. 2003-190969 特開2003-251371号公報Japanese Patent Application Laid-Open No. 2003-251371 特開2016-10757号公報Japanese Unexamined Patent Publication No. 2016-10757

ところで、上述のとおり、酸性河川水を半永久的に中和処理する必要があることから、酸性水の中和処理コストをできるだけ低減させる処理方法が望まれている。酸性水の中和処理コストとしては、例えば使用する中和剤の原料及びその投入量に起因するコスト(以下、原料コストともいう。)、並びに中和処理時に発生する中和殿物の浚渫及び産廃処分に起因するコスト(以下、処分コストともいう。)が含まれる。実際の酸性水の処理においては、これらのコストを考慮しなければならない。 By the way, as described above, since it is necessary to neutralize acidic river water semi-permanently, a treatment method that reduces the neutralization treatment cost of acidic water as much as possible is desired. The cost of the neutralization treatment of acidic water includes, for example, the cost due to the raw material of the neutralizing agent used and the amount thereof (hereinafter, also referred to as the raw material cost), and the dredging and dredging of the neutralizing material generated during the neutralization treatment. Costs resulting from industrial waste disposal (hereinafter also referred to as disposal costs) are included. These costs must be taken into account in the actual treatment of acidic water.

しかし、中和剤として石灰石を添加した場合では、中和剤投入量が多くなり原料コストが増大することに加えて、容積の大きな中和殿物が発生して処分コストが増大するので、結果として酸性水の中和処理コストが著しく増大する。また、特許文献1ないし3に記載の中和処理方法を採用した場合では、石灰石の場合に比べて原料コストは低減できるが、中和殿物の容積は同等あるいは増大してしまい、処分コストを低減できない。そのため、酸性水の処理コストを十分に低減することができないという問題があった。 However, when limestone is added as a neutralizing agent, the amount of neutralizing agent input increases and the raw material cost increases, and in addition, a large volume of neutralizing burial material is generated and the disposal cost increases. As a result, the cost of neutralizing acidic water increases significantly. Further, when the neutralization treatment method described in Patent Documents 1 to 3 is adopted, the raw material cost can be reduced as compared with the case of limestone, but the volume of the neutralized burial material is equal to or increased, and the disposal cost is increased. Cannot be reduced. Therefore, there is a problem that the treatment cost of acidic water cannot be sufficiently reduced.

したがって本発明では、前記問題点に鑑みて、中和剤投入量及び中和殿物の容積の双方を低減できるような中和剤の投入条件を、処理対象の酸性水の性状に応じて合理的に設計できる酸性水の処理条件設計方法及び該設計方法を用いた酸性水の処理方法を提供することを課題とする。 Therefore, in view of the above-mentioned problems, in the present invention, the conditions for adding the neutralizing agent so as to reduce both the amount of the neutralizing agent added and the volume of the neutralizing substance are rationalized according to the properties of the acidic water to be treated. It is an object of the present invention to provide a method for designing treatment conditions for acidic water that can be specifically designed and a method for treating acidic water using the design method.

本発明者らは、上記課題を解決するために鋭意検討した結果、カルシウム化合物及びマグネシウム化合物を含み且つ粉砕された中和剤を酸性水に投入することで、従来技術と比較して、中和剤投入量及び中和殿物の容積を低減できることを見出した。さらに、本発明者らは、中和剤の粒子径と、中和剤投入量及び中和殿物の容積との間に関係性があることを見出した。 As a result of diligent studies to solve the above problems, the present inventors have neutralized by adding a neutralizing agent containing a calcium compound and a magnesium compound to acidic water as compared with the prior art. It has been found that the amount of the agent added and the volume of the neutralizing compound can be reduced. Furthermore, the present inventors have found that there is a relationship between the particle size of the neutralizing agent, the amount of the neutralizing agent added, and the volume of the neutralizing ridge.

これらの知見に基づき、本発明者らは、中和剤の粒子径と、中和剤投入量及び中和殿物の容積との関係式を予め求めておき、該関係式に基づいて中和剤の粒子径と所要投入量を設計することによって、従来の方法よりも中和処理コストを低減できることを見出し、本発明を完成させるに至った。 Based on these findings, the present inventors have previously obtained a relational expression between the particle size of the neutralizing agent, the amount of the neutralizing agent added, and the volume of the neutralizing ridge, and neutralize based on the relational expression. We have found that the neutralization treatment cost can be reduced as compared with the conventional method by designing the particle size and the required input amount of the agent, and have completed the present invention.

すなわち、本発明は、カルシウム化合物及びマグネシウム化合物を含み且つ粉砕された中和剤を、処理対象とする酸性水に投入して中和処理を行い、前記中和剤の累積体積90容量%における体積累積粒子径と投入量との関係式である、下記式(a)と、
y=α×D+β ・・・式(a)
y:酸性水1L当たりの中和剤投入量(g/L)
D:中和剤の累積体積90容量%における体積累積粒子径(μm)
α:回帰直線の傾き
β:回帰直線の切片
前記中和剤の累積体積90容量%における体積累積粒子径と中和殿物の容積との関係式である、式(b)とを予め求めておき、
z=γ×D+δ ・・・式(b)
z:酸性水1L当たりの中和殿物の容積(mL/L)
γ:回帰直線の傾き
δ:回帰直線の切片
前記式(a)及び式(b)の関係式に基づき、前記中和剤の累積体積90容量%における体積累積粒子径と投入量とを設計する、酸性水の処理条件設計方法に関する。
That is, in the present invention, a neutralizing agent containing a calcium compound and a magnesium compound and crushed is put into acidic water to be treated for neutralization treatment, and the volume of the neutralizing agent in a cumulative volume of 90% by volume. The following equation (a), which is the relational expression between the cumulative particle size and the input amount, and
y = α × D + β ・ ・ ・ Equation (a)
y: Neutralizing agent input amount per 1 L of acidic water (g / L)
D: Cumulative volume particle diameter (μm) at a cumulative volume of 90% by volume of the neutralizer
α: Slope of regression line
β: Intercept of regression line Formula (b), which is a relational expression between the volume cumulative particle diameter and the volume of the neutralizing ridge in the cumulative volume of 90% by volume of the neutralizing agent, is obtained in advance.
z = γ × D + δ ・ ・ ・ Equation (b)
z: Volume of neutralizing substance per 1 L of acidic water (mL / L)
γ: Slope of regression line
δ: Intercept of regression line Based on the relational expressions of the formulas (a) and (b), the treatment conditions for acidic water for designing the volume cumulative particle size and the input amount in the cumulative volume of 90% by volume of the neutralizing agent. Regarding the design method.

また本発明は、累積体積90容量%における体積累積粒子径が20μm以上150μm以下である前記中和剤を用いて前記式(a)及び式(b)を求める、酸性水の処理条件設計方法に関する。本発明は、炭酸カルシウムを65質量%以上95質量%以下含み、水酸化マグネシウムを5質量%以上35質量%以下含む前記中和剤を用いて前記式(a)及び式(b)を求める、酸性水の処理条件設計方法に関する。本発明は、前記中和剤の一粒子中に炭酸カルシウムと水酸化マグネシウムとが均一に混合されている、酸性水の処理条件設計方法に関する。本発明は、前記中和剤が海水と消石灰との反応によって水酸化マグネシウムを製造して生じた残渣である、酸性水の処理条件設計方法に関する。本発明は、酸性の鉱泉水が流入する河川水からなる前記酸性水を用いて前記式(a)及び式(b)を求める、酸性水の処理条件設計方法に関する。 The present invention also relates to a method for designing treatment conditions for acidic water, wherein the formulas (a) and (b) are obtained using the neutralizing agent having a cumulative volume particle diameter of 20 μm or more and 150 μm or less in a cumulative volume of 90% by volume. .. The present invention determines the formulas (a) and (b) using the neutralizing agent containing 65% by mass or more and 95% by mass or less of calcium carbonate and 5% by mass or more and 35% by mass or less of magnesium hydroxide. Regarding the treatment condition design method for acidic water. The present invention relates to a method for designing treatment conditions for acidic water in which calcium carbonate and magnesium hydroxide are uniformly mixed in one particle of the neutralizing agent. The present invention relates to a method for designing treatment conditions for acidic water, which is a residue produced by producing magnesium hydroxide by the reaction of the neutralizing agent with seawater and slaked lime. The present invention relates to a method for designing treatment conditions for acidic water, wherein the formulas (a) and (b) are obtained using the acidic water composed of river water into which acidic mineral spring water flows.

また本発明は、石灰石を前記酸性水に投入して中和処理を行ったときに発生する沈殿物の容積よりも中和殿物の容積が低減するように、前記中和剤の累積体積90容量%における体積累積粒子径と投入量とを設計する、酸性水の処理条件設計方法に関する。本発明は、石灰石を前記酸性水に投入して中和処理を行ったときに投入される石灰石の投入量よりも前記中和剤投入量が低減するように、前記中和剤の累積体積90容量%における体積累積粒子径と投入量とを設計する、酸性水の処理条件設計方法に関する。本発明は、中和剤投入量及び中和殿物の容積の合計量が最小値となるか、又は該最小値±10%となるように、前記中和剤の累積体積90容量%における体積累積粒子径と投入量とを設計する、酸性水の処理条件設計方法に関する。 Further, in the present invention, the cumulative volume 90 of the neutralizing agent is such that the volume of the neutralizing ridge is smaller than the volume of the precipitate generated when the limestone is put into the acidic water and subjected to the neutralization treatment. The present invention relates to a method for designing treatment conditions for acidic water, which designs the cumulative volume particle size and the input amount in% by volume. In the present invention, the cumulative volume of the neutralizing agent 90 is such that the amount of the neutralizing agent added is smaller than the amount of the limestone added when the limestone is added to the acidic water to perform the neutralization treatment. The present invention relates to a method for designing treatment conditions for acidic water, which designs the cumulative volume particle size and the input amount in% by volume. In the present invention, the volume of the neutralizing agent in a cumulative volume of 90% by volume so that the total amount of the neutralizing agent input amount and the volume of the neutralizing substance is the minimum value or the minimum value is ± 10%. The present invention relates to a method for designing treatment conditions for acidic water, which designs the cumulative particle size and the input amount.

更に本発明は、上述の酸性水の処理条件設計方法によって設計した前記中和剤の累積体積90容量%における体積累積粒子径と投入量とに基づいて、前記中和剤を処理対象とする酸性水に投入して中和処理する、酸性水の処理方法に関する。 Further, in the present invention, the acidity for which the neutralizing agent is treated is based on the volume cumulative particle size and the input amount at the cumulative volume of 90% by volume of the neutralizing agent designed by the above-mentioned method for designing treatment conditions for acidic water. The present invention relates to a method for treating acidic water, which is applied to water for neutralization.

本発明によれば、中和剤の原料コストと中和殿物の処分コストとを考慮して、酸性水の中和処理コストを低減可能な中和剤の投入条件を合理的に設計できる。 According to the present invention, it is possible to rationally design the conditions for adding the neutralizing agent, which can reduce the neutralization treatment cost of acidic water, in consideration of the raw material cost of the neutralizing agent and the disposal cost of the neutralizing substance.

図1は、海水と消石灰を反応させて水酸化マグネシウムを生成させる工程で得られる残渣の走査型電子顕微鏡像である。FIG. 1 is a scanning electron microscope image of a residue obtained in the step of reacting seawater with slaked lime to produce magnesium hydroxide. 図2(a)は、残渣の走査型電子顕微鏡像(図1相当拡大像)であり、図2(b)は、図2(a)の顕微鏡像におけるマグネシウムの元素マッピング像であり、図2(c)は、図2(a)の顕微鏡像におけるカルシウムの元素マッピング像である。FIG. 2A is a scanning electron microscope image of the residue (enlarged image corresponding to FIG. 1), FIG. 2B is an elemental mapping image of magnesium in the microscope image of FIG. 2A, and FIG. (C) is an elemental mapping image of calcium in the microscope image of FIG. 2 (a). 図3は、中和剤の粒子径分布をレーザー回折散乱式粒度分布測定装置で測定した結果のグラフの一例である。FIG. 3 is an example of a graph of the results of measuring the particle size distribution of the neutralizing agent with a laser diffraction / scattering type particle size distribution measuring device.

以下、本発明の酸性水の処理条件設計方法及び該設計方法を用いた酸性水の中和方法をその好ましい実施形態に基づいて詳細に説明する。しかし、本発明は以下の実施形態に制限されるものではない。 Hereinafter, the method for designing treatment conditions for acidic water of the present invention and the method for neutralizing acidic water using the design method will be described in detail based on the preferred embodiment thereof. However, the present invention is not limited to the following embodiments.

<酸性水の処理条件設計方法>
本発明の酸性水の処理条件設計方法は、カルシウム化合物及びマグネシウム化合物を含み且つ粉砕された中和剤を、処理対象とする酸性水に投入して中和処理を行い、中和剤の粒子径と中和剤投入量との関係式、及び中和剤の粒子径と中和処理によって生じた不溶性沈殿物である中和殿物の容積との関係式をそれぞれ予め求めておき、これらの関係式に基づいて、中和剤の粒子径と投入量とを設計するものである。なお、中和剤の詳細は後述する。
<Design method for acid water treatment conditions>
In the method for designing treatment conditions for acidic water of the present invention, a neutralizing agent containing a calcium compound and a magnesium compound and crushed is put into the acidic water to be treated for neutralization, and the particle size of the neutralizing agent is used. The relational expression between the amount of the neutralizing agent and the amount of the neutralizing agent added, and the relational expression between the particle size of the neutralizing agent and the volume of the neutralizing compound, which is an insoluble precipitate produced by the neutralization treatment, are obtained in advance, and these relationships are obtained. The particle size and the amount of the neutralizing agent are designed based on the formula. The details of the neutralizing agent will be described later.

まず、中和剤を処理対象とする酸性水に投入して中和処理を行って、中和剤の粒子径と投入量との関係式として以下の式(a)と、及び中和剤の粒子径と中和殿物の容積との関係式として以下の式(b)とを予め求めておく。 First, the neutralizing agent is added to the acidic water to be treated and the neutralization treatment is performed. The following formula (b) is obtained in advance as a relational formula between the particle size and the volume of the neutralized structure.

y=α×D+β ・・・式(a)
y:酸性水1L当たりの中和剤投入量(g/L)
D:中和剤の累積体積90容量%における体積累積粒子径(μm)
α:回帰直線の傾き
β:回帰直線の切片
y = α × D + β ・ ・ ・ Equation (a)
y: Neutralizing agent input amount per 1 L of acidic water (g / L)
D: Cumulative volume particle diameter (μm) at a cumulative volume of 90% by volume of the neutralizer
α: Slope of regression line β: Intercept of regression line

z=γ×D+δ ・・・式(b)
z:酸性水1L当たりの中和殿物の容積(mL/L)
γ:回帰直線の傾き
δ:回帰直線の切片
z = γ × D + δ ・ ・ ・ Equation (b)
z: Volume of neutralizing substance per 1 L of acidic water (mL / L)
γ: Slope of regression line δ: Intercept of regression line

上述の式(a)及び(b)に示すように、中和剤の粒子径及び投入量の関係と、中和剤の粒子径及び中和殿物の容積の関係とは、それぞれ一次式で表されるものである。したがって、これらの関係式から回帰直線の傾き及び切片を求めるためには、異なる粒子径を有する中和剤を用いて中和処理を行って、中和剤投入量及び中和殿物の容積を測定し、その結果から線形近似を行うことによってそれぞれ求めることができる。なお、本明細書における「粒子径」とは、特に断らない限り、レーザー回折散乱式粒度分布測定法による累積体積90容量%における体積累積粒子径のことを指す。 As shown in the above formulas (a) and (b), the relationship between the particle size of the neutralizing agent and the input amount and the relationship between the particle size of the neutralizing agent and the volume of the neutralizing compound are linear equations, respectively. It is represented. Therefore, in order to obtain the slope and intercept of the regression line from these relational expressions, neutralization treatment is performed using neutralizing agents having different particle sizes, and the amount of neutralizing agent input and the volume of the neutralizing ridge are determined. Each can be obtained by measuring and performing a linear approximation from the result. Unless otherwise specified, the "particle size" in the present specification refers to the volume cumulative particle size at a cumulative volume of 90% by volume by the laser diffraction / scattering type particle size distribution measurement method.

最適な中和処理条件の設計に要するコストを低減する観点から、上述の式(a)及び(b)における回帰直線の傾き及び切片を求めるための中和処理は、少なくとも2種の異なる粒子径を有する中和剤を用いて行うことが好ましく、中和処理条件設計の精密さを高める観点から、5種の異なる粒子径を有する中和剤を用いて行うことがより好ましく、8種の異なる粒子径を有する中和剤を用いて行うことが更に好ましく、10種の異なる粒子径を有する中和剤を用いて行うことが特に好ましい。つまり、式(a)及び(b)を求めるにあたって、粒子径の異なる中和剤を用いて、好ましくは2点以上、より好ましくは5点以上、更に好ましくは8点以上、特に好ましくは10点以上の中和処理を行って、中和剤投入量及び中和殿物の容積を測定する。 From the viewpoint of reducing the cost required for designing the optimum neutralization treatment conditions, the neutralization treatment for obtaining the slope and section of the regression line in the above formulas (a) and (b) is performed by at least two different particle diameters. It is preferable to use a neutralizing agent having a neutralization agent, and from the viewpoint of improving the precision of the neutralization treatment condition design, it is more preferable to use a neutralizing agent having five different particle sizes, and eight different types. It is more preferable to use a neutralizing agent having a particle size, and it is particularly preferable to use a neutralizing agent having 10 different particle sizes. That is, in determining the formulas (a) and (b), preferably 2 points or more, more preferably 5 points or more, still more preferably 8 points or more, and particularly preferably 10 points, using neutralizing agents having different particle sizes. After performing the above neutralization treatment, the amount of neutralizing agent added and the volume of neutralizing particles are measured.

中和剤投入量と粒子径との相関性の強弱を示す相関係数、及び中和殿物の容積と中和剤の粒子径との相関性の強弱を示す相関係数は、その絶対値が、それぞれ独立して0.75以上であることが好ましく、0.80以上であることが更に好ましい。このような相関係数になっていることによって、中和処理条件設計の精密さを高めることができ、その結果、中和処理コストを低減させるように中和処理条件を設計することができる。相関係数は、上述の式(a)及び(b)における線形近似によって回帰直線とともに求めることができる。 The correlation coefficient indicating the strength of the correlation between the amount of the neutralizing agent added and the particle size and the correlation coefficient indicating the strength of the correlation between the volume of the neutralizing ridge and the particle size of the neutralizing agent are absolute values. However, it is preferably 0.75 or more independently, and more preferably 0.80 or more. By having such a correlation coefficient, the precision of the neutralization treatment condition design can be improved, and as a result, the neutralization treatment condition can be designed so as to reduce the neutralization treatment cost. The correlation coefficient can be obtained together with the regression line by the linear approximation in the above equations (a) and (b).

式(a)を求めるための中和処理と、式(b)を求めるための中和処理とは、同時に行ってもよく、それぞれ独立して行ってもよい。なお、酸性水への中和剤投入量及び中和殿物の容積は、一度の中和処理からそれぞれ実測することができるので、式(a)及び(b)を求めるための中和処理は、一度の中和処理によって行うことが処理効率の観点から好ましい。 The neutralization treatment for obtaining the formula (a) and the neutralization treatment for obtaining the formula (b) may be performed simultaneously or independently. Since the amount of the neutralizing agent added to the acidic water and the volume of the neutralizing substance can be measured from one neutralization treatment, the neutralization treatment for obtaining the formulas (a) and (b) is performed. From the viewpoint of treatment efficiency, it is preferable to carry out the neutralization treatment once.

また、式(a)及び(b)を求めるための中和処理は、処理対象とする酸性水を一定量サンプリングして行うことが、中和剤投入量及び中和殿物の容積を正確に測定することができる点で好ましい。また、同様の観点から、使用する中和剤の粒子径ごとに、サンプリングした酸性水を用いて中和処理を行うことが好ましい。 In addition, the neutralization treatment for obtaining the formulas (a) and (b) can be performed by sampling a certain amount of acidic water to be treated, so that the amount of the neutralizing agent input and the volume of the neutralizing ridge can be accurately measured. It is preferable in that it can be measured. From the same viewpoint, it is preferable to perform the neutralization treatment using sampled acidic water for each particle size of the neutralizing agent to be used.

上述のとおり、本発明に用いられる中和剤の粒子径は、レーザー回折散乱式粒度分布測定法による累積体積90容量%における体積累積粒子径のことを指す。中和剤の粒子径は、例えば実施例で後述する粒度分布測定装置を用いて前記中和剤の粒度分布を測定して、得られた粒子径と累積体積頻度との関係線から累積体積が90%となる粒子径として求めることができる。 As described above, the particle size of the neutralizing agent used in the present invention refers to the volume cumulative particle size at a cumulative volume of 90% by volume by the laser diffraction / scattering type particle size distribution measurement method. The particle size of the neutralizing agent is determined by measuring the particle size distribution of the neutralizing agent using, for example, a particle size distribution measuring device described later in Examples, and the cumulative volume is obtained from the relationship line between the obtained particle size and the cumulative volume frequency. It can be obtained as a particle size of 90%.

関係式(a)及び(b)を精度よく得る観点から、レーザー回折散乱式粒度分布測定法による累積体積90容量%における体積累積粒子径として、好ましくは20μm以上150μm以下、より好ましくは25μm以上140μm以下、更に好ましくは30μm以上130μm以下である中和剤を用いて、式(a)及び(b)を得ることが好ましい。中和剤の粒子径が20μm以上であれば、中和剤の粒子が細かすぎずゲル状の中和殿物が多く生成することが防止されるので、中和殿物の容積が極端に増加することが防止され、その結果、前記式(b)の相関係数が低下することが防止される。また、中和剤の粒子径が150μm以下であると、中和速度が遅くなることが防止されるので、中和剤投入量の増大が防止でき、その結果、前記式(a)の相関係数が低下することが防止される。 From the viewpoint of accurately obtaining the relational expressions (a) and (b), the volume cumulative particle diameter at a cumulative volume of 90% by volume measured by the laser diffraction / scattering particle size distribution measurement method is preferably 20 μm or more and 150 μm or less, more preferably 25 μm or more and 140 μm. Hereinafter, it is more preferable to obtain the formulas (a) and (b) by using a neutralizing agent having a thickness of 30 μm or more and 130 μm or less. When the particle size of the neutralizing agent is 20 μm or more, the particles of the neutralizing agent are not too fine and it is prevented that many gel-like neutralizing particles are generated, so that the volume of the neutralizing agents is extremely increased. As a result, it is prevented that the correlation coefficient of the above equation (b) is lowered. Further, when the particle size of the neutralizing agent is 150 μm or less, the neutralization rate is prevented from slowing down, so that an increase in the amount of the neutralizing agent input can be prevented, and as a result, the phase relationship of the above formula (a) is prevented. It prevents the number from dropping.

中和剤をこのような粒子径とするためには、粉砕機を用いる粉砕や、ふるい分け、又はこれらの組み合わせによって調整することができる。特に、中和剤投入量及び中和殿物の容積を低減させて、中和性能を優れたものとする観点から、本発明に投入される中和剤は、その粒子径が上述の範囲となることを条件として、粉砕されたものを用いることが好ましい。中和剤の粉砕方法としては、例えばボールミル、ローラーミル、ジェットミル、ハンマーミル、ピンミル及びディスクミル等の公知の粉砕機を用いて行うことができる。 In order to obtain such a particle size of the neutralizing agent, it can be adjusted by pulverization using a pulverizer, sieving, or a combination thereof. In particular, from the viewpoint of reducing the amount of the neutralizing agent added and the volume of the neutralizing substance to improve the neutralizing performance, the neutralizing agent added to the present invention has a particle size within the above range. It is preferable to use crushed particles on condition that the particles become crushed. As a method for pulverizing the neutralizing agent, for example, a known pulverizer such as a ball mill, a roller mill, a jet mill, a hammer mill, a pin mill, or a disc mill can be used.

中和剤投入量は、中和処理において、中和剤投入前のpHから所定のpHに変化するまでに酸性水に投入した中和剤の質量を指す。例えば、中和剤投入量は、処理対象のpH7未満の酸性水に中和剤を所定量投入して、所定時間後にpH7まで中和するのに必要な投入量を質量として測定することで求めることができる。なお、詳細は後述の実施例にて説明する。 The amount of the neutralizing agent added refers to the mass of the neutralizing agent added to the acidic water until the pH changes from the pH before the addition of the neutralizing agent to a predetermined pH in the neutralization treatment. For example, the amount of the neutralizing agent added is determined by adding a predetermined amount of the neutralizing agent to acidic water having a pH of less than 7 to be treated and measuring the amount required to neutralize to pH 7 after a predetermined time as a mass. be able to. The details will be described in Examples described later.

中和処理に用いられる中和剤は、乾燥状態のものであってもよく、湿潤状態のものであってもよい。詳細には、中和剤は、粉状体やその凝集体等の粒子としてそのまま投入してもよく、中和剤の粒子等を水などの分散媒に溶解又は分散したスラリー状の分散液として投入してもよい。なお、中和剤を湿潤状態や分散液として用いた場合は、その投入量は固形分換算とする。 The neutralizing agent used in the neutralization treatment may be in a dry state or may be in a wet state. Specifically, the neutralizing agent may be added as it is as particles such as powder or agglomerates thereof, or as a slurry-like dispersion liquid in which particles of the neutralizing agent are dissolved or dispersed in a dispersion medium such as water. You may put it in. When the neutralizing agent is used in a wet state or as a dispersion liquid, the input amount is converted into solid content.

中和殿物の容積は、中和処理において、中和剤投入前のpHから所定のpHに変化するまで中和剤を投入したときに発生する沈殿物の容積を指す。中和殿物の容積は、例えば所定のpHに変化した後(例えば中和処理後)の酸性水を目盛り付きの試験管やメスシリンダー等の容積測定容器に入れ、沈殿物の容積が安定するまで静置した後、目盛りを読み取ることで測定することができる。なお、詳細は後述の実施例にて説明する。 The volume of the neutralizing substance refers to the volume of the precipitate generated when the neutralizing agent is added until the pH changes from the pH before the neutralizing agent is added to a predetermined pH in the neutralization treatment. For the volume of the neutralized deposit, for example, acid water after changing to a predetermined pH (for example, after neutralization treatment) is placed in a volume measuring container such as a graduated test tube or a measuring cylinder to stabilize the volume of the precipitate. It can be measured by reading the scale after allowing it to stand still. The details will be described in Examples described later.

次いで、中和剤の粒子径と、実測された中和剤投入量及び中和殿物の容積との関係から求められた式(a)及び式(b)の関係式から、最適な中和効果を示すように、中和剤の粒子径及び中和剤投入量を設計する。最適な中和効果とは、処理対象の酸性水の性状に応じた中和効果であり、例えば、構造物や周囲環境への負荷の低減や、酸性水の中和処理コストの低減、又はこれらの組み合わせ等に着目した効果が挙げられる。 Next, the optimum neutralization is performed from the relational expressions of the formulas (a) and (b) obtained from the relationship between the particle size of the neutralizing agent, the actually measured amount of the neutralizing agent and the volume of the neutralizing ridge. The particle size of the neutralizing agent and the amount of the neutralizing agent input are designed so as to show the effect. The optimum neutralization effect is a neutralization effect according to the properties of the acidic water to be treated, for example, reduction of the load on the structure and the surrounding environment, reduction of the neutralization treatment cost of the acidic water, or these. The effect of paying attention to the combination of the above can be mentioned.

ダム等の構造物や周囲環境への負荷の低減の観点からは、例えば中和剤として石灰石を用いて中和処理を行ったときに発生する沈殿物の容積よりも、中和殿物の容積が低減するように、使用する中和剤の粒子径及び投入量の条件を設計することができる。 From the viewpoint of reducing the load on structures such as dams and the surrounding environment, for example, the volume of the neutralized particles is larger than the volume of the precipitate generated when the neutralization treatment is performed using limestone as a neutralizing agent. The conditions of the particle size and the amount of the neutralizing agent to be used can be designed so as to reduce the amount of the neutralizing agent used.

また、中和処理コストの低減の観点からは、使用する中和剤の原料及びその投入量に起因する原料コスト、並びに中和処理時に発生する中和殿物の浚渫及び産廃処分に起因する処分コストがともに少なくなるように設計することができる。つまり、中和剤投入量及び中和殿物の容積の双方が低減するように、使用する中和剤の粒子径及び投入量の条件を設計することができる。詳細には、式(a)及び式(b)から求められる中和剤投入量及び中和殿物の容積の合計量が最小値となるように、使用する中和剤の粒子径及び投入量の条件を設計することができる。 In addition, from the viewpoint of reducing the cost of neutralization treatment, the raw material cost of the neutralizing agent used and the amount of the raw material input thereof, and the disposal caused by the dredging and industrial waste disposal of the neutralization ridge generated during the neutralization treatment. It can be designed to reduce both costs. That is, the conditions of the particle size and the amount of the neutralizing agent to be used can be designed so that both the amount of the neutralizing agent added and the volume of the neutralizing agent are reduced. Specifically, the particle size and the amount of the neutralizing agent used so that the total amount of the neutralizing agent input amount and the volume of the neutralizing ridge obtained from the formulas (a) and (b) is the minimum value. Conditions can be designed.

また、粒子径及び投入量の条件の設計において、中和剤投入量及び中和殿物の容積の合計量の最小値を必ずしも採用しなくてもよく、本発明の効果が奏される限りにおいて許容可能な一定の上限及び下限の幅を持たせて、使用する中和剤の粒子径及び投入量の条件を設計することもできる。本発明において許容可能な一定の上限及び下限の幅としては、例えば、好ましくは最小値±10%となるように、更に好ましくは最小値±5%となるように、使用する中和剤の粒子径及び投入量の条件を設計することができる。 Further, in designing the conditions of the particle size and the input amount, it is not always necessary to adopt the minimum value of the total amount of the neutralizing agent input amount and the neutralization volume, as long as the effect of the present invention is exhibited. It is also possible to design the conditions for the particle size and the amount of the neutralizing agent to be used, with a certain allowable upper and lower limit widths. The neutralizing agent particles used in the present invention have a constant upper and lower limit width, for example, preferably a minimum value of ± 10%, and more preferably a minimum value of ± 5%. Conditions for diameter and input amount can be designed.

同様に、中和剤の原料コストはあまり増大しないが、中和殿物の処分コストが著しく増大してしまうような性状を有する酸性水を処理対象とする場合には、中和剤として石灰石を用いて中和処理を行ったときに発生する沈殿物の容積よりも、中和殿物の容積が低減するように、使用する中和剤の粒子径及び投入量の条件を設計することができる。 Similarly, when the treatment target is acidic water having properties that the raw material cost of the neutralizing agent does not increase so much, but the disposal cost of the neutralizing volume increases significantly, limestone is used as the neutralizing agent. It is possible to design the conditions of the particle size and the amount of the neutralizing agent to be used so that the volume of the neutralizing deposit is smaller than the volume of the precipitate generated when the neutralization treatment is performed using the neutralizing agent. ..

また同様に、中和剤の原料コストが著しく増大するが、中和殿物の処分コストがあまり増大しないような性状を有する酸性水の場合には、例えば、中和剤として石灰石を前記酸性水に投入して中和処理を行ったときに投入される石灰石の投入量よりも中和剤投入量を低減するように、使用する中和剤の粒子径の条件を設計することができる。 Similarly, in the case of acidic water having properties such that the raw material cost of the neutralizing agent increases significantly, but the disposal cost of the neutralizing substance does not increase so much, for example, limestone is used as the neutralizing agent in the acidic water. The condition of the particle size of the neutralizing agent to be used can be designed so that the amount of the neutralizing agent added is smaller than the amount of the limestone charged when the neutralizing treatment is performed.

以上のとおり、本発明の酸性水の処理条件設計方法は、例えば酸性水の処分場の構造や周囲環境、処理対象の酸性水の性状、中和剤の原料コストの増減、及び中和殿物の処分コストの増減等といった、目的とする中和処理の効果に応じた最適な処理条件を合理的に設計することができる。 As described above, the method for designing the treatment conditions for acidic water of the present invention is, for example, the structure and surrounding environment of the acidic water disposal site, the properties of the acidic water to be treated, the increase / decrease in the raw material cost of the neutralizing agent, and the neutralization product. It is possible to rationally design the optimum treatment conditions according to the effect of the target neutralization treatment, such as an increase or decrease in the disposal cost of the water.

<酸性水の中和方法>
また、本発明の酸性水の中和方法は、本発明の酸性水の処理条件設計方法によって設計された中和剤の粒子径及び投入量に基づいて、該中和剤を処理対象の酸性水に投入して中和処理を行うことができる。なお、本発明の酸性水の中和方法に用いられる中和剤及び酸性水は、本発明の酸性水の処理条件設計方法において用いられたものと同一である。
<Neutralization method of acidic water>
Further, in the method for neutralizing acidic water of the present invention, the neutralizing agent is treated with the acidic water to be treated based on the particle size and the amount of the neutralizing agent designed by the method for designing the treatment conditions of the acidic water of the present invention. Can be neutralized by putting it in the water. The neutralizing agent and acidic water used in the method for neutralizing acidic water of the present invention are the same as those used in the method for designing treatment conditions for acidic water of the present invention.

特に、本発明の酸性水の中和方法は、中和剤の原料コストと中和殿物の処分コストを考慮した処理条件に基づいて行うことができるので、酸性水の中和処理コストを一層低減することができ、その結果、酸性水の処理場が抱える諸問題を解決可能なものとなる。 In particular, the method for neutralizing acidic water of the present invention can be carried out based on treatment conditions in consideration of the raw material cost of the neutralizing agent and the disposal cost of the neutralizing substance, so that the neutralization treatment cost of acidic water is further reduced. It can be reduced, and as a result, various problems of the acid water treatment plant can be solved.

以上は、本発明の酸性水の処理条件設計方法及び該設計方法を用いた酸性水の中和方法に関する説明であったところ、以下に、本発明に用いられる中和剤、及び処理対象の酸性水について説明する。 The above is a description of the method for designing treatment conditions for acidic water of the present invention and the method for neutralizing acidic water using the design method. The following describes the neutralizing agent used in the present invention and the acidity of the treatment target. Explain water.

<中和剤>
本発明で用いられる中和剤は、カルシウム化合物及びマグネシウム化合物を含む中和剤であることが好ましい。カルシウム化合物としては、例えば炭酸カルシウム、水酸化カルシウム及び酸化カルシウム等が挙げられる。マグネシウム化合物としては、例えば水酸化マグネシウム、酸化マグネシウム及び炭酸マグネシウム等が挙げられる。上述したカルシウム化合物は、単独で又は2種以上組み合わせて用いてもよい。また、マグネシウム化合物も、単独で又は2種以上組み合わせて用いてもよい。
<Neutralizer>
The neutralizing agent used in the present invention is preferably a neutralizing agent containing a calcium compound and a magnesium compound. Examples of the calcium compound include calcium carbonate, calcium hydroxide, calcium oxide and the like. Examples of the magnesium compound include magnesium hydroxide, magnesium oxide and magnesium carbonate. The above-mentioned calcium compounds may be used alone or in combination of two or more. Further, the magnesium compound may be used alone or in combination of two or more.

中和速度と、中和剤投入量及び中和殿物の容積の低減とを両立する観点から、本発明に用いられる中和剤は、カルシウム化合物として炭酸カルシウムを含むことが好ましい。また、中和剤に含まれるカルシウム化合物として炭酸カルシウムを含む場合、炭酸カルシウムを65質量%以上95質量%以下含むことが好ましく、70質量%以上90質量%以下含むことがより好ましく、75質量%以上85質量%以下含むことが更に好ましい。 The neutralizing agent used in the present invention preferably contains calcium carbonate as a calcium compound from the viewpoint of achieving both the neutralization rate and the reduction of the amount of the neutralizing agent added and the volume of the neutralizing substance. When calcium carbonate is contained as the calcium compound contained in the neutralizing agent, it is preferable to contain calcium carbonate in an amount of 65% by mass or more and 95% by mass or less, more preferably 70% by mass or more and 90% by mass or less, and 75% by mass or less. It is more preferable to contain more than 85% by mass.

また同様の観点から、本発明に用いられる中和剤は、マグネシウム化合物として水酸化マグネシウムを含むことが好ましい。また、中和剤に含まれるマグネシウム化合物として水酸化マグネシウムを含む場合、水酸化マグネシウムを5質量%以上35質量%以下含むことが好ましく、10質量%以上30質量%以下含むことがより好ましく、15質量%以上25質量%以下含むことが更に好ましい。 From the same viewpoint, the neutralizing agent used in the present invention preferably contains magnesium hydroxide as a magnesium compound. When magnesium hydroxide is contained as the magnesium compound contained in the neutralizing agent, magnesium hydroxide is preferably contained in an amount of 5% by mass or more and 35% by mass or less, more preferably 10% by mass or more and 30% by mass or less. It is more preferably contained in an amount of% by mass or more and 25% by mass or less.

本発明の中和剤は、上記のカルシウム化合物及びマグネシウム化合物を混合したものであってもよく、カルシウム化合物及びマグネシウム化合物を予め含んでいる天然物又は人工物であってもよい。カルシウム化合物及びマグネシウム化合物を予め含む中和剤としては、例えば軽焼ドロマイト、軽焼ドロマイト及び水を反応させることで得られる水酸化ドロマイト、海水と消石灰とを反応させて水酸化マグネシウムを工業的に製造して生じた残渣などが挙げられる。この中でも、石灰石と同程度の中和速度で中和処理を行うことができるとともに、中和剤投入量及び中和殿物の容積を低減できる観点から、中和剤として海水と消石灰とを反応させて水酸化マグネシウムを工業的に製造して生じた残渣を用いることが好ましい。 The neutralizing agent of the present invention may be a mixture of the above-mentioned calcium compound and magnesium compound, or may be a natural product or an artificial product containing the calcium compound and the magnesium compound in advance. Examples of the neutralizing agent containing a calcium compound and a magnesium compound in advance include light-burning dolomite, light-burning dolomite and magnesium hydroxide obtained by reacting water, and industrially producing magnesium hydroxide by reacting seawater with slaked lime. Examples thereof include residues produced during production. Among these, seawater and slaked lime are reacted as a neutralizing agent from the viewpoint that the neutralization treatment can be performed at the same neutralization rate as limestone and the amount of neutralizing agent input and the volume of the neutralizing ridge can be reduced. It is preferable to use the residue produced by industrially producing magnesium hydroxide.

なお、海水と消石灰とを反応させて水酸化マグネシウムを工業的に製造して生じた残渣は産業廃棄物であるため、本発明の効果に寄与するための粒子構造や成分の全部を解析することは実質的に不可能であり、その構造及び特性によって特定するには著しく過大な経済的支出及び時間を要する。そのため、前記残渣には、本出願の出願時において当該物をその構造又は特性により直接特定することが不可能であるか、又はおよそ実際的でないという事情、すなわち「不可能・非実際的事情」が存在する。 Since the residue produced by industrially producing magnesium hydroxide by reacting seawater with slaked lime is an industrial waste, all of the particle structures and components that contribute to the effects of the present invention should be analyzed. Is virtually impossible and requires significantly excessive economic spending and time to identify by its structure and properties. Therefore, in the residue, it is impossible or almost impractical to directly identify the substance by its structure or characteristics at the time of filing of the present application, that is, "impossible / impractical circumstances". Exists.

本発明で用いられる中和剤は、その粒子形状が針状、球状、板状、不定形状等の種々の形状のものであってよく、前記形状の粒子が凝集した凝集物であってもよい。例えば、海水と消石灰とを反応させて水酸化マグネシウムを工業的に製造して生じた残渣には、針状の粒子が多く含まれており、針状粒子が凝集した凝集物を形成していることが、走査型電子顕微鏡による観察によって確認されている(図1及び図2(a)参照)。 The neutralizing agent used in the present invention may have various particle shapes such as needle shape, spherical shape, plate shape, and indefinite shape, and may be an agglomerate in which particles having the above shape are aggregated. .. For example, the residue produced by industrially producing magnesium hydroxide by reacting seawater with slaked lime contains a large amount of needle-like particles, and forms aggregates in which the needle-like particles are aggregated. This has been confirmed by observation with a scanning electron microscope (see FIGS. 1 and 2 (a)).

中和処理に必要な中和剤投入量と、中和処理後の中和殿物の容積とを一層低減させる観点から、本発明に用いられる中和剤は、その一粒子中に炭酸カルシウムと水酸化マグネシウムとが均一に混合されていることが好ましい。本実施形態において「一粒子中に均一に混合されている」とは、図2(b)及び(c)に示すように、炭酸カルシウムと水酸化マグネシウムとが一つの粒子内で境界なく存在している状態のことである。換言すれば、炭酸カルシウムのみが主として存在している領域と、水酸化マグネシウムのみが主として存在している領域とが、別個に観察されない状態になっていることである。このような混合形態となっている中和剤としては、例えば上述の残渣が挙げられる。 From the viewpoint of further reducing the amount of the neutralizing agent input required for the neutralization treatment and the volume of the neutralizing ridge after the neutralization treatment, the neutralizing agent used in the present invention contains calcium carbonate in one particle thereof. It is preferable that magnesium hydroxide is uniformly mixed. In the present embodiment, "uniformly mixed in one particle" means that calcium carbonate and magnesium hydroxide are present in one particle without boundaries, as shown in FIGS. 2 (b) and 2 (c). It is the state of being. In other words, the region in which only calcium carbonate is mainly present and the region in which only magnesium hydroxide is mainly present are not observed separately. Examples of the neutralizing agent in such a mixed form include the above-mentioned residue.

本発明者は、炭酸カルシウムと水酸化マグネシウムとが一粒子中に均一に混合されている中和剤を用いることによって、中和剤投入量及び中和殿物の容積が低減する理由を次のように推察している。一般に、酸性水の中和処理において、中和剤としてマグネシウム化合物のみを使用する場合、中和に必要な中和剤投入量が少なくなり、中和反応も速く進行するが、中和殿物の容積が大きくなることが知られている。また、中和剤としてカルシウム化合物のみを使用する場合、該化合物は水に対する溶解性が低いので、中和反応の反応速度が遅く、また未反応の中和剤が残存してしまうので、結果として中和剤投入量が多くなってしまう。これに対して、炭酸カルシウムと水酸化マグネシウムとが一粒子中に均一に混合されている場合、水酸化マグネシウムは炭酸カルシウムに比べて溶解度が高いので中和反応が進行しやすく、また中和反応後において、炭酸カルシウム単体の場合よりも未反応の中和剤が減少し、中和に必要な中和剤投入量及び中和殿物の容積が低減されるものと考えられる。なお、本発明者は、酸性水の中和処理に関し、炭酸カルシウムの単体粉末と水酸化マグネシウムの単体粉末とを上述の質量比で混合した混合物を中和反応に使用しても、石灰石と同様の中和効果を得られないことを確認している。 The present inventor explains the reason why the amount of the neutralizing agent input and the volume of the neutralizing ridge are reduced by using the neutralizing agent in which calcium carbonate and magnesium hydroxide are uniformly mixed in one particle. I'm guessing. Generally, when only a magnesium compound is used as a neutralizing agent in the neutralization treatment of acidic water, the amount of the neutralizing agent input required for neutralization is small and the neutralization reaction proceeds quickly, but the neutralization volume is a feature. It is known that the volume increases. Further, when only a calcium compound is used as a neutralizing agent, the compound has low solubility in water, so that the reaction rate of the neutralization reaction is slow and an unreacted neutralizing agent remains, resulting in this. The amount of neutralizing agent added becomes large. On the other hand, when calcium carbonate and magnesium hydroxide are uniformly mixed in one particle, the neutralization reaction is easy to proceed because magnesium hydroxide has a higher solubility than calcium carbonate, and the neutralization reaction Later, it is considered that the amount of unreacted neutralizing agent is reduced as compared with the case of calcium carbonate alone, and the amount of neutralizing agent input required for neutralization and the volume of the neutralizing ridge are reduced. Regarding the neutralization treatment of acidic water, the present inventor may use a mixture of a simple powder of calcium carbonate and a single powder of magnesium hydroxide in the above mass ratio for the neutralization reaction, as in the case of limestone. It has been confirmed that the neutralizing effect of calcium can not be obtained.

本発明で用いられる中和剤は、本発明の効果を奏する限りにおいて、カルシウム化合物及びマグネシウム化合物に加えて他の成分を含んでいてもよく、カルシウム化合物及びマグネシウム化合物のみを含んでいてもよい。他の成分としては例えばシリカ、アルミナ及び酸化鉄などが挙げられる。 The neutralizing agent used in the present invention may contain other components in addition to the calcium compound and the magnesium compound, or may contain only the calcium compound and the magnesium compound, as long as the effects of the present invention are exhibited. Examples of other components include silica, alumina and iron oxide.

<酸性水>
本発明の処理対象となる酸性水は、25℃においてpHが7未満の水性液のことである。酸性水は、酸性の鉱泉水が流入する河川水、鉱山廃水、地下水、工場排水等が挙げられるが、これらに限定されるものではない。
<Acid water>
The acidic water to be treated in the present invention is an aqueous liquid having a pH of less than 7 at 25 ° C. Acidic water includes, but is not limited to, river water into which acidic mineral spring water flows, mine wastewater, groundwater, factory wastewater, and the like.

以下、実施例により本発明を詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。 Hereinafter, the present invention will be described in detail with reference to Examples. However, the scope of the invention is not limited to such examples.

1.酸性水の中和試験
以下の方法により酸性水の中和試験を行った。
(1)酸性水
試験に用いた模擬酸性水の性状を表1に示す。表1に示すpH、全鉄(T-Fe)、アルミニウム(Al)、シリカ(Si)及び硫酸イオン濃度(SO 2-)は、JIS K 0102「工場排水試験方法」に準拠して測定した。なお、模擬酸性水は表1に示す組成になるように、Fe源として硫酸鉄(III)n水和物(和光純薬工業製)、Al源として硫酸アルミニウム14~18水(和光純薬工業製)、Si源としてメタけい酸ナトリウム九水和物(和光純薬工業製)、硫酸源として硫酸(和光純薬工業製)の試薬を用いて調製した。
1. 1. Acid water neutralization test An acid water neutralization test was conducted by the following method.
(1) Acidic water Table 1 shows the properties of the simulated acidic water used in the test. The pH, total iron (T Fe), aluminum (Al), silica (Si) and sulfate ion concentration ( SO4-2 ) shown in Table 1 were measured in accordance with JIS K 0102 “Factory Wastewater Test Method”. .. The simulated acidic water has an Fe source of iron (III) sulfate n hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) and an Al source of aluminum sulfate 14-18 water (Wako Pure Chemical Industries, Ltd.) so as to have the composition shown in Table 1. ), Prepared using a reagent of sodium metasilicate nine hydrate (manufactured by Wako Pure Chemical Industries, Ltd.) as a Si source and sulfuric acid (manufactured by Wako Pure Chemical Industries, Ltd.) as a sulfuric acid source.

Figure 0007062222000001
Figure 0007062222000001

(2)中和剤
実施例及び比較例では、中和剤として、カルシウム化合物及びマグネシウム化合物を含む中和剤(以下、これを中和剤Aともいう)を用い、参考例では中和剤として石灰石粉を使用した。中和剤Aは、宇部マテリアルズ株式会社において、海水及び消石灰から水酸化マグネシウムを製造する際に生成する残渣を使用した。石灰石粉は汎用の石灰石粉砕品を使用した。中和剤A及び石灰石粉の性状を表2に示す。MgO、CaO、SiO、Al及びFe含有率は、JIS M 8853「セラミックス用アルミノけい酸塩質原料の化学分析方法」に準じて測定した。
(2) Neutralizing agent In Examples and Comparative Examples, a neutralizing agent containing a calcium compound and a magnesium compound (hereinafter, also referred to as Neutralizing Agent A) is used as a neutralizing agent, and in Reference Examples, it is used as a neutralizing agent. We used limestone powder. As the neutralizing agent A, a residue produced when magnesium hydroxide was produced from seawater and slaked lime at Ube Material Industries Ltd. was used. As the limestone powder, a general-purpose crushed limestone product was used. Table 2 shows the properties of the neutralizing agent A and the limestone powder. The MgO, CaO, SiO 2 , Al 2 O 3 and Fe 2 O 3 contents were measured according to JIS M 8853 “Chemical analysis method for aluminosilicate raw materials for ceramics”.

また、中和剤Aを走査型電子顕微鏡で観察及び元素マッピングした結果を図1及び図2に示す。図1に示すように、中和剤Aには針状粒子が多く含まれており、針状粒子が凝集した凝集物を形成していることが確認された。図2より、中和剤Aは一粒子中に炭酸カルシウムと水酸化マグネシウムとが均一に混合された状態であることが確認された。 The results of observation and element mapping of the neutralizing agent A with a scanning electron microscope are shown in FIGS. 1 and 2. As shown in FIG. 1, it was confirmed that the neutralizing agent A contained a large amount of needle-like particles, and the needle-like particles formed aggregates. From FIG. 2, it was confirmed that the neutralizing agent A was in a state where calcium carbonate and magnesium hydroxide were uniformly mixed in one particle.

Figure 0007062222000002
Figure 0007062222000002

(3)粒子径が異なる中和剤の調製
中和剤Aを、遊星ボールミル(伊藤製作所社製、型番:LA-PO1)を用いて30分間粉砕した後、試験用ふるい(JIS Z 8801-1、目開き20、45、106及び212μm)を用いて、種々の粒度にふるい分けて粒子径の異なる中和剤B~Iを調製した。
(3) Preparation of Neutralizers with Different Particle Sizes Neutralizer A is pulverized for 30 minutes using a planetary ball mill (manufactured by Ito Seisakusho Co., Ltd., model number: LA-PO1), and then a test sieve (JIS Z 8801-1). , Openings 20, 45, 106 and 212 μm) were used to sift through various particle sizes to prepare neutralizing agents B to I having different particle sizes.

中和剤の粒子径は、前処理として蒸留水に中和剤を所定量添加して超音波分散を行ったものを、レーザー回折散乱式粒度分布測定装置(島津製作所製、SALD-2200)を用いて粒度分布を測定した。中和剤の粒度分布の測定結果の一例を図3に示す。図3に示す粒子径と体積の累積頻度との関係を示すグラフから、累積体積90容量%における体積累積粒子径を読み取ることで粒子径を求めた(以下の説明では、「累積体積90容量%における体積累積粒子径」を「90%粒子径」とする。)。同様に、粒子径と体積の累積頻度との関係を示すグラフから、累積体積50容量%における体積累積粒子径を読み取ることで粒子径を求めた(以下の説明では、「累積体積50容量%における体積累積粒子径」を「50%粒子径」とする。)。 For the particle size of the neutralizing agent, a laser diffraction / scattering type particle size distribution measuring device (manufactured by Shimadzu Corporation, SALD-2200) was used as a pretreatment in which a predetermined amount of the neutralizing agent was added to distilled water and ultrasonically dispersed. The particle size distribution was measured using. FIG. 3 shows an example of the measurement result of the particle size distribution of the neutralizing agent. From the graph showing the relationship between the particle size and the cumulative frequency of the volume shown in FIG. 3, the particle size was obtained by reading the volume cumulative particle size at the cumulative volume of 90% by volume (in the following description, "cumulative volume 90% by volume"). "Volume cumulative particle diameter" is defined as "90% particle diameter"). Similarly, the particle size was obtained by reading the volume cumulative particle size at the cumulative volume of 50% by volume from the graph showing the relationship between the particle size and the cumulative frequency of the volume (in the following description, "at the cumulative volume of 50% by volume". "Volume cumulative particle size" is defined as "50% particle size").

また、比較例として、中和剤Aを粉砕せずに、上述の試験用ふるいにより乾式篩分けにより90%粒子径を40μmとした中和剤Jを調製した。中和剤B~Jの90%粒子径及び50%粒子径を表3に示す。 Further, as a comparative example, a neutralizing agent J having a 90% particle size of 40 μm was prepared by dry sieving using the above-mentioned test sieve without pulverizing the neutralizing agent A. Table 3 shows the 90% particle size and the 50% particle size of the neutralizers B to J.

(4)酸性水の中和処理
(i)中和剤投入量の決定
中和剤B~J及び石灰石粉を使用し、以下の方法で中和試験を行い、中和剤投入量を決定した。すなわち、酸性水1Lをビーカーに取り、メカニカルスターラーで攪拌しながら湯浴によって水温を33℃に調整した。次に、粉末の中和剤を、水温が一定になった酸性水に一度に投入した。中和剤を投入した後、2時間後まで攪拌を続けながら、ガラス式pH測定装置(東亜ディーケーケー社製、型番:MM-60R)で酸性水のpHを1分毎に測定した。以上の操作を、中和剤B~J及び石灰石粉のそれぞれについて酸性水への投入量を変えて行い、2時間経過後の酸性水のpHがpH5.5となるときの酸性水1L当たりの中和剤投入量(g/L)を決定した。
(ii)中和殿物の容積の測定
中和剤B~J及び石灰石粉を使用し、前記操作で決定した中和剤投入量で中和剤を酸性水に投入して2時間後に攪拌を止め、中和処理水と中和殿物を分液漏斗に移し、24時間静置した。その後、分液漏斗下部から中和殿物を目盛り付き試験管に抜き取り、さらに24時間静置した後、試験管の目盛りを読み取ることで、酸性水1L当たりの中和殿物の容積(mL/L)を測定した。
(4) Neutralization treatment of acidic water (i) Determination of neutralizing agent input amount Using neutralizing agents B to J and limestone powder, a neutralization test was conducted by the following method to determine the neutralizing agent input amount. .. That is, 1 L of acidic water was taken in a beaker, and the water temperature was adjusted to 33 ° C. by a hot water bath while stirring with a mechanical stirrer. Next, the powder neutralizer was added to the acidic water having a constant water temperature all at once. After adding the neutralizing agent, the pH of the acidic water was measured every minute with a glass-type pH measuring device (manufactured by Toa DKK, model number: MM-60R) while continuing stirring until 2 hours later. The above operation is performed by changing the amount of the neutralizing agents B to J and the limestone powder to be added to the acidic water, and the pH of the acidic water after 2 hours reaches 5.5 per liter of acidic water. The neutralizing agent input amount (g / L) was determined.
(Ii) Measurement of the volume of the neutralizing substance Using the neutralizing agents B to J and limestone powder, the neutralizing agent is added to the acidic water at the amount of the neutralizing agent added determined in the above operation, and the mixture is stirred 2 hours later. After stopping, the neutralized water and the neutralized volume were transferred to a liquid separation funnel and allowed to stand for 24 hours. After that, the neutralizing funnel was pulled out from the lower part of the separatory funnel into a graduated test tube, left to stand for another 24 hours, and then the scale of the test tube was read to determine the volume of the neutralizing ridge per 1 L of acidic water (mL / L) was measured.

〔実施例1〕
中和剤Bを用いて前記の操作により、中和剤投入量の決定および中和殿物の容積の測定を行った。結果を表3に示す。
[Example 1]
Using the neutralizing agent B, the amount of the neutralizing agent added was determined and the volume of the neutralizing ridge was measured by the above operation. The results are shown in Table 3.

〔実施例2〕
中和剤Cを用いた以外は、実施例1と同様の操作により、中和剤投入量の決定および中和殿物の容積の測定を行った。結果を表3に示す。
[Example 2]
Except for the use of the neutralizing agent C, the amount of the neutralizing agent added was determined and the volume of the neutralizing ridge was measured by the same operation as in Example 1. The results are shown in Table 3.

〔実施例3〕
中和剤Dを用いた以外は、実施例1と同様の操作により、中和剤投入量の決定および中和殿物の容積の測定を行った。結果を表3に示す。
[Example 3]
The amount of the neutralizing agent added was determined and the volume of the neutralizing ridge was measured by the same operation as in Example 1 except that the neutralizing agent D was used. The results are shown in Table 3.

〔実施例4〕
中和剤Eを用いた以外は、実施例1と同様の操作により、中和剤投入量の決定および中和殿物の容積の測定を行った。結果を表3に示す。
[Example 4]
Except for the use of the neutralizing agent E, the amount of the neutralizing agent added was determined and the volume of the neutralizing ridge was measured by the same operation as in Example 1. The results are shown in Table 3.

〔実施例5〕
中和剤Fを用いた以外は、実施例1と同様の操作により、中和剤投入量の決定および中和殿物の容積の測定を行った。結果を表3に示す。
[Example 5]
Except for the use of the neutralizing agent F, the amount of the neutralizing agent added was determined and the volume of the neutralizing ridge was measured by the same operation as in Example 1. The results are shown in Table 3.

〔実施例6〕
中和剤Gを用いた以外は、実施例1と同様の操作により、中和剤投入量の決定および中和殿物の容積の測定を行った。結果を表3に示す。
[Example 6]
Except for the use of the neutralizing agent G, the amount of the neutralizing agent added was determined and the volume of the neutralizing ridge was measured by the same operation as in Example 1. The results are shown in Table 3.

〔実施例7〕
中和剤Hを用いた以外は、実施例1と同様の操作により、中和剤投入量の決定および中和殿物の容積の測定を行った。結果を表3に示す。
[Example 7]
The amount of the neutralizing agent added was determined and the volume of the neutralizing ridge was measured by the same operation as in Example 1 except that the neutralizing agent H was used. The results are shown in Table 3.

〔実施例8〕
中和剤Iを用いた以外は、実施例1と同様の操作により、中和剤投入量の決定および中和殿物の容積の測定を行った。結果を表3に示す。
[Example 8]
Except for the use of the neutralizing agent I, the amount of the neutralizing agent added was determined and the volume of the neutralizing ridge was measured by the same operation as in Example 1. The results are shown in Table 3.

〔比較例1〕
中和剤Jを用いた以外は、実施例1と同様の操作により、中和剤投入量の決定および中和殿物の容積の測定を行った。結果を表3に示す。
[Comparative Example 1]
Except for the use of the neutralizing agent J, the amount of the neutralizing agent added was determined and the volume of the neutralizing ridge was measured by the same operation as in Example 1. The results are shown in Table 3.

〔参考例1〕
中和剤として、石灰石粉を用いた以外は、実施例1と同様の操作により、中和剤投入量の決定および中和殿物の容積の測定を行った。結果を表3に示す。なお、参考例1について同表に示す中和殿物の容積は、石灰石を用いて中和処理を行ったときに発生する沈殿物の容積である。
[Reference Example 1]
Except for the fact that limestone powder was used as the neutralizing agent, the amount of the neutralizing agent added was determined and the volume of the neutralizing ridge was measured by the same operation as in Example 1. The results are shown in Table 3. Regarding Reference Example 1, the volume of the neutralized ridge shown in the same table is the volume of the precipitate generated when the neutralization treatment is performed using limestone.

Figure 0007062222000003
Figure 0007062222000003

(5)結果
表3に示すように、カルシウム化合物及びマグネシウム化合物を含む中和剤を粉砕した実施例1~8は、中和剤を粉砕しなかった比較例1と比べて、中和剤投入量及び中和殿物の容積を大幅に低減できることがわかる。また、実施例1~8と参考例1とを比較すると、従来の石灰石を用いた参考例1よりも、実施例1~8における中和剤投入量及び中和殿物の容積を大幅に低減できることがわかる。
(5) Results As shown in Table 3, Examples 1 to 8 in which the neutralizing agent containing the calcium compound and the magnesium compound were pulverized were charged with the neutralizing agent as compared with Comparative Example 1 in which the neutralizing agent was not pulverized. It can be seen that the amount and the volume of the neutralized compound can be significantly reduced. Further, when Examples 1 to 8 and Reference Example 1 are compared, the amount of the neutralizing agent input and the volume of the neutralizing burial material in Examples 1 to 8 are significantly reduced as compared with Reference Example 1 using the conventional limestone. I know I can do it.

2.関係式(a)及び関係式(b)の算出
前記「1.酸性水の中和試験」で求めた結果より、以下の方法で関係式(a)及び関係式(b)をそれぞれ算出した。
2. 2. Calculation of relational expression (a) and relational expression (b) From the results obtained in the above "1. Neutralization test of acidic water", the relational expression (a) and the relational expression (b) were calculated by the following methods, respectively.

表3の実施例1~8の中和剤の90%粒子径を横軸に、中和剤投入量を縦軸にプロットし、線形近似することで、回帰直線として関係式(a)を得た。関係式(a)とその相関係数を表4に示す。また、比較として、表3の実施例1~8の中和剤の50%粒子径と中和剤投入量との関係から、前記と同様の方法で算出した関係式及び相関係数を表4に示す。 The relational expression (a) is obtained as a regression line by plotting the 90% particle size of the neutralizers of Examples 1 to 8 in Table 3 on the horizontal axis and the amount of the neutralizer input on the vertical axis and linearly approximating them. rice field. Table 4 shows the relational expression (a) and its correlation coefficient. Further, as a comparison, Table 4 shows the relational expression and the correlation coefficient calculated by the same method as described above from the relationship between the 50% particle size of the neutralizing agent of Examples 1 to 8 in Table 3 and the amount of the neutralizing agent added. Shown in.

次に、表3の実施例1~8の中和剤の90%粒子径を横軸に、中和殿物の容積を縦軸にプロットし、線形近似することで、回帰直線として関係式(b)を得た。関係式(b)とその相関係数を表4に示す。また、比較として、表3の実施例1~8の中和剤の50%粒子径と中和殿物の容積との関係より、前記と同様の方法で算出した関係式及び相関係数を表4に示す。 Next, the 90% particle diameter of the neutralizing agents of Examples 1 to 8 in Table 3 is plotted on the horizontal axis, and the volume of the neutralizing ridge is plotted on the vertical axis, and linear approximation is performed to obtain a relational expression (relationship line). b) was obtained. Table 4 shows the relational expression (b) and its correlation coefficient. Further, as a comparison, the relational expression and the correlation coefficient calculated by the same method as described above are shown from the relationship between the 50% particle size of the neutralizing agents of Examples 1 to 8 in Table 3 and the volume of the neutralizing ridge. Shown in 4.

Figure 0007062222000004
Figure 0007062222000004

なお、表4において、y:酸性水1L当たりの中和剤投入量(g/L)、D:中和剤の90%粒子径(μm)、z:酸性水1L当たりの中和殿物の容積(mL/L)、D:中和剤の50%粒子径(μm)である。 In Table 4, y: the amount of neutralizing agent added per 1 L of acidic water (g / L), D 1 : 90% particle size of the neutralizing agent (μm), z: neutralizing substance per 1 L of acidic water. Volume (mL / L), D 2 : 50% particle size (μm) of neutralizer.

表4に示すように、粒子径として90%粒子径及び50%粒子径のいずれを採用した場合であっても、関係式(a)は正の傾きを有しているので、中和剤の粒子径が小さいほど、中和剤投入量が低減できることがわかる。これに対して、粒子径として90%粒子径及び50%粒子径のいずれを採用した場合であっても、関係式(b)は負の傾きを有しているので、中和剤の粒子径が大きいほど、中和殿物の容積が低減できることがわかる。 As shown in Table 4, regardless of whether the particle diameter is 90% or 50%, the relational expression (a) has a positive inclination, so that the neutralizing agent can be used. It can be seen that the smaller the particle size, the smaller the amount of the neutralizing agent added. On the other hand, regardless of which of the 90% particle diameter and the 50% particle diameter is adopted as the particle diameter, the relational expression (b) has a negative inclination, so that the particle diameter of the neutralizing agent is used. It can be seen that the larger the value, the smaller the volume of the neutralizing particles.

また、各粒子径における回帰直線の相関係数を比較すると、90%粒子径を採用した場合は、50%粒子径を採用した場合に比べて、関係式(a)及び(b)ともに相関係数が高く、より正確な関係式を求めることができることがわかる。 Comparing the correlation coefficients of the regression lines at each particle size, when 90% particle size is adopted, both the relational expressions (a) and (b) have a phase relationship as compared with the case where 50% particle size is adopted. It can be seen that the number is high and a more accurate relational expression can be obtained.

また、表4に示すように、中和剤投入量及び中和殿物の容積の関係が、それぞれ正・負の相反する傾向を有することも判る。このように、関係式(a)及び(b)を求めることによって、中和剤の90%粒子径と、中和剤投入量及び中和殿物の容積との関係性を明らかにすることができる。この結果から、中和剤投入量や中和殿物の容積の低減に関して、コストや処理状況等を踏まえて優先順位を判断することができるので、より定量的に且つ合理的に中和剤の投入条件を設計することができる。 Further, as shown in Table 4, it can be seen that the relationship between the amount of the neutralizing agent added and the volume of the neutralizing substance has opposite positive and negative tendencies, respectively. In this way, by obtaining the relational expressions (a) and (b), it is possible to clarify the relationship between the 90% particle size of the neutralizing agent, the amount of the neutralizing agent input, and the volume of the neutralizing ridge. can. From this result, it is possible to determine the priority of reducing the amount of neutralizing agent input and the volume of the neutralizing burial material based on the cost, treatment status, etc., so that the neutralizing agent can be more quantitatively and rationally used. The input conditions can be designed.

以上のとおり、本発明の処理条件設計方法は、上述した関係式(a)及び関係式(b)を予め求めることによって、中和剤投入量及び中和殿物の容積の値を予測し、中和処理に最適な中和剤の90%粒子径及び中和剤投入量を設計することができる。この設計に基づいて、処理対象の酸性水を中和処理することによって、従来の方法と比べて、中和剤投入量及び中和殿物の容積を低減でき、中和処理コストを低減することができる。
As described above, the processing condition design method of the present invention predicts the value of the neutralizing agent input amount and the volume of the neutralizing particles by obtaining the above-mentioned relational expressions (a) and (b) in advance. It is possible to design the 90% particle size of the neutralizing agent and the amount of the neutralizing agent input, which are optimal for the neutralization treatment. By neutralizing the acidic water to be treated based on this design, the amount of neutralizing agent input and the volume of the neutralizing burial can be reduced and the neutralization treatment cost can be reduced as compared with the conventional method. Can be done.

Claims (9)

海水と消石灰との反応によって水酸化マグネシウムを製造して生じた残渣である中和剤を、処理対象とする酸性水に投入して中和処理を行い、前記中和剤の累積体積90容量%における体積累積粒子径と投入量との関係式である、下記式(a)と、
y=α×D+β ・・・式(a)
y:酸性水1L当たりの中和剤投入量(g/L)
D:中和剤の累積体積90容量%における体積累積粒子径(μm)
α:回帰直線の傾き
β:回帰直線の切片
前記中和剤の累積体積90容量%における体積累積粒子径と中和殿物の容積との関係式である、式(b)とを予め求めておき、
z=γ×D+δ ・・・式(b)
z:酸性水1L当たりの中和殿物の容積(mL/L)
γ:回帰直線の傾き
δ:回帰直線の切片
前記式(a)及び式(b)の関係式に基づき、前記中和剤の累積体積90容量%における体積累積粒子径と投入量とを設計する、酸性水の処理条件設計方法。
The neutralizing agent, which is a residue produced by producing magnesium hydroxide by the reaction between seawater and slaked lime, is added to the acidic water to be treated for neutralization treatment, and the cumulative volume of the neutralizing agent is 90% by volume. The following equation (a), which is the relational expression between the volume cumulative particle diameter and the input amount in
y = α × D + β ・ ・ ・ Equation (a)
y: Neutralizing agent input amount per 1 L of acidic water (g / L)
D: Cumulative volume particle diameter (μm) at a cumulative volume of 90% by volume of the neutralizer
α: Slope of the regression line β: Intercept of the regression line The equation (b), which is the relational expression between the volume cumulative particle diameter and the volume of the neutralizing ridge in the cumulative volume of 90% by volume of the neutralizing agent, is obtained in advance. Oki,
z = γ × D + δ ・ ・ ・ Equation (b)
z: Volume of neutralizing substance per 1 L of acidic water (mL / L)
γ: Slope of regression line δ: Intercept of regression line Based on the relational expressions of the formulas (a) and (b), the volume cumulative particle size and the input amount in the cumulative volume of 90% by volume of the neutralizer are designed. , Acid water treatment condition design method.
累積体積90容量%における体積累積粒子径が20μm以上150μm以下である前記中和剤を用いて前記式(a)及び式(b)を求める、請求項1に記載の酸性水の処理条件設計方法。 The method for designing treatment conditions for acidic water according to claim 1, wherein the formulas (a) and (b) are obtained using the neutralizing agent having a cumulative volume particle diameter of 20 μm or more and 150 μm or less in a cumulative volume of 90% by volume. .. 炭酸カルシウムを65質量%以上95質量%以下含み、水酸化マグネシウムを5質量%以上35質量%以下含む前記中和剤を用いて前記式(a)及び式(b)を求める、請求項1又は2に記載の酸性水の処理条件設計方法。 The formula (a) and the formula (b) are obtained by using the neutralizing agent containing 65% by mass or more and 95% by mass or less of calcium carbonate and 5% by mass or more and 35% by mass or less of magnesium hydroxide. 2. The method for designing treatment conditions for acidic water according to 2. 前記中和剤の一粒子中に炭酸カルシウムと水酸化マグネシウムとが均一に混合されている、請求項1ないし3のいずれか一項に記載の酸性水の処理条件設計方法。 The method for designing treatment conditions for acidic water according to any one of claims 1 to 3, wherein calcium carbonate and magnesium hydroxide are uniformly mixed in one particle of the neutralizing agent. 酸性の鉱泉水が流入する河川水からなる前記酸性水を用いて前記式(a)及び式(b)を求める、請求項1ないしのいずれか一項に記載の酸性水の処理条件設計方法。 The method for designing treatment conditions for acidic water according to any one of claims 1 to 4 , wherein the formulas (a) and (b) are obtained using the acidic water composed of river water into which acidic mineral spring water flows. .. 石灰石を前記酸性水に投入して中和処理を行ったときに発生する沈殿物の容積よりも前記中和殿物の容積が低減するように、前記中和剤の累積体積90容量%における体積累積粒子径と投入量とを設計する、請求項1ないしのいずれか一項に記載の酸性水の処理条件設計方法。 The volume of the neutralizing agent in a cumulative volume of 90% by volume so that the volume of the neutralizing deposit is smaller than the volume of the precipitate generated when the limestone is put into the acidic water and subjected to the neutralization treatment. The method for designing treatment conditions for acidic water according to any one of claims 1 to 5 , wherein the cumulative particle size and the input amount are designed. 石灰石を前記酸性水に投入して中和処理を行ったときに投入される石灰石の投入量よりも前記中和剤投入量が低減するように、前記中和剤の累積体積90容量%における体積累積粒子径と投入量とを設計する、請求項1ないしのいずれか一項に記載の酸性水の処理条件設計方法。 The volume of the neutralizing agent in a cumulative volume of 90% by volume so that the amount of the neutralizing agent added is smaller than the amount of the limestone added when the limestone is added to the acidic water to perform the neutralization treatment. The method for designing treatment conditions for acidic water according to any one of claims 1 to 5 , wherein the cumulative particle size and the input amount are designed. 中和剤投入量及び中和殿物の容積の合計量が最小値となるか、又は該最小値±10%となるように、前記中和剤の累積体積90容量%における体積累積粒子径と投入量とを設計する、請求項1ないしのいずれか一項に記載の酸性水の処理条件設計方法。 The volume cumulative particle size at 90% by volume of the cumulative volume of the neutralizing agent so that the total amount of the neutralizing agent input amount and the volume of the neutralizing substance becomes the minimum value or the minimum value ± 10%. The method for designing treatment conditions for acidic water according to any one of claims 1 to 5 , wherein the input amount is designed. 請求項1ないしのいずれか一項に記載の酸性水の処理条件設計方法によって設計した前記中和剤の累積体積90容量%における体積累積粒子径と投入量とに基づいて、前記中和剤を処理対象とする酸性水に投入して中和処理する、酸性水の処理方法。 The neutralizing agent based on the volume cumulative particle size and the input amount at 90% by volume of the cumulative volume of the neutralizing agent designed by the method for designing treatment conditions for acidic water according to any one of claims 1 to 8 . A method of treating acidic water, in which the water is added to the acidic water to be treated and neutralized.
JP2018052565A 2018-03-20 2018-03-20 Acid water treatment condition design method and acid water treatment method Active JP7062222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018052565A JP7062222B2 (en) 2018-03-20 2018-03-20 Acid water treatment condition design method and acid water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018052565A JP7062222B2 (en) 2018-03-20 2018-03-20 Acid water treatment condition design method and acid water treatment method

Publications (2)

Publication Number Publication Date
JP2019162595A JP2019162595A (en) 2019-09-26
JP7062222B2 true JP7062222B2 (en) 2022-05-06

Family

ID=68064442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018052565A Active JP7062222B2 (en) 2018-03-20 2018-03-20 Acid water treatment condition design method and acid water treatment method

Country Status (1)

Country Link
JP (1) JP7062222B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307079A (en) 2001-04-13 2002-10-22 Nisshin Steel Co Ltd Neutralizing agent for waste acid treatment and its production method
JP2011136858A (en) 2009-12-28 2011-07-14 Ube Material Industries Ltd Slaked lime granular material
JP2015044149A (en) 2013-08-28 2015-03-12 株式会社日立製作所 Flocculation treatment method, flocculation treatment device and water treatment apparatus
JP2018153712A (en) 2017-03-15 2018-10-04 宇部興産株式会社 Neutralizer for acidic water, and method of neutralizing acidic water using the same
US20190284068A1 (en) 2016-04-11 2019-09-19 Soane Mining, Llc Acid mine drainage treatment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104019A (en) * 1982-12-06 1984-06-15 Hitachi Ltd Neutralizing agent for combustion condensate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002307079A (en) 2001-04-13 2002-10-22 Nisshin Steel Co Ltd Neutralizing agent for waste acid treatment and its production method
JP2011136858A (en) 2009-12-28 2011-07-14 Ube Material Industries Ltd Slaked lime granular material
JP2015044149A (en) 2013-08-28 2015-03-12 株式会社日立製作所 Flocculation treatment method, flocculation treatment device and water treatment apparatus
US20190284068A1 (en) 2016-04-11 2019-09-19 Soane Mining, Llc Acid mine drainage treatment
JP2018153712A (en) 2017-03-15 2018-10-04 宇部興産株式会社 Neutralizer for acidic water, and method of neutralizing acidic water using the same

Also Published As

Publication number Publication date
JP2019162595A (en) 2019-09-26

Similar Documents

Publication Publication Date Title
Cui et al. pH-dependent leaching characteristics of major and toxic elements from red mud
Sun et al. Geochemical characteristics and toxic elements in alumina refining wastes and leachates from management facilities
Tenailleau et al. Transformation of pentlandite to violarite under mild hydrothermal conditions
Zhang et al. The long-term stability of calcium arsenates: Implications for phase transformation and arsenic mobilization
Borkiewicz et al. Time-resolved in situ studies of apatite formation in aqueous solutions
Muthu et al. Resistance of graphene oxide-modified cement pastes to hydrochloric acid attack
Pacewska et al. Investigation of early hydration of high aluminate cement-based binder at different ambient temperatures
JP6859140B2 (en) Neutralizer for acidic water and method for neutralizing acidic water using it
Stec et al. Influence of high chloride concentration on pH control in hydroxide precipitation of heavy metals
Gholizadeh Vayghan et al. Use of treated non-ferrous metallurgical slags as supplementary cementitious materials in cementitious mixtures
Vafeias et al. Leaching of Ca-Rich Slags Produced from Reductive Smelting of Bauxite Residue with Na2CO3 Solutions for Alumina Extraction: Lab and Pilot Scale Experiments
JP7062222B2 (en) Acid water treatment condition design method and acid water treatment method
Chanouri et al. Staged purification of phosphogypsum using pH-dependent separation process
Grudinsky et al. Reduction Smelting of the Waelz Slag from Electric Arc Furnace Dust Processing: An Experimental Study
Amar et al. Designing efficient flash-calcined sediment-based ecobinders
Adekola et al. Dissolution kinetics studies of Nigerian gypsum ore in hydrochloric acid
Levandoski et al. Mechanical and microstructural properties of iron mining tailings stabilized with alkali-activated binder produced from agro-industrial wastes
Xue et al. Regional-scale investigation of salt ions distribution characteristics in bauxite residue: A case study in a disposal area
Dudhaiya et al. How characterization of particle size distribution pre-and post-reaction provides mechanistic insights into mineral carbonation
TWI469821B (en) A method for treating solid containing heavy metal
Zeng et al. Kinetics of nitric acid leaching of low-grade rare earth elements from phosphogypsum
Adekola et al. Dissolution kinetics of kaolin mineral in acidic media for predicting optimal condition for alum production
Rauf et al. Analysis and Characterization of Nickel Industry By-Products as Pozzolan Materials
Rashid et al. The solubility of phosphogypsum and recovery of heavy and radioactive elements
JP6441086B2 (en) Effective use of coal ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220328

R150 Certificate of patent or registration of utility model

Ref document number: 7062222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350