JP6859140B2 - Neutralizer for acidic water and method for neutralizing acidic water using it - Google Patents

Neutralizer for acidic water and method for neutralizing acidic water using it Download PDF

Info

Publication number
JP6859140B2
JP6859140B2 JP2017049913A JP2017049913A JP6859140B2 JP 6859140 B2 JP6859140 B2 JP 6859140B2 JP 2017049913 A JP2017049913 A JP 2017049913A JP 2017049913 A JP2017049913 A JP 2017049913A JP 6859140 B2 JP6859140 B2 JP 6859140B2
Authority
JP
Japan
Prior art keywords
acidic water
neutralizing agent
magnesium hydroxide
less
fibrous particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017049913A
Other languages
Japanese (ja)
Other versions
JP2018153712A (en
Inventor
正人 山内
正人 山内
徹 酒井
徹 酒井
英喜 中田
英喜 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Ube Corp
Original Assignee
Ube Material Industries Ltd
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd, Ube Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP2017049913A priority Critical patent/JP6859140B2/en
Publication of JP2018153712A publication Critical patent/JP2018153712A/en
Application granted granted Critical
Publication of JP6859140B2 publication Critical patent/JP6859140B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は酸性水用の中和剤に関する。また本発明は、該中和剤を用いた酸性水の中和方法に関する。 The present invention relates to a neutralizing agent for acidic water. The present invention also relates to a method for neutralizing acidic water using the neutralizing agent.

硫化鉱の鉱床がある地域において、酸化した硫化鉱が地下水に溶解することにより鉱床付近の河川が硫酸酸性を示すことがある。このような酸性河川は、従来、石灰石を中和剤として用いて中和処理されてきた。しかし、石灰石などのカルシウムを含有する材料を中和剤に用いると、中和沈殿物である石膏が大量に生成し下流のダムなどに堆積してしまい、この沈殿物を処理するための処理場の確保や莫大な処理費用が問題となる。また、河川の中和処理は恒久的に行う必要があるため、石灰石などの自然資源の利用を減らすことが必要である。 In areas with sulfide ore deposits, oxidized sulfide ores may dissolve in groundwater, causing rivers near the deposits to show sulfuric acid acidity. Conventionally, such acidic rivers have been neutralized using limestone as a neutralizing agent. However, when a calcium-containing material such as limestone is used as a neutralizing agent, a large amount of gypsum, which is a neutralizing precipitate, is generated and deposited in a dam downstream, and a treatment plant for treating this precipitate. Calcium and huge processing costs are problems. In addition, since the river must be neutralized permanently, it is necessary to reduce the use of natural resources such as limestone.

この問題を解決するために、例えば特許文献1に記載のとおり、水酸化マグネシウム等のマグネシウムを含有する中和剤が検討されてきた。しかし、沈殿物の質量は減少するものの沈殿物の体積が増大することや、コスト面などが問題となり、石灰石に代わる有効な解決手段となっていない。また特許文献2では、カルシウム系化合物とマグネシウム系化合物とを併用する方法が提案されているが、中和沈殿物の処理のためのコスト面が解決できていない。 In order to solve this problem, for example, as described in Patent Document 1, a neutralizing agent containing magnesium such as magnesium hydroxide has been studied. However, although the mass of the precipitate decreases, the volume of the precipitate increases and the cost is a problem, so that it is not an effective alternative to limestone. Further, Patent Document 2 proposes a method in which a calcium-based compound and a magnesium-based compound are used in combination, but the cost aspect for treating the neutralized precipitate has not been solved.

ところで、海水と消石灰の反応により水酸化マグネシウムを製造する際の脱炭酸工程において、炭酸カルシウムと水酸化マグネシウムとを主成分とする繊維状粒子の凝集物が産業廃棄物として生成し、その処理が問題となっている。この問題を解決するために、前記凝集物を有効利用できる用途が必要とされている。 By the way, in the decarbonization step when producing magnesium hydroxide by the reaction of seawater and slaked lime, agglomerates of fibrous particles containing calcium carbonate and magnesium hydroxide as main components are generated as industrial waste, and the treatment thereof is performed. It is a problem. In order to solve this problem, there is a need for an application in which the agglomerates can be effectively used.

特開2003−190969号公報Japanese Unexamined Patent Publication No. 2003-190996 特開2003−251371号公報Japanese Unexamined Patent Publication No. 2003-251371

したがって本発明の課題は、炭酸カルシウムと水酸化マグネシウムとを主成分とする繊維状粒子の凝集物を使用することによって、産業廃棄物の有効利用による資源の節約及び産業廃棄物の削減を目的とする酸性水用中和剤及びその製造方法を提供することにある。 Therefore, an object of the present invention is to save resources and reduce industrial waste by effectively using industrial waste by using agglomerates of fibrous particles containing calcium carbonate and magnesium hydroxide as main components. It is an object of the present invention to provide a neutralizing agent for acidic water and a method for producing the same.

本発明者らは、前記の課題を解決すべく鋭意検討した結果、水酸化マグネシウムの工業製造時に生成する炭酸カルシウムと水酸化マグネシウムとを主成分とする凝集物(残渣)が繊維状の形状を有する粒子から構成され、またその凝集物が酸性水の中和剤として石灰石と同様に利用でき、カルシウム化合物とマグネシウム化合物との単純併用に比べて沈殿物体積を減少させることができることを見出し、本発明をなすに至った。 As a result of diligent studies to solve the above problems, the present inventors have formed a fibrous shape of aggregates (residues) containing calcium carbonate and magnesium hydroxide as main components, which are produced during the industrial production of magnesium hydroxide. We found that it is composed of particles, and that the agglomerates can be used as a neutralizing agent for acidic water in the same manner as limestone, and that the volume of the precipitate can be reduced as compared with the simple combination of a calcium compound and a magnesium compound. It came to the invention.

すなわち本発明は、炭酸カルシウム及び水酸化マグネシウムを含む繊維状粒子の凝集物からなる酸性水用中和剤を提供することにより前記の課題を解決したものである。 That is, the present invention solves the above-mentioned problems by providing a neutralizing agent for acidic water composed of aggregates of fibrous particles containing calcium carbonate and magnesium hydroxide.

また本発明は、前記の酸性水用中和剤の好適な製造方法であって、
海水と消石灰と反応させて水酸化マグネシウムを生成させ、
水酸化マグネシウムの生成によって生じた残渣からなる酸性水用中和剤を水酸化マグネシウムと分離する、酸性水用中和剤の製造方法を提供するものである。
Further, the present invention is a suitable method for producing the above-mentioned neutralizing agent for acidic water.
Reacts with seawater and slaked lime to produce magnesium hydroxide,
The present invention provides a method for producing a neutralizing agent for acidic water, which separates a neutralizing agent for acidic water consisting of a residue produced by the production of magnesium hydroxide from magnesium hydroxide.

更に本発明は、前記の酸性水用中和剤と酸性水とを混合する工程を含む酸性水の中和方法を提供するものである。 Further, the present invention provides a method for neutralizing acidic water, which comprises a step of mixing the above-mentioned neutralizing agent for acidic water with acidic water.

本発明によれば、炭酸カルシウムと水酸化マグネシウムとを主成分とする繊維状粒子の凝集物を酸性水用中和剤として有効利用することによって、中和反応によって生成する沈殿物体積を減少させ、中和処理コストの低下、資源の節約及び産業廃棄物の削減に寄与するものである。 According to the present invention, the volume of the precipitate formed by the neutralization reaction is reduced by effectively utilizing the aggregate of fibrous particles containing calcium carbonate and magnesium hydroxide as main components as a neutralizing agent for acidic water. It contributes to the reduction of neutralization cost, resource saving and reduction of industrial waste.

図1(a)は、本発明に係る酸性水用中和剤を構成する凝集物の走査型電子顕微鏡像であり、図1(b)は凝集物におけるマグネシウムの元素マッピング像であり、図1(c)はカルシウムの元素マッピング像である。FIG. 1 (a) is a scanning electron microscope image of the agglomerates constituting the neutralizing agent for acidic water according to the present invention, and FIG. 1 (b) is an elemental mapping image of magnesium in the agglomerates. (C) is an elemental mapping image of calcium. 図2(a)は、炭酸カルシウムと水酸化マグネシウムとの混合物の走査型電子顕微鏡像であり、図2(b)は図2(a)におけるマグネシウムの元素マッピング像であり、図2(c)は図2(a)におけるカルシウムの元素マッピング像である。FIG. 2A is a scanning electron microscope image of a mixture of calcium carbonate and magnesium hydroxide, and FIG. 2B is an elemental mapping image of magnesium in FIG. 2A, FIG. 2C. Is an elemental mapping image of calcium in FIG. 2 (a). 図3(a)及び(b)は、本発明に係る酸性水用中和剤を構成する凝集物の走査型電子顕微鏡像である。3 (a) and 3 (b) are scanning electron microscope images of aggregates constituting the neutralizing agent for acidic water according to the present invention.

以下、本発明の酸性水用中和剤をその好ましい実施形態に基づいて詳細に説明する。本発明の酸性水用中和剤は、炭酸カルシウム及び水酸化マグネシウムを含む繊維状粒子の凝集物からなる。繊維状とは、断面の長さに対して長手方向の長さが十分に大きな形状のことである。例えば断面の長さをdとし、長手方向の長さをLとしたとき、L/dの値が10以上であれば、その形状の粒子は繊維状であると言える。なお、断面の長さdとは、繊維状粒子の横断面を観察したときに、該横断面を横切る線分のうち最も長さの長い線分の当該長さのことである。 Hereinafter, the neutralizing agent for acidic water of the present invention will be described in detail based on its preferred embodiment. The neutralizing agent for acidic water of the present invention comprises an aggregate of fibrous particles containing calcium carbonate and magnesium hydroxide. The fibrous shape is a shape in which the length in the longitudinal direction is sufficiently large with respect to the length of the cross section. For example, when the length of the cross section is d and the length in the longitudinal direction is L, if the value of L / d is 10 or more, it can be said that the particles having that shape are fibrous. The length d of the cross section is the length of the longest line segment among the line segments crossing the cross section when observing the cross section of the fibrous particles.

繊維状粒子はその繊維径が、0.01μm以上5μm以下であることが好ましく、0.01μm以上3μm以下であることがより好ましく、0.01μm以上1.5μm以下であることが更に好ましく、0.05μm以上1μm以下であることがより一層好ましい。繊維状粒子の繊維径がこの範囲内であることによって、中和反応を一層円滑に進行させることができる。また、中和反応によって生成する沈殿物体積を減少させることができる。繊維状粒子の繊維径とは、上述した断面の長さdと同義であり、繊維状粒子の横断面を観察したときに、該横断面を横切る線分のうち最も長さの長い線分の当該長さのことである。繊維径の測定は、例えば走査型顕微鏡(SEM)観察によって行うことができる。SEM観察された繊維状粒子の断面を50点以上観察して繊維径を測定し、その算術平均値をもって繊維状粒子の繊維径とする。 The fiber diameter of the fibrous particles is preferably 0.01 μm or more and 5 μm or less, more preferably 0.01 μm or more and 3 μm or less, further preferably 0.01 μm or more and 1.5 μm or less, and 0. It is even more preferably 0.05 μm or more and 1 μm or less. When the fiber diameter of the fibrous particles is within this range, the neutralization reaction can proceed more smoothly. In addition, the volume of the precipitate produced by the neutralization reaction can be reduced. The fiber diameter of the fibrous particles is synonymous with the length d of the cross section described above, and when observing the cross section of the fibrous particles, the longest line segment among the line segments crossing the cross section. It is the length. The fiber diameter can be measured, for example, by scanning microscope (SEM) observation. The fiber diameter is measured by observing 50 or more cross sections of the fibrous particles observed by SEM, and the arithmetic mean value thereof is used as the fiber diameter of the fibrous particles.

繊維状粒子はその繊維長が、0.1μm以上50μm以下であることが好ましく、0.1μm以上40μm以下であることがより好ましく、0.1μm以上30μm以下であることが更に好ましく、0.5μm以上25μm以下であることがより一層好ましい。繊維状粒子の繊維長がこの範囲内であることによって、繊維状粒子どうしの絡み合いが十分に生じて凝集物が首尾よく生成する。また、中和反応を一層円滑に進行させることができる。更に、中和反応によって生成する沈殿物体積を減少させることができる。繊維状粒子の繊維長とは、繊維状粒子の一端から他端までの長さのことである。繊維状粒子の繊維長は、SEM観察によって繊維状粒子の長手方向の長さを50点以上観察して繊維長を測定し、その算術平均値をもって繊維状粒子の繊維長とする。 The fiber length of the fibrous particles is preferably 0.1 μm or more and 50 μm or less, more preferably 0.1 μm or more and 40 μm or less, further preferably 0.1 μm or more and 30 μm or less, and 0.5 μm. It is even more preferably 25 μm or less. When the fiber length of the fibrous particles is within this range, the fibrous particles are sufficiently entangled with each other and agglomerates are successfully formed. In addition, the neutralization reaction can proceed more smoothly. Furthermore, the volume of the precipitate produced by the neutralization reaction can be reduced. The fiber length of the fibrous particles is the length from one end to the other end of the fibrous particles. The fiber length of the fibrous particles is determined by observing the length of the fibrous particles in the longitudinal direction at 50 points or more by SEM observation, measuring the fiber length, and using the arithmetic mean value as the fiber length of the fibrous particles.

繊維状粒子は、中和反応を好適に進行させる観点から、主成分である炭酸カルシウムと水酸化マグネシウムとが一粒子中で均一に混合されていることが好ましい。本実施形態において「一粒子中で均一に混合されている」とは、炭酸カルシウムと水酸化マグネシウムとが繊維状粒子内で境界なく共存している状態のことである。換言すれば、炭酸カルシウムのみが主として存在している領域と、水酸化マグネシウムのみが主として存在している領域とが、別個に観察されない状態になっていることである。繊維状粒子は、炭酸カルシウム及び水酸化マグネシウムのみを含んでいてもよく、あるいは主成分として炭酸カルシウム及び水酸化マグネシウムを含み、且つ他の成分を含んでいてもよい。 From the viewpoint of suitably advancing the neutralization reaction of the fibrous particles, it is preferable that calcium carbonate and magnesium hydroxide, which are the main components, are uniformly mixed in one particle. In the present embodiment, "uniformly mixed in one particle" means that calcium carbonate and magnesium hydroxide coexist in the fibrous particles without boundaries. In other words, the region in which only calcium carbonate is mainly present and the region in which only magnesium hydroxide is mainly present are not observed separately. The fibrous particles may contain only calcium carbonate and magnesium hydroxide, or may contain calcium carbonate and magnesium hydroxide as main components and may contain other components.

繊維状粒子に含まれる炭酸カルシウムはアラゴナイト結晶構造を有することが好ましい。炭酸カルシウムには複数の結晶構造が存在することが知られており、例えば三方晶であるカルサイト、六方晶であるバテライト及び斜方晶であるアラゴナイトがある。これらの結晶構造のうち、アラゴナイト結晶構造を採用することで、中和反応を一層円滑に進行させることができる。繊維状粒子に含まれる炭酸カルシウムをアラゴナイト結晶構造とするためには、例えば後述する方法によって本発明の酸性水用中和剤を製造すればよい。 The calcium carbonate contained in the fibrous particles preferably has an aragonite crystal structure. It is known that calcium carbonate has a plurality of crystal structures, for example, calcite which is a trigonal crystal, vaterite which is a hexagonal crystal, and aragonite which is an orthorhombic crystal. By adopting the aragonite crystal structure among these crystal structures, the neutralization reaction can proceed more smoothly. In order to form the calcium carbonate contained in the fibrous particles into an aragonite crystal structure, for example, the neutralizing agent for acidic water of the present invention may be produced by the method described later.

本発明の酸性水用中和剤を構成する繊維状粒子の凝集物は、上述の繊維状粒子が複数凝集してなるものである。凝集物は一般に略球形の形状を有しているが、これに限られない。凝集物の平均粒子径は、中和反応の速度を高める観点から、10μm以上100μm以下であることが好ましく、10μm以上90μm以下であることがより好ましく、20μm以上80μm以下であることが更に好ましく、25μm以上70μm以下であることがより一層好ましい。平均粒子径は、レーザー回折散乱法を利用した分析装置によって測定することができる。 The aggregate of the fibrous particles constituting the neutralizing agent for acidic water of the present invention is formed by agglomerating a plurality of the above-mentioned fibrous particles. Aggregates generally have a substantially spherical shape, but are not limited to this. The average particle size of the agglutination is preferably 10 μm or more and 100 μm or less, more preferably 10 μm or more and 90 μm or less, and further preferably 20 μm or more and 80 μm or less, from the viewpoint of increasing the rate of the neutralization reaction. It is even more preferably 25 μm or more and 70 μm or less. The average particle size can be measured by an analyzer using a laser diffraction / scattering method.

本発明の酸性水用中和剤を構成する繊維状粒子の凝集物は、炭酸カルシウムを65質量%以上95質量%以下含むことが好ましく、70質量%以上90質量%以下含むことが更に好ましく、75質量%以上85質量%以下含むことが一層好ましい。また、繊維状粒子の凝集物は、水酸化マグネシウムを5質量%以上35%以下含むことが好ましく、10質量%以上30質量%以下含むことが更に好ましく、15質量%以上25質量%以下含むことが一層好ましい。繊維状粒子の凝集物が炭酸カルシウム及び水酸化マグネシウムをこの範囲で含有することで、中和反応を一層円滑に行うことができる。炭酸カルシウム及び水酸化マグネシウムをこの範囲で含有する繊維状粒子の凝集物は、例えば後述する方法によって製造することができる。 The aggregate of the fibrous particles constituting the neutralizing agent for acidic water of the present invention preferably contains calcium carbonate in an amount of 65% by mass or more and 95% by mass or less, and more preferably 70% by mass or more and 90% by mass or less. It is more preferable to contain 75% by mass or more and 85% by mass or less. The aggregate of the fibrous particles preferably contains magnesium hydroxide in an amount of 5% by mass or more and 35% by mass or less, more preferably 10% by mass or more and 30% by mass or less, and further preferably 15% by mass or more and 25% by mass or less. Is more preferable. When the aggregate of the fibrous particles contains calcium carbonate and magnesium hydroxide in this range, the neutralization reaction can be carried out more smoothly. Aggregates of fibrous particles containing calcium carbonate and magnesium hydroxide in this range can be produced, for example, by the method described later.

本発明の酸性水用中和剤を構成する繊維状粒子の凝集物は、炭酸カルシウム及び水酸化マグネシウムのみを含んでいてもよく、あるいは炭酸カルシウム及び水酸化マグネシウムに加えて他の成分を含んでいてもよい。他の成分としては例えばシリカ、アルミナ及び酸化鉄などが挙げられる。繊維状粒子の凝集物が炭酸カルシウム及び水酸化マグネシウムに加えて他の成分も含む場合、該他の成分の割合は、繊維状粒子の凝集物に対して5質量%以下であることが好ましく、3質量%以下であることが更に好ましく、1質量%以下であることが一層好ましい。 The aggregate of fibrous particles constituting the neutralizing agent for acidic water of the present invention may contain only calcium carbonate and magnesium hydroxide, or may contain other components in addition to calcium carbonate and magnesium hydroxide. You may. Examples of other components include silica, alumina and iron oxide. When the agglomerates of the fibrous particles contain other components in addition to calcium carbonate and magnesium hydroxide, the ratio of the other components is preferably 5% by mass or less with respect to the agglomerates of the fibrous particles. It is more preferably 3% by mass or less, and further preferably 1% by mass or less.

酸性水の中和に関し、本発明者らは、炭酸カルシウムの単体粉末と水酸化マグネシウム単体粉末とを上述の質量比で混合した混合物を中和反応に使用しても、石灰石と同様の中和効果を得られないことを確認している。この結果を踏まえて、本発明者らが鋭意検討した結果、炭酸カルシウムと水酸化マグネシウムとを主成分とする繊維状粒子の凝集物として、海水と消石灰との反応により水酸化マグネシウムを製造する際に生じる残渣(以下、単に「残渣」とも言う。)を用いることによって、本発明の効果が一層顕著なものとなることを見出した。 Regarding the neutralization of acidic water, the present inventors can use a mixture of a simple substance powder of calcium carbonate and a simple substance powder of magnesium hydroxide in the above mass ratio for the neutralization reaction in the same manner as limestone. It has been confirmed that the effect cannot be obtained. As a result of diligent studies by the present inventors based on this result, when magnesium hydroxide is produced by the reaction of seawater and slaked lime as an agglomerate of fibrous particles containing calcium carbonate and magnesium hydroxide as main components. It has been found that the effect of the present invention becomes more remarkable by using the residue generated in (hereinafter, also simply referred to as "residue").

前記の残渣は、海水と消石灰との反応により水酸化マグネシウムを製造する際に生じる凝集物であり、産業廃棄物となるものである。この残渣は、主成分として炭酸カルシウム分を好ましくは65質量%以上95質量%以下含み、水酸化マグネシウム分を好ましくは5質量%以上35%以下含む凝集物から構成される。また、シリカやアルミナや酸化鉄などの金属化合物を不純物として含むことがある。 The residue is an agglutination generated when magnesium hydroxide is produced by the reaction of seawater and slaked lime, and becomes an industrial waste. This residue is composed of agglomerates containing calcium carbonate content of preferably 65% by mass or more and 95% by mass or less and magnesium hydroxide content of preferably 5% by mass or more and 35% or less as a main component. In addition, metal compounds such as silica, alumina, and iron oxide may be contained as impurities.

本発明における酸性水用中和剤として、前記の残渣からなる繊維状粒子の凝集物を用いることによって、石灰石と同様の中和効果を達成できる理由を、本発明者らは次のように推察している。残渣は、炭酸カルシウムと水酸化マグネシウムとが水酸化マグネシウム製造時に脱炭酸工程において液相から均一に析出して凝集物を形成するため、図1(a)ないし(c)に示すとおり、一粒子中に均一に混合された状態となって存在し、石灰石と同様の中和効果を達成していると考えられる。これとは対照的に、炭酸カルシウム粉末と水酸化マグネシウム粉末との混合粉では、図2(a)ないし(c)に示すとおり、それぞれの成分が単一結晶として独立した粒子で存在しており、これらの不均一な粒子が別個に中和反応するため、石灰石と同様の中和効果を奏することはできないと考えられる。 The present inventors speculate the reason why the same neutralizing effect as that of limestone can be achieved by using the aggregate of the fibrous particles composed of the above residue as the neutralizing agent for acidic water in the present invention as follows. doing. As shown in FIGS. 1 (a) to 1 (c), one particle of the residue is formed because calcium carbonate and magnesium hydroxide are uniformly precipitated from the liquid phase in the decarbonization step during magnesium hydroxide production to form aggregates. It exists in a uniformly mixed state, and is considered to have achieved the same neutralizing effect as limestone. In contrast, in the mixed powder of calcium carbonate powder and magnesium hydroxide powder, as shown in FIGS. 2 (a) to 2 (c), each component exists as an independent particle as a single crystal. Since these non-uniform particles react separately to neutralize, it is considered that the same neutralizing effect as that of limestone cannot be obtained.

本発明の中和剤として用いられる前記の残渣は産業廃棄物であるため、本発明の効果に寄与するための粒子構造や成分の全部を解析することは実質的に不可能であり、その構造及び特性によって特定するには著しく過大な経済的支出及び時間を要する。そのため、本発明の中和剤として用いられる前記の残渣には、本出願の出願時において当該物をその構造又は特性により直接特定することが不可能であるか、又はおよそ実際的でないという事情、すなわち「不可能・非実際的事情」が存在する。 Since the residue used as the neutralizing agent of the present invention is an industrial waste, it is practically impossible to analyze all of the particle structures and components that contribute to the effects of the present invention, and the structure thereof. And it takes significantly excessive economic spending and time to identify by characteristics. Therefore, the above-mentioned residue used as the neutralizing agent of the present invention cannot be directly specified by its structure or characteristics at the time of filing of the present application, or is not practical. That is, there are "impossible / impractical circumstances".

前記の残渣は、40質量%程度の水分を含有したケーキ状の沈殿物として回収される。残渣を本発明の酸性水用中和剤として利用する場合、使用時の計量の利便性及びフィーダーの詰まり防止の観点から、残渣の水分量を乾燥等の方法によって低下させ、粉末とすることが望ましい。具体的には、残渣中の水分を20質量%以下とすることが好ましく、10質量%以下とすることがより好ましい。 The residue is recovered as a cake-like precipitate containing about 40% by mass of water. When the residue is used as the neutralizing agent for acidic water of the present invention, the water content of the residue may be reduced by a method such as drying to form a powder from the viewpoint of convenience of measurement during use and prevention of clogging of the feeder. desirable. Specifically, the water content in the residue is preferably 20% by mass or less, and more preferably 10% by mass or less.

<酸性水用中和剤の製造方法>
本発明の酸性水用中和剤の製造方法の好ましい一実施態様は、上述のとおり、海水と消石灰(すなわち水酸化カルシウム)との反応により水酸化マグネシウムを製造する際に、海水中の炭酸ガスを除去する脱炭酸工程において海水に消石灰を添加する工程を行い、その工程で前記の残渣を生じさせることである。海水と消石灰との反応は、例えば1リットルの海水に対して、消石灰を好ましくは0.4g以上1.0g以下、更に好ましくは0.5g以上0.8g以下添加して、両者を混合させればよい。混合は通常0〜40℃程度の温度で行うことができる。この反応によって、海水中の炭酸ガスと消石灰との反応により、炭酸カルシウムと水酸化マグネシウムとを主成分とする繊維状粒子の凝集物が生成する。残渣の回収は、シックナーなどの沈降槽を用いて、沈殿物として取り出すことができる。この分離によって得られた凝集物における繊維状粒子は、繊維径が上述のとおり0.01μm以上5μm以下であり、且つ繊維長が0.1μm以上50μm以下であることが好ましい。更に、前記凝集物の平均粒子径は、上述のとおり10μm以上100μm以下であることが好ましい。更に凝集物は、上述のとおり炭酸カルシウムを65質量%以上95質量%以下含み、水酸化マグネシウムを5質量%以上35質量%以下含むことが好ましい。
<Manufacturing method of neutralizer for acidic water>
As described above, a preferred embodiment of the method for producing a neutralizing agent for acidic water of the present invention is carbon dioxide gas in seawater when magnesium hydroxide is produced by the reaction of seawater and slaked lime (that is, calcium hydroxide). In the decarbonization step of removing carbon dioxide, a step of adding slaked lime to seawater is performed, and the above-mentioned residue is generated in the step. For the reaction between seawater and slaked lime, for example, slaked lime is preferably added in an amount of 0.4 g or more and 1.0 g or less, more preferably 0.5 g or more and 0.8 g or less, and both are mixed with 1 liter of seawater. Just do it. Mixing can usually be carried out at a temperature of about 0 to 40 ° C. By this reaction, the reaction between carbon dioxide gas in seawater and slaked lime produces agglomerates of fibrous particles containing calcium carbonate and magnesium hydroxide as main components. The residue can be recovered as a precipitate using a settling tank such as a thickener. The fibrous particles in the agglomerate obtained by this separation preferably have a fiber diameter of 0.01 μm or more and 5 μm or less and a fiber length of 0.1 μm or more and 50 μm or less as described above. Further, the average particle size of the agglomerates is preferably 10 μm or more and 100 μm or less as described above. Further, the agglomerate preferably contains calcium carbonate in an amount of 65% by mass or more and 95% by mass or less and magnesium hydroxide in an amount of 5% by mass or more and 35% by mass or less as described above.

このようにして得られた本発明の酸性水用中和剤は、一粒子中に炭酸カルシウムと水酸化マグネシウムとが均一に混合された状態になっている複数の繊維状粒子の凝集物であることに起因して、酸性水の中和を円滑に行うことができる。しかも、中和反応によって生成する沈殿物体積を減少させることができる。 The neutralizing agent for acidic water of the present invention thus obtained is an agglomerate of a plurality of fibrous particles in which calcium carbonate and magnesium hydroxide are uniformly mixed in one particle. Due to this, the neutralization of acidic water can be smoothly performed. Moreover, the volume of the precipitate produced by the neutralization reaction can be reduced.

本実施形態に係る酸性水用中和剤は、石灰石の代替として酸性水を中和処理するために好適に用いられる。この酸性水用中和剤によれば、産業廃棄物である残渣を利用することで、資源の節約及び産業廃棄物の削減を達成できる。処理対象の酸性水としては、河川水、鉱山廃水、地下水、工場排水などが挙げられるが、これらに限られない。 The neutralizing agent for acidic water according to the present embodiment is preferably used for neutralizing acidic water as a substitute for limestone. According to this neutralizing agent for acidic water, resource saving and reduction of industrial waste can be achieved by utilizing the residue which is industrial waste. Acidic water to be treated includes, but is not limited to, river water, mine wastewater, groundwater, and factory wastewater.

<酸性水の中和処理方法>
酸性水の中和処理方法は、本発明に係る酸性水用中和剤を中和処理すべき酸性水に加える工程を含むものである。酸性水とはpHが7以下の水性液のことである。本発明に係る酸性水用中和剤は、粉末として、又は粉末を水などの分散媒に加えたスラリー状の分散液として酸性水に加えることができる。酸性水用中和剤を中和処理すべき酸性水に対して加える方法は特に限定されない。例えば、酸性水に酸性水用中和剤を投入し撹拌する方法、又は酸性水の流路内で中和剤を対流等により混合させる方法によって、好適に中和反応を進行させることができる。
<Neutralization method for acidic water>
The method for neutralizing acidic water includes a step of adding the neutralizing agent for acidic water according to the present invention to the acidic water to be neutralized. Acidic water is an aqueous liquid having a pH of 7 or less. The neutralizing agent for acidic water according to the present invention can be added to acidic water as a powder or as a slurry-like dispersion liquid obtained by adding the powder to a dispersion medium such as water. The method of adding the neutralizing agent for acidic water to the acidic water to be neutralized is not particularly limited. For example, the neutralization reaction can be suitably promoted by a method of adding a neutralizing agent for acidic water to acidic water and stirring the mixture, or a method of mixing the neutralizing agent by convection or the like in the flow path of the acidic water.

中和処理すべき酸性水に対して加える酸性水用中和剤の量は、酸性水の種類や目標とする中和処理の程度にもよるが、酸性水1Lあたり0.5〜1.5g/Lであることが好ましく、0.7〜1.2g/Lであることがより好ましい。酸性水用中和剤の量が0.5g/L以上であれば、所定の時間内に所定のpHまで中和反応を進めることができ、1.5g/L以下であれば未反応の中和剤がほとんど残留しなくなる。 The amount of the neutralizing agent for acidic water added to the acidic water to be neutralized depends on the type of acidic water and the target degree of neutralization treatment, but is 0.5 to 1.5 g per 1 L of acidic water. It is preferably / L, and more preferably 0.7 to 1.2 g / L. If the amount of the neutralizing agent for acidic water is 0.5 g / L or more, the neutralization reaction can proceed to a predetermined pH within a predetermined time, and if it is 1.5 g / L or less, it is in an unreacted state. Almost no Japanese agent remains.

以下、実施例により本発明を詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。 Hereinafter, the present invention will be described in detail with reference to Examples. However, the scope of the present invention is not limited to such examples.

〔使用材料〕
酸性水用中和剤(以下、単に中和剤ともいう)として、(ア)海水と消石灰との反応により水酸化マグネシウムを製造する際に生じる残渣、(イ)石灰石及び(ウ)水酸化マグネシウムを使用した。残渣は、宇部マテリアルズ株式会社において水酸化マグネシウムを製造する際に生成した産業廃棄物を使用した。石灰石は汎用の石灰石粉砕品を使用した。水酸化マグネシウムは宇部マテリアルズ株式会社製のUD−650を使用した。酸性水として、酸性の温泉水が流れ込んでいる河川より採取したpH2.1の河川水を使用した。以下の表1に、各中和剤に含まれる金属化合物の組成(質量%)を示す。
[Material used]
As a neutralizing agent for acidic water (hereinafter, also simply referred to as a neutralizing agent), (a) residue generated when magnesium hydroxide is produced by the reaction of seawater and slaked lime, (b) limestone and (c) magnesium hydroxide. It was used. As the residue, industrial waste generated during the production of magnesium hydroxide at Ube Material Industries Ltd. was used. As the limestone, a general-purpose crushed limestone product was used. As magnesium hydroxide, UD-650 manufactured by Ube Material Industries Ltd. was used. As the acidic water, river water having a pH of 2.1 collected from a river into which acidic hot spring water was flowing was used. Table 1 below shows the composition (mass%) of the metal compound contained in each neutralizing agent.

Figure 0006859140
Figure 0006859140

〔中和試験〕
それぞれの中和剤を使用し、以下の方法で酸性水の中和試験を実施した。すなわち、河川水1Lをビーカーに取り、メカニカルスターラーで撹拌しながら湯浴によって水温を33℃に調整した。それぞれの中和剤を秤量し、粉末の状態で水温が一定になった河川水に一気に投入した。中和剤を添加した後、撹拌を続けながらpHメーターによって河川水のpHを1分毎に計測した。計測は添加後2時間経過するまで続けた。各中和剤の添加量は、中和反応開始から2時間経過後のpHがpH5.5となるように調整した。
[Neutralization test]
Using each neutralizing agent, a neutralization test of acidic water was carried out by the following method. That is, 1 L of river water was taken in a beaker, and the water temperature was adjusted to 33 ° C. by a hot water bath while stirring with a mechanical stirrer. Each neutralizing agent was weighed and poured into river water in which the water temperature was constant in the powder state at once. After adding the neutralizing agent, the pH of the river water was measured every minute with a pH meter while continuing stirring. The measurement was continued until 2 hours had passed after the addition. The amount of each neutralizing agent added was adjusted so that the pH after 2 hours from the start of the neutralization reaction was pH 5.5.

〔参考例1〕
河川水1L中に石灰石を1.03g添加し、上述の中和試験を行った。
[Reference Example 1]
1.03 g of limestone was added to 1 L of river water, and the above-mentioned neutralization test was carried out.

〔実施例1〕
河川水1L中に残渣を0.92g添加し、上述の中和試験を行った。残渣に含まれる繊維状粒子及び凝集物の走査型電子顕微鏡像並びにマグネシウム及びカルシウムの元素マッピング像を図1(a)ないし(c)並びに図3(a)及び(b)に示す。また残渣のX線回折測定を行った結果、該残渣には炭酸カルシウム及び水酸化マグネシウムが含まれており、炭酸カルシウムはアラゴナイト結晶構造を有していることが確認された。
[Example 1]
0.92 g of the residue was added to 1 L of river water, and the above-mentioned neutralization test was carried out. Scanning electron microscope images of fibrous particles and aggregates contained in the residue and elemental mapping images of magnesium and calcium are shown in FIGS. 1 (a) to 1 (c) and FIGS. 3 (a) and 3 (b). Further, as a result of X-ray diffraction measurement of the residue, it was confirmed that the residue contained calcium carbonate and magnesium hydroxide, and that calcium carbonate had an aragonite crystal structure.

〔比較例1〕
河川水1L中に水酸化マグネシウムを0.70g添加し、上述の中和試験を行った。
[Comparative Example 1]
0.70 g of magnesium hydroxide was added to 1 L of river water, and the above-mentioned neutralization test was carried out.

〔比較例2〕
河川水1L中に石灰石0.828gと水酸化マグネシウム0.092gとを乳鉢を用いて混合した混合物を添加し、上述の中和試験を行った。この混合物の走査型電子顕微鏡像並びにマグネシウム及びカルシウムの元素マッピング像を図2(a)ないし(c)に示す。
[Comparative Example 2]
A mixture of 0.828 g of limestone and 0.092 g of magnesium hydroxide mixed in 1 L of river water using a mortar was added, and the above-mentioned neutralization test was carried out. Scanning electron microscope images of this mixture and elemental mapping images of magnesium and calcium are shown in FIGS. 2 (a) to 2 (c).

〔比較例3〕
河川水1L中に石灰石0.736gと水酸化マグネシウム0.184gとを乳鉢を用いて混合したものを添加し、上述の中和試験を行った。
[Comparative Example 3]
A mixture of 0.736 g of limestone and 0.184 g of magnesium hydroxide in 1 L of river water was added using a mortar, and the above-mentioned neutralization test was carried out.

<沈殿物体積の計測>
中和剤を添加して2時間後に撹拌を止め、中和処理水と沈殿物をメスシリンダーに移し、24時間静置した。静置24時間後に上澄みを捨て、沈殿物をビーカーに移し、蒸留水で100mLの分散液とした後、更に24時間静置した。静置24時間後に上澄みを捨て、沈殿物を試験管に移し、蒸留水で20mLの分散液とした後、更に24時間静置した。静置後に、沈殿物が堆積した量を沈殿物体積(mL/L)とした。結果を以下の表2に示す。
<Measurement of sediment volume>
After 2 hours after adding the neutralizing agent, the stirring was stopped, the neutralized water and the precipitate were transferred to a measuring cylinder, and allowed to stand for 24 hours. After 24 hours of standing, the supernatant was discarded, the precipitate was transferred to a beaker, made into a 100 mL dispersion with distilled water, and then allowed to stand for another 24 hours. After 24 hours of standing, the supernatant was discarded, the precipitate was transferred to a test tube, made into a 20 mL dispersion with distilled water, and then allowed to stand for another 24 hours. After standing, the amount of sediment deposited was defined as the sediment volume (mL / L). The results are shown in Table 2 below.

<判定>
参考例を基準とし、中和剤の使用量の増大及び沈殿物の体積の増大の少なくともいずれか一方が確認された場合は不合格(表2において「×」と判定)とし、両方の基準を満たした場合は合格(表2において「○」)と判定とした。結果を以下の表2に示す。
<Judgment>
Based on the reference example, if at least one of the increase in the amount of neutralizing agent used and the increase in the volume of the precipitate is confirmed, it is rejected (determined as "x" in Table 2), and both criteria are used. If it was satisfied, it was judged as acceptable (“○” in Table 2). The results are shown in Table 2 below.

〔残渣の繊維径、繊維長、及び粒子径の測定〕
残渣に含まれる繊維状粒子の繊維径及び繊維長の測定、並びに繊維状粒子の凝集物の粒子径を上述の方法で測定した。
[Measurement of fiber diameter, fiber length, and particle size of residue]
The fiber diameter and fiber length of the fibrous particles contained in the residue were measured, and the particle size of the agglomerates of the fibrous particles was measured by the above method.

Figure 0006859140
Figure 0006859140

表2に示すとおり、残渣を中和剤として使用した実施例1では、石灰石を使用した参考例1と比較して、中和剤の使用量がより少なくても、参考例と同等の中和効果を得ることができることが判る。一方、比較例1ないし3は、参考例1と比較して、いずれも沈殿物の体積が増大し、参考例1と同等の中和効果を得ることができなかった。 As shown in Table 2, in Example 1 in which the residue was used as the neutralizing agent, even if the amount of the neutralizing agent used was smaller than that in Reference Example 1 in which limestone was used, the neutralization was equivalent to that in the reference example. It turns out that the effect can be obtained. On the other hand, in Comparative Examples 1 to 3, the volume of the precipitate increased as compared with Reference Example 1, and the neutralization effect equivalent to that of Reference Example 1 could not be obtained.

残渣の繊維状粒子の繊維径及び繊維長を測定したところ、繊維径は0.1〜0.5μmであり、繊維長は1〜20μmである針状の粒子であった。繊維状粒子の凝集物の粒子径を測定したところ、直径30〜60μmであった。 When the fiber diameter and the fiber length of the fibrous particles of the residue were measured, the fiber diameter was 0.1 to 0.5 μm, and the fiber length was 1 to 20 μm, which were needle-shaped particles. The particle size of the agglomerates of the fibrous particles was measured and found to be 30 to 60 μm in diameter.

Claims (8)

炭酸カルシウム及び水酸化マグネシウムを含む繊維状粒子の凝集物からなり、
前記繊維状粒子は、一粒子中に炭酸カルシウムと水酸化マグネシウムとが均一に混合された粒子である酸性水用中和剤。
Ri Do from aggregates of fibrous particles containing calcium carbonate and magnesium hydroxide,
The fibrous particles are neutralizing agents for acidic water, which are particles in which calcium carbonate and magnesium hydroxide are uniformly mixed in one particle.
前記繊維状粒子はその繊維径が0.01μm以上5μm以下であり、且つ繊維長が0.1μm以上50μm以下である請求項1に記載の酸性水用中和剤。 The neutralizing agent for acidic water according to claim 1, wherein the fibrous particles have a fiber diameter of 0.01 μm or more and 5 μm or less and a fiber length of 0.1 μm or more and 50 μm or less. 前記凝集物はその平均粒子径が10μm以上100μm以下である請求項1又は2に記載の酸性水用中和剤。 The neutralizing agent for acidic water according to claim 1 or 2, wherein the aggregate has an average particle size of 10 μm or more and 100 μm or less. 前記凝集物は、炭酸カルシウムを65質量%以上95質量%以下含み、水酸化マグネシウムを5質量%以上35質量%以下含む請求項1ないし3のいずれか一項に記載の酸性水用中和剤。 The neutralizing agent for acidic water according to any one of claims 1 to 3, wherein the aggregate contains calcium carbonate in an amount of 65% by mass or more and 95% by mass or less and magnesium hydroxide in an amount of 5% by mass or more and 35% by mass or less. .. 前記繊維状粒子に含まれる炭酸カルシウムがアラゴナイト結晶構造を有している請求項1ないしのいずれか一項に記載の酸性水用中和剤。 The neutralizing agent for acidic water according to any one of claims 1 to 4 , wherein the calcium carbonate contained in the fibrous particles has an aragonite crystal structure. 前記凝集物は、海水と消石灰との反応によって水酸化マグネシウムを製造して生じた残渣である請求項1ないしのいずれか一項に記載の酸性水用中和剤。 The neutralizing agent for acidic water according to any one of claims 1 to 5 , wherein the agglutination is a residue produced by producing magnesium hydroxide by the reaction of seawater and slaked lime. 請求項1ないしのいずれか一項に記載の酸性水用中和剤の製造方法であって、
海水と消石灰と反応させて水酸化マグネシウムを生成させ、
水酸化マグネシウムの生成によって生じた残渣からなる酸性水用中和剤を水酸化マグネシウムと分離する、酸性水用中和剤の製造方法。
The method for producing a neutralizing agent for acidic water according to any one of claims 1 to 6.
Reacts with seawater and slaked lime to produce magnesium hydroxide,
A method for producing a neutralizing agent for acidic water, which separates a neutralizing agent for acidic water consisting of a residue produced by the production of magnesium hydroxide from magnesium hydroxide.
請求項1ないしのいずれか一項に記載の酸性水用中和剤と酸性水とを混合する工程を含む酸性水の中和方法。
A method for neutralizing acidic water, which comprises a step of mixing the neutralizing agent for acidic water according to any one of claims 1 to 6 with acidic water.
JP2017049913A 2017-03-15 2017-03-15 Neutralizer for acidic water and method for neutralizing acidic water using it Active JP6859140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017049913A JP6859140B2 (en) 2017-03-15 2017-03-15 Neutralizer for acidic water and method for neutralizing acidic water using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017049913A JP6859140B2 (en) 2017-03-15 2017-03-15 Neutralizer for acidic water and method for neutralizing acidic water using it

Publications (2)

Publication Number Publication Date
JP2018153712A JP2018153712A (en) 2018-10-04
JP6859140B2 true JP6859140B2 (en) 2021-04-14

Family

ID=63717122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017049913A Active JP6859140B2 (en) 2017-03-15 2017-03-15 Neutralizer for acidic water and method for neutralizing acidic water using it

Country Status (1)

Country Link
JP (1) JP6859140B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7062222B2 (en) * 2018-03-20 2022-05-06 Ube株式会社 Acid water treatment condition design method and acid water treatment method
JP7384375B2 (en) * 2019-03-28 2023-11-21 日本ソリッド株式会社 Production method of low boron containing magnesium hydroxide
KR102240348B1 (en) * 2019-06-11 2021-04-14 한국해양대학교 산학협력단 A method for producing high purity aragonite calcium carbonate using seawater
JP7138256B1 (en) 2022-03-02 2022-09-15 日本コンクリート工業株式会社 Method for producing calcium carbonate and method for immobilizing carbon dioxide

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04164809A (en) * 1990-10-26 1992-06-10 Ube Chem Ind Co Ltd Production of magnesium hydroxide
JPH0663566A (en) * 1992-08-20 1994-03-08 K P Ii:Kk Formation of slaked lime solution, slaked lime injection method and slaked lime dissolving tank
JP3267152B2 (en) * 1996-04-19 2002-03-18 宇部興産株式会社 Manufacturing method of coal ash lightweight aggregate
JP5581997B2 (en) * 2010-11-30 2014-09-03 宇部興産株式会社 Cement-based inorganic board
JP6536102B2 (en) * 2014-12-10 2019-07-03 宇部興産株式会社 Solidification material for neutralization treatment residue of acid water, solidification treatment product of neutralization treatment residue of acid water, and solidification treatment method of neutralization treatment residue of acid water

Also Published As

Publication number Publication date
JP2018153712A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP6859140B2 (en) Neutralizer for acidic water and method for neutralizing acidic water using it
KR20130049177A (en) Calcium ferroaluminate compound, cement admixture and process for producing same, and cement composition
US11505480B2 (en) Method of treating wastewater
Licong et al. Reactive crystallization of calcium sulfate dihydrate from acidic wastewater and lime
WO2018092396A1 (en) Treatment method and treatment apparatus for waste water containing sulfuric acid, fluorine and heavy metal ions
JP4744796B2 (en) Aggregate solidified material for soil stabilization containing inorganic polymer flocculant and organic polymer flocculant
JP6089792B2 (en) Steelmaking slag treatment method
Adekola et al. Dissolution kinetics studies of Nigerian gypsum ore in hydrochloric acid
US11479490B2 (en) Method of treating wastewater
Natasha et al. Calcium extraction from brine water and seawater using oxalic acid
JP2007038163A (en) Method for treating fluorine-containing waste water and treatment apparatus
JP6536102B2 (en) Solidification material for neutralization treatment residue of acid water, solidification treatment product of neutralization treatment residue of acid water, and solidification treatment method of neutralization treatment residue of acid water
Zvimba et al. An evaluation of waste gypsum-based precipitated calcium carbonate for acid mine drainage neutralization
JP7062222B2 (en) Acid water treatment condition design method and acid water treatment method
JP5718562B2 (en) Soil stabilization treatment material and soil stabilization treatment method using the same
Martínez et al. Coal acid mine drainage treatment using cement kiln dust
TWI694057B (en) Method for manufacturing gypsum and method for manufacturing cement composition
Heiderscheidt et al. Evaluating the influence of pH adjustment on chemical purification efficiency and the suitability of industrial by-products as alkaline agents
JPWO2017179122A1 (en) Cement additive and cement composition
JP6397196B2 (en) Method for reducing electrical conductivity for growing soil
Mamyachenkov et al. Investigation of viscose rayon manufacturing sludges, considered as a raw material for zinc production
Petkov et al. A study of the partial neutralization process of solutions obtained during autoclave dissolution of pyrite concentrate
JP6385818B2 (en) Cement additive and cement composition
JP7259620B2 (en) Method for treating lead-containing outside water
JP7275618B2 (en) Method for treating slurry containing heavy metals

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210325

R150 Certificate of patent or registration of utility model

Ref document number: 6859140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250