JP6385818B2 - Cement additive and cement composition - Google Patents

Cement additive and cement composition Download PDF

Info

Publication number
JP6385818B2
JP6385818B2 JP2014262811A JP2014262811A JP6385818B2 JP 6385818 B2 JP6385818 B2 JP 6385818B2 JP 2014262811 A JP2014262811 A JP 2014262811A JP 2014262811 A JP2014262811 A JP 2014262811A JP 6385818 B2 JP6385818 B2 JP 6385818B2
Authority
JP
Japan
Prior art keywords
cement
additive
calcium sulfite
cement additive
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014262811A
Other languages
Japanese (ja)
Other versions
JP2016121047A (en
Inventor
将貴 宇城
将貴 宇城
盛岡 実
実 盛岡
啓史 原
啓史 原
雅昭 渡辺
雅昭 渡辺
八嶋 裕之
裕之 八嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2014262811A priority Critical patent/JP6385818B2/en
Publication of JP2016121047A publication Critical patent/JP2016121047A/en
Application granted granted Critical
Publication of JP6385818B2 publication Critical patent/JP6385818B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、主に、土木・建築業界において使用されるセメント添加剤及びセメント組成物に関する。   The present invention mainly relates to a cement additive and a cement composition used in the civil engineering and construction industries.

近年、セメントコンクリートの品質確保が以前にも増して難しくなっている。これは、セメント産業が各方面の産業副産物を原料に受け入れており、その受け入れ原単位が増していることが背景にある。これらの産業副産物に由来する微量成分が、セメントの品質に大きな影響を及ぼすためである。   In recent years, it has become more difficult to ensure the quality of cement concrete. This is due to the fact that the cement industry accepts various industrial by-products as raw materials, and the acceptance unit is increasing. This is because the trace components derived from these industrial by-products greatly affect the quality of cement.

特に、微量成分の含有量の違いによって、流動性や強度発現性が大きく異なってくる。また、六価クロムの溶出量などにも大きな違いが出てくる。
しかしながら、各方面の産業副産物を受け入れるというセメント産業の役割は、今後も益々求められるため、産業副産物を多量に処理しつつ、微量成分の影響を制御可能なセメントの品質設計手法が強く求められている。
In particular, fluidity and strength development vary greatly depending on the content of trace components. There are also significant differences in the elution amount of hexavalent chromium.
However, the role of the cement industry in accepting industrial by-products in various directions will continue to be increasingly demanded, so there is a strong demand for cement quality design methods that can control the effects of trace components while processing large amounts of industrial by-products. Yes.

亜硫酸カルシウムは、六価クロム還元剤として良く知られている(例えば、特許文献1〜特許文献5)。また、スランプロスを低減する効果も知られている(特許文献6〜特許文献10)。   Calcium sulfite is well known as a hexavalent chromium reducing agent (for example, Patent Documents 1 to 5). Moreover, the effect which reduces a slump loss is also known (patent documents 6-patent documents 10).

農薬の1種である石灰硫黄合剤は、主に果樹の農薬として用いられ、生石灰と硫黄と水を原料とし、オートクレーブで反応させる。固液分離した液体が石灰硫黄合剤となる。石灰硫黄合剤を製造する際の副産物として亜硫酸カルシウム半水和物があり、pHは9.0以上であることが知られている。
一方、試薬の亜硫酸カルシウム半水和物のpHは8.0以下の中性塩であり、石炭火力発電の排煙脱硫工程から生成する亜硫酸カルシウム半水和物を含むセッコウが得られるが、この物質のpHは酸性領域にある。
Lime sulfur mixture, which is a kind of agricultural chemical, is mainly used as an agricultural chemical for fruit trees. The liquid obtained by solid-liquid separation becomes a lime-sulfur mixture. It is known that calcium sulfite hemihydrate is a by-product when producing a lime-sulfur mixture, and the pH is 9.0 or more.
On the other hand, the pH of the reagent calcium sulfite hemihydrate is a neutral salt of 8.0 or less, and gypsum containing calcium sulfite hemihydrate generated from the flue gas desulfurization process of coal-fired power generation is obtained. The pH of the substance is in the acidic region.

特開平11−302644号公報JP-A-11-302644 特開2007−246306号公報JP 2007-246306 A 特開2008−174436号公報JP 2008-174436 A 特開2010−201406号公報JP 2010-201406 A 特開2012−24763号公報JP 2012-24763 A 特開平9−295843号公報Japanese Patent Laid-Open No. 9-295843 特開平10−265249号公報JP-A-10-265249 特開平10−291844号公報JP-A-10-291844 特開平11−79819号公報JP 11-79819 A 特開平11−79822号公報JP 11-79822 A

本発明は、特定の亜硫酸カルシウムを使用することによって、セメントコンクリートの良好な流動性の保持効果や自己収縮低減効果が得られ、加えて、即効性と持続性を併せ持つ六価クロムの還元作用を発揮するセメント添加剤及びセメント組成物を提供する。   In the present invention, by using a specific calcium sulfite, the good fluidity retention effect and self-shrinkage reduction effect of cement concrete can be obtained, and in addition, the reducing action of hexavalent chromium having both immediate effect and sustainability can be achieved. Provided are a cement additive and a cement composition.

すなわち、本発明は、(1)石灰硫黄合剤を製造する際の副産物である亜硫酸カルシウムを含有してなるセメント添加剤、(2)pHが9.0以上である請求項1に記載のセメント添加剤、(3)酸化還元電位(ORP)が50mv以下である(1)又は(2)のセメント添加剤、(4)MgO含有量が0.5%以上である(1)〜(3)のいずれかのセメント添加剤、(5)セメントと(1)〜(4)のいずれかのセメント添加剤を含有するセメント組成物、(6)セメント100部に対して0.05〜2部添加してなる(5)のセメント組成物、である。   That is, the present invention provides (1) a cement additive containing calcium sulfite, which is a by-product when producing a lime-sulfur mixture, and (2) a cement according to claim 1 having a pH of 9.0 or more. Additive, (3) cement additive of (1) or (2) having an oxidation-reduction potential (ORP) of 50 mv or less, (4) MgO content of 0.5% or more (1) to (3) (5) Cement and a cement composition containing any one of the cement additives (1) to (4), (6) 0.05 to 2 parts added to 100 parts of cement (5) the cement composition.

本発明のセメント添加剤を用いることにより、良好な流動性の保持効果や自己収縮低減効果が得られ、加えて、即効性と持続性を併せ持つ六価クロムの還元作用を発揮するなどの効果を奏する。   By using the cement additive of the present invention, good fluidity retention effect and self-shrinkage reduction effect are obtained, and in addition, effects such as exerting the reducing action of hexavalent chromium having both immediate effect and sustainability are exhibited. Play.

以下、本発明を詳細に説明する。
なお、本発明における部や%は、特に規定しない限り質量基準で示す。
また、本発明で云うセメントコンクリートとは、セメントペースト、セメントモルタル、及びコンクリートの総称である。
さらに、本発明で云う亜硫酸カルシウムとは、亜硫酸カルシウム無水物、亜硫酸カルシウム半水和物を総称するものである。
Hereinafter, the present invention will be described in detail.
In the present invention, “parts” and “%” are based on mass unless otherwise specified.
The cement concrete referred to in the present invention is a general term for cement paste, cement mortar, and concrete.
Furthermore, the calcium sulfite referred to in the present invention is a general term for calcium sulfite anhydrous and calcium sulfite hemihydrate.

本発明で使用する亜硫酸カルシウムは、pHが9.0以上である。pHが9.0以上の亜硫酸カルシウムとしては石灰硫黄合剤を製造する際の副産物がある。
石灰硫黄合剤の副産物は、粉末X線回折法で同定すると亜硫酸カルシウム半水和物が確認される。この副産物の乾燥質量100部中の亜硫酸カルシウム半水和物の含有量は、通常、75%以上であり、pHが9.0以上である。pHがアルカリ性領域であることは、本発明では極めて重要である。pHが9.0未満では、本発明の効果、すなわち、流動性の保持効果や六価クロムの還元効果、さらには自己収縮の低減効果が十分に得られない場合がある。
なお、本発明で云うpHとは、石灰硫黄合剤の副産物などの亜硫酸カルシウムを含有するセメント添加剤10gに純水100mlを加え、撹拌した後の上澄み液のpHを意味し、イオン電極式pH計を用いることで測定することが出来る。
The calcium sulfite used in the present invention has a pH of 9.0 or higher. As calcium sulfite having a pH of 9.0 or more, there is a by-product in producing a lime-sulfur mixture.
When the by-product of the lime sulfur mixture is identified by powder X-ray diffraction, calcium sulfite hemihydrate is confirmed. The content of calcium sulfite hemihydrate in 100 parts by weight of this by-product is usually 75% or more, and the pH is 9.0 or more. It is extremely important in the present invention that the pH is in the alkaline region. When the pH is less than 9.0, the effects of the present invention, that is, the fluidity retention effect, the hexavalent chromium reduction effect, and the self-shrinkage reduction effect may not be sufficiently obtained.
The pH referred to in the present invention means the pH of the supernatant liquid after adding 100 ml of pure water to 10 g of cement additive containing calcium sulfite such as a by-product of lime-sulfur mixture, and stirring. It can be measured by using a meter.

石灰硫黄合剤を製造する際の副産物の酸化還元電位(ORP)は、50mv以下の範囲にある。試薬の亜硫酸カルシウムのORPは、ほぼ100mvである。酸化還元電位が50mv以下の範囲にないと、本発明の効果、すなわち、流動性の保持効果や六価クロムの還元効果、さらには自己収縮の低減効果が十分に得られない場合がある。
なお、本発明で言うORPとは、石灰硫黄合剤の副産物10gに純水100mlを加え、撹拌した後の上澄み液のORPを意味する。
The redox potential (ORP) of the by-product when producing the lime-sulfur mixture is in the range of 50 mV or less. The ORP of the reagent calcium sulfite is approximately 100 mV. If the oxidation-reduction potential is not in the range of 50 mV or less, the effects of the present invention, that is, the fluidity retention effect, the hexavalent chromium reduction effect, and the self-shrinkage reduction effect may not be sufficiently obtained.
In addition, ORP said by this invention means ORP of the supernatant liquid after adding 100 ml of pure water to 10g of by-products of a lime sulfur mixture, and stirring.

石灰硫黄合剤の副産物には、MgO換算で0.5〜2.0%の範囲でMgが含まれる。Mgの含有量がMgO換算で0.5%未満であると、本発明の効果、すなわち、流動性の保持効果や六価クロムの還元効果、さらには自己収縮の低減効果が十分に得られない場合がある。   The by-product of the lime-sulfur mixture contains Mg in a range of 0.5 to 2.0% in terms of MgO. When the Mg content is less than 0.5% in terms of MgO, the effects of the present invention, that is, the fluidity retention effect, the hexavalent chromium reduction effect, and the self-shrinkage reduction effect are not sufficiently obtained. There is a case.

石灰硫黄合剤の副産物の粒度は、特に限定されるのもではないが、平均粒径で5〜30μmの範囲にあり、ブレーン比表面積で2,000〜8,000cm/gの範囲にあることが好ましい。ブレーン比表面積が2000cm/g未満では、六価クロムの還元効果について即効性が充分に得られない場合がある。また、8000cm/gを超えると六価クロムの還元効果についてと持続性が充分に得られない場合がある。 The particle size of the by-product of the lime-sulfur mixture is not particularly limited, but the average particle size is in the range of 5 to 30 μm, and the Blaine specific surface area is in the range of 2,000 to 8,000 cm 2 / g. It is preferable. When the specific surface area of the brane is less than 2000 cm 2 / g, the immediate effect may not be sufficiently obtained for the reduction effect of hexavalent chromium. Moreover, when it exceeds 8000 cm < 2 > / g, sustainability may not fully be acquired about the reduction effect of hexavalent chromium.

本発明で使用するセメントとしては、普通、早強、超早強、低熱、及び中庸熱などの各種ポルトランドセメントや、これらポルトランドセメントに、高炉スラグ、フライアッシュ、又はシリカを混合した各種混合セメント、石灰石粉末や高炉徐冷スラグ微粉末などを混合したフィラーセメント、並びに、都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造された環境調和型セメント(エコセメント)などのポルトランドセメントが挙げられ、これらのうちの一種又は二種以上が使用可能である。
style='font-size:10.5pt;font-family:"MS 明朝","serif";color:black'>
As the cement used in the present invention, various portland cements such as normal, early strength, super early strength, low heat, and moderate heat, various mixed cements obtained by mixing these portland cements with blast furnace slag, fly ash, or silica, Examples include filler cement mixed with limestone powder and blast furnace slow-cooled slag fine powder, as well as Portland cement such as environmentally friendly cement (eco-cement) manufactured from municipal waste incineration ash and sewage sludge incineration ash. 1 type or 2 types or more can be used.
style = 'font-size: 10.5pt; font-family: "MS Mincho", "serif"; color: black'>

セメント添加剤の使用量は、特に限定されるものではないが、通常、セメント100部に対して0.05〜2部が好ましく、0.1〜1部がより好ましい。セメント添加剤の使用量が少ないと、本発明の効果、すなわち、流動性の保持効果や六価クロムの還元効果、さらには自己収縮の低減効果が十分に得られない場合がある。
本発明では、セメントとセメント添加剤を配合してセメント組成物とする。
Although the usage-amount of a cement additive is not specifically limited, Usually, 0.05-2 parts are preferable with respect to 100 parts of cement, and 0.1-1 part is more preferable. When the amount of the cement additive used is small, the effects of the present invention, that is, the fluidity retention effect, the hexavalent chromium reduction effect, and the self-shrinkage reduction effect may not be sufficiently obtained.
In the present invention, cement and a cement additive are blended to form a cement composition.

本発明のセメント添加剤やセメント組成物は、それぞれの材料を施工時に混合しても良いし、あらかじめ一部あるいは全部を混合しておいても差し支えない。   In the cement additive and cement composition of the present invention, the respective materials may be mixed at the time of construction, or a part or all of them may be mixed in advance.

本発明では、セメント、セメント混和材、及び砂などの細骨材や砂利などの粗骨材の他に、膨張材、急硬材、減水剤、AE減水剤、高性能減水剤、高性能AE減水剤、消泡剤、増粘剤、従来の防錆剤、防凍剤、収縮低減剤、凝結調整剤、ベントナイトなどの粘土鉱物、ハイドロタルサイトなどのアニオン交換体、高炉水砕スラグ微粉末や高炉徐冷スラグ微粉末などのスラグ、石灰石微粉末などの混和材料からなる群のうちの一種又は二種以上を、本発明の目的を実質的に阻害しない範囲で併用することが可能である。   In the present invention, in addition to cement, cement admixture, and fine aggregates such as sand and coarse aggregates such as gravel, expansion material, quick hard material, water reducing agent, AE water reducing agent, high performance water reducing agent, high performance AE Water reducing agent, antifoaming agent, thickening agent, conventional rust inhibitor, antifreeze agent, shrinkage reducing agent, setting modifier, clay minerals such as bentonite, anion exchanger such as hydrotalcite, granulated blast furnace slag fine powder It is possible to use one or two or more of the group consisting of slag such as blast furnace annealed slag fine powder and admixture materials such as limestone fine powder within a range that does not substantially impair the object of the present invention.

混合装置としては、既存の如何なる装置も使用可能であり、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、プロシェアミキサ及びナウタミキサ等の使用が可能である。   As the mixing device, any existing device can be used, and for example, a tilting mixer, an omni mixer, a Henschel mixer, a V-type mixer, a proshear mixer, a nauta mixer, and the like can be used.

以下、実施例、比較例を挙げてさらに詳細に内容を説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although an example and a comparative example are given and the contents are explained in detail, the present invention is not limited to these.

「実験例1」
表1に示すように様々な亜硫酸カルシウムを含む石灰硫黄合剤の副産物をセメント添加剤とした。このセメント添加剤をセメントとセメント添加剤からなるセメント組成物において、セメント100部に対して0.5部使用し、単位セメント組成物量が500kg/m、水/セメント組成物比が33%、s/a=46%、空気量4.5%、スランプ21cmのコンクリートを調製した。この際、高性能減水剤をセメント組成物100部に対して1.4部添加した。
このコンクリートについて、スランプの経時変化、自己収縮、六価クロムの還元効果の確認を行った。結果を表1に併記する。
"Experiment 1"
As shown in Table 1, a by-product of a lime-sulfur mixture containing various calcium sulfites was used as a cement additive. In the cement composition comprising cement and cement additive, 0.5 part of this cement additive is used with respect to 100 parts of cement, the unit cement composition amount is 500 kg / m 3 , the water / cement composition ratio is 33%, Concrete with s / a = 46%, air amount 4.5% and slump 21 cm was prepared. At this time, 1.4 parts of the high performance water reducing agent was added to 100 parts of the cement composition.
This concrete was confirmed for the change of slump with time, self-shrinkage, and reduction effect of hexavalent chromium. The results are also shown in Table 1.

<使用材料>
セメント:普通ポルトランドセメント、市販品の3種混合品を使用。
セメント添加剤イ:石灰硫黄合剤の副産物、亜硫酸カルシウム半水和物の含有量82%、pHが10.5、酸化還元電位30mv、MgO含有量が1.0%。
セメント添加剤ロ:石灰硫黄合剤の副産物、亜硫酸カルシウム半水和物の含有量80%、pHが10.0、酸化還元電位35mv、MgO含有量が1.0%。
セメント添加剤ハ:石灰硫黄合剤の副産物、亜硫酸カルシウム半水和物の含有量79%、pHが9.5、酸化還元電位45mv、MgO含有量が1.0%。
セメント添加剤ニ:石灰硫黄合剤の副産物、亜硫酸カルシウム半水和物の含有量88%、pHが9.0、酸化還元電位50mv、MgO含有量が1.0%。
セメント添加剤ホ:石灰硫黄合剤の副産物、亜硫酸カルシウム半水和物の含有量76%、pHが10.0、酸化還元電位35mv、MgO含有量が0.5%。
セメント添加剤ヘ:試薬1級の亜硫酸カルシウム半水和物、pHが7.7、酸化還元電位100mv、MgO含有量が0.1%未満。
セメント添加剤ト:試薬1級の亜硫酸カルシウム半水和物、pHが10.0(試薬1級の水酸化カルシウムでpHを調整)、酸化還元電位110mv、MgO含有量が0.1%未満。
細骨材:新潟県姫川産の川砂、5mm下、FM2.82、比重2.64。
粗骨材:新潟県姫川産の砕石、Gmax25mm、FM6.98、比重2.62。
高性能減水剤:ポリカルボン酸塩系の市販品。
<Materials used>
Cement: Ordinary Portland cement, a commercially available mixture of three types.
Cement additive A: 82% content of calcium sulfite hemihydrate by-product of lime sulfur mixture, pH 10.5, redox potential 30 mV, MgO content 1.0%.
Cement additive B: lime sulfur mixture by-product, calcium sulfite hemihydrate content 80%, pH 10.0, redox potential 35 mV, MgO content 1.0%.
Cement additive C: By-product of lime sulfur mixture, calcium sulfite hemihydrate content 79%, pH 9.5, redox potential 45 mV, MgO content 1.0%.
Cement additive D: By-product of lime sulfur mixture, calcium sulfite hemihydrate content 88%, pH 9.0, redox potential 50 mV, MgO content 1.0%.
Cement additive E: 76% content of calcium sulfite hemihydrate by-product of lime sulfur mixture, pH 10.0, redox potential 35 mV, 0.5% MgO content.
Cement additive: Reagent grade 1 calcium sulfite hemihydrate, pH 7.7, redox potential 100 mV, MgO content less than 0.1%.
Cement additive: Reagent grade 1 calcium sulfite hemihydrate, pH 10.0 (pH adjusted with reagent grade 1 calcium hydroxide), redox potential 110 mV, MgO content less than 0.1%.
Fine aggregate: River sand from Himekawa, Niigata Prefecture, 5mm below, FM 2.82, specific gravity 2.64.
Coarse aggregate: crushed stone from Himekawa, Niigata prefecture, Gmax 25 mm, FM 6.98, specific gravity 2.62.
High-performance water reducing agent: Polycarboxylate based commercial product.

<試験方法>
スランプの経時変化:JIS A 1150に準じてスランプを測定し、練り上がり直後から30分後および90分後測定値の変化量を調べた。
自己収縮:JCI自己収縮研究委員会報告書に準じて測定。材齢56日における自己収縮ひずみとして表示。
六価クロムの溶出量:六価クロム標準溶液を希釈して、六価クロム濃度が100mg/lの溶液を調製し、この六価クロム溶液をコンクリート1mに対して2リットルとなるようにコンクリートの練り水に置換して加えた。まだ固まらないフレッシュコンクリートからの溶出量と、硬化したコンクリートからの溶出量を調べた。フレッシュコンクリートからの溶出量は、練りあがり30分後にブリーディング水や遠心分離より得られる上澄みをろ過することで得た試料を、純水に塩酸を加えて水素イオン濃度指数が5.8以上6.3以下となるようにした溶液と重量体積比10%の割合で混合し、JIS K 0102に準じてICP発光分光分析法により測定した。硬化コンクリートからの溶出量は、材齢28日後の硬化コンクリートを破砕し、2mm下の試料を用いた。ただし、六価クロムの残存濃度は、JIS K 0102に準じ、ICP発光分光分析法により測定した。
<Test method>
Change in slump with time: Slump was measured according to JIS A 1150, and the amount of change in the measured value 30 minutes and 90 minutes after the kneading was examined.
Self-shrinkage: Measured according to JCI Self-Shrink Research Committee report. Displayed as self-contracting strain at age 56 days.
Elution amount of hexavalent chromium: A hexavalent chromium standard solution is diluted to prepare a solution having a hexavalent chromium concentration of 100 mg / l, and the hexavalent chromium solution is made to be 2 liters per 1 m 3 of concrete. The water was replaced with kneading water. The amount of elution from fresh concrete that has not yet solidified and the amount of elution from hardened concrete were investigated. The amount of elution from the fresh concrete was determined by adding hydrochloric acid to pure water from a sample obtained by filtering the supernatant obtained from bleeding water or centrifugation after 30 minutes of kneading, and a hydrogen ion concentration index of 5.8 or more. It was mixed with a solution having a volume ratio of 3 or less at a ratio of 10% by weight and measured by ICP emission spectroscopic analysis according to JIS K 0102. The amount of elution from the hardened concrete was obtained by crushing hardened concrete after 28 days of age and using a sample 2 mm below. However, the residual concentration of hexavalent chromium was measured by ICP emission spectroscopic analysis according to JIS K0102.

Figure 0006385818
Figure 0006385818

表1より、本発明のセメント添加剤を使用することにより、中性の亜硫酸カルシウム半水和物と比較すると、流動性の保持効果に優れ、六価クロムの還元効果も即効性及び持続性の両立が図られ、しかも、自己収縮も低減されていることがわかる。また、中性の亜硫酸カルシウム半水和物からなるセメント添加剤のpHを調整することでは、本発明と同様の効果が得られないことが分かる。   From Table 1, by using the cement additive of the present invention, compared with neutral calcium sulfite hemihydrate, the fluidity retention effect is excellent, and the reduction effect of hexavalent chromium is immediate and long-lasting. It can be seen that compatibility is achieved and self-shrinkage is also reduced. Moreover, it turns out that the effect similar to this invention is not acquired by adjusting the pH of the cement additive which consists of neutral calcium sulfite hemihydrate.

「実験例2」
セメント添加剤イを使用し、セメント添加剤の使用量を表2に示すように変化したこと以外は実験例1と同様に行った。結果を表2に示す。
"Experimental example 2"
The same procedure as in Experimental Example 1 was conducted except that the cement additive A was used and the amount of the cement additive used was changed as shown in Table 2. The results are shown in Table 2.

Figure 0006385818
Figure 0006385818

表2より、本発明のセメント添加剤を適量使用することにより、流動性の保持効果が得られ、六価クロムの還元効果も即効性および持続性の両立が図られ、しかも、自己収縮も低減されていることがわかる。   From Table 2, by using an appropriate amount of the cement additive of the present invention, a fluidity retention effect can be obtained, a reduction effect of hexavalent chromium can be achieved both with immediate effect and sustainability, and self-shrinkage is also reduced. You can see that

本発明のセメント添加剤及びセメント組成物を使用することにより、良好な流動性の保持効果や自己収縮低減効果が得られ、加えて、即効性と持続性を併せ持つ六価クロムの還元作用を発揮するなどの効果を奏するため、主に、土木・建築業界等において広範な用途に適する。   By using the cement additive and cement composition of the present invention, good fluidity retention effect and self-shrinkage reduction effect can be obtained, and in addition, it exhibits the reducing action of hexavalent chromium that has both immediate effect and sustainability. It is suitable for a wide range of applications mainly in the civil engineering and construction industries.

Claims (6)

石灰硫黄合剤を製造する際の副産物である亜硫酸カルシウムを含有してなるセメント添加剤。 A cement additive containing calcium sulfite which is a by-product when producing a lime-sulfur mixture. pHが9.0以上である請求項1に記載のセメント添加剤。 The cement additive according to claim 1, having a pH of 9.0 or more. 酸化還元電位(ORP)が50mv以下である請求項1又は2に記載のセメント添加剤。 The cement additive according to claim 1 or 2, wherein the redox potential (ORP) is 50 mV or less. MgO含有量が0.5%以上である請求項1〜3のいずれか1項に記載のセメント添加剤。 The cement additive according to any one of claims 1 to 3, wherein the MgO content is 0.5% or more. セメントと請求項1〜4のいずれか1項に記載のセメント添加剤を含有するセメント組成物。 The cement composition containing a cement and the cement additive of any one of Claims 1-4. セメント添加剤がセメント100部に対して0.05〜2部である請求項5に記載のセメント組成物。 The cement composition according to claim 5, wherein the cement additive is 0.05 to 2 parts with respect to 100 parts of cement.
JP2014262811A 2014-12-25 2014-12-25 Cement additive and cement composition Expired - Fee Related JP6385818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014262811A JP6385818B2 (en) 2014-12-25 2014-12-25 Cement additive and cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014262811A JP6385818B2 (en) 2014-12-25 2014-12-25 Cement additive and cement composition

Publications (2)

Publication Number Publication Date
JP2016121047A JP2016121047A (en) 2016-07-07
JP6385818B2 true JP6385818B2 (en) 2018-09-05

Family

ID=56328080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014262811A Expired - Fee Related JP6385818B2 (en) 2014-12-25 2014-12-25 Cement additive and cement composition

Country Status (1)

Country Link
JP (1) JP6385818B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6832723B2 (en) * 2017-01-30 2021-02-24 デンカ株式会社 Manufacturing method of cement additive and cement composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3038457C2 (en) * 1980-10-11 1983-11-10 L. & C. Steinmüller GmbH, 5270 Gummersbach Use of a waste product from dry flue gas desulphurisation for the production of fly ash cement
JPH09295843A (en) * 1996-03-05 1997-11-18 Denki Kagaku Kogyo Kk High performance water reducing agent and cement composition using the same
US6984368B2 (en) * 2003-06-09 2006-01-10 Tessenderlo Kerley, Inc. Process for preparing calcium thiosulfate solution

Also Published As

Publication number Publication date
JP2016121047A (en) 2016-07-07

Similar Documents

Publication Publication Date Title
JP5189119B2 (en) Method for selecting blast furnace slow-cooled slag powder suitably used as cement admixture
JP5946107B2 (en) Method for producing cement composition
JP5599061B2 (en) Neutral solidifying material additive, neutral solidifying material and method for suppressing elution of heavy metals
JP5053572B2 (en) Cement-based solidification material and solidification treatment method
JP6282408B2 (en) Hydraulic composition
JP2009190904A (en) Solidifying material
JP2015078112A (en) Hydraulic composition
JP2006143990A (en) Solidifying material
JP2009185220A (en) Soil improvement solidifying material
JP5768293B2 (en) Method for producing soil-solidifying material using fluorine-containing inorganic waste, obtained soil-solidifying material, and method for solidifying soft soil using the soil-solidifying material
JP2005350337A (en) Cement composition
JP6385818B2 (en) Cement additive and cement composition
JP2009227549A (en) Cement additive and cement composition
JPWO2017179122A1 (en) Cement additive and cement composition
JP2013241304A (en) Cement composition and method for producing the same
JP2006347814A (en) Cement clinker, cement composition, concrete composition and method for manufacturing cement clinker
JP2010195975A (en) Cement-based solidifying material, method for producing the same and method for solidifying soil
JP2008195576A (en) Cement admixture, cement composition and cement concrete
JP2010168256A (en) Cement additive and cement composition
WO2015037594A1 (en) Method for producing portland cement clinker
JP2008290926A (en) Fired product, cement additive, and cement composition
JP6365329B2 (en) Manufacturing method for civil engineering materials for land use
JP6441086B2 (en) Effective use of coal ash
JP6479461B2 (en) Cement additive and cement composition
JP2010202463A (en) Cement clinker, cement-based solidifying material, solidification treatment method for soil and method for producing cement clinker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180808

R150 Certificate of patent or registration of utility model

Ref document number: 6385818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees