JP6832723B2 - Manufacturing method of cement additive and cement composition - Google Patents

Manufacturing method of cement additive and cement composition Download PDF

Info

Publication number
JP6832723B2
JP6832723B2 JP2017013777A JP2017013777A JP6832723B2 JP 6832723 B2 JP6832723 B2 JP 6832723B2 JP 2017013777 A JP2017013777 A JP 2017013777A JP 2017013777 A JP2017013777 A JP 2017013777A JP 6832723 B2 JP6832723 B2 JP 6832723B2
Authority
JP
Japan
Prior art keywords
cement
calcium sulfite
gypsum
present
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017013777A
Other languages
Japanese (ja)
Other versions
JP2018123009A (en
Inventor
佐々木 崇
崇 佐々木
雅昭 渡辺
雅昭 渡辺
盛岡 実
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Priority to JP2017013777A priority Critical patent/JP6832723B2/en
Publication of JP2018123009A publication Critical patent/JP2018123009A/en
Application granted granted Critical
Publication of JP6832723B2 publication Critical patent/JP6832723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、主に、土木・建築業界において使用されるセメント添加剤及びセメント組成物に関する。 The present invention mainly relates to cement additives and cement compositions used in the civil engineering and construction industries.

コンクリート製品は、セメント、骨材、水、および混和材を練り混ぜたものを、型枠に流し込み、適切に養生を行った後、脱型して製造される。ここで、材齢初期に高い強度を発現することは、生産性、つまり型枠の回転率を向上させる点で重要である。型枠の回転率を向上させることは、高価な型枠の必要数を少なくすることにつながる。初期強度を高めるための方法としては、早強セメントを使用する、減水剤を併用して水セメント比の低いコンクリートを調合する、蒸気養生を行うことなどが知られている。 Concrete products are manufactured by pouring a mixture of cement, aggregate, water, and admixture into a mold, curing it appropriately, and then removing the mold. Here, it is important to develop high strength in the early stage of the material age in terms of improving productivity, that is, the turnover rate of the mold. Improving the turnover rate of the formwork leads to reducing the required number of expensive formwork. As a method for increasing the initial strength, it is known to use early-strength cement, to prepare concrete having a low water-cement ratio by using a water reducing agent in combination, and to perform steam curing.

近年では、蒸気使用に伴うエネルギーコストが高騰しており、蒸気養生時間を短縮すること、さらには蒸気養生を行わなくてもよい方法が切望されている。より高い生産性の要求から、養生工程の更なる短縮化が望まれることがあり、例えば、コンクリート製品の製造において養生時間16時間で高い強度を発現することが必要な場合がある。通常、養生工程において、蒸気などでの加熱作業工程など複雑な工程が組み込まれているが、これらの工程変更による初期強度の向上対策は実用的な手法とはなりにくい。そこで、工程変更を伴わずに簡単に初期強度の高いコンクリート製品が得られる方法が、製造コスト等の点から、市場では切望されている。 In recent years, the energy cost associated with the use of steam has risen, and there is an urgent need for a method that shortens the steam curing time and does not require steam curing. Due to the demand for higher productivity, further shortening of the curing process may be desired. For example, in the production of concrete products, it may be necessary to develop high strength in a curing time of 16 hours. Normally, in the curing process, complicated processes such as a heating work process using steam or the like are incorporated, but it is difficult to take measures to improve the initial strength by changing these processes as a practical method. Therefore, a method for easily obtaining a concrete product having high initial strength without changing the process is eagerly desired in the market from the viewpoint of manufacturing cost and the like.

強度を高める混和材としては、生石灰、せっこう、アルカリ金属の硫酸塩などを主体としたものや、グリセリン等の特定化合物とアルカリ金属硫酸塩を併用したものなどが知られている(特許文献1〜4)。そのほかにも、硝酸塩、カルボン酸を硬化促進剤として使用するものも報告されているが、コンクリートの流動性を保持させながら強度を向上することに言及した報告は少ない(特許文献5〜7)。また、塩化ナトリウムや塩化カルシウムなどの塩素を含有する硬化促進剤も知られているが、コンクリートの劣化要因である塩害やアルカリシリカ反応を招くことから、使用は好ましくない。 As an admixture for increasing strength, those mainly composed of quicklime, gypsum, alkali metal sulfate and the like, and those in which a specific compound such as glycerin and an alkali metal sulfate are used in combination are known (Patent Document 1). ~ 4). In addition, there have been reports of using nitrates and carboxylic acids as curing accelerators, but there are few reports of improving the strength while maintaining the fluidity of concrete (Patent Documents 5 to 7). Further, a curing accelerator containing chlorine such as sodium chloride and calcium chloride is also known, but its use is not preferable because it causes salt damage and alkali-silica reaction, which are factors of deterioration of concrete.

近年、セメント産業が各方面の産業副産物を原料に受け入れており、産業副産物に由来する微量成分が、セメントの品質に大きな影響を及ぼし、六価クロムの溶出量などにも大きな違いが出てくる。
特許文献8は、CaとSを含む化合物である多硫化カルシウムを生石灰などの固定化材に担持させて、改良処理土の強度の低下をもたらすことなく、有害重金属の溶出を著しく抑制する機能を付加した地盤改良材を提供することを目的としている。この文献には、固定化材である生石灰に担持させた後、セメントやセッコウと混合する技術が開示されている。
特許文献9は、Ca(S)(OH)12・20HO及び水酸化カルシウムを主成分とする重金属固定化剤であり、多硫化カルシウムとして市販の石灰硫黄合剤を用いることが記載されている。
しかしながら、これら文献では、コンクリートの流動性を保持させる効果が少なく、コンクリートの流動性の保持と早強性の付与と六価クロムの溶出量を抑えることができない。
In recent years, the cement industry has accepted industrial by-products from various fields as raw materials, and trace components derived from industrial by-products have a great influence on the quality of cement, and the amount of hexavalent chromium eluted also makes a big difference. ..
Patent Document 8 has a function of supporting calcium polysulfide, which is a compound containing Ca and S, on an immobilization material such as quicklime to remarkably suppress the elution of harmful heavy metals without causing a decrease in the strength of the improved soil. The purpose is to provide the added ground improvement material. This document discloses a technique of supporting on quicklime, which is an immobilizing material, and then mixing with cement or gypsum.
Patent Document 9 is a Ca 8 S 5 (S 2 O 3) (OH) heavy metal immobilizing agent composed mainly of 12 · 20H 2 O and calcium hydroxide, a commercially available lime sulfur as calcium polysulfide It is described to be used.
However, in these documents, the effect of maintaining the fluidity of concrete is small, and it is not possible to maintain the fluidity of concrete, impart rapid strength, and suppress the elution amount of hexavalent chromium.

特開2001−294460号公報Japanese Unexamined Patent Publication No. 2001-294460 特開2011−153068号公報Japanese Unexamined Patent Publication No. 2011-153068 特開2000−233959号公報Japanese Unexamined Patent Publication No. 2000-23959 特表2008−519752号公報Japanese Patent Publication No. 2008-591752 特開平02−279546号公報Japanese Unexamined Patent Publication No. 02-279546 特表2000−516191号公報Special Table 2000-516191 特開2010−132547号公報JP-A-2010-132547 特開2001−342461号公報Japanese Unexamined Patent Publication No. 2001-342461 特開2004−33839号公報Japanese Unexamined Patent Publication No. 2004-33839

本発明は、コンクリートの流動性の保持によって施工性が改善するだけでなく、早強性の付与や六価クロム溶出量の低減が可能なセメント添加剤及びセメント組成物を提供する。 The present invention provides a cement additive and a cement composition capable of not only improving workability by maintaining the fluidity of concrete, but also imparting rapid strength and reducing the amount of hexavalent chromium eluted.

すなわち、本発明は、(1)pH9.0以上であり、酸化還元電位(ORP)が50mv以下であり、MgO含有量が0.5%以上である亜硫酸カルシウムと、シリカフュームとを混合粉砕する工程を有するセメント添加剤の製造方法、(2)pH9.0以上であり、酸化還元電位(ORP)が50mv以下であり、MgO含有量が0.5%以上である亜硫酸カルシウムと、シリカフュームと、石膏とを混合粉砕する工程を有するセメント添加剤の製造方法、(3)亜硫酸カルシウムが石灰硫黄合剤を製造する際の副産物である(1)または(2)のセメント添加剤の製造方法、(4)セメント100質量部に対し、(1)〜(3)に記載のセメント添加剤を1〜25質量部添加してなるセメント組成物の製造方法、である。
That is, the present invention is (1) a step of mixing and pulverizing calcium sulfite having a pH of 9.0 or more, an oxidation-reduction potential (ORP) of 50 mv or less, and an MgO content of 0.5% or more, and silica fume. (2) Calcium sulfite, silica fume, and gypsum having a pH of 9.0 or more, an oxidation-reduction potential (ORP) of 50 mv or less, and an MgO content of 0.5% or more. A method for producing a cement additive having a step of mixing and pulverizing with , (3) a method for producing a cement additive according to (1) or (2), in which calcium sulfite is a by-product of producing a lime sulfur mixture, (4). ) A method for producing a cement composition, wherein 1 to 25 parts by mass of the cement additive according to (1) to (3) is added to 100 parts by mass of cement.

本発明のセメント添加剤及びセメント組成物は、コンクリートの流動性の保持による施工性の改善だけでなく、早強性の付与や六価クロム溶出量低減などの効果を奏する。 The cement additive and cement composition of the present invention not only improve workability by maintaining the fluidity of concrete, but also have effects such as imparting quick strength and reducing the amount of hexavalent chromium eluted.

以下、本発明を詳細に説明する。
本発明で使用する部や%は特に規定のない限り質量基準である。
本発明で使用する亜硫酸カルシウムは、pHは9.0以上である。pH9.0以上の亜硫酸カルシウムとしては、石灰硫黄合剤を製造する際の副産物がある。
農薬の1種である石灰硫黄合剤は、主に果樹の農薬として用いられ、生石灰と硫黄と水を原料とし、オートクレーブで反応させる。固液分離した液体が石灰硫黄合剤となる。石灰硫黄合剤を製造する際の副産物として亜硫酸カルシウム半水和物があり、pHは9.0以上であることが知られている。
一方、試薬の亜硫酸カルシウム半水和物のpHは8.0以下の中性塩であり、また石炭火力発電の排煙脱硫工程から亜硫酸カルシウム半水和物を含む石膏が得られるが、このpHは酸性領域にある。
Hereinafter, the present invention will be described in detail.
Parts and% used in the present invention are based on mass unless otherwise specified.
The calcium sulfite used in the present invention has a pH of 9.0 or higher. Calcium sulfite having a pH of 9.0 or higher includes a by-product of producing a lime sulfur mixture.
Lime sulfur, which is one of the pesticides, is mainly used as a pesticide for fruit trees. It uses quicklime, sulfur and water as raw materials and reacts in an autoclave. The solid-liquid separated liquid becomes a lime sulfur mixture. Calcium sulfite hemihydrate is a by-product of the production of lime sulfur, and its pH is known to be 9.0 or higher.
On the other hand, the pH of calcium sulfite hemihydrate of the reagent is a neutral salt of 8.0 or less, and gypsum containing calcium sulfite hemihydrate can be obtained from the flue gas desulfurization step of coal-fired power generation. Is in the acidic region.

本発明で使用する亜硫酸カルシウムのpHがアルカリ性領域であることは、極めて重要である。pHが9.0未満では、本発明の効果、すなわち、コンクリートの流動性の保持や六価クロムの還元効果、さらには早期強度発現性が十分に得られない場合がある。
なお、本発明で云うpHとは、石灰硫黄合剤の副産物などの亜硫酸カルシウムを含有するセメント添加剤10gに純水100mlを加え、撹拌した後の上澄み液のpHを意味し、イオン電極式pH計を用いて測定することが出来る。
It is extremely important that the pH of calcium sulfite used in the present invention is in the alkaline range. If the pH is less than 9.0, the effect of the present invention, that is, the effect of maintaining the fluidity of concrete, the effect of reducing hexavalent chromium, and the early strength development may not be sufficiently obtained.
The pH referred to in the present invention means the pH of the supernatant after adding 100 ml of pure water to 10 g of a cement additive containing calcium sulfite, such as a by-product of a lime sulfur mixture, and stirring the mixture. It can be measured using a meter.

本発明で使用する亜硫酸カルシウムの酸化還元電位(ORP)は、50mv以下の範囲にある。試薬の亜硫酸カルシウムのORPは、ほぼ100mvである。酸化還元電位が50mv以下の範囲にないと、本発明の効果、すなわち、コンクリートの流動性の保持や六価クロムの還元効果、さらには早期の強度発現性が十分に得られない場合がある。
なお、本発明で言うORPとは、石灰硫黄合剤の副産物などの亜硫酸カルシウムを含有するセメント添加剤10gに純水100mlを加え、撹拌した後の上澄み液のORPを意味する。
The redox potential (ORP) of calcium sulfite used in the present invention is in the range of 50 mv or less. The ORP of the reagent calcium sulfite is approximately 100 mv. If the redox potential is not in the range of 50 mv or less, the effects of the present invention, that is, the retention of the fluidity of concrete, the reduction effect of hexavalent chromium, and the early strength development may not be sufficiently obtained.
The ORP referred to in the present invention means the ORP of the supernatant liquid after adding 100 ml of pure water to 10 g of a cement additive containing calcium sulfite such as a by-product of a lime sulfur mixture and stirring the mixture.

本発明の亜硫酸カルシウムには、MgO換算で0.5〜2.0%の範囲でMgが含まれる。Mgの含有量がMgO換算で0.5%未満であると、本発明の効果、すなわち、流動性の保持や六価クロムの還元効果、さらには早期の強度発現性が十分に得られない場合がある。 The calcium sulfite of the present invention contains Mg in the range of 0.5 to 2.0% in terms of MgO. When the Mg content is less than 0.5% in terms of MgO, the effects of the present invention, that is, the retention of fluidity, the reduction effect of hexavalent chromium, and the early strength development cannot be sufficiently obtained. There is.

本発明の亜硫酸カルシウムの使用量は、特に限定されるものではないが、通常、シリカフューム100部に対して0.01〜10部が好ましく、0.1〜5部がより好ましい。亜硫酸カルシウムの使用量が少ないと、本発明の効果、すなわち、流動性の保持や六価クロムの還元効果、さらには強度発現性が十分に得られない場合がある。 The amount of calcium sulfite used in the present invention is not particularly limited, but is usually preferably 0.01 to 10 parts, more preferably 0.1 to 5 parts with respect to 100 parts of silica fume. If the amount of calcium sulfite used is small, the effects of the present invention, that is, the retention of fluidity, the reducing effect of hexavalent chromium, and the strength development may not be sufficiently obtained.

本発明で使用するシリカフュームとしては、市販されているものであれば特に限定されるものではなく、フェロシリコン副生、ジルコニア副生のいずれのものでも使用可能である。 The silica fume used in the present invention is not particularly limited as long as it is commercially available, and any ferrosilicon by-product or zirconia by-product can be used.

本発明で使用する石膏としては、無水石膏、半水石膏および二水石膏が上げられ、また、天然石膏やリン酸副生石膏、排脱石膏及びフッ酸副生石膏等の化学石膏、またはこれらを熱処理して得られる石膏などが挙げられる。これらの中では、強度発現性が大きい点で、無水石膏が好ましい。 Examples of the gypsum used in the present invention include anhydrous gypsum, hemihydrate gypsum and dihydrate gypsum, and chemical gypsum such as natural gypsum, phosphoric acid by-product gypsum, excretion gypsum and hydrofluoric acid by-product gypsum, or heat treatment of these. Examples include gypsum obtained as a result. Among these, anhydrous gypsum is preferable because of its high strength development.

本発明に使用する石膏のブレーン比表面積(以下、ブレーン値と云う)は、3,000cm/g以上が好ましく、4,000〜7,000cm/gがより好ましい。石膏のブレーン値が3,000cm/gより小さいと、強度発現が十分に得られない場合がある。
本発明に使用する石膏の使用量は、シリカフューム100部に対し、50〜200部が好ましい。この範囲外の添加量では、強度発現が十分に得られない場合がある。
The specific surface area of the gypsum used in the present invention (hereinafter referred to as the brain value) is preferably 3,000 cm 2 / g or more, and more preferably 4,000 to 7,000 cm 2 / g. If the brain value of gypsum is less than 3,000 cm 2 / g, sufficient strength development may not be obtained.
The amount of gypsum used in the present invention is preferably 50 to 200 parts with respect to 100 parts of silica fume. If the amount added is outside this range, sufficient strength development may not be obtained.

本発明で使用する亜硫酸カルシウムとシリカフュームと石膏からなるセメント添加剤は、セメント100質量部に対し、1〜25質量部使用することが好ましい。この範囲を外れると本発明の効果、すなわち、流動性の保持や六価クロムの還元効果、さらには強度発現性が十分に得られない場合がある。 The cement additive composed of calcium sulfite, silica fume and gypsum used in the present invention is preferably used in an amount of 1 to 25 parts by mass with respect to 100 parts by mass of cement. If it is out of this range, the effects of the present invention, that is, the retention of fluidity, the reducing effect of hexavalent chromium, and the strength development may not be sufficiently obtained.

以下、実験例を挙げてさらに詳細に内容を説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the contents will be described in more detail with reference to experimental examples, but the present invention is not limited thereto.

(実験例1)
シリカフューム100部に対して、石膏100部、AからFのいずれかの亜硫酸カルシウムを2部を、ボールミルで混合粉砕してブレーン値 220,000cm/gとしたセメント添加剤を作製した。
単位水量145 kg/m3、単位セメント量440 kg/m3、細骨材率s/a 39.4%、空気量4.5%をコンクリートの基本配合とし、20℃の環境下で、セメント添加剤をセメント100質量部に対して10質量部混合し、コンクリートの流動性を測定した。さらに、8時間後に脱型し、圧縮強さ、六価クロム溶出量を測定した。比較として、亜硫酸カルシウムを添加しないもの、Aの亜硫酸カルシウムを事前に混合粉砕していないものを比較例とした。
(Experimental Example 1)
To 100 parts of silica fume, 100 parts of gypsum and 2 parts of calcium sulfite from A to F were mixed and pulverized with a ball mill to prepare a cement additive having a brain value of 220,000 cm 2 / g.
The basic composition of concrete is 145 kg / m 3 for unit water, 440 kg / m 3 for cement, 39.4% for fine aggregate ratio s / a, and 4.5% for air, and cement is used in an environment of 20 ° C. 10 parts by mass of the additive was mixed with 100 parts by mass of cement, and the fluidity of the concrete was measured. Further, after 8 hours, the mold was removed, and the compressive strength and the amount of hexavalent chromium eluted were measured. For comparison, those to which calcium sulfite was not added and those in which calcium sulfite of A was not mixed and pulverized in advance were used as comparative examples.

(使用材料)
セメント:普通ポルトランドセメント、市販品、ブレーン値3,200 cm2/g、比重3.15
細骨材:新潟県姫川産、5 mm下、密度2.62 g/cm3
粗骨材:新潟県姫川産、25 mm下、密度2.64 g/cm3
石膏:二水石膏、神岡鉱業社製、ブレーン値4220cm/g
水:工業用水
亜硫酸カルシウムA:石灰硫黄合剤の副産物、亜硫酸カルシウム半水和物の含有量82%、pH10.5、酸化還元電位30mv、MgO含有量1.0%、ブレーン値2420cm/g。
亜硫酸カルシウムB:石灰硫黄合剤の副産物、亜硫酸カルシウム半水和物の含有量80%、pH10.0、酸化還元電位35mv、MgO含有量1.0%、ブレーン値2380cm/g。
亜硫酸カルシウムC:石灰硫黄合剤の副産物、亜硫酸カルシウム半水和物の含有量79%、pH9.5、酸化還元電位45mv、MgO含有量1.0%、ブレーン値2450cm/g。
亜硫酸カルシウムD:石灰硫黄合剤の副産物、亜硫酸カルシウム半水和物の含有量88%、pH9.0、酸化還元電位50mv、MgO含有量1.0%、ブレーン値2610cm/g。
亜硫酸カルシウムE:石灰硫黄合剤の副産物、亜硫酸カルシウム半水和物の含有量76%、pH10.0、酸化還元電位35mv、MgO含有量が0.5%、ブレーン値2570cm/g。
亜硫酸カルシウムF:試薬1級の亜硫酸カルシウム半水和物、pH7.7、酸化還元電位100mv、MgO含有量0.1%未満、ブレーン値2910cm/g。
(Material used)
Cement: Ordinary Portland cement, commercial product, brain value 3,200 cm 2 / g, specific gravity 3.15
Fine aggregate: Himekawa, Niigata prefecture, 5 mm below, density 2.62 g / cm 3
Coarse aggregate: Himekawa, Niigata, 25 mm below, density 2.64 g / cm 3
Gypsum: Nisui gypsum, manufactured by Kamioka Mining Co., Ltd., brain value 4220 cm 2 / g
Water: Industrial water Calcium sulfite A: By-product of lime sulfur, calcium sulfite hemihydrate content 82%, pH 10.5, redox potential 30 mv, MgO content 1.0%, brain value 2420 cm 2 / g ..
Calcium sulfite B: By-product of lime sulfur, calcium sulfite hemihydrate content 80%, pH 10.0, redox potential 35 mv, MgO content 1.0%, brain value 2380 cm 2 / g.
Calcium sulfite C: By-product of lime sulfur, calcium sulfite hemihydrate content 79%, pH 9.5, redox potential 45 mv, MgO content 1.0%, brain value 2450 cm 2 / g.
Calcium sulfite D: By-product of lime sulfur, calcium sulfite hemihydrate content 88%, pH 9.0, redox potential 50 mv, MgO content 1.0%, brain value 2610 cm 2 / g.
Calcium sulfite E: By-product of lime sulfur, calcium sulfite hemihydrate content 76%, pH 10.0, redox potential 35 mv, MgO content 0.5%, brain value 2570 cm 2 / g.
Calcium sulfite F: Reagent primary calcium sulfite hemihydrate, pH 7.7, redox potential 100 mv, MgO content less than 0.1%, brain value 2910 cm 2 / g.

(試験方法)
スランプ:コンクリート打設直後と打設30分後に、JIS A 1101に準拠して測定した。
圧縮強度:材齢1日まで20℃で封緘養生し、JIS A 1108に準拠して測定した。
六価クロム溶出量:材齢8時間まで20℃で封緘養生し、環境庁台46号法に従って測定した。
(Test method)
Slump: Measured in accordance with JIS A 1101 immediately after concrete placement and 30 minutes after concrete placement.
Compressive strength: The material was sealed and cured at 20 ° C until 1 day of age, and measured in accordance with JIS A 1108.
Hexavalent chromium elution amount: The material was sealed and cured at 20 ° C. until the age of 8 hours, and measured according to the method of Environmental Agency No. 46.

Figure 0006832723
Figure 0006832723

表1より、本発明のセメント添加剤を使用することで、コンクリートの流動性を保持させ、六価クロム溶出量を減らしながら、さらに早期強度発現性が良好であることが分かる。 From Table 1, it can be seen that by using the cement additive of the present invention, the fluidity of the concrete is maintained, the amount of hexavalent chromium eluted is reduced, and the early strength development is further improved.

(実験例2)
実験No.1−2のセメント添加剤を使用し、セメント100質量部に対して使用量を表2に示すように変化したこと以外は実験例1と同様に行った。結果を表2に示す。
(Experimental Example 2)
The same procedure as in Experimental Example 1 was carried out except that the cement additive of Experiment No. 1-2 was used and the amount used was changed as shown in Table 2 with respect to 100 parts by mass of cement. The results are shown in Table 2.

Figure 0006832723
Figure 0006832723

表2より、本発明のセメント添加剤を使用することにより、コンクリートの流動性を保持させ、六価クロム溶出量を減らしながら、さらに早期強度発現性が良好であることが分かる。 From Table 2, it can be seen that by using the cement additive of the present invention, the fluidity of the concrete is maintained, the amount of hexavalent chromium eluted is reduced, and the early strength development is further improved.

本発明のセメント添加剤及びセメント組成物により、コンクリートの流動性の保持によって施工性が改善するだけでなく、早強性の付与や六価クロム溶出量が低減でき、環境に配慮した材料を提供することが可能で、土木、建築分野に好適である。 The cement additive and cement composition of the present invention not only improve workability by maintaining the fluidity of concrete, but also impart quick strength and reduce the amount of hexavalent chromium eluted, providing an environment-friendly material. It is possible to do so and is suitable for the civil engineering and construction fields.

Claims (4)

pH9.0以上であり、酸化還元電位(ORP)が50mv以下であり、MgO含有量が0.5%以上である亜硫酸カルシウムと、シリカフュームとを混合粉砕する工程を有するセメント添加剤の製造方法。 A method for producing a cement additive, which comprises a step of mixing and pulverizing calcium sulfite having a pH of 9.0 or more, an oxidation-reduction potential (ORP) of 50 mv or less, and an MgO content of 0.5% or more and silica fume. pH9.0以上であり、酸化還元電位(ORP)が50mv以下であり、MgO含有量が0.5%以上である亜硫酸カルシウムと、シリカフュームと、石膏とを混合粉砕する工程を有するセメント添加剤の製造方法。 A cement additive having a step of mixing and pulverizing calcium sulfite having a pH of 9.0 or more, an oxidation-reduction potential (ORP) of 50 mv or less, and an MgO content of 0.5% or more, silica fume, and gypsum. Production method. 亜硫酸カルシウムが石灰硫黄合剤を製造する際の副産物である請求項1または2に記載のセメント添加剤の製造方法。 The method for producing a cement additive according to claim 1 or 2, wherein calcium sulfite is a by-product of producing a lime sulfur mixture. セメント100質量部に対し、請求項1〜3のうちいずれか1項記載のセメント添加剤を1〜25質量部添加してなるセメント組成物の製造方法。
A method for producing a cement composition, wherein 1 to 25 parts by mass of the cement additive according to any one of claims 1 to 3 is added to 100 parts by mass of cement.
JP2017013777A 2017-01-30 2017-01-30 Manufacturing method of cement additive and cement composition Active JP6832723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017013777A JP6832723B2 (en) 2017-01-30 2017-01-30 Manufacturing method of cement additive and cement composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017013777A JP6832723B2 (en) 2017-01-30 2017-01-30 Manufacturing method of cement additive and cement composition

Publications (2)

Publication Number Publication Date
JP2018123009A JP2018123009A (en) 2018-08-09
JP6832723B2 true JP6832723B2 (en) 2021-02-24

Family

ID=63111000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017013777A Active JP6832723B2 (en) 2017-01-30 2017-01-30 Manufacturing method of cement additive and cement composition

Country Status (1)

Country Link
JP (1) JP6832723B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10265249A (en) * 1997-03-24 1998-10-06 Denki Kagaku Kogyo Kk Cement admixture and cement composition using the same
JP3765690B2 (en) * 1999-07-28 2006-04-12 電気化学工業株式会社 Low environmental load cement admixture and cement composition
JP6385818B2 (en) * 2014-12-25 2018-09-05 デンカ株式会社 Cement additive and cement composition
JP6529821B2 (en) * 2015-05-15 2019-06-12 デンカ株式会社 Powder stabilization agent for ground stabilization, ground stabilization material, and ground stabilization method using the same

Also Published As

Publication number Publication date
JP2018123009A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
JP2017149595A (en) Hardening method of waste gypsum
JP5599061B2 (en) Neutral solidifying material additive, neutral solidifying material and method for suppressing elution of heavy metals
JP6137850B2 (en) Hydraulic composition
JP6957922B2 (en) Hardened coal ash
JP6355946B2 (en) Selenium insolubilizing material for soil and method for insolubilizing selenium in soil
JP4694434B2 (en) By-product processing method
JP2009227549A (en) Cement additive and cement composition
JP2013107966A (en) Soil solidifying material
JP2018111636A (en) Cement additive and cement composition
JP6832723B2 (en) Manufacturing method of cement additive and cement composition
JP6922448B2 (en) Coal ash composition
JP2010201406A (en) Hexavalent chromium reducing agent
WO2019044484A1 (en) Mortar or concrete composition and method for manufacturing same
JP6938742B1 (en) Ground improvement material slurry, ground improvement material cured product, and ground improvement method
JP7076337B2 (en) Insolubilizer
JP6385818B2 (en) Cement additive and cement composition
JP2001253755A (en) Gypsum composition eluting no fluorine and its manufacturing method
JP2005270783A (en) Sludge treatment method using gypsum waste
JP2014162696A (en) Cement-based solidifying material
JP6479461B2 (en) Cement additive and cement composition
JP7550091B2 (en) Foaming type quick-setting agent
JP7545653B2 (en) Fluorine elution suppression type solidification material, improved soil, and manufacturing method of improved soil
JP2000247702A (en) Cement admixture and cement composition
JP2023127726A (en) Compressive strength enhancing agent to granulated blast furnace slag
JP2021014586A (en) Soil improvement material and soil improvement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210202

R150 Certificate of patent or registration of utility model

Ref document number: 6832723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250