JP4744796B2 - Aggregate solidified material for soil stabilization containing inorganic polymer flocculant and organic polymer flocculant - Google Patents

Aggregate solidified material for soil stabilization containing inorganic polymer flocculant and organic polymer flocculant Download PDF

Info

Publication number
JP4744796B2
JP4744796B2 JP2003349513A JP2003349513A JP4744796B2 JP 4744796 B2 JP4744796 B2 JP 4744796B2 JP 2003349513 A JP2003349513 A JP 2003349513A JP 2003349513 A JP2003349513 A JP 2003349513A JP 4744796 B2 JP4744796 B2 JP 4744796B2
Authority
JP
Japan
Prior art keywords
ash
polymer flocculant
weight
parts
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003349513A
Other languages
Japanese (ja)
Other versions
JP2005113025A (en
Inventor
登太郎 水田
穣 高野
真宏 要田
Original Assignee
登太郎 水田
穣 高野
真宏 要田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 登太郎 水田, 穣 高野, 真宏 要田 filed Critical 登太郎 水田
Priority to JP2003349513A priority Critical patent/JP4744796B2/en
Publication of JP2005113025A publication Critical patent/JP2005113025A/en
Application granted granted Critical
Publication of JP4744796B2 publication Critical patent/JP4744796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/16Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/021Agglomerated materials, e.g. artificial aggregates agglomerated by a mineral binder, e.g. cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00732Uses not provided for elsewhere in C04B2111/00 for soil stabilisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00767Uses not provided for elsewhere in C04B2111/00 for waste stabilisation purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は、ペーパースラッジ灰、フライアッシュ灰、ゼオライトの持つ二大成分ニ酸化珪素と酸化アルミニウムに着目し、水和化合物、無機高分子凝集剤および有機高分子凝集剤との結合によって、土粒子と団粒化を瞬時に且つ大量に行わせる事ができる組成の選定と組成量の設定を特徴とする技術に関する。 The present invention focuses on the two major components silicon dioxide and aluminum oxide possessed by paper sludge ash, fly ash ash, and zeolite, and by combining hydrated compounds, inorganic polymer flocculants and organic polymer flocculants, Further, the present invention relates to a technique characterized by selection of a composition and setting of a composition amount capable of causing agglomeration instantly and in large quantities.

従来、工事現場、災害現場にて発生する高含水汚泥や養豚場にて発生する畜産汚泥などは、セメント系固化材、石灰系固化材、高分子系固化材などを利用して土壌機能を回復、改良されている。例えば、干拓現場では土壌固化材として強アルカリ性のセメント系が使用され、土壌固化に長時間を要している。また石灰系のフライアッシュ灰は、印刷物等に含まれる顔料などから六価クロムや鉛などが溶出するおそれのある土壌固化材であり、固化時には高温で発熱する。更に、高分子系は弱酸性を示し、上記いずれの土壌固化材も未処理での利用には限界がある。
更に、土壌固化時における含水比は、セメント系固化材、石灰系固化材、高分子系固化材などいずれの土壌安定固化剤も低く、このままでは広範囲に高含水比土壌への実用に耐えない。
Conventionally, high moisture sludge generated at construction sites and disaster sites, and livestock sludge generated at pig farms, etc., recovered soil function using cement-based solidified material, lime-based solidified material, polymer-based solidified material, etc. Has been improved. For example, at the reclamation site, a strongly alkaline cement system is used as a soil solidifying material, and it takes a long time to solidify the soil. Further, lime-based fly ash ash is a soil-solidifying material in which hexavalent chromium, lead, etc. may be eluted from pigments contained in printed matter and the like, and generates heat at a high temperature when solidified. Furthermore, the polymer system shows weak acidity, and there is a limit to the use of any of the above-mentioned soil solidifying materials untreated.
Furthermore, the water content ratio at the time of soil solidification is low for any soil stabilizing solidifying agent such as a cement-based solidified material, a lime-based solidified material, and a polymer-based solidified material.

一方、土壌改良剤の利用方法については、例えば、特許文献1には高含水軟弱土壌改良用団粒状固化材が提案されている。これは、「大量に廃棄物として発生するフライアッシュ灰やペーパースラッジ灰などの焼却灰を再利用し、含水量の多い軟弱土やヘドロ状汚泥を植物の植生に好ましい団粒状の土壌環境に改良するとともに、植物生体系に有害なセメントの使用量を極力抑制して、これまで以上に土壌強度を高めることができる。」ことを旨とする土壌改良剤が提供されている。
しかし、上記手段では、土壌改良達成までに長時間を要すると共に、土壌の含水比が185%を越えて使用する用途には限界がある。従って、一時的な土壌改良剤になり得ても、瞬時に且つ広範囲な土壌の含水比に対応できる永久的な土壌安定剤になり得ないものである。
特願2001-169024号
On the other hand, as for the utilization method of the soil conditioner, for example, Patent Document 1 proposes a granular solidified material for improving water content and soft soil. This is because “incineration ash such as fly ash ash and paper sludge ash generated as a large amount of waste is reused, and soft soil and sludge sludge with high water content are improved into a granular soil environment favorable for plant vegetation. In addition, a soil conditioner that has the effect of "suppressing the amount of cement harmful to plant biological systems as much as possible and increasing the soil strength more than ever has been provided."
However, the above means requires a long time to achieve the soil improvement, and there is a limit to the use in which the moisture content of the soil exceeds 185%. Therefore, even if it can be a temporary soil conditioner, it cannot be a permanent soil stabilizer that can instantly handle a wide range of soil moisture content.
Japanese Patent Application No. 2001-169024

そこで本発明は、含水量の多い軟弱土やヘドロ状汚泥などの土壌に混合してpHを中性に改質維持し、使用量に応じて保水度合いを調整可能として、土壌強度を瞬時にかつ水分比で700%となる広範囲に安定固化する土壌安定固化材を提供するものである。更に、畜産汚泥の水分を保水して消臭するなど土壌機能を回復する土壌安定固化材を提供するものである。 Therefore, the present invention is mixed with soil such as soft soil and sludge sludge having a high water content, and the pH is neutrally modified and maintained, the degree of water retention can be adjusted according to the amount used, and the soil strength can be adjusted instantaneously. The present invention provides a soil-stabilized solidifying material that can be stably solidified over a wide range of 700% in terms of moisture ratio. Furthermore, the present invention provides a soil stabilizing and solidifying material that restores soil functions such as retaining the moisture of livestock sludge and deodorizing it.

上記目的を達成するために、請求項1記載の無機高分子凝集剤と有機高分子凝集剤を含有する土壌安定用団粒状固化材は、ペーパースラッジ灰、フライアッシュ灰、ゼオライトから成る群の少なくともいずれか一つを含む成分100重量部に対して、無機高分子凝集剤1〜16重量部と有機高分子凝集剤1〜25重量部、ポルトランドセメント7〜30重量部、硫酸バンド3〜15重量部、無水石膏0.7〜10重量部、メタクリル酸エステル0.3〜5重量部、リグニンスルホン酸塩類0.08〜0.53重量部、ステアリン酸塩類0.07〜0.40重量部、トリポリリン酸ソーダ0.04〜0.27重量部、水酸化ナトリウム0.01〜0.068重量部を混合することを特徴とする。   In order to achieve the above object, the soil stabilization aggregate solidified material containing the inorganic polymer flocculant and the organic polymer flocculant according to claim 1 is at least one of the group consisting of paper sludge ash, fly ash ash, and zeolite. 1 to 16 parts by weight of an inorganic polymer flocculant and 1 to 25 parts by weight of an organic polymer flocculant, 7 to 30 parts by weight of Portland cement, and 3 to 15 parts by weight of a sulfuric acid band with respect to 100 parts by weight of any one component. Parts, anhydrous gypsum 0.7 to 10 parts by weight, methacrylic acid ester 0.3 to 5 parts by weight, lignin sulfonates 0.08 to 0.53 parts by weight, stearates 0.07 to 0.40 parts by weight, It is characterized by mixing 0.04 to 0.27 parts by weight of sodium tripolyphosphate and 0.01 to 0.068 parts by weight of sodium hydroxide.

請求項2記載の無機高分子凝集剤と有機高分子凝集剤を含有する土壌安定用団粒状固化材は、ペーパースラッジ灰、フライアッシュ灰、ゼオライト中のシリカ骨格に、ポリ塩化アルミニウムなど無機高分子凝集剤の持つアルミニウムが同型置換して脱水し、シリカ-アルミナ固体を形成することを特徴とする。 The soil-stabilized granular solidified material containing the inorganic polymer flocculant and the organic polymer flocculant according to claim 2 is composed of paper sludge ash, fly ash ash, silica skeleton in zeolite, inorganic polymer such as polyaluminum chloride, and the like. The aluminum of the flocculant is replaced with the same type and dehydrated to form a silica-alumina solid.

請求項3記載の無機高分子凝集剤と有機高分子凝集剤を含有する土壌安定用団粒状固化材は、ペーパースラッジ灰、フライアッシュ灰、ゼオライトがポリアクリルアミド系などノニオン系有機高分子凝集剤とフロックを形成して水の脱水分離を促進することを特徴とする。 The aggregated solidified material for soil stabilization containing the inorganic polymer flocculant and the organic polymer flocculant according to claim 3 is a paper sludge ash, fly ash ash, and a nonionic organic polymer flocculant such as polyacrylamide. It is characterized by promoting the dehydration and separation of water by forming a flock.

請求項4記載の無機高分子凝集剤と有機高分子凝集剤を含有する土壌安定用団粒状固化材は、ペーパースラッジ灰、フライアッシュ灰、ゼオライトの水分吸着能を高く保持するためにポリ塩化アルミニウムとポリアクリルアミド系凝集剤でエトリンガイド結晶を極大化することを特徴とする。 The soil-stabilized granular solidified material containing the inorganic polymer flocculant and the organic polymer flocculant according to claim 4 is made of polyaluminum chloride in order to keep the water adsorbing ability of paper sludge ash, fly ash ash and zeolite high. And a polyacrylamide type flocculant to maximize the etrin guide crystal.

本発明は、無機高分子凝集剤と有機高分子凝集剤を含有する土壌安定用団粒状固化材は、ペーパースラッジ灰、フライアッシュ灰やゼオライトに共通して存在するニ酸化珪素と酸化アルミニウムを含む粉状焼却灰や天然資源を原料とするので、水和化鉱物との結合によって、含水量の多い軟弱土やヘドロ状汚泥など土壌の水分を700%まで保水して植物の植生などに好ましい団粒状の土壌環境に瞬時に改良固化することができる。更に、畜産汚泥の水分を保水するので、水分中に溶解している臭気元を離脱気化させて消臭することができる。また、粉状焼却灰は大量の製紙スラッジを焼却した灰分であるので、産業廃棄物の有効利用ができる。 In the present invention, the granular solidified material for soil stabilization containing an inorganic polymer flocculant and an organic polymer flocculant contains silicon dioxide and aluminum oxide that are commonly present in paper sludge ash, fly ash ash and zeolite. Because it uses powdered incineration ash and natural resources as raw materials, it is a suitable group for plant vegetation by holding up to 700% of soil moisture such as soft soil and sludge sludge with high water content by combining with hydrated minerals Improving and solidifying instantly in a granular soil environment. Furthermore, since the water content of the livestock sludge is retained, the odor source dissolved in the water can be removed and vaporized for deodorization. Further, since the powdered incineration ash is ash obtained by incinerating a large amount of papermaking sludge, industrial waste can be effectively used.

この発明の実施の形態を、図1および表1、表2、表3、表4および表5に基づいて説明する。その冒頭に、本発明の原料であるペーパースラッジ灰、フライアッシュ灰、ゼオライトについて説明する。
ペーパースラッジ灰及びフライアッシュ灰は、大量の産業廃棄物として排出されるものであり、ペーパースラッジ灰は製紙スラッジの焼却処分灰であり、フライアッシュ灰は石炭の燃焼残灰である。またゼオライトは天然資源で、単独あるいは混合灰として土壌安定固化材の原料に用いられる。
The embodiment of the present invention will be described based on FIG. 1 and Table 1, Table 2, Table 3, Table 4, and Table 5. At the beginning, paper sludge ash, fly ash ash, and zeolite, which are raw materials of the present invention, will be described.
Paper sludge ash and fly ash ash are discharged as a large amount of industrial waste. Paper sludge ash is incineration disposal ash of papermaking sludge, and fly ash ash is combustion residue ash of coal. Zeolite is a natural resource and is used alone or as a mixed ash as a raw material for soil-stabilized solidification materials.

次に、粉状焼却灰や天然資源の化学組成について一例をあげて説明する。
表1に土壌安定固化材の原料である粉状焼却灰および天然資源についての化学組成比較を示す。この表に示す通り、本発明の土壌安定固化材の原料に共通して多量に存在する化学組成はニ酸化珪素と酸化アルミニウムであり、この原料が保有する二大組成と立体網目構造に着目して、無機高分子凝集剤と有機高分子凝集剤を含有する土壌安定用団粒状固化材を考案した。
Next, the chemical composition of powdered incineration ash and natural resources will be described with an example.
Table 1 shows a comparison of chemical compositions of powdered incineration ash and natural resources, which are raw materials for soil-stabilized solidification materials. As shown in this table, the chemical composition that exists in large quantities in common in the raw material of the soil stabilizing solidification material of the present invention is silicon dioxide and aluminum oxide, and pay attention to the two major compositions and the three-dimensional network structure possessed by this raw material. Therefore, a soil-solidifying solidified solid material containing an inorganic polymer flocculant and an organic polymer flocculant has been devised.

次に、以上の性状を保持する該ペーパースラッジ灰、フライアッシュ灰、ゼオライトを原料とした土壌安定固化材の配合構成を検討した。粉状焼却灰および天然資源に多量に存在する二大化学組成はニ酸化珪素と酸化アルミニウムである。この原料が保有する該組成と立体網目構造に勘案し、吸水量の増大機能に着目した。
つまり、ペーパースラッジ灰、フライアッシュ灰、ゼオライトと水で構成される系に水和化鉱物を添加して、ペーパースラッジ灰、フライアッシュ灰、ゼオライト水和化鉱物-水の系を形成し、この系は急激な水和反応を形成すると共に、水の吸着量を増大させるものと推測される。更に、該水和物にアルミニウム系の無機高分子凝集剤を添加して、粉状焼却灰および天然資源のシリカ骨格へアルミニウムの同型置換が行なわれた後、脱水し、酸化物イオンと金属イオンが表面に露出してシリカ-アルミナ固体の表面となって反応性を向上させ、いわゆる触媒作用が出現する。そこで該シリカ-アルミナ固体表面は該水和化鉱物と水和反応を促進して吸水量を増加させると共に、有機高分子凝集剤を添加することによって土粒子の凝集を図り、更なる土壌固化促進を行なうことを期待し、つまり、無機高分子凝集剤と有機高分子凝集剤を含有する材料は、水和化鉱物に吸水機能を付与し得る材料と考えた。
Next, the composition of the soil-stabilized solid material using the paper sludge ash, fly ash ash, and zeolite as the raw materials having the above properties was examined. The two major chemical compositions present in large amounts in powdered incineration ash and natural resources are silicon dioxide and aluminum oxide. Considering the composition and the three-dimensional network structure possessed by this raw material, attention was paid to the function of increasing the amount of water absorption.
In other words, hydrated minerals are added to a system consisting of paper sludge ash, fly ash ash, zeolite and water to form a paper sludge ash, fly ash ash, zeolite hydrated mineral-water system. The system is presumed to form a rapid hydration reaction and increase the amount of water adsorbed. Further, an aluminum-based inorganic polymer flocculant is added to the hydrate, and after the same type substitution of aluminum is performed on the powdered incineration ash and the silica skeleton of natural resources, dehydration, oxide ions and metal ions Is exposed on the surface to become a silica-alumina solid surface to improve the reactivity, so-called catalytic action appears. Therefore, the silica-alumina solid surface promotes hydration reaction with the hydrated mineral to increase the amount of water absorption, and by adding an organic polymer flocculant, the soil particles are aggregated to further promote soil solidification. In other words, a material containing an inorganic polymer flocculant and an organic polymer flocculant was considered as a material capable of imparting a water absorbing function to a hydrated mineral.

そこで該ペーパースラッジ灰、フライアッシュ灰、ゼオライトを原料とし、該水和化鉱物に新たな添加剤を配して水の吸着量を大幅に増大する土壌安定固化材を配合構成した。該土壌安定固化材の組成を表2に示す。水和化鉱物および凝集剤は、ペーパースラッジ灰、フライアッシュ灰、ゼオライトと水の界面において水和反応を起こして水和物を形成し、汚泥など軟弱土からの吸水を促進する。粉状焼却灰および天然資源の有効利用と汚泥の安定固化への機能回復を果す。 Accordingly, a soil-stabilized solidifying material was prepared by using the paper sludge ash, fly ash ash, and zeolite as raw materials, and adding a new additive to the hydrated mineral to greatly increase the amount of water adsorbed. Table 2 shows the composition of the soil-stabilizing material. Hydrated minerals and flocculants cause hydration to form hydrates at the interface between paper sludge ash, fly ash ash, zeolite and water, and promote water absorption from soft soil such as sludge. Effective use of powdered incineration ash and natural resources and functional recovery to stable solidification of sludge.

更に、各組成の機能について説明する。
多孔質を保持しているペーパースラッジ灰、フライアッシュ灰、ゼオライトは汚泥中の水分を吸収し、土壌安定固化材を構成する水和化鉱物と反応して、水和反応を起こす。水和化鉱物の一つ目、ポルトランドセメントまたは早強セメントは、水を吸収して含まれる骨材とともに固化する性質がある。水和化鉱物のニつ目、硫酸バンドは、pHを下げ、汚泥水分に溶出する溶存汚濁物質を吸着固定する。三つ目は無水石膏で、水和反応により吸水固化して土質の強度を上げ、硫酸バンドの凝集力を助ける効果がある。そして四つ目がメタクリル酸エステルで、硫酸バンドと無水石膏との組合せで凝集力を大幅に増強する。また改良土のひび割れを防止する効果がある。五つ目がリグニンスルホン酸塩類で、セメント粒子に接触すると、その湿潤・浸透・吸着作用によりセメント凝集粒群の各セメント粒子を均一に分散させる効果がある。更に六つ目がステアリン酸塩類である。このノニオン系のステアリン酸塩類は、アニオン系のリグニンスルホン酸塩類のみでは疎水性の材料を親水化して強い湿潤作用と均一に分散させる効果と他の混和剤とのゲル化により粘度を増して固結する効果がある。七つ目のトリポリリン酸ソーダは、負電荷のリン酸基を媒介として多量のカチオンが吸着されるので均一に分散させる効果が大きくなる。水和化鉱物八つ目の水酸化ナトリウムは、強アルカリ性であり、酸性土壌に対して中和する役目をする。
Furthermore, the function of each composition is demonstrated.
Paper sludge ash, fly ash ash, and zeolite, which retain the porosity, absorb moisture in the sludge and react with hydrated minerals that make up the soil-stabilized solidified material to cause a hydration reaction. The first hydrated mineral, Portland cement or early strength cement, has the property of absorbing water and solidifying with the contained aggregate. The second hydrated mineral, the sulfate band, lowers the pH and adsorbs and fixes dissolved pollutants that elute into sludge moisture. The third is anhydrous gypsum, which has the effect of solidifying water by hydration to increase the strength of the soil and helping the cohesive strength of the sulfate band. The fourth is methacrylic acid ester, and the combination of sulfuric acid band and anhydrous gypsum greatly enhances the cohesive strength. It also has the effect of preventing cracks in the improved soil. The fifth is lignin sulfonates, and when they come into contact with cement particles, they have the effect of uniformly dispersing the cement particles of the cement aggregate group by their wetting, permeating and adsorbing actions. The sixth is stearates. These nonionic stearates are anionic lignin sulphonates alone, making hydrophobic materials more hydrophilic by strongly hydrophobizing and dispersing uniformly, and gelling with other admixtures to increase the viscosity. There is an effect to tie. The seventh sodium tripolyphosphate adsorbs a large amount of cations through a negatively charged phosphate group, so that the effect of uniformly dispersing is increased. The eighth hydrated mineral, sodium hydroxide, is strongly alkaline and serves to neutralize acidic soil.

その結果、多孔質を保持しているペーパースラッジ灰、フライアッシュ灰、ゼオライトは汚泥中の水分を吸収し、土壌安定固化材を構成する水和化鉱物によって水和反応を起こし、エトリンガイド3CaO・Al2O3・3CaSO4・32H2Oを生成する。エトリンガイドは汚泥の含水比を低下させつつ針状結晶として生成するに従って、ペーパースラッジ灰、フライアッシュ灰、ゼオライトと土粒子を包囲しながら迅速に固化し団粒化していく。また、該ペーパースラッジ灰、フライアッシュ灰、ゼオライトは多孔質であるので、その孔表面に有機質、重金属、臭気などを短時間に付着吸収して離脱させないで、エトリンガイドとともに強固な団粒体を形成する。 As a result, paper sludge ash, fly ash ash, and zeolite that retain porosity absorb water in the sludge and cause a hydration reaction by the hydrated minerals that make up the soil-stabilized solidified material.・ Al 2 O 3・ 3CaSO 4・ 32H 2 O is produced. The ETLIN GUIDE quickly solidifies and aggregates while surrounding the paper sludge ash, fly ash ash, zeolite and soil particles as it forms as needle-like crystals while reducing the water content of the sludge. Moreover, since the paper sludge ash, fly ash ash, and zeolite are porous, they do not adsorb and absorb organic matter, heavy metals, odors, etc. on the pore surface in a short time, and are strong aggregates together with the ettrine guide. Form.

しかしながら、汚泥の含水比を低下させつつ生成する針状結晶エトリンガイドにもその成長に限度が現れる。土粒子が固化団粒化するに従って該エトリンガイドの成長が次第に鈍化し、土壌強度に上限が生まれることに起因する。
そこで、該水和化鉱物にアルミニウム系の無機高分子凝集剤ポリ塩化アルミニウムを添加して、粉状焼却灰および天然資源のシリカ骨格へアルミニウムの同型置換を起こして脱水し、酸化物イオンと金属イオンが表面に露出してシリカ-アルミナ固体表面の反応性を向上し、いわゆる触媒作用を起こさせる。そこで図1に示すように、ペーパースラッジ灰2など該粉状焼却灰および天然資源はシリカ-アルミナ固体となってその表面において水和化鉱物と水和反応を促進し、針状結晶エトリンガイド1を更に発育させながら吸水量を増加させ、土粒子3の固化団粒化を促進する。
更に、有機高分子凝集剤であるポリアクリルアミド系のノニオン凝集剤を添加することによってフロック4を形成し、土粒子の凝集を図って水の脱水分離を促進する。既に形成されている団粒体は針状結晶エトリンガイド1の成長の妨げとなるが、フロック4を形成して更に強固な団粒体として土粒子3の凝集を図るので、土壌強度が上がるにつれて、エトリンガイド1の成長が進み易くなり、結果として、水分比700%という汚泥であっても驚異的に土壌固化促進を行なうことができる。
無機高分子凝集剤と有機高分子凝集剤を含有する材料は、水和化鉱物に吸水機能を更に付与する材料を形成している。
However, there is a limit to the growth of needle-shaped crystal ethrin guides that are produced while reducing the water content of sludge. This is because the growth of the etrin guide gradually slows down as the soil particles become solidified aggregates, resulting in an upper limit on the soil strength.
Therefore, an aluminum-based inorganic polymer flocculant polyaluminum chloride is added to the hydrated mineral to cause dehydration by causing the same substitution of aluminum into the powdered incineration ash and the silica skeleton of natural resources, and the oxide ions and metal Ions are exposed on the surface, improving the reactivity of the silica-alumina solid surface and causing so-called catalysis. Therefore, as shown in FIG. 1, the powdered incineration ash such as paper sludge ash 2 and natural resources become a silica-alumina solid to promote the hydration reaction with the hydrated mineral on the surface, and the acicular crystal ettrine guide While further developing 1, the water absorption amount is increased, and the solidification of the soil particles 3 is promoted.
Further, by adding a polyacrylamide nonionic flocculant which is an organic polymer flocculant, flocs 4 are formed to promote the dehydration and separation of water by agglomerating the soil particles. Already formed aggregates hinder the growth of the needle-like crystal ethrin guide 1, but the soil strength is increased because the flocs 4 are formed and the soil particles 3 are aggregated as stronger aggregates. As a result, the growth of the ettlin guide 1 is facilitated, and as a result, the soil solidification can be surprisingly promoted even with sludge having a moisture ratio of 700%.
The material containing the inorganic polymer flocculant and the organic polymer flocculant forms a material that further imparts a water absorption function to the hydrated mineral.

以上、土壌安定固化材における各原料の性質に勘案して、上記混合重量比の範囲で、改良すべき土壌の性質、状態に適するように調合を行なう。その基本となる土壌安定固化材の実施例を表3に示す。 As described above, in consideration of the properties of each raw material in the soil-stabilized solidifying material, blending is performed within the range of the above mixed weight ratio so as to suit the properties and conditions of the soil to be improved. Table 3 shows examples of the soil-stabilized solidifying material that is the basis of the above.

次に、表3に示す該土壌安定固化材1tonをヘドロ状汚泥原土に混合して、農地用、歩道用、更には車道用に改良する場合の混合実施例を表4に示す。この混合実施例に見られるように、土壌安定固化材の添加量は、原土の含水比と目標とする改質土壌により異なる。例えば自転車の轍のでき難い程度の歩道用道路強度は一軸圧縮強度で約0.2kgf/cm2 を示す。この値が得られるようにペーパースラッジ灰土壌安定固化材の量を調整し、含水量の多い軟弱土やヘドロ状汚泥にその水を含む総重量の5%を添加して道路形成時の配合とし、また3%を添加して農地形成時の配合としている。更に、一般車道用道路においては歩道用道路に比較して一軸圧縮強度で3kgf/cm2を示すので、ヘドロ状汚泥の総重量の7%を添加して道路形成時の配合とした。高速車道用道路においては、一軸圧縮強度に勘案して総重量の20%まで可能であることが確認できた。 Next, Table 4 shows a mixing example in which 1 ton of the soil stabilizing solidifying material shown in Table 3 is mixed with sludge raw sludge to improve for agricultural land, sidewalks, and roadways. As can be seen in this mixed example, the amount of the soil stabilizing solidifying material added varies depending on the moisture content of the raw soil and the target modified soil. For example, the road strength for sidewalks, which is difficult for bicycle heels, is about 0.2 kgf / cm 2 in terms of uniaxial compression strength. Adjust the amount of paper sludge ash soil stabilization solidifier so that this value can be obtained, and add 5% of the total weight including water to soft soil or sludge sludge with a high water content to make the composition when forming roads. In addition, 3% is added to make the composition at the time of farmland formation. Furthermore, since the road for general roads shows 3 kgf / cm 2 in terms of uniaxial compressive strength compared to the road for sidewalks, 7% of the total weight of sludge sludge was added to make the composition at the time of road formation. On highway roads, it was confirmed that it could be up to 20% of the total weight considering the uniaxial compressive strength.

次に、高含水比を持つヘドロ状汚泥への添加処理比較例を表5に示す。ヘドロ状汚泥の含水比に対応し、土壌安定固化材の性能と添加量により、土壌安定固化材の使用可能範囲を決めることができる。従来の土壌安定固化材ではヘドロ状汚泥の含水比185%が上限であったが、本発明の土壌安定固化材はこれまで得られていない範囲、即ち、含水比で700%を有するヘドロ状汚泥まで可能となったことを表している。しかし、含水比400%の汚泥への添加処理が一般的な添加量であり、それ以上は添加量が増加して価格が高騰する(図2、図3参照)。   Next, Table 5 shows a comparative example of addition treatment to sludge sludge having a high moisture content. Corresponding to the moisture content of sludge-like sludge, the usable range of the soil-stabilized solidification material can be determined by the performance and amount of the soil-stabilized solidification material. In the conventional soil-stabilized solidified material, the water content ratio of sludge-like sludge was 185%, but the soil-stabilized material of the present invention has not been obtained so far, that is, sludge-like sludge having a water content ratio of 700%. This means that it has become possible. However, an addition treatment to sludge having a water content ratio of 400% is a general addition amount, and the addition amount increases and the price increases more than that (see FIGS. 2 and 3).

本発明は、含水量の多い軟弱土やヘドロ状汚泥を保水して造成する農耕土、またそれ以上の強度を持たせる道路、更には畜産汚泥の水分を保水することによる消臭など汚泥土壌の機能回復に要する土壌安定固化材に利用することができる。更に、その機能回復に必要な量に関わる土壌安定固化材に利用することができる。 The present invention relates to agricultural soil created by retaining soft soil or sludge sludge with a high water content, roads with higher strength, and deodorization by retaining moisture from livestock sludge. It can be used as a soil stabilizing and solidifying material required for functional recovery. Furthermore, it can utilize for the soil stabilization solidification material regarding the quantity required for the function recovery.

本発明の1実施例を示す針状結晶エトリンガイド、ペーパースラジ灰、土粒子およびフロックの模式図。The schematic diagram of the acicular crystal | crystallization ettlin guide which shows one Example of this invention, paper sludge ash, a soil particle, and a flock. 汚泥水に一般固化剤と本発明土壌安定用団粒状固化材と添加した場合を比較をした写真で、左右ともに添加前の状態を示す。It is the photograph which compared the case where the general solidification agent and the aggregate solidification material for soil stabilization of the present invention are added to the sludge water. 同上添加後の状態を示す写真で、左が含水比400%の場合の一般固化剤、右が含水比400%の場合の本発明固化剤を示す。In the photograph which shows the state after addition same as the above, the left shows the general solidifying agent when the water content is 400%, and the right shows the solidifying agent of the present invention when the water content is 400%.

符号の説明Explanation of symbols

1 針状結晶エトリンガイド
2 ペーパースラッジ灰
3 土粒子
4 フロック
1 Needle Crystal Etrin Guide 2 Paper Sludge Ash 3 Soil Particles 4 Flock

Claims (4)

ペーパースラッジ灰、フライアッシュ灰、ゼオライトから成る群の少なくともいずれか一つを含む成分100重量部に対して、アルミニウム系無機高分子凝集剤0.5〜5重量部とポリアクリルアミド系有機高分子凝集剤0.5〜7重量部、ポルトランドセメント7〜30重量部、硫酸バンド3〜15重量部、無水石膏0.7〜10重量部、メタクリル酸エステル0.3〜5重量部、リグニンスルホン酸塩類0.08〜0.53重量部、ステアリン酸塩類0.07〜0.40重量部、トリポリリン酸ソーダ0.04〜0.27重量部、水酸化ナトリウム0.01〜0.068重量部を混合することを特徴とする無機高分子凝集剤と有機高分子凝集剤を含有した土壌安定用団粒状固化材。 0.5 to 5 parts by weight of an aluminum-based inorganic polymer flocculant and polyacrylamide-based organic polymer agglomeration with respect to 100 parts by weight of a component containing at least one of the group consisting of paper sludge ash, fly ash ash, and zeolite agent 0.5-7 parts by weight, Portland cement 7 to 30 parts by weight, the band 3-15 parts by weight of sulfuric acid, 0.7 to 10 parts by weight of anhydrous gypsum, 0.3 to 5 parts by weight of methacrylic acid esters, lignin sulfonic acid salts 0.08 to 0.53 parts by weight, stearates 0.07 to 0.40 parts by weight, sodium tripolyphosphate 0.04 to 0.27 parts by weight, sodium hydroxide 0.01 to 0.068 parts by weight An aggregated solidified material for soil stabilization containing an inorganic polymer flocculant and an organic polymer flocculant. ペーパースラッジ灰、フライアッシュ灰、又はゼオライトのシリカ骨格に、ポリ塩化アルミニウムの持つアルミニウムが同型置換して脱水し、シリカ-アルミナ固体を形成することを特徴とする請求項1記載の無機高分子凝集剤と有機高分子凝集剤を含有した土壌安定用団粒状固化材。 2. The inorganic polymer agglomeration according to claim 1, wherein the silica skeleton of paper sludge ash, fly ash ash, or zeolite is dehydrated by substitution of aluminum with polyaluminum chloride to form a silica-alumina solid. A soil-solidifying solidified solid material containing an agent and an organic polymer flocculant. ペーパースラッジ灰、フライアッシュ灰、又はゼオライトがポリアクリルアミド系の有機高分子凝集剤とフロックを形成して水の脱水分離を促進することを特徴とする請求項1記載の無機高分子凝集剤と有機高分子凝集剤を含有した土壌安定用団粒状固化材。 The inorganic polymer flocculant and the organic material according to claim 1, wherein the paper sludge ash, fly ash ash, or zeolite forms a floc with the polyacrylamide organic polymer flocculant to promote water dehydration separation. Aggregate solidified material for soil stabilization containing a polymer flocculant. ペーパースラッジ灰、フライアッシュ灰、又はゼオライトの水分吸着能を高く保持するためにポリ塩化アルミニウムとポリアクリルアミド系凝集剤を添加することでエトリンガイド結晶を成長させたことを特徴とする請求項1記載の無機高分子凝集剤と有機高分子凝集剤を含有した土壌安定用団粒状固化材。 The etrin guide crystal is grown by adding polyaluminum chloride and a polyacrylamide-based flocculant in order to maintain a high water adsorption capacity of paper sludge ash, fly ash ash, or zeolite. A granular solidified material for soil stabilization containing the inorganic polymer flocculant described above and an organic polymer flocculant.
JP2003349513A 2003-10-08 2003-10-08 Aggregate solidified material for soil stabilization containing inorganic polymer flocculant and organic polymer flocculant Expired - Fee Related JP4744796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003349513A JP4744796B2 (en) 2003-10-08 2003-10-08 Aggregate solidified material for soil stabilization containing inorganic polymer flocculant and organic polymer flocculant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003349513A JP4744796B2 (en) 2003-10-08 2003-10-08 Aggregate solidified material for soil stabilization containing inorganic polymer flocculant and organic polymer flocculant

Publications (2)

Publication Number Publication Date
JP2005113025A JP2005113025A (en) 2005-04-28
JP4744796B2 true JP4744796B2 (en) 2011-08-10

Family

ID=34541358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003349513A Expired - Fee Related JP4744796B2 (en) 2003-10-08 2003-10-08 Aggregate solidified material for soil stabilization containing inorganic polymer flocculant and organic polymer flocculant

Country Status (1)

Country Link
JP (1) JP4744796B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110372173A (en) * 2019-06-27 2019-10-25 北京中持净水材料技术有限公司 A kind of environmentally-friendly sludge dehydrating and conditioning agent and its application method

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100719628B1 (en) * 2006-02-08 2007-05-17 고준영 Soil-solidfication agent, the soil-solidfication method for alternation of aggregate for road pavement using the same and the solidfication method for weak ground
JP2007225166A (en) * 2006-02-22 2007-09-06 Daio Paper Corp Manufacturing method for construction and civil engineering material
JP2007308594A (en) * 2006-05-18 2007-11-29 Sumitomo Rubber Ind Ltd Rubber composition for tread, and studless tire
JP5117930B2 (en) * 2008-05-30 2013-01-16 東亜グラウト工業株式会社 Neutral solidification method of mud and new stone-kow-based solidification improver
KR100992510B1 (en) * 2010-03-10 2010-11-05 이재석 Soil improving agent and method for treatment of sludge using the same
GB201410030D0 (en) * 2014-06-05 2014-07-16 Imp Innovations Ltd Hydrophobic powder
CN109205972A (en) * 2018-09-17 2019-01-15 杭州亚太建设监理咨询有限公司 A kind of sludge curing agent and its production technology and application
JP2021006614A (en) * 2019-06-28 2021-01-21 株式会社アースプロテクト Soil modifier and soil modification method
CN111019662B (en) * 2019-12-20 2022-05-24 华南理工大学 Soil water-retaining agent produced by using aluminum ash and preparation method thereof
CN111423080B (en) * 2020-03-02 2022-09-16 南京市城市建设投资控股(集团)有限责任公司 Foundation excavation slurry stabilizing and curing agent and preparation and use method thereof
CN113336415A (en) * 2021-05-31 2021-09-03 沈阳理工大学 Composite reagent for reducing water content of sludge and use method thereof
CN115109597B (en) * 2022-07-21 2024-03-22 西安墙体材料研究设计院有限公司 Soil curing agent and preparation and use methods thereof
CN117603707B (en) * 2024-01-22 2024-03-22 中建八局西南建设工程有限公司 Solid waste-based soil curing agent and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09206800A (en) * 1996-02-08 1997-08-12 Ebara Corp Treatment of water-area bottom mud
JP2000176493A (en) * 1998-12-17 2000-06-27 Kyoei Kinzoku Kogeisha:Kk Sludge solidifying material and solidifying treatment
JP2001104998A (en) * 1999-10-05 2001-04-17 Kankyo Biken:Kk Fluid mud immediate effect solidifying agent
JP2002363560A (en) * 2001-06-05 2002-12-18 Shieesu Shoji Kk Soil-aggregative caking agent for improvement of highly hydrous soft soil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110372173A (en) * 2019-06-27 2019-10-25 北京中持净水材料技术有限公司 A kind of environmentally-friendly sludge dehydrating and conditioning agent and its application method

Also Published As

Publication number Publication date
JP2005113025A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
JP4744796B2 (en) Aggregate solidified material for soil stabilization containing inorganic polymer flocculant and organic polymer flocculant
KR100812828B1 (en) Solidifying agent for sewage or wastewater sludge and covering material for waste reclamation land prepared using this
NL8000513A (en) METHOD FOR IMPROVING THE FIRMNESS OF A WATER-SATURATED SOIL SOIL.
KR101438060B1 (en) Concrete mixture for base course of the road using the reclaimed coal ash and recycled aggregate and manufacturing method thereof
KR101366069B1 (en) Composition for soil stabilization, improvement, hardening, and compost fermentation promotion of contaminated sediment, and method of manufacturing the same
JP5042589B2 (en) Powder solidifying material for soft mud soil and method for producing the same
JP2005146275A (en) Agent for improving, solidifying, and stabilizing soil and its quality
JP4683638B2 (en) Rapid dehydrating solidifying agent for treatment of high water content concentrated sludge
JP2008255193A (en) Soil hardener
JP2017213528A (en) Flocculate-solidifying agent
CN112341127A (en) Sludge curing agent and production method thereof
JP2006273921A (en) Soil improving material, soil improving method, sludge ash for preventing dissolution of heavy metal in soil, and sludge ash for shortening curing period for developing strength
JP2002001397A (en) Modifier and process for solidifying and neutralizing muddy material
JP6363281B1 (en) One-pack type neutral solidifying agent
JP2005232341A (en) Treatment agent of hexavalent chromium-containing soil
KR101348456B1 (en) Solidifying agent for sewage sludge
JP3274376B2 (en) Agglomerating agent for mud, solidifying agent using it
JP5768293B2 (en) Method for producing soil-solidifying material using fluorine-containing inorganic waste, obtained soil-solidifying material, and method for solidifying soft soil using the soil-solidifying material
JP2013086030A (en) Method for treating dolomite sludge and soil improving material
CN111661993A (en) Sludge curing agent and preparation method and use method thereof
KR100948658B1 (en) Method for solidifying sewage sludge
JP2005060508A (en) Soil stabilizing and hardening material using bagasse as the main material
JP3786899B2 (en) Mud reforming solidification stabilizer
JP2019006672A (en) Method for producing reproduced waste material composition and reproduced waste material composition
JP2004008904A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees