JP2002001397A - Modifier and process for solidifying and neutralizing muddy material - Google Patents

Modifier and process for solidifying and neutralizing muddy material

Info

Publication number
JP2002001397A
JP2002001397A JP2000183302A JP2000183302A JP2002001397A JP 2002001397 A JP2002001397 A JP 2002001397A JP 2000183302 A JP2000183302 A JP 2000183302A JP 2000183302 A JP2000183302 A JP 2000183302A JP 2002001397 A JP2002001397 A JP 2002001397A
Authority
JP
Japan
Prior art keywords
coagulant
solidifying
neutralizing
gypsum
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000183302A
Other languages
Japanese (ja)
Other versions
JP3824844B2 (en
JP2002001397A5 (en
Inventor
Takeo Matsuoka
武男 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYODA ECO RECYCLE KK
Original Assignee
CHIYODA ECO RECYCLE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYODA ECO RECYCLE KK filed Critical CHIYODA ECO RECYCLE KK
Priority to JP2000183302A priority Critical patent/JP3824844B2/en
Publication of JP2002001397A publication Critical patent/JP2002001397A/en
Publication of JP2002001397A5 publication Critical patent/JP2002001397A5/ja
Application granted granted Critical
Publication of JP3824844B2 publication Critical patent/JP3824844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a modifier for solidifying and neutralizing a muddy material, capable of surely solidifying and neutralizing the muddy material for a short time, producing a muddy material hardened body having high solidity with high-strength, and sufficiently inhibiting the elution of hexavalent chromium from the hardened body. SOLUTION: This modifier consists of: (A) hydraulic gypsum; (B) a solidifying agent; (C) porous inorganic particles; and (D) a pH-adjusting agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、泥状物質を固化・
中性化する改良材、及び、かかる改良材を用いた泥状物
質の固化・中性化方法に関する。
The present invention relates to a method for solidifying muddy substances.
The present invention relates to an improvement material that neutralizes, and a method of solidifying and neutralizing a muddy substance using the improvement material.

【0002】[0002]

【従来の技術】例えば、トンネル工事、上水道や下水道
工事、掘削工事、建築工事、造成現場等の建設・工事現
場で発生した泥土、湖沼、河川、港湾等における浚渫泥
土、浄水場における泥土、下水処理場等における活性汚
泥、工場廃水の泥土、ヘドロ等(以下、これらを総称し
て、泥状物質と呼ぶ)は、従来、泥状物質の発生現場や
産業廃棄物中間処理場にて固化処理を施した後、埋め戻
され、産業廃棄物として管理型処分場にて埋め立て処分
され、あるいは又、リサイクル土壌として各種の用途に
おいて再使用されている。そして、かかる泥状物質の固
化処理として、一般に、天日による乾燥固化処理、フィ
ルタープレスや遠心分離機による脱水固化処理、セメン
トやセメント系固化材による凝結固化処理が行われてい
る。
2. Description of the Related Art For example, mud generated at construction / construction sites such as tunnel work, water supply and sewerage work, excavation work, construction work, construction sites, etc., dredged mud at lakes, marshes, rivers, harbors, etc. Conventionally, activated sludge, sludge, sludge, etc. (hereinafter, collectively referred to as muddy substances) in a treatment plant are solidified at a muddy substance generation site or an industrial waste intermediate treatment plant. And then reclaimed, landfilled as industrial waste at a managed landfill, or reused as recycled soil in various applications. As the solidification treatment of such a muddy substance, a dry solidification treatment by sunlight, a dehydration solidification treatment by a filter press or a centrifugal separator, and a coagulation solidification treatment by cement or cement-based solidification material are generally performed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、天日に
よる乾燥固化処理や脱水固化処理によって得られた土壌
は、雨水に晒されると濁水が発生し、埋立地や処理場、
処分場等の周辺における土壌汚染、自然破壊の原因とな
る。また、天日による乾燥固化処理では乾燥に長時間を
要するし、天候に左右され易い。更には、脱水固化処理
は、乾燥に要するコストが高い。
However, soil obtained by drying and dehydration and solidification by the sun produces turbid water when exposed to rainwater, and causes landfills and treatment sites to be turbid.
It causes soil pollution and natural destruction around the disposal site. Further, in the drying and solidifying treatment by the sun, a long time is required for drying, and it is easily affected by the weather. Further, the dehydration and solidification treatment requires a high cost for drying.

【0004】また、セメントやセメント系固化材による
凝結固化処理によって得られた土壌は、かかる土壌に接
した水が水質汚濁防止法の排水基準(pH5.8〜8.
6)を越えるアルカリ性を呈するため、かかる土壌の再
使用や、処理場や処分場が制限、限定される。また、か
かる土壌が雨水に晒されると濁水が発生し、埋立地や処
理場、処分場等の周辺における土壌汚染、自然破壊の原
因となる。更には、ポータブルコーン貫入試験に基づき
得られた固化度であるコーン指数(qc)が200kN
/m2以上の強度をかかる土壌が発現するためには、2
4時間以上の長時間を要する。
[0004] In addition, in the soil obtained by the coagulation and solidification treatment with cement or cement-based solidifying material, water in contact with the soil is discharged according to the drainage standard (pH 5.8-8.
Since it exhibits an alkalinity exceeding 6), the reuse of such soil and the treatment and disposal sites are limited and limited. In addition, when such soil is exposed to rainwater, turbid water is generated, which causes soil pollution and natural destruction in the vicinity of landfills, treatment sites, disposal sites, and the like. Further, the cone index (q c ), which is the degree of solidification obtained based on the portable cone penetration test, is 200 kN.
/ M 2 or more for the soil to exhibit strength
It takes more than 4 hours.

【0005】ここで、コーン指数はトラフィカビリティ
ーの指標である。トラフィカビリティーとは、建設機械
の走行性、作業性を示す。即ち、コーン指数が300k
N/m2以上であれば、湿地ブルドーザーが走行でき、
コーン指数が200kN/m2以上であれば、超湿地ブ
ルドーザーが走行できる。コーン指数とは、コーンを締
め固めた土中に貫入させたときの貫入抵抗を、コーンの
底面積で除した値であり、土質工学会基準(JSF T
716)に基づき測定される。そして、コーン指数の
値(単位:kN/m2)に応じて、以下の表1に示すよ
うに、土壌の各種用途が定められている。
Here, the cone index is an index of trafficability. Trafficability refers to the traveling and workability of construction machinery. That is, the cone index is 300k
If it is N / m 2 or more, a wetland bulldozer can run,
If the cone index is 200 kN / m 2 or more, a super wetland bulldozer can run. The cone index is a value obtained by dividing the penetration resistance when a cone is penetrated into compacted soil by the bottom area of the cone, and is defined by the Japan Society of Geotechnical Engineers (JSF T
716). Various applications of the soil are determined according to the value of the cone index (unit: kN / m 2 ) as shown in Table 1 below.

【0006】 [表1] コーン指数 用途 200以上 埋立 400以上 埋立、宅地造成、裏込め材料、河川堤防、路体 800以上 埋立、宅地造成、裏込め材料、河川堤防、路体、路床[Table 1] Cone index Use 200 or more Landfill 400 or more Landfill, residential land development, backfill material, river embankment, road body 800 or more Landfill, residential land development, backfill material, river embankment, road body, subgrade

【0007】そこで、本出願人は、特開平10−147
781号公報において、中性の水溶性高分子剤と半水石
膏とから成る泥土の乾燥固化材を提案し、また、泥土
に、中性の水溶性高分子剤と半水石膏とを加えて混合
し、その後、養生することにより、泥土を乾燥・固化す
る方法を提案した。
Therefore, the present applicant has disclosed in Japanese Patent Application Laid-Open No. 10-147.
No. 781 proposes a mud dried and solidified material composed of a neutral water-soluble polymer agent and hemihydrate gypsum, and further, by adding a neutral water-soluble polymer agent and hemihydrate gypsum to the mud. A method of drying and solidifying mud by mixing and then curing is proposed.

【0008】しかしながら、泥土の固化率、特に、泥土
処理時の団泥化性(粒子の団塊化)、固化土壌の固化度
(強度発現性)、並びに、泥土の中和化に改良の余地が
あることが判明した。また、セメントやセメント系固化
材による凝結固化処理によって得られた土壌から六価ク
ロムが溶出する虞があるが、かかる六価クロムの溶出を
充分に抑制することが困難である。
[0008] However, there is room for improvement in the solidification rate of the mud, particularly in the consolidation property (agglomeration of particles) during mud treatment, the solidification degree of the consolidation soil (strength development), and the neutralization of the mud. It turned out to be. In addition, hexavalent chromium may be eluted from the soil obtained by the coagulation treatment with cement or cement-based solidifying material, but it is difficult to sufficiently suppress the elution of such hexavalent chromium.

【0009】従って、本発明の目的は、泥状物質を確実
に短時間で固化させることができ、固化した泥状物質
(以下、泥状物質固化物と呼ぶ)の固化度(強度発現
性)が高く、中性を示す泥状物質固化物を得ることがで
き、泥状物質固化物からの六価クロムの溶出を充分に抑
制することができる、泥状物質を固化・中性化する改良
材、及び、かかる改良材を用いた泥状物質の固化・中性
化方法を提供することにある。
Accordingly, an object of the present invention is to reliably solidify a muddy substance in a short time, and to solidify a solidified muddy substance (hereinafter, referred to as a solidified muddy substance) (strength development). To obtain a solidified muddy substance that shows high neutrality, and can sufficiently suppress the elution of hexavalent chromium from the solidified muddy substance. It is an object of the present invention to provide a material and a method for solidifying and neutralizing a muddy substance using the improved material.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の泥状物質を固化・中性化する改良材は、
(A)水硬性石膏、(B)凝固剤、(C)多孔質無機粒
子、及び、(D)pH調整剤から成ることを特徴とす
る。
In order to achieve the above object, the present invention provides an improved material for solidifying and neutralizing a muddy substance.
It comprises (A) hydraulic gypsum, (B) a coagulant, (C) porous inorganic particles, and (D) a pH adjuster.

【0011】本発明の泥状物質を固化・中性化する改良
材(以下、単に、本発明の改良材と呼ぶ)は、上記の各
成分を予め混合した形態としてもよいし、別々の状態と
しておき、使用時に混合する形態としてもよいし、使用
時に泥状物質に別々に添加する形態としてもよい。
The improving material for solidifying and neutralizing the muddy substance of the present invention (hereinafter, simply referred to as the "improving material of the present invention") may be in a form in which the above-mentioned components are preliminarily mixed or in a separate state. And may be mixed at the time of use, or separately added to the muddy substance at the time of use.

【0012】上記の目的を達成するための本発明の泥状
物質の固化・中性化方法は、泥状物質に、(A)水硬性
石膏、(B)凝固剤、(C)多孔質無機粒子、及び、
(D)pH調整剤から成る改良材を添加し、混合するこ
とを特徴とする。
In order to achieve the above object, the method for solidifying and neutralizing a muddy substance according to the present invention comprises: (A) a hydraulic gypsum, (B) a coagulant, and (C) a porous inorganic substance. Particles, and
(D) An additive comprising a pH adjuster is added and mixed.

【0013】本発明の泥状物質の固化・中性化方法(以
下、単に、本発明の固化・中性化方法と呼ぶ)において
は、泥状物質100重量部に対して、改良材を、1乃至
100重量部、好ましくは5乃至50重量部、一層好ま
しくは10乃至50重量部、添加し、混合することが望
ましい。但し、より具体的には、改良材の添加割合は、
泥状物質の性状(例えば、pH値や含水比)に基づき適
宜決定すればよい。
In the method for solidifying and neutralizing the muddy substance of the present invention (hereinafter simply referred to as the method for solidifying and neutralizing the present invention), an improving material is added to 100 parts by weight of the muddy substance. It is desirable to add and mix 1 to 100 parts by weight, preferably 5 to 50 parts by weight, more preferably 10 to 50 parts by weight. However, more specifically, the proportion of the additive added is
What is necessary is just to determine suitably based on the property (for example, pH value and water content ratio) of a muddy substance.

【0014】本発明の固化・中性化方法において、泥状
物質への本発明の改良材の添加方法は、本質的には、任
意である。即ち、改良材を構成する各成分を予め混合し
た改良材を泥状物質に添加してもよいし、各成分を別々
の状態としておき、使用時に混合して泥状物質に添加し
てもよいし、使用時に各成分を別々に泥状物質に添加し
てもよい。
In the solidification / neutralization method of the present invention, the method of adding the improving material of the present invention to the muddy substance is essentially arbitrary. That is, the improver obtained by previously mixing the constituents constituting the improver may be added to the muddy substance, or the respective components may be kept in separate states, mixed at the time of use, and added to the muddy substance. However, each component may be separately added to the slurry at the time of use.

【0015】泥状物質と本発明の改良材との混合は、例
えば、ミキサーを用いて行えばよい。ミキサーとして、
モルタルミキサー、セメントミキサー、ワールミキサ
ー、パドルミキサー、スクリューミキサー、ニーダー、
ラインミキサー(スタティックミキサー)を例示するこ
とができる。ミキサーは、バッチ式(回分式)であって
も、連続式であってもよい。ミキサー内部の泥状物質を
加熱したり、減圧してもよい。
The mixing of the muddy substance and the improving material of the present invention may be performed, for example, using a mixer. As a mixer,
Mortar mixer, cement mixer, whirl mixer, paddle mixer, screw mixer, kneader,
A line mixer (static mixer) can be exemplified. The mixer may be of a batch type (batch type) or a continuous type. The muddy substance inside the mixer may be heated or depressurized.

【0016】本発明の固化・中性化方法には、泥状物質
に本発明の改良材を添加し、混合して泥状物質の固化・
中性化するだけでなく、泥状物質に本発明の改良材を添
加し、混合し、用途に適した流動性、材料分離抵抗性を
持った状態で埋戻し、裏込めなどを必要とされる箇所に
流し込んで打設し、あるいは、水中施工を行い、適切な
養生状態で固化・中性化させる、所謂、流動化処理工法
も包含される。
In the solidification / neutralization method of the present invention, the improving material of the present invention is added to a muddy substance and mixed to solidify and neutralize the muddy substance.
In addition to neutralization, it is necessary to add the improved material of the present invention to the muddy substance, mix and backfill, backfill, etc. with fluidity and material separation resistance suitable for the application A so-called fluidization treatment method is also included, in which the material is poured into a certain place or cast under water, or is subjected to underwater construction to solidify and neutralize in an appropriate curing state.

【0017】ここで、泥状物質として、例えば、トンネ
ル工事、上水道や下水道工事、掘削工事、建築工事、造
成現場等の建設・工事現場で発生した泥土、湖沼、河
川、港湾等における浚渫泥土、浄水場における泥土、下
水処理場等における活性汚泥、工場廃水の泥土、ヘド
ロ、各種工事現場における湧水や濁水、ボーリング泥
水、廃ベントナイト泥水、セメントミルク、骨材製造に
伴う濁水を挙げることができ、広くは、工場廃水等の処
理後の残る泥状のもの及び各種製造工程において生ずる
泥状のものであって、有機質の多量に混合した泥のみを
指すのではなく、有機性及び無機性のものの全てを含
む。
Here, as muddy substances, for example, mud generated at construction / construction sites such as tunnel works, waterworks and sewerage works, excavation works, building works, construction sites, etc., dredged muds at lakes, marshes, rivers, harbors, etc. Examples include mud in water treatment plants, activated sludge in sewage treatment plants, mud of industrial wastewater, sludge, spring water and muddy water at various construction sites, boring muddy water, waste bentonite muddy water, cement milk, and muddy water from aggregate production. In general, it refers to mud that remains after treatment of factory wastewater and mud that occurs in various manufacturing processes.It refers not only to mud mixed with a large amount of organic matter, but also to organic and inorganic mud. Including all of the things.

【0018】泥状物質の含水比(w)として、2×10
%乃至2×103%を例示することができる。場合によ
っては、含水比の高い泥状物質を、予め、例えばフィル
タープレスやベルトプレス、ローラプレス、ドラムプレ
ス、オリバーフィルター等を用いて機械的に脱水した
後、本発明の固化・中性化方法を適用してもよい。ここ
で、泥状物質の含水比(w)は、例えば、JIS A1
201T に基づき試料調製を行い、JIS A120
3 に基づき、110゜Cで泥状物質が一定質量となる
まで乾燥することによって求めることができ、以下の式
で表すことができる。尚、乾燥前の泥状物質質量を
1、乾燥後の泥状物質質量をW2とする。
The water content ratio (w) of the muddy substance is 2 × 10
% To 2 × 10 3 %. In some cases, the muddy substance having a high water content is previously mechanically dehydrated using a filter press, a belt press, a roller press, a drum press, an Oliver filter, or the like, and then the solidification / neutralization method of the present invention is performed. May be applied. Here, the water content ratio (w) of the muddy substance is, for example, JIS A1
Sample preparation was performed based on JIS A120
3 and can be obtained by drying the muddy substance to a constant mass at 110 ° C. and can be expressed by the following equation. The mass of the mud before drying is W 1 , and the mass of the mud after drying is W 2 .

【0019】[数1] 含水比(w)=(W1−W2)/W2×100 (%)[Equation 1] Water content (w) = (W 1 −W 2 ) / W 2 × 100 (%)

【0020】本発明の改良材、あるいは、本発明の固化
・中性化方法(以下、これらを総称して、単に、本発明
と呼ぶ場合がある)において、水硬性石膏は、半水石膏
[CaSO4・1/2H2O]及び/又はIII型無水石
膏[III型CaSO4]である。尚、水硬性石膏に
は、二水石膏[CaSO4・2H2O]及び/又はII型
無水石膏が20重量%以下程度、含まれていても問題は
生じない。以下、二水石膏[CaSO4・2H2O]とI
I型無水石膏とを総称して、二水石膏等と呼ぶ場合があ
る。より具体的には、水硬性石膏は、半水石膏、III
型無水石膏、半水石膏とIII型無水石膏の混合物、半
水石膏と二水石膏等の混合物、III型無水石膏と二水
石膏等の混合物、半水石膏とIII型無水石膏と二水石
膏等の混合物を挙げることができる。水硬性石膏の組成
は、例えば、X線回折法によって分析することができ
る。X線源としてCuのKα線を用いる場合、以下の表
2に示すような回折角(2θ)における回折ピークを測
定することによって、定量化することができる。
In the improved material of the present invention or the solidification / neutralization method of the present invention (hereinafter, these may be collectively simply referred to as the present invention), the hydraulic gypsum is a hemihydrate gypsum. CaSO 4 .1 / 2H 2 O] and / or Type III anhydrous gypsum [Type III CaSO 4 ]. It should be noted that there is no problem even if the hydraulic gypsum contains about 20% by weight or less of gypsum [CaSO 4 .2H 2 O] and / or type II anhydrous gypsum. Hereinafter, gypsum [CaSO 4 · 2H 2 O] and I
I-type anhydrous gypsum may be collectively referred to as dihydrate gypsum or the like. More specifically, hydraulic gypsum is hemihydrate gypsum, III
Anhydrous gypsum, a mixture of hemihydrate gypsum and type III anhydrous gypsum, a mixture of hemihydrate gypsum and dihydrate gypsum, a mixture of type III anhydrous gypsum and dihydrate gypsum, a hemihydrate gypsum, type III anhydrous gypsum and gypsum And the like. The composition of the hydraulic gypsum can be analyzed, for example, by X-ray diffraction. When Cu Kα radiation is used as the X-ray source, quantification can be achieved by measuring diffraction peaks at diffraction angles (2θ) as shown in Table 2 below.

【0021】 [0021]

【0022】半水石膏として、例えば、天然石膏、排煙
脱硫石膏、燐酸製造時の副産物である燐酸石膏、精密鋳
造、歯科、外科等の医療、美術工芸、陶磁器製造時の廃
棄物である廃棄石膏型材、石膏ボード製造工場における
廃棄石膏といった二水石膏を、バッチ式あるいは連続式
にて焼成して得られる半水石膏(β型半水石膏)、例え
ば燐酸製造時の副産物であるα型半水石膏を挙げること
ができる。III型無水石膏は、二水石膏の焼成温度
を、β型半水石膏を焼成する場合よりも高温とすること
によって得ることができる。更には、得られた半水石膏
やIII型無水石膏を、所望に応じて粉砕し、粒度を調
整してもよい。粒度を調整することによって、半水石膏
やIII型無水石膏の硬化(水和)時間の或る程度の制
御を行うことができる。場合によっては、石膏ボード製
造工場や施工現場における廃棄石膏ボードを粉砕して紙
と二水石膏とに分離し、かかる二水石膏をバッチ式ある
いは連続式にて焼成して得られる半水石膏及び/又はI
II型無水石膏と、廃棄石膏ボードからの紙を混ぜて、
本発明の改良材の原料としてもよい。
Examples of hemihydrate gypsum include natural gypsum, flue gas desulfurization gypsum, phosphate gypsum which is a by-product in the production of phosphoric acid, medical treatment such as precision casting, dentistry and surgery, art and craft, and waste which is a waste in the production of ceramics. Hemihydrate gypsum (β-type hemihydrate gypsum) obtained by calcining dihydrate gypsum such as gypsum mold and waste gypsum in a gypsum board manufacturing plant in a batch or continuous manner, for example, α-type half which is a by-product of phosphoric acid production Water gypsum can be mentioned. Type III anhydrous gypsum can be obtained by setting the firing temperature of dihydrate gypsum to be higher than that for firing β type hemihydrate gypsum. Further, the obtained hemihydrate gypsum or type III anhydrous gypsum may be pulverized as required to adjust the particle size. By adjusting the particle size, some control of the setting (hydration) time of hemihydrate gypsum or type III anhydrous gypsum can be achieved. In some cases, waste gypsum board at a gypsum board manufacturing plant or construction site is crushed and separated into paper and dihydrate gypsum, and hemihydrate gypsum obtained by firing such gypsum in a batch or continuous manner and / Or I
Mix Type II anhydrous gypsum and paper from waste gypsum board,
It may be used as a raw material for the improved material of the present invention.

【0023】本発明では、改良材を構成する成分の1つ
として水硬性石膏を用いることによって、天日乾燥や、
セメント、セメント系固化材による凝結固化処理より
も、短時間で、泥状物質を固化させることができ、しか
も、泥状物質固化物に所定の強度を速やかに発現させる
ことができる。特に、水硬性石膏を用いることによっ
て、泥状物質固化物のコーン指数あるいは一軸圧縮強度
を向上させることができる。尚、泥状物質固化物のコー
ン指数は200kN/m2以上、あるいは、JISA1
216Tに準じて測定された一軸圧縮強度が4.9×1
4Pa(0.5kgf/cm2)以上であることが好ま
しい。更には、JIS Z8002に規定されたpH計
を使用し、JSF−T7Tに基づくpH測定結果におい
て、泥状物質固化物のpHが5.8〜8.6であり、J
IS A1204の土の粒度試験に基づく測定結果にお
いて、74μm以下の微粒子(シルト、粘土)が泥状物
質固化物に存在しないことが好ましい。
In the present invention, by using hydraulic gypsum as one of the components constituting the improving material, it is possible to dry the sun,
The muddy substance can be solidified in a shorter time than the coagulation and solidification treatment using cement or a cement-based solidifying material, and a predetermined strength can be quickly developed in the solidified muddy substance. In particular, the use of hydraulic gypsum can improve the cone index or the uniaxial compressive strength of the solidified muddy substance. Incidentally, the cone index of the solidified mud substance is 200 kN / m 2 or more, or JIS A1
Uniaxial compressive strength measured according to 216T is 4.9 × 1
It is preferably at least 0 4 Pa (0.5 kgf / cm 2 ). Furthermore, using a pH meter specified in JIS Z8002, the pH of the solidified mud is 5.8 to 8.6 in the pH measurement result based on JSF-T7T.
In the measurement results based on the soil particle size test of IS A1204, it is preferable that fine particles (silt, clay) of 74 μm or less do not exist in the solidified mud.

【0024】本発明において、凝固剤を、解離基として
カルボキシル基(−COO-)やスルホン基(−S
3 -)を有するアニオン系高分子凝固剤あるいは無機性
凝固剤から選択することが好ましく、具体的には、アク
リル酸金属塩・アクリルアミド共重合物(例えば、アク
リル酸ナトリウム・アクリルアミド共重合物)、アニオ
ン型ポリアクリルアミドポリマー、ポリアクリルアミド
部分加水分解物、アクリル酸・ビニルアルコール共重合
物、ポリアクリルアミドの部分スルホメチル化物(例え
ば、ポリスルホメチル化ポリアクリルアミド)、アルギ
ン酸ナトリウム、カルボキシ・メチル・セルロース(C
MC)、及び、無機性凝固剤(例えば、硫酸アルミニウ
ムやポリ塩化アルミニウム(PAC)、硫酸第二鉄、硫
酸第一鉄、塩化第二鉄、塩化亜鉛、四塩化チタン、アル
ミン酸ソーダ)から成る群から選択された少なくとも1
種類の凝固剤とすることが好ましい。これらの凝固剤の
1種類、あるいは2種類以上の組合せにより、改良材を
構成すればよい。
In the present invention, a coagulant is used as a dissociation group such as a carboxyl group (—COO ) or a sulfone group (—S
It is preferable to select from an anionic polymer coagulant having O 3 ) or an inorganic coagulant, specifically, a metal acrylate / acrylamide copolymer (eg, sodium acrylate / acrylamide copolymer) , Anionic polyacrylamide polymer, polyacrylamide partial hydrolyzate, acrylic acid / vinyl alcohol copolymer, partially sulfomethylated polyacrylamide (eg, polysulfomethylated polyacrylamide), sodium alginate, carboxymethyl cellulose (C
MC) and inorganic coagulants (eg, aluminum sulfate or polyaluminum chloride (PAC), ferric sulfate, ferrous sulfate, ferric chloride, zinc chloride, titanium tetrachloride, sodium aluminate) At least one selected from the group
Preference is given to a type of coagulant. The improving material may be constituted by one kind of these coagulants or a combination of two or more kinds.

【0025】一般に、凝集とは、水中に懸濁している微
細粒子を集合させて、見掛けの粒径を大きくし、固液分
離を容易にする作用を指し、凝結作用(coagulation)
と凝集作用(flocculation)から成り立っている。本発
明における凝固剤は、これらの作用だけでなく、泥状物
質中のアルカリ濃度(pH)を上昇させる物質(−O
H、Ca等を含む物質)を不溶化、固定化させる作用も
有する。従って、本発明における凝固剤それ自体の組成
は、公知の凝集剤の組成と同じとすることができるが、
凝固剤と呼ぶ。
In general, agglomeration refers to the action of assembling fine particles suspended in water to increase the apparent particle size and facilitate solid-liquid separation.
And flocculation. The coagulant in the present invention not only has these effects but also a substance (-O) that increases the alkali concentration (pH) in the muddy substance.
H, Ca, etc.). Therefore, the composition of the coagulant itself in the present invention can be the same as the composition of a known coagulant,
Called coagulant.

【0026】また、本発明において、多孔質無機粒子
を、性シリカ、ゼオライト、ポーラスシリカ、及び、シ
リカパウダーから成る群から選択された少なくとも1種
類の多孔質無機粒子とすることが好ましい。あるいは
又、多孔質無機粒子として、パーライト、バーミキュラ
イト、ケイ藻土、カオリン、活性白土、ケイ砂、ケイ
石、モンモリロナイトを主成分とするベントナイト、シ
リカを主成分とし、アルミナ、酸化鉄、酸化カルシウム
を含むフライアッシュ等を用いることもできる。多孔質
無機粒子の存在によって、アルカリ濃度(pH)を上昇
させる泥状物質中の物質(−OH、Ca等を含む物質)
が多孔質無機粒子に吸着し、泥状物質の中和が促進され
るし、泥状物質固化物中で、所謂骨材としての機能を果
たす。多孔質無機粒子は、1×102乃至1×1042
/グラム、好ましくは5×102乃至8×1032/グ
ラムの比表面積を有していることが好ましい。ここで、
比表面積は、BET法にて測定することができる。
In the present invention, the porous inorganic particles are preferably at least one kind of porous inorganic particles selected from the group consisting of silica, zeolite, porous silica, and silica powder. Alternatively, as porous inorganic particles, perlite, vermiculite, diatomaceous earth, kaolin, activated clay, silica sand, quartzite, bentonite mainly containing montmorillonite, silica mainly, alumina, iron oxide, calcium oxide are used. Fly ash or the like can also be used. Substances in muddy substances (substances containing -OH, Ca, etc.) that increase the alkali concentration (pH) due to the presence of porous inorganic particles
Is adsorbed on the porous inorganic particles, neutralization of the muddy substance is promoted, and functions as a so-called aggregate in the solidified muddy substance. The porous inorganic particles are 1 × 10 2 to 1 × 10 4 m 2
/ G, preferably 5 × 10 2 to 8 × 10 3 m 2 / g. here,
The specific surface area can be measured by the BET method.

【0027】更には、本発明において、泥状物質中のア
ルカリ濃度(pH)を上昇させる物質(−OH、Ca等
を含む物質)を中和するためのpH調整剤は、ケイ酸塩
化合物を含有することが望ましく、かかるpH調整剤
は、例えば、SiO2、Al2 3、K2O、Na2O、F
23、SO3、CaO、Cを成分とした混合物であ
り、石灰層に含まれる一種のクレイから成る。pH調整
剤として、その他、FeSO 4等の硫酸塩やFeCl3
の塩酸塩を挙げることができる。更には、pH調整剤と
して、インターカレーションされた層間架橋多孔体(分
子状層状結晶やイオン交換性層状結晶)を挙げることが
できる。ここで、分子状層状結晶は、中性の2次元結晶
層がファン・デル・ワールス力や水素結合等の弱い相互
作用で互いに積み重なった構造を有し、グラファイト、
遷移金属ジカルコゲン化合物(例えば、TiS2、Nb
Se2、MoS2)、二価金属リンカルコゲン化合物(例
えば、MPS3、MPSe3、Ta22C)、酸化物(例
えば、MoO3、V25)、オキシハロゲン化物(例え
ば、FeOCl、VOCl、CrOCl)、窒化ハロゲ
ン化物(例えば、ZrNCl、ZrNBr)、水酸化物
(例えば、Zn(OH)2、Cu(OH)2)、ケイ酸塩
(例えば、カオリナイト、ハロイサイト、H2Si
25、H2Si1429・5H2O)、その他(Ni(C
N)2、VOSO4、Ag22O)を挙げることができ
る。イオン交換性層状結晶では、各結晶層は電気的に中
性でなく、この電気量を打ち消すように、反対に荷電し
たイオンが層間に存在する。陽イオン交換性のイオン交
換性層状結晶として、ケイ酸塩(例えば、モンモリロナ
イト、バーミキュライト、バイデライト)、リン酸塩
(例えば、Zr(HPO42・nH2O、Ti(HP
44・nH2O、Na(UO2PO4)・nH2O)、チ
タン酸塩(例えば、Na2Ti37、KTiNbO5、R
xMnxTi2-x4)、ウラン酸塩(例えば、Na22
7、K227)、バナジン酸塩(例えば、KV38
3514、CaV616・nH2O、Na(UO23
9)・nH2O)、ニオブ酸塩(例えば、KNb38、K
4Nb617、KCa2Nb310)、タングステン酸塩
(Na2413、Ag61033)、モリブデン酸塩
(Mg2Mo517、Cs2Mo516、Cs2Mo722
Ag6Mo1033)を挙げることができる。尚、泥状物
質固化物を空気中で養生すれば、泥状物質固化物中の酸
化カルシウム(CaO)が空気中の二酸化炭素と反応
し、泥状物質固化物のpHが、一層、中性(pH5.8
〜8.6)に近づく。養生は、例えば24時間(1日)
あるいはそれ以上とすればよい。尚、このように、pH
調整剤の添加によって、泥状物質固化物中の六価クロム
が三価クロムとなり、無害化され、更には、泥状物質固
化物のpHが中性(pH5.8〜8.6)の状態を保持
するが故に、泥状物質固化物中の三価クロムは安定な状
態であり続ける。
Further, according to the present invention, the content of the muddy substance
Substances (-OH, Ca, etc.) that increase the concentration of lukari (pH)
PH adjusting agent for neutralizing silicate is a silicate
It is desirable to contain a compound, such a pH adjuster
Is, for example, SiOTwo, AlTwoO Three, KTwoO, NaTwoO, F
eTwoOThree, SOThree, CaO, C
And a kind of clay contained in the lime layer. pH adjustment
Other agents include FeSO FourSuch as sulfate and FeClThreeetc
Can be mentioned. Furthermore, with a pH adjuster
And the intercalated porous interlayer
(Layered crystal or ion-exchanged layered crystal)
it can. Here, the molecular layered crystal is a neutral two-dimensional crystal.
The layers are weakly interconnected, such as van der Waals forces or hydrogen bonds.
It has a structure stacked on each other by action, graphite,
Transition metal dichalcogen compounds (eg, TiSTwo, Nb
SeTwo, MoSTwo), Divalent metal phosphorus chalcogen compounds (eg
For example, MPSThree, MPSeThree, TaTwoSTwoC), oxides (examples)
For example, MoOThree, VTwoOFive), Oxyhalides (eg
For example, FeOCl, VOCl, CrOCl), halogenated halogen
(Eg, ZrNCl, ZrNBr), hydroxide
(For example, Zn (OH)Two, Cu (OH)Two), Silicate
(For example, kaolinite, halloysite, HTwoSi
TwoOFive, HTwoSi14O29・ 5HTwoO), others (Ni (C
N)Two, VOSOFour, AgTwoCTwoO)
You. In an ion-exchange layered crystal, each crystal layer is electrically
Instead of being charged, the oppositely charged
Ions are present between the layers. Cation exchange ion exchange
As exchangeable layered crystals, silicates (for example, montmorillona
, Vermiculite, beidellite), phosphate
(For example, Zr (HPOFour)Two・ NHTwoO, Ti (HP
OFour)Four・ NHTwoO, Na (UOTwoPOFour) · NHTwoO), j
Tanoates (e.g., NaTwoTiThreeO7, KTiNbOFive, R
bxMnxTi2-xOFour), Uranates (eg, NaTwoUTwo
O7, KTwoUTwoO7), Vanadates (eg, KVThreeO8,
KThreeVFiveO14, CaV6O16・ NHTwoO, Na (UOTwoVThreeO
9) · NHTwoO), niobate (eg, KNb)ThreeO8, K
FourNb6O17, KCaTwoNbThreeOTen), Tungstate
(NaTwoWFourO13, Ag6WTenO33), Molybdate
(MgTwoMoFiveO17, CsTwoMoFiveO16, CsTwoMo7Otwenty two,
Ag6MoTenO33). In addition, mud
If the solidified material is cured in the air, the acid in the solidified mud
Calcium iodide (CaO) reacts with carbon dioxide in air
And the pH of the solidified mud becomes more neutral (pH 5.8).
~ 8.6). Curing is, for example, 24 hours (1 day)
Or it may be more. In addition, as described above,
Hexavalent chromium in the solidified mud
Becomes trivalent chromium and is rendered harmless.
Keeps the pH of the compound neutral (pH 5.8 to 8.6)
Therefore, trivalent chromium in the solidified mud is stable.
Continue to be.

【0028】本発明における改良材の配合割合として、
水硬性石膏100重量部に対して、凝固剤を、0.1乃
至30重量部、好ましくは0.2乃至20重量部、多孔
質無機粒子を5乃至200重量部、好ましくは10乃至
100重量部、及び、pH調整剤を0.1乃至110重
量部、好ましくは0.5乃至30重量部を例示すること
ができる。但し、より具体的には、改良材の添加割合
は、泥状物質の性状(例えば、pH値や含水比)に基づ
き適宜決定すればよい。
As the compounding ratio of the improving material in the present invention,
The coagulant is used in an amount of 0.1 to 30 parts by weight, preferably 0.2 to 20 parts by weight, and the porous inorganic particles is 5 to 200 parts by weight, preferably 10 to 100 parts by weight, based on 100 parts by weight of the hydraulic gypsum. And a pH adjuster in an amount of 0.1 to 110 parts by weight, preferably 0.5 to 30 parts by weight. However, more specifically, the addition ratio of the improving material may be appropriately determined based on the properties (for example, pH value and water content ratio) of the muddy substance.

【0029】本発明においては、改良材に固化促進材が
更に含まれていてもよい。ここで、固化促進材は、酸化
アルミニウムと、これよりも塩基性の強い金属酸化物か
ら生ずる塩であるアルミン酸塩[一般式:xM2 IO・y
Al23・ZH2O(但し、z=0を含む])を含有す
ることが好ましい。固化促進材は、アルミン酸塩であっ
てもよいし、アルミン酸塩を含む無機物あるいは鉱物と
することもできる。アルミン酸塩は、含水メタアルミン
酸塩、ヒドロオクソアルミン酸塩、無水アルミン酸塩
(アルカリ金属塩、二価金属塩であるスピネル型化合物
や非スピネル型化合物を含む)に分類することができ、
かかる範疇のアルミン酸塩を使用することができる。ア
ルミン酸塩として、具体的には、アルミン酸カルシウム
(CaO・Al23,3CaO・Al23等の組成を有
する)、アルミン酸ナトリウム、アルミン酸カリウム、
アルミン酸ストロンチウム、アルミン酸バリウム、アル
ミン酸マグネシウムを例示することができる。アルミン
酸カルシウムから固化促進材を構成する場合、かかる組
成の固化促進材として、例えば、アルミナセメント、ハ
イアルミナスラグ、高炉スラグ、転炉スラグ、電気炉ス
ラグ、あるいは、これらの混合物を挙げることができ
る。そして、平均粒径は0.1〜100μm程度であれ
ばよく、1〜50μm程度が好ましい。改良材中の固化
促進材の割合は、泥状物質のpH、泥状物質の性状(例
えば、シルト分、粘土分、コロイド分等)、泥状物質固
化物に要求される性質(例えば、コーン指数)に応じて
適宜決定すればよいが、水硬性石膏100重量部に対し
て、固化促進材が1乃至400重量部、好ましくは3乃
至50重量部含まれていることが望ましい。例えば、ア
ルミン酸カルシウムと硫酸カルシウムとが反応してエト
リンガイトが生成する結果、泥状物質固化物の一種のネ
ット化(網状化)を図ることができる。
In the present invention, the improving material may further contain a solidification promoting material. Here, solidification promoting material includes aluminum oxide, than this aluminate is a salt resulting from a strong metal oxides basicity also [general formula: xM 2 I O · y
It is preferable to contain Al 2 O 3 .ZH 2 O (provided that z = 0 is included). The solidification accelerator may be an aluminate, or may be an inorganic or mineral containing an aluminate. Aluminates can be classified into hydrous metaaluminates, hydrooxoaluminates, and anhydrous aluminates (including spinel-type compounds and non-spinel-type compounds that are alkali metal salts and divalent metal salts).
Aluminates in this category can be used. As the aluminate, specifically, calcium aluminate (having a composition such as CaO.Al 2 O 3 , 3CaO.Al 2 O 3 ), sodium aluminate, potassium aluminate,
Examples include strontium aluminate, barium aluminate, and magnesium aluminate. When the solidification accelerator is composed of calcium aluminate, examples of the solidification accelerator of such a composition include alumina cement, high alumina slag, blast furnace slag, converter slag, electric furnace slag, or a mixture thereof. . The average particle size may be about 0.1 to 100 μm, preferably about 1 to 50 μm. The ratio of the solidification promoting material in the improving material depends on the pH of the muddy substance, the properties of the muddy substance (for example, silt content, clay content, colloid content, etc.), and the properties (for example, corn The index may be determined as appropriate, but it is desirable that the solidification accelerator is contained in an amount of 1 to 400 parts by weight, preferably 3 to 50 parts by weight, based on 100 parts by weight of the hydraulic gypsum. For example, as a result of the reaction of calcium aluminate and calcium sulfate to form ettringite, a kind of solidified muddy substance (netting) can be achieved.

【0030】本発明においては、改良材に、更に、クリ
ンカアッシュが含まれていてもよい。クリンカアッシュ
が水分を吸水し、保水するので、含水比の高い泥状物質
であっても、乾燥、固化が促進される。クリンカアッシ
ュとは、火力発電所のボイラー内等での石炭の燃焼によ
って生じた石炭灰の粒子が相互に凝集して形成された多
孔質の塊状の石炭灰を破砕して得られたものである。主
成分は、SiO2とAl23である。一般には、破砕に
際して粒度調整されており、殆どが細礫と粗砂であり、
砂に近い粒度を示す。5〜20mmと5mmアンダーと
3mmアンダーの3種が市販されているが、表面積の多
い3mmアンダーを使用することが好ましい。クリンカ
アッシュは、径0.2〜20μmの微細な孔隙が多数存
在する孔隙構造を有するので、吸水性、保水性に優れて
いる。従って、改良材に、更に、クリンカアッシュが含
まれることによって、含水比の高い泥状物質の短時間で
の乾燥固化が可能となる。また、圧縮強度が高く、コー
ン指数の向上に寄与する。尚、2.9×106Pa(3
0kgf/cm2)以上の圧縮強度を有するクリンカア
ッシュを使用することが好ましい。
In the present invention, the improving material may further include clinker ash. Since clinker ash absorbs and retains water, drying and solidification are promoted even for a muddy substance having a high water content. Clinker ash is obtained by crushing porous massive coal ash formed by coal coal ash particles generated by burning coal in a boiler of a thermal power plant. . The main components are SiO 2 and Al 2 O 3 . Generally, the particle size is adjusted during crushing, most of which are fine gravel and coarse sand,
Shows a particle size close to that of sand. Although three types of 5-20 mm, 5 mm under and 3 mm under are commercially available, it is preferable to use 3 mm under with a large surface area. Clinker ash has a pore structure in which a large number of fine pores having a diameter of 0.2 to 20 μm are present, and thus is excellent in water absorption and water retention. Therefore, by further containing clinker ash in the improving material, it becomes possible to dry and solidify a muddy substance having a high water content in a short time. In addition, the compressive strength is high, which contributes to the improvement of the cone index. In addition, 2.9 × 10 6 Pa (3
It is preferable to use clinker ash having a compressive strength of 0 kgf / cm 2 or more.

【0031】また、本発明においては、改良材に、更
に、水硬性石膏の硬化(水和)時間の遅延を図るため
に、凝結遅延剤(リターダー)が含まれていてもよい。
凝結遅延剤として、ゼラチン、分解ケラチン、ガゼイ
ン、ガゼインカルシウム、アルブミン、γ−グロブリ
ン、ゼイン、ペプシン、ペクチン、パパイン、澱粉、タ
ンニン等のコロイドあるいは高分子系の材料、ショ糖、
ヘキサメタリン酸塩、エチレンジアミンテトラ酢酸塩、
クエン酸、クエン酸やグルコン酸、酢酸等のカルボン酸
塩、ホウ砂等のホウ酸塩、アルカリ性炭酸塩、Fe3+
Cr3+、Al3+の硫酸塩を例示することができる。改良
材に凝結遅延剤を含ませることによって、泥状物質に改
良材と添加し、混合したとき、水硬性石膏の硬化(水
和)開始が遅くなり、泥状物質と改良材の混合物を、泥
状の状態で、例えば、ポンプ及び配管を利用して所望の
場所に移送することが可能となる。
In the present invention, the modifier may further include a setting retarder (retarder) for delaying the setting (hydration) time of the hydraulic gypsum.
As a setting retarder, gelatin, degraded keratin, casein, casein calcium, albumin, γ-globulin, zein, pepsin, pectin, papain, starch, colloidal or high molecular material such as tannin, sucrose,
Hexametaphosphate, ethylenediaminetetraacetate,
Examples thereof include citric acid, carboxylate such as citric acid, gluconic acid, and acetic acid, borate such as borax, alkaline carbonate, and sulfates of Fe 3+ , Cr 3+ , and Al 3+ . By adding a setting retarder to the improving material and adding and mixing the improving material to the muddy substance, the setting (hydration) of hydraulic gypsum is delayed, and the mixture of the muddy substance and the improving material is In a muddy state, it can be transferred to a desired location using, for example, a pump and piping.

【0032】また、本発明においては、改良材に、更
に、高吸水性ポリマー(例えば、架橋ポリアクリル酸塩
系材料、イソブチレン/マレイン酸塩系材料、澱粉/ポ
リアクリル酸塩系材料、アクリル繊維の加水分解物系材
料、架橋ポリビニルアルコール系材料、架橋カルボキシ
・メチル・セルロース系材料)が含まれていてもよい。
In the present invention, the improving material may further include a superabsorbent polymer (eg, a crosslinked polyacrylate material, an isobutylene / maleate material, a starch / polyacrylate material, an acrylic fiber). (Cross-linked polyvinyl alcohol-based material, cross-linked carboxy-methyl-cellulose-based material).

【0033】本発明の固化・中性化方法によって得られ
た泥状物質固化物は、例えば、盛土材料、水中盛土材
料、裏込め材料、埋戻し材料、路盤材料、堤防材料、土
地造成用材料、捨てコンクリート代用材料、植生土壌、
コンクリート用骨材として利用することができる。
The solidified mud obtained by the solidification / neutralization method of the present invention includes, for example, embankment material, underwater embankment material, backfill material, backfill material, roadbed material, embankment material, land preparation material , Abandoned concrete substitute material, vegetation soil,
It can be used as aggregate for concrete.

【0034】本発明の改良材による泥状物質の固化・中
性化機構の概要を、以下、説明する。泥状物質に改良材
を添加すると、改良材中の凝固剤は、空間的構造が3次
元構造を有する親水性のイオン基(例えば、カルボキシ
ル基イオン)を有しているので、水に溶けようと拡がり
始める。同時に、凝固剤内部のイオン濃度が外部の水よ
りも高いことによって生じる浸透圧に基づき、凝固剤内
部に水が入り始めると共に、マイナスのイオン基(例え
ば、カルボキシル基イオン)同士が互いに反発しあい、
更に拡がりが助長される。しかしながら、凝固剤は、3
次元架橋構造を有しているので、或る程度以上は拡がる
ことができず、丁度、漁網を拡げたような状態となる。
そして、この網目の1つ1つに水が取り込まれる。この
ように、溶けようとして拡がる作用と、架橋構造によっ
て拡がりが抑制される作用との相互作用によって、凝固
剤の凝集、吸水作用が発現される。泥状物質は、例え
ば、コンクリート打設や薬液注入によって大部分がアル
カリ性を呈し、このような凝固剤の変化の過程におい
て、アルカリ濃度(pH)を上昇させる物質(−OH、
Ca等を含む物質)が不溶化、固定化される。更に、性
状としては、凝固剤が泥状物質中の水分で溶解され、糊
状となり、泥状物質表面(例えば、土粒子の表面)に付
着し、泥状物質同士(土粒子同士)を結合させる。但
し、このような凝固剤の作用は、吸水、凝集といった泥
状物質の性状を塊状に近づけるためのコンシステンシー
を変化させ、粒状の状態とさせるものであり、泥状物質
自体の固化強度を増進させるものではない。
The outline of the solidification and neutralization mechanism of the muddy substance by the improved material of the present invention will be described below. When the improving agent is added to the muddy substance, the coagulant in the improving agent will be soluble in water since the spatial structure has a hydrophilic ionic group (for example, a carboxyl group ion) having a three-dimensional structure. And begin to spread. At the same time, based on the osmotic pressure generated by the ion concentration inside the coagulant being higher than the external water, water starts to enter the coagulant and negative ionic groups (for example, carboxyl group ions) repel each other,
Further spreading is promoted. However, the coagulant has 3
Since it has a dimensional bridge structure, it cannot be expanded beyond a certain extent, and it is just as if the fishing net had been expanded.
Then, water is taken into each of the meshes. As described above, the interaction between the action of spreading to dissolve and the action of suppressing the spread by the crosslinked structure causes the coagulant to coagulate and absorb water. For example, most of the mud-like substances exhibit alkalinity due to concrete pouring or chemical injection, and in the course of such a change of the coagulant, a substance (-OH,
Ca, etc.) are insolubilized and immobilized. Further, as for the properties, the coagulant is dissolved by the water in the muddy substance, becomes a paste, adheres to the muddy substance surface (for example, the surface of the soil particles), and binds the muddy substances (the soil particles). Let it. However, the effect of such a coagulant is to change the consistency of the muddy substance, such as water absorption and coagulation, to make it close to a lump, and to change the consistency to a granular state, thereby increasing the solidification strength of the muddy substance itself. It does not make it.

【0035】次いで、泥状物質に含まれる水と水硬性石
膏とが反応し、水硬性石膏が二水石膏となることによっ
て、この粒状の泥状物質に強度が発現する。二水石膏
は、針状結晶と六面板状結晶が相互に絡まった状態にあ
り、大部分の泥状物質を、再泥状物質化しないように、
閉じ込め、安定化し、泥状物質固化物が形成(生成)さ
れる。
Next, the water contained in the muddy substance reacts with the hydraulic gypsum, and the hydraulic gypsum becomes dihydrate gypsum, whereby the granular muddy substance exhibits strength. Gypsum is a state in which needle-like crystals and hexagonal plate-like crystals are entangled with each other, so that most muddy substances do not re-mudify,
Entrapment, stabilization, and solidification of mud are formed (generated).

【0036】改良材には多孔質無機粒子が含まれている
ので、アルカリ濃度(pH)を上昇させる物質(−O
H、Ca等を含む物質)が多孔質無機粒子に吸着し、更
には、改良材にはpH調整剤が含まれているので、中和
が促進される。その上、凝固剤が糊状に絡み付いている
ので、表面電位が中和され、pHとしてのアルカリ性は
発現されない。また、泥状物質固化物の乾燥過程におい
て、泥状物質固化物は空気中の二酸化炭素(CO2)を
吸収し易く、かかる二酸化炭素と泥状物質固化物中の酸
化カルシウム(CaO)との反応によって、中性の物質
である炭酸カルシウムが生成される。このような現象
は、泥状物質固化物を、例えば24時間、養生すると顕
著に生じる。その結果、一層、泥状物質固化物のpHが
中性(pH5.8〜8.6)に近づく。しかも、泥状物
質固化物は悪臭の軽減された固化物(平成7年環境庁告
示第63号による臭気濃度測定)、例えば、H2Sの発
生の少ない固化物に転換される。
Since the improving material contains porous inorganic particles, a substance (-O) for increasing the alkali concentration (pH) is used.
H, Ca and the like) are adsorbed on the porous inorganic particles, and furthermore, since the modifier contains a pH adjuster, neutralization is promoted. In addition, since the coagulant is entangled in a paste form, the surface potential is neutralized, and no alkalinity as pH is exhibited. In the drying process of the solidified mud, the solidified mud easily absorbs carbon dioxide (CO 2 ) in the air, and the carbon dioxide and calcium oxide (CaO) in the solidified mud are easily absorbed. The reaction produces calcium carbonate, a neutral substance. Such a phenomenon occurs remarkably when the solidified mud is cured, for example, for 24 hours. As a result, the pH of the solidified mud further approaches neutrality (pH 5.8 to 8.6). In addition, the solidified mud is converted into a solid with reduced odor (odor concentration measurement according to the Notification of the Environment Agency, No. 63, 1995), for example, a solid with less generation of H 2 S.

【0037】尚、アルミン酸塩を含有する固化促進材が
改良材に更に含まれている場合には、水硬性石膏の凝固
(反応)過程は、半水石膏やIII型無水石膏の水和反
応と同時に、また、時間の経過と共に、半水石膏やII
I型無水石膏と、固化促進材に含まれているアルミン酸
塩(アルミネート層)との間に反応が生じ、例えば、エ
トリンガイト(3CaO・Al23・3CaSO4・3
2H2O等の組成を有する)が生成し、泥状物質固化物
の強固なネット化(網状化)を図ることができる。
When the solidifying accelerator containing aluminate is further included in the modifier, the solidification (reaction) process of the hydraulic gypsum is based on the hydration reaction of hemihydrate gypsum or type III anhydrous gypsum. At the same time, and over time, hemihydrate gypsum and II
A reaction occurs between the type I anhydrous gypsum and the aluminate (aluminate layer) contained in the solidification accelerator, for example, ettringite (3CaO.Al 2 O 3 .3CaSO 4 .3)
(Having a composition of 2H 2 O or the like), and a solid net (net-like) of the solidified muddy substance can be achieved.

【0038】[0038]

【実施例】以下、好ましい実施例に基づき本発明を説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on preferred embodiments.

【0039】(実施例1)建設現場で発生した泥状物質
である泥土(含水比w=110%、pH=12.4であ
り、RJP工法に基づく地盤改良後に出るセメントを含
んだ泥土)100重量部に対して、以下の表3に示す組
成の改良材を20重量部、添加して、混合(撹拌)を行
った。尚、水硬性石膏の組成は、β型半水石膏が約90
重量%、III型無水石膏が約2重量%、残りが二水石
膏であった。また、凝固剤として、アクリル酸金属塩・
アクリルアミド共重合物(具体的には、アクリル酸ナト
リウム・アクリルアミド共重合物)を使用し、多孔性無
機粒子として、ポーラスシリカを使用し、pH調整剤と
して、SiO2、Al23、K2O、Na2O、Fe
2 3、SO3、CaO、Cを成分とした混合物を使用し
た。
(Example 1) Muddy substance generated at a construction site
(Moisture content w = 110%, pH = 12.4
Including cement that comes out after ground improvement based on the RJP method
Set in the following Table 3 for 100 parts by weight
Mixing (stirring) was performed by adding 20 parts by weight of
Was. The composition of the hydraulic gypsum is such that the β-type hemihydrate gypsum is about 90%.
% By weight, about 2% by weight of type III anhydrous gypsum, the rest is dihydrate
It was a plaster. In addition, as a coagulant, metal acrylate
Acrylamide copolymer (specifically, sodium acrylate
Lium-acrylamide copolymer)
Using porous silica as the mechanical particles, a pH adjuster and
And SiOTwo, AlTwoOThree, KTwoO, NaTwoO, Fe
TwoO Three, SOThree, CaO and C are used as a mixture.
Was.

【0040】[表3] 水硬性石膏 100重量部 凝固剤 2重量部 多孔質無機粒子 20重量部 pH調整剤 0.5重量部[Table 3] Hydraulic gypsum 100 parts by weight Coagulant 2 parts by weight Porous inorganic particles 20 parts by weight pH adjuster 0.5 parts by weight

【0041】改良材を構成する各成分を予め混合した改
良材を泥状物質に添加した。また改良材と泥状物質の混
合にはセメントモルタルミキサーを用い、3分間混合
(撹拌)した。そして、混合後に得られた泥状物質固化
物をセメントモルタルミキサーから排出し、恒温室内に
放置し、改良材添加後、24日経過後に得られた泥状物
質固化物のコーン指数、pH、含水比(w)、流出水の
状態を試験した。尚、添加、混合、排出、放置、測定
は、いずれも恒温室内(温度20゜C、相対湿度60
%)で行った。ここで、流出水の観察は、肉眼観察する
ことにより行った。更には、混合開始後、24日経過後
に得られた泥状物質固化物中の六価クロム含有量(単
位:ミリグラム/リットル)の分析を、JIS K−0
102に基づき行った。測定結果を表5に示す。尚、表
5中、コーン指数の単位は、kN/m2である。また、
pHは、JSF T−211に基づき、泥状物質固化物
の乾燥後質量の2〜3倍の蒸留水を泥状物質固化物(あ
るいは粉砕した泥状物質固化物)に加え、充分に撹拌
し、30分以上、3時間以内、静置したものを測定し
た。改良材の各成分を別々の状態としておき、使用時に
混合して泥状物質に添加しても、あるいは又、使用時に
各成分を別々に泥状物質に添加しても、同様の結果が得
られた。
The improving material obtained by previously mixing the components constituting the improving material was added to the muddy substance. The cement was mixed (stirred) for 3 minutes using a cement mortar mixer to mix the improving material and the muddy substance. Then, the solidified slurry obtained after mixing is discharged from the cement mortar mixer, left in a constant temperature chamber, and after adding the improving material, the cone index, pH, and water content of the solidified slurry obtained after 24 days have passed. The ratio (w) and the condition of the effluent were tested. In addition, addition, mixing, discharge, standing, and measurement were all performed in a constant temperature room (temperature 20 ° C, relative humidity 60).
%). Here, the outflow water was observed by visual observation. Further, the analysis of the hexavalent chromium content (unit: milligram / liter) in the solidified mud obtained 24 days after the start of mixing was performed according to JIS K-0.
102. Table 5 shows the measurement results. In Table 5, the unit of the cone index is kN / m 2 . Also,
The pH is based on JSF T-211. Distilled water having a mass of 2 to 3 times the mass of the solidified mud after drying is added to the solidified mud (or the solidified pulverized mud) based on JSF T-211 and sufficiently stirred. , For 30 minutes or more and within 3 hours. Similar results can be obtained by keeping each component of the improving material in a separate state and mixing it at the time of use and adding it to the muddy material, or adding each component separately at the time of use to the muddy material. Was done.

【0042】また、比較例1として、改良材を全く添加
せずに、実施例1と同じ条件で混合、排出、放置を行
い、混合開始後、24日経過後に得られた泥状物質固化
物を、実施例1と同様の方法で測定した。
Also, as Comparative Example 1, mixing, discharging, and standing were performed under the same conditions as in Example 1 without adding any improving material, and the mud-like solid obtained 24 days after the start of mixing. Was measured in the same manner as in Example 1.

【0043】(実施例2)建設現場で発生した泥状物質
である泥土(含水比w=101%、pH=8.9であ
り、建設現場におけるシールド工法にて出た、ベントナ
イトを含む泥土)100重量部に対して、表4に示す組
成(成分は実施例1と同じである)を有する改良材を1
5重量部、実施例1と同様の方法で添加し、混合(撹
拌)した。そして、実施例1と同様にして、泥状物質固
化物の物性測定を行った。その結果を表5に示す。ここ
で、実施例1とは異なり、混合開始後、12時間経過後
に得られた泥状物質固化物を、実施例1と同様の方法で
測定した。また、改良材には、実施例1と異なり、アル
ミン酸カルシウムから成る固化促進材が加えられてい
る。尚、改良材の各成分を別々の状態としておき、使用
時に混合して泥状物質に添加しても、あるいは又、使用
時に各成分を別々に泥状物質に添加しても、同様の結果
が得られた。
Example 2 Mud which is a muddy substance generated at a construction site (mud containing bentonite with a water content of w = 101%, pH = 8.9, and produced by a shield method at the construction site) An improving material having the composition shown in Table 4 (the components are the same as in Example 1) was added to 100 parts by weight of
5 parts by weight were added in the same manner as in Example 1 and mixed (stirred). Then, in the same manner as in Example 1, the physical properties of the solidified muddy substance were measured. Table 5 shows the results. Here, unlike Example 1, the solidified muddy substance obtained 12 hours after the start of mixing was measured in the same manner as in Example 1. Further, unlike the first embodiment, a solidification accelerator made of calcium aluminate is added to the improved material. It should be noted that the same results were obtained when the components of the improving material were kept separately and mixed at the time of use and added to the muddy material, or when each component was separately added to the muddy material at the time of use. was gotten.

【0044】また、比較例2として、改良材を全く添加
せずに、実施例2と同じ条件で混合、排出、放置を行
い、混合開始後、12時間経過後に得られた泥状物質固
化物を、実施例1と同様の方法で測定した。
Further, as Comparative Example 2, mixing, discharging, and standing were performed under the same conditions as in Example 2 without adding any improving material, and the solidified mud obtained 12 hours after the start of mixing. Was measured in the same manner as in Example 1.

【0045】[表4] 水硬性石膏 100重量部 凝固剤 2重量部 多孔質無機粒子 10重量部 pH調整剤 0.5重量部 固化促進材 10重量部[Table 4] Hydraulic gypsum 100 parts by weight Coagulant 2 parts by weight Porous inorganic particles 10 parts by weight pH adjuster 0.5 parts by weight Solidification accelerator 10 parts by weight

【0046】 [表5] コーン指数 pH 含水比(%) 流出水 六価Cr 実施例1 1500以上 7.9 41 透明水 0.05以下 実施例2 810 7.5 30 透明水 0.05以下 比較例1 1500以上 12.4 41 半透明水 0.15 比較例2 0 8.9 90 濁水 0.09[Table 5] Cone index pH Water content (%) Effluent Hexavalent Cr Example 1 1500 or more 7.9 41 Clear water 0.05 or less Example 2 810 7.5 30 Clear water 0.05 or less Compare Example 1 1500 or more 12.4 41 Translucent water 0.15 Comparative Example 2 8.9 90 Turbid water 0.09

【0047】表5からも明らかなように、実施例1及び
実施例2においては、泥状物質固化物は、高いコーン指
数を有し、そのpHは中性であり、流出水は透明水であ
り、六価クロムも0.05ミリグラム/リットル以下で
あった。尚、実施例1において、混合開始後、15分経
過後に得られた泥状物質固化物のコーン指数の測定も併
せて行ったところ、630kN/m2が得られた。一
方、比較例1においては、泥状物質にセメントが含まれ
ているので、24日経過後のコーン指数は、実施例1と
同程度となったが、そのpHは強アルカリであり、流出
水は半透明水であり、六価クロムは0.15ミリグラム
/リットルであった。また、比較例2においては、混合
開始後、12時間経過後に得られた泥状物質固化物は、
ほぼ、元の泥状物質と同じ性質を有していた。
As is clear from Table 5, in Examples 1 and 2, the solidified mud has a high cone index, its pH is neutral, and the effluent is clear water. And hexavalent chromium was less than 0.05 milligram / liter. In Example 1, the cone index of the solidified mud material obtained 15 minutes after the start of mixing was also measured. As a result, 630 kN / m 2 was obtained. On the other hand, in Comparative Example 1, since the muddy substance contained cement, the corn index after 24 days was about the same as in Example 1, but the pH was strong alkali, and the effluent was It was translucent water, and hexavalent chromium was 0.15 mg / liter. Further, in Comparative Example 2, the solidified mud obtained 12 hours after the start of mixing,
Almost the same properties as the original muddy material.

【0048】以上、本発明を、好ましい実施例に基づき
説明したが、本発明はこれらに限定されるものではな
い。実施例において使用した泥状物質は例示である。ま
た、改良材の組成、配合割合も例示であり、適宜変更す
ることができる。更には、実施例にて説明した改良材の
添加の方法や混合(撹拌)方法も例示であり、適宜変更
することができる。
Although the present invention has been described based on the preferred embodiments, the present invention is not limited to these embodiments. The muddy substances used in the examples are examples. Further, the composition and the mixing ratio of the improving material are also examples, and can be appropriately changed. Furthermore, the method of adding the improving material and the method of mixing (stirring) described in the examples are also examples, and can be appropriately changed.

【0049】[0049]

【発明の効果】本発明においては、改良材を、水硬性石
膏、凝固剤、多孔質無機粒子、及び、pH調整剤から構
成することによって、泥状物質の確実な固化・中和を速
やかに行うことができるし、泥状物質固化物は充分なる
強度を発現する。しかも、泥状物質固化物は悪臭の軽減
された固化物に転換され、更には、六価クロムの溶出を
抑制することが可能となる。それ故、建設現場等で発生
した泥状物質を現場で容易に例えば改良土に転換するこ
とが可能となるし、泥状物質固化物が流水や雨水に晒さ
れても、濁水が生じることを抑制することができる。し
かも、簡易なプラントによって泥状物質の処理を行うこ
とが可能となり、処理費の低減、泥状物質の再資源化を
効率的、且つ、効果的に図ることができる。尚、固化促
進材を改良材に更に含ませることによって、泥状物質固
化物の強固なネット化(網状化)を図ることができ、泥
状物質固化物の一層の高強度化を短時間で図ることがで
きる。
According to the present invention, the solidification and neutralization of muddy substances can be promptly carried out by forming the improving material from hydraulic gypsum, a coagulant, porous inorganic particles, and a pH adjuster. It can be performed, and the solidified mud exhibits sufficient strength. In addition, the solidified mud is converted into a solidified substance with reduced odor, and furthermore, the elution of hexavalent chromium can be suppressed. Therefore, it is possible to easily convert the muddy substance generated at the construction site, for example, to improved soil at the site, and to prevent muddy water from being generated even when the solidified muddy substance is exposed to running water or rainwater. Can be suppressed. In addition, the treatment of the muddy substance can be performed by a simple plant, so that the treatment cost can be reduced and the muddy substance can be efficiently and effectively recycled. By further including the solidification promoting material in the improving material, a solid net of the solidified mud can be achieved (reticulation), and the strength of the solidified mud can be further increased in a short time. Can be planned.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C04B 28/16 C04B 28/16 C09K 17/02 C09K 17/02 17/06 17/06 P 17/20 17/20 P 17/42 17/42 P 17/48 17/48 P //(C04B 28/14 (C04B 28/14 18:30 18:30 22:06 22:06 A 24:26 24:26 D ) ) E 103:12 103:12 111:40 111:40 C09K 103:00 C09K 103:00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C04B 28/16 C04B 28/16 C09K 17/02 C09K 17/02 17/06 17/06 P 17/20 17 / 20 P 17/42 17/42 P 17/48 17/48 P // (C04B 28/14 (C04B 28/14 18:30 18:30 22:06 22:06 A 24:26 24:26 D) E 103: 12 103: 12 111: 40 111: 40 C09K 103: 00 C09K 103: 00

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】泥状物質を固化・中性化する改良材であっ
て、(A)水硬性石膏、(B)凝固剤、(C)多孔質無
機粒子、及び、(D)pH調整剤から成ることを特徴と
する改良材。
1. An improving material for solidifying and neutralizing a muddy substance, comprising (A) a hydraulic gypsum, (B) a coagulant, (C) a porous inorganic particle, and (D) a pH adjuster. An improved material characterized by comprising:
【請求項2】水硬性石膏は、半水石膏及び/又はIII
型無水石膏であることを特徴とする請求項1に記載の改
良材。
2. Hydraulic gypsum is hemihydrate gypsum and / or III
The improved material according to claim 1, which is a type of anhydrous gypsum.
【請求項3】凝固剤は、解離基としてカルボキシル基あ
るいはやスルホン基を有するアニオン系高分子凝固剤、
若しくは、無機性凝固剤から成ることを特徴とする請求
項1又は請求項2に記載の改良材。
3. An anionic polymer coagulant having a carboxyl group or a sulfone group as a dissociating group,
The improvement material according to claim 1 or 2, wherein the improvement material is made of an inorganic coagulant.
【請求項4】凝固剤は、アクリル酸金属塩・アクリルア
ミド共重合物、アニオン型ポリアクリルアミドポリマ
ー、ポリアクリルアミド部分加水分解物、アクリル酸・
ビニルアルコール共重合物、及び、無機性凝固剤から成
る群から選択された少なくとも1種類の凝固剤であるこ
とを特徴とする請求項3に記載の改良材。
4. The coagulant includes metal acrylate / acrylamide copolymer, anionic polyacrylamide polymer, partially hydrolyzed polyacrylamide, acrylic acid
The improvement according to claim 3, wherein the at least one coagulant is selected from the group consisting of a vinyl alcohol copolymer and an inorganic coagulant.
【請求項5】多孔質無機粒子は、活性シリカ、ゼオライ
ト、ポーラスシリカ、及び、シリカパウダーから成る群
から選択された少なくとも1種類の多孔質無機粒子であ
ることを特徴とする請求項1乃至請求項4のいずれか1
項に記載の改良材。
5. The method according to claim 1, wherein the porous inorganic particles are at least one kind of porous inorganic particles selected from the group consisting of activated silica, zeolite, porous silica, and silica powder. Any one of item 4
The improved material described in the item.
【請求項6】pH調整剤はケイ酸塩化合物を含有するこ
とを特徴とする請求項1乃至請求項5のいずれか1項に
記載の改良材。
6. The improved material according to claim 1, wherein the pH adjuster contains a silicate compound.
【請求項7】改良材の配合割合は、 (A)水硬性石膏100重量部に対して、 (B)凝固剤0.1乃至30重量部、 (C)多孔質無機粒子5乃至200重量部、及び、 (D)pH調整剤0.1乃至110重量部、 であることを特徴とする請求項1乃至請求項6のいずれ
か1項に記載の改良材。
7. The mixing ratio of the modifier is (A) 100 parts by weight of hydraulic gypsum, (B) 0.1 to 30 parts by weight of a coagulant, and (C) 5 to 200 parts by weight of porous inorganic particles. And (D) 0.1 to 110 parts by weight of a pH adjuster, The improving material according to any one of claims 1 to 6, characterized in that:
【請求項8】固化促進材を更に含むことを特徴とする請
求項1乃至請求項7のいずれか1項に記載の改良材。
8. The improved material according to claim 1, further comprising a solidification accelerating material.
【請求項9】固化促進材はアルミン酸塩を含有すること
を特徴とする請求項8に記載の改良材。
9. The improvement according to claim 8, wherein the solidification accelerator contains an aluminate.
【請求項10】泥状物質に、(A)水硬性石膏、(B)
凝固剤、(C)多孔質無機粒子、及び、(D)pH調整
剤から成る改良材を添加し、混合することを特徴とする
泥状物質の固化・中性化方法。
10. Mud-like substances include (A) hydraulic gypsum, and (B)
A method for solidifying and neutralizing a muddy substance, comprising adding and mixing a coagulant, (C) a porous inorganic particle, and (D) a modifier comprising a pH adjuster.
【請求項11】泥状物質100重量部に対して、改良材
を1乃至100重量部、添加し、混合することを特徴と
する請求項10に記載の泥状物質の固化・中性化方法。
11. The method for solidifying and neutralizing a muddy substance according to claim 10, wherein 1 to 100 parts by weight of an improving material is added to 100 parts by weight of the muddy substance and mixed. .
【請求項12】水硬性石膏は、半水石膏及び/又はII
I型無水石膏であることを特徴とする請求項10又は請
求項11に記載の泥状物質の固化・中性化方法。
12. Hydraulic gypsum is hemihydrate gypsum and / or II.
The method for solidifying and neutralizing a muddy substance according to claim 10 or 11, wherein the method is type I anhydrous gypsum.
【請求項13】凝固剤は、解離基としてカルボキシル基
あるいはやスルホン基を有するアニオン系高分子凝固
剤、若しくは、無機性凝固剤から成ることを特徴とする
請求項10乃至請求項12のいずれか1項に記載の泥状
物質の固化・中性化方法。
13. The coagulant according to claim 10, wherein the coagulant comprises an anionic polymer coagulant having a carboxyl group or a sulfone group as a dissociating group, or an inorganic coagulant. The method for solidifying and neutralizing a muddy substance according to claim 1.
【請求項14】凝固剤は、アクリル酸金属塩・アクリル
アミド共重合物、アニオン型ポリアクリルアミドポリマ
ー、ポリアクリルアミド部分加水分解物、アクリル酸・
ビニルアルコール共重合物、及び、無機性凝固剤から成
る群から選択された少なくとも1種類の凝固剤であるこ
とを特徴とする請求項13に記載の泥状物質の固化・中
性化方法。
14. A coagulant comprising a metal acrylate / acrylamide copolymer, an anionic polyacrylamide polymer, a partially hydrolyzed polyacrylamide, acrylic acid
14. The method for solidifying and neutralizing a muddy substance according to claim 13, wherein the method is at least one coagulant selected from the group consisting of a vinyl alcohol copolymer and an inorganic coagulant.
【請求項15】多孔質無機粒子は、活性シリカ、ゼオラ
イト、ポーラスシリカ、及び、シリカパウダーから成る
群から選択された少なくとも1種類の多孔質無機粒子で
あることを特徴とする請求項10乃至請求項14のいず
れか1項に記載の泥状物質の固化・中性化方法。
15. The method according to claim 10, wherein the porous inorganic particles are at least one kind of porous inorganic particles selected from the group consisting of activated silica, zeolite, porous silica, and silica powder. Item 15. The method for solidifying and neutralizing a muddy substance according to any one of Item 14.
【請求項16】pH調整剤はケイ酸塩化合物を含有する
ことを特徴とする請求項10乃至請求項15のいずれか
1項に記載の泥状物質の固化・中性化方法。
16. The method for solidifying and neutralizing a muddy substance according to claim 10, wherein the pH adjuster contains a silicate compound.
【請求項17】改良材の配合割合は、 (A)水硬性石膏100重量部に対して、 (B)凝固剤0.1乃至30重量部、 (C)多孔質無機粒子5乃至200重量部、及び、 (D)pH調整剤0.1乃至110重量部、 であることを特徴とする請求項10乃至請求項16のい
ずれか1項に記載の泥状物質の固化・中性化方法。
17. The mixing ratio of the modifier is (A) 100 parts by weight of hydraulic gypsum, (B) 0.1 to 30 parts by weight of a coagulant, and (C) 5 to 200 parts by weight of porous inorganic particles. The method for solidifying and neutralizing a muddy substance according to any one of claims 10 to 16, wherein: (D) 0.1 to 110 parts by weight of a pH adjuster.
【請求項18】改良材には固化促進材が更に含まれてい
ることを特徴とする請求項10乃至請求項17のいずれ
か1項に記載の泥状物質の固化・中性化方法。
18. The method for solidifying and neutralizing a muddy substance according to claim 10, wherein the improving material further contains a solidification promoting material.
【請求項19】固化促進材はアルミン酸塩を含有するこ
とを特徴とする請求項18に記載の泥状物質の固化・中
性化方法。
19. The method for solidifying and neutralizing a muddy substance according to claim 18, wherein the solidification promoting material contains an aluminate.
JP2000183302A 2000-06-19 2000-06-19 Improving material for solidifying / neutralizing mud substances and method for solidifying / neutralizing mud substances Expired - Fee Related JP3824844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000183302A JP3824844B2 (en) 2000-06-19 2000-06-19 Improving material for solidifying / neutralizing mud substances and method for solidifying / neutralizing mud substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000183302A JP3824844B2 (en) 2000-06-19 2000-06-19 Improving material for solidifying / neutralizing mud substances and method for solidifying / neutralizing mud substances

Publications (3)

Publication Number Publication Date
JP2002001397A true JP2002001397A (en) 2002-01-08
JP2002001397A5 JP2002001397A5 (en) 2005-09-08
JP3824844B2 JP3824844B2 (en) 2006-09-20

Family

ID=18683905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000183302A Expired - Fee Related JP3824844B2 (en) 2000-06-19 2000-06-19 Improving material for solidifying / neutralizing mud substances and method for solidifying / neutralizing mud substances

Country Status (1)

Country Link
JP (1) JP3824844B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363563A (en) * 2001-06-01 2002-12-18 Taiyu Kensetsu Co Ltd Mud caking material
JP2005232341A (en) * 2004-02-20 2005-09-02 Takataro Mizuta Treatment agent of hexavalent chromium-containing soil
JP2006225475A (en) * 2005-02-16 2006-08-31 Komurisu:Kk Solidifier and method for improving solidification of soil by using the solidifier
JP2006306683A (en) * 2005-05-02 2006-11-09 Hitachi Chemical Industries Co Ltd Mineral material for growing plant and soil conditioner obtained by blending the same
JP2007100402A (en) * 2005-10-05 2007-04-19 Chugoku Electric Power Co Inc:The Soil improving particulate matter
JP2007161895A (en) * 2005-12-14 2007-06-28 Masahito Mori Method for recycling waste plasterboard, soil-improving agent using waste plasterboard and improved soil
JP2007244203A (en) * 2006-03-13 2007-09-27 Fujita Corp Method for creating reed-community vegetation base
JP2009285590A (en) * 2008-05-30 2009-12-10 Toa Grout Kogyo Co Ltd Engineering method of neutral solidification of mud and novel gypsum-based solidification improving material
JP2010261024A (en) * 2009-04-07 2010-11-18 Toei Kasei Kk Treating agent of contaminated soil and treating method of contaminated soil
WO2012158605A1 (en) 2011-05-16 2012-11-22 Henwil Corporation Process for thickening a drilling mud waste materials and a modified drilling mud waste material
WO2014027613A1 (en) * 2012-08-15 2014-02-20 吉野石膏株式会社 Method for selectively inhibiting sulfate-reducing bacterium, gypsum composition capable of inhibiting proliferation of sulfate-reducing bacterium by said method, gypsum-type solidifying material, and gypsum-type building material
JP2014037330A (en) * 2012-08-15 2014-02-27 Yoshino Gypsum Co Ltd Gypsum compositions, gypsum-based solidification materials and gypsum-based construction materials
JP2014037364A (en) * 2012-08-15 2014-02-27 Yoshino Gypsum Co Ltd Selective fungistatic method of sulfate-reducing bacterium
KR101766219B1 (en) * 2016-09-29 2017-08-08 변호덕 Solidifying Composition, Solidified Object Using the Solidifying Composition, and Solidified Object Manufacturing Method Using the Solidifying Composition
CN115432995A (en) * 2022-06-28 2022-12-06 广州市北二环交通科技有限公司 Perforated brick prepared by utilizing engineering waste slurry

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4897527B2 (en) * 2007-03-23 2012-03-14 中国電力株式会社 Soil improvement method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363563A (en) * 2001-06-01 2002-12-18 Taiyu Kensetsu Co Ltd Mud caking material
JP2005232341A (en) * 2004-02-20 2005-09-02 Takataro Mizuta Treatment agent of hexavalent chromium-containing soil
JP2006225475A (en) * 2005-02-16 2006-08-31 Komurisu:Kk Solidifier and method for improving solidification of soil by using the solidifier
JP2006306683A (en) * 2005-05-02 2006-11-09 Hitachi Chemical Industries Co Ltd Mineral material for growing plant and soil conditioner obtained by blending the same
JP2007100402A (en) * 2005-10-05 2007-04-19 Chugoku Electric Power Co Inc:The Soil improving particulate matter
JP2007161895A (en) * 2005-12-14 2007-06-28 Masahito Mori Method for recycling waste plasterboard, soil-improving agent using waste plasterboard and improved soil
JP2007244203A (en) * 2006-03-13 2007-09-27 Fujita Corp Method for creating reed-community vegetation base
JP2009285590A (en) * 2008-05-30 2009-12-10 Toa Grout Kogyo Co Ltd Engineering method of neutral solidification of mud and novel gypsum-based solidification improving material
JP2010261024A (en) * 2009-04-07 2010-11-18 Toei Kasei Kk Treating agent of contaminated soil and treating method of contaminated soil
EP2710087A4 (en) * 2011-05-16 2015-12-23 Henwil Corp Process for thickening a drilling mud waste materials and a modified drilling mud waste material
WO2012158605A1 (en) 2011-05-16 2012-11-22 Henwil Corporation Process for thickening a drilling mud waste materials and a modified drilling mud waste material
WO2014027613A1 (en) * 2012-08-15 2014-02-20 吉野石膏株式会社 Method for selectively inhibiting sulfate-reducing bacterium, gypsum composition capable of inhibiting proliferation of sulfate-reducing bacterium by said method, gypsum-type solidifying material, and gypsum-type building material
JP2014037330A (en) * 2012-08-15 2014-02-27 Yoshino Gypsum Co Ltd Gypsum compositions, gypsum-based solidification materials and gypsum-based construction materials
JP2014037364A (en) * 2012-08-15 2014-02-27 Yoshino Gypsum Co Ltd Selective fungistatic method of sulfate-reducing bacterium
KR20150039804A (en) * 2012-08-15 2015-04-13 요시노 셋고 가부시키가이샤 Method for selectively inhibiting sulfate-reducing bacterium, gypsum composition capable of inhibiting proliferation of sulfate-reducing bacterium by said method, gypsum-type solidifying material, and gypsum-type building material
EP2885972A1 (en) * 2012-08-15 2015-06-24 Yoshino Gypsum Co., Ltd. Method for selectively inhibiting sulfate-reducing bacterium, gypsum composition capable of inhibiting proliferation of sulfate-reducing bacterium by said method, gypsum-type solidifying material, and gypsum-type building material
EP2885972A4 (en) * 2012-08-15 2016-06-15 Yoshino Gypsum Co Method for selectively inhibiting sulfate-reducing bacterium, gypsum composition capable of inhibiting proliferation of sulfate-reducing bacterium by said method, gypsum-type solidifying material, and gypsum-type building material
KR101632545B1 (en) * 2012-08-15 2016-06-21 요시노 셋고 가부시키가이샤 Method for selectively inhibiting sulfate-reducing bacterium, gypsum composition capable of inhibiting proliferation of sulfate-reducing bacterium by said method, gypsum-type solidifying material, and gypsum-type building material
US9901101B2 (en) 2012-08-15 2018-02-27 Yoshino Gypsum Co., Ltd. Method for selectively inhibiting sulfate-reducing bacterium, gypsum composition capable of inhibiting proliferation of sulfate-reducing bacterium by said method, gypsum-type solidifying material, and gypsum-type building material
KR101766219B1 (en) * 2016-09-29 2017-08-08 변호덕 Solidifying Composition, Solidified Object Using the Solidifying Composition, and Solidified Object Manufacturing Method Using the Solidifying Composition
CN115432995A (en) * 2022-06-28 2022-12-06 广州市北二环交通科技有限公司 Perforated brick prepared by utilizing engineering waste slurry
CN115432995B (en) * 2022-06-28 2023-09-12 广州市北二环交通科技有限公司 Porous brick prepared from engineering waste slurry

Also Published As

Publication number Publication date
JP3824844B2 (en) 2006-09-20

Similar Documents

Publication Publication Date Title
Malviya et al. Factors affecting hazardous waste solidification/stabilization: A review
JP3824844B2 (en) Improving material for solidifying / neutralizing mud substances and method for solidifying / neutralizing mud substances
AU2001234105B2 (en) Cement composition
Zhou et al. Sewage sludge ash-incorporated stabilisation/solidification for recycling and remediation of marine sediments
CA2551822A1 (en) Porous particulate material for fluid treatment, cementitious composition and method of manufacture thereof
KR100648827B1 (en) Solidifying agent for sludge, hardened product using the same and manufacturing method of the building materials using the hardended product
KR102133152B1 (en) firming agent for civil enqineering of soft ground using blast furnace slag and fly ash and method for manufacturing thereof
JP5042589B2 (en) Powder solidifying material for soft mud soil and method for producing the same
JP2011036846A (en) Method of manufacturing moisture adsorbent, and moisture adsorbent
CN112341127A (en) Sludge curing agent and production method thereof
KR100761195B1 (en) Soil stabilizer composite using construction sludge and method for manufacturing thereof
JP2004330018A (en) Solidification/insolubilization agents and solidification/insolubilization method for soil, incineration ash, coal ash and plaster board waste
KR100790373B1 (en) Solidifying agent for improvement of soil
JP2002363560A (en) Soil-aggregative caking agent for improvement of highly hydrous soft soil
Beeghly et al. Dredge material stabilization using the pozzolanic or sulfo-pozzolanic reaction of lime by-products to make an engineered structural fill
JP4663999B2 (en) Soil neutral solidification material and soil neutral solidification improvement method
JP2001182044A (en) Muddy soil solidifying material and muddy soil solidifying method
US4935211A (en) Fluorogypsum waste solidification material
JP2019044054A (en) One component type neutral solidification agent
JP2002282894A (en) Agent and method for solidifying sludge
JP2010234192A (en) Method of generating soil
JP2002121552A (en) Solidifier for water-containing soil and process for solidifying water-containing soil using this
JP3803076B2 (en) Admixture for soil stabilization and soil stabilization method using the same
KR101155043B1 (en) Cement using waterworks and method for manufacturing the same
KR100375407B1 (en) method of manufacturing solity for preventing heavy metals from being occurred in wastes and solity manufactured by the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050311

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050311

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060628

R150 Certificate of patent or registration of utility model

Ref document number: 3824844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees