JP2001182044A - Muddy soil solidifying material and muddy soil solidifying method - Google Patents

Muddy soil solidifying material and muddy soil solidifying method

Info

Publication number
JP2001182044A
JP2001182044A JP37541599A JP37541599A JP2001182044A JP 2001182044 A JP2001182044 A JP 2001182044A JP 37541599 A JP37541599 A JP 37541599A JP 37541599 A JP37541599 A JP 37541599A JP 2001182044 A JP2001182044 A JP 2001182044A
Authority
JP
Japan
Prior art keywords
mud
solidification
water
mass
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP37541599A
Other languages
Japanese (ja)
Inventor
Mitsunao Osada
光巨 長田
Takeo Matsuoka
武男 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SHIGEN RECYCLE KK
Asahi Yukizai Corp
Original Assignee
NIPPON SHIGEN RECYCLE KK
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SHIGEN RECYCLE KK, Asahi Organic Chemicals Industry Co Ltd filed Critical NIPPON SHIGEN RECYCLE KK
Priority to JP37541599A priority Critical patent/JP2001182044A/en
Publication of JP2001182044A publication Critical patent/JP2001182044A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a muddy soil solidifying material and a muddy soil solidifying method for efficiently changing muddy soil into neutral improved soil with a practical corn exponent without producing muddy water even if exposed to rainwater. SOLUTION: This muddy soil solidifying material is obtained by combining (A) a water absorptive coagulant and (B) a solidification reforming material containing (a) hydraulic gypsum and (b) fine waste sand obtained in manufacturing a casting sand mold, or recovering, reclaiming or classifying molding sand after casting. It is preferable that the solidification reforming material (B) further contains (c) calcium aluminate or at least one kind of solidification accelerating material selected from inorganic substance and mineral with calcium aluminate as an essential component, at the ratio of 1-50 pts. mass to 100 pts. mass of the hydraulic gypsum.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばトンネル工
事、堀削工事、建築工事等の建設現場での発生泥土、湖
沼、河川、港湾等の浚渫泥土、浄水場の泥土、下水処理
の泥土、工場廃水の泥土、ヘドロなど(以下、泥土とい
う)の固化に使用される泥土固化材および泥土の固化方
法に関する。
The present invention relates to mud generated at construction sites such as tunnel works, excavation works, building works, etc., mud dredged at lakes, marshes, rivers, harbors, etc., mud at water purification plants, mud for sewage treatment, The present invention relates to a mud solidifying material used for solidifying mud, sludge, and the like (hereinafter referred to as mud) of factory wastewater and a method of solidifying mud.

【0002】[0002]

【従来の技術】従来、前記のような泥土、例えば造成現
場等で発生する多量の水を含む建設泥土は、通常、泥土
の発生現場や産業廃棄物中間処理場で固化処理されたの
ち埋め戻されるか、産業廃棄物として管理型処分場に埋
め立て処分されるか、又はリサイクル土壌(以下、固化
土壌という)として諸用途で再使用されている。そし
て、かかる泥土の固化処理には、一般に天日による乾燥
固化、フィルタープレス機や遠心分離機による脱水固
化、セメント系固化材による凝結固化などの諸方法が用
いられている。
2. Description of the Related Art Conventionally, mud such as described above, for example, construction mud containing a large amount of water generated at a construction site, is usually solidified at a mud generating site or an industrial waste intermediate treatment plant and then backfilled. Waste is disposed of as industrial waste, landfilled in a managed landfill, or reused as recycled soil (hereinafter referred to as solidified soil) for various purposes. In general, various methods such as drying and solidification by the sun, dehydration and solidification by a filter press or a centrifugal separator, and coagulation and solidification by a cement-based solidification material are used for the solidification treatment of the mud.

【0003】[0003]

【発明が解決しようとする課題】しかし、天日乾燥や脱
水固化して得られる土壌は、雨水にさらされると濁水を
発生して埋め立て地周辺の土壌汚染ないしは自然破壊を
惹起する恐れがある。またセメント系固化材を使用して
得られる土壌は、一般に該土壌に接した水が水質汚濁防
止法の排水基準(pH5.8〜8.6)を超えるアルカリ
性を呈するため、その使用が制限されるし、又その固化
度、すなわち強度発現(コーン指数200kN/m2
上)には24時間以上を必要としていた。なお、コーン
指数(kN/m2 )とは、コーンを締固めた土中に貫入さ
せたときの貫入抵抗力をコーンの底面積で除した値であ
り、再利用を目的とした固化土壌は土質工学会基準(J
SF T 716)に応じた泥土材料として表1に示す
用途に適用されている。
However, soil obtained by drying in the sun or dehydration and solidification, when exposed to rainwater, may generate turbid water and cause soil contamination or natural destruction around the landfill. Further, the soil obtained by using the cement-based solidifying material is generally limited in use because water in contact with the soil exhibits an alkalinity exceeding the drainage standard (pH 5.8 to 8.6) of the Water Pollution Control Law. In addition, the solidification degree, that is, the strength development (cone index of 200 kN / m 2 or more) required 24 hours or more. The cone index (kN / m 2 ) is a value obtained by dividing the penetration resistance when the cone is penetrated into compacted soil by the bottom area of the cone. Japan Society of Geotechnical Engineers (J
It is applied to the uses shown in Table 1 as mud material according to SF T 716).

【0004】[0004]

【表1】 [Table 1]

【0005】そこで、本発明の一出願人は先に、特開平
10−147781号公報において、泥土処理でのかか
る諸問題(濁水、固化土壌に接した水のアルカリ性、固
化土壌の強度発現性)を改善する技術として、半水石膏
と中性の水溶性高分子剤と組合せて成る乾燥固化剤を用
いる泥土等の処理システムを開示した。しかしながら、
泥土の固化効率、特に泥土処理時の団粒化性(粒子の複
合化)のほか、得られた固化土壌の固化度(強度発現
性)については十分ではなく改良の余地が残されてい
た。しかるに、本発明の目的は、泥土の団粒固化(強度
発現性の改善も含め)を改善して固化効率を高め、しか
も雨水にさらされても濁水を発生せず、かつ土壌に接し
た水のpHが水質汚濁防止法の排水基準内にある、実用コ
ーン指数を有する固化土壌に転換できる泥土固化材およ
び泥土の固化方法を提供することにある。
[0005] Therefore, one applicant of the present invention disclosed in Japanese Patent Application Laid-open No. Hei 10-147781 such problems in mud treatment (alkaline water, alkalinity of water in contact with solidified soil, strength development of solidified soil). As a technology for improving the above, a treatment system for mud and the like using a drying and solidifying agent in combination with hemihydrate gypsum and a neutral water-soluble polymer agent has been disclosed. However,
The solidification efficiency of the mud, in particular, the agglomeration property (composite of particles) during mud treatment, and the degree of solidification (strength development) of the obtained solidified soil were not sufficient, leaving room for improvement. However, an object of the present invention is to improve the solidification efficiency of the mud by agglomeration (including improvement of strength development), and furthermore, it does not generate turbid water even when exposed to rainwater, and has water in contact with the soil. It is an object of the present invention to provide a mud solidifying material and a mud solidifying method that can be converted to solidified soil having a practical cone index, wherein the pH of the soil is within the drainage standard of the Water Pollution Control Law.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するため鋭意研究した結果、泥土固化材を構成
する改質材の新たな成分として、砂型鋳造分野で発生す
る廃微砂(産業廃棄物)を用いることにより、泥土を効
率よく固化土壌に転換できることを知見し、さらには水
硬性石膏と反応してエトリンガイトを生成するアルミン
酸カルシウム、又は該アルミン酸カルシウムを成分とし
て有する無機物ないし鉱物を特定量使用することにより
前述の課題を解決し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, as a new component of the modifying material constituting the mud solidification material, the waste material generated in the field of sand casting. By using sand (industrial waste), they found that mud can be efficiently converted to solidified soil, and furthermore, calcium aluminate, which reacts with hydraulic gypsum to generate ettringite, or has the calcium aluminate as a component The above-mentioned problems were solved by using a specific amount of an inorganic substance or a mineral, and the present invention was completed.

【0007】すなわち、本発明は、(A)吸水性凝固剤
と、(B)(a)水硬性石膏及び(b)鋳造用砂型の製
造の際又は鋳造後の鋳物砂の回収、再生もしくは分級の
際に得られる廃微砂を含む固化改質材とを組合せて成る
ことを特徴とし、好ましくは、固化改質材(B)が、さ
らに(c)(i)アルミン酸カルシウム又はアルミン酸
カルシウムを必須成分とする無機物ないし鉱物から選ば
れた少なくとも1種の固化促進材を、水硬性石膏100
質量部に対して1〜50質量部の割合で含むことをさら
に特徴とする泥土固化材である。本発明は、同様に、攬
拌混合下、泥土中に吸水性凝固材(A)を添加した後、
固化改質材(B)を添加する泥土の固化方法、又は攬拌
混合下、泥土中に吸水性凝固材(A)と固化改質材
(B)を同時に添加する泥土の固化方法を提供する。
That is, the present invention provides (A) a water-absorbing coagulant, (B) (a) hydraulic gypsum, and (b) collection, regeneration or classification of molding sand during or after the production of a casting sand mold. Characterized in that the solidification modifier (B) further comprises (c) (i) calcium aluminate or calcium aluminate. At least one type of solidification accelerator selected from inorganic substances or minerals containing, as an essential component,
It is a mud solidification material further characterized in that it is contained in an amount of 1 to 50 parts by mass with respect to parts by mass. In the present invention, similarly, after adding the water-absorbing coagulant (A) into the mud under stirring and mixing,
The present invention provides a method for solidifying mud by adding a solidifying modifier (B), or a method for solidifying mud by simultaneously adding a water-absorbing coagulant (A) and a solidifying modifier (B) to mud under mixing and mixing. .

【0008】[0008]

【発明の実施の形態】本発明に係る泥土固化材は、必須
の構成要素として、(A)泥土中の水や土成分を捕捉、
凝集固定化して泥土を凝固させる吸水性凝固剤と、
(B)その泥土凝固物中の水と水和反応を惹起して泥土
凝固物を固化させる固化改質材とを含み、通常、泥土固
化剤は攬拌混合下の泥土に適用されるため、泥土は吸水
性凝固剤により凝固かつ団粒化されるとともに、固化改
質材により固化(凝結による強度の発現)が進行して粒
状で多孔質(団粒構造)の固化土壌として再生される。
また、吸水性凝固剤および固化改質材は、上記の仕様で
用いられるため、微粒子ないし粉末状であることが望ま
しい。
BEST MODE FOR CARRYING OUT THE INVENTION The mud solidifying material according to the present invention comprises: (A) water and soil components in mud as essential components;
A water-absorbing coagulant for coagulating and immobilizing mud,
(B) a solidification modifier that causes a hydration reaction with the water in the mud coagulate to solidify the mud coagulate, and since the mud solidifying agent is usually applied to the mud mixed with the mixture, The mud is coagulated and agglomerated by the water-absorbing coagulant, and solidification (the development of strength by coagulation) progresses by the solidification modifier to be regenerated as a granular and porous (agglomerated structure) solidified soil.
Further, since the water-absorbing coagulant and the solidifying modifier are used in the above-mentioned specification, it is desirable that they are in the form of fine particles or powder.

【0009】本発明の吸水性凝固剤としては、吸水性お
よび保水性を有する化合物であれば特に限定されない
が、好ましい吸水性凝固材としては、例えばデンプン系
グラフト重合体のアルカリ加水分解物(例えばデンプン
/アクリロニトリルグラフト重合体のアルカリ加水分解
物)、ポリオキシエチレン系ポリマー、ポリビニールア
ルコール系ポリマー、ポリアクリル酸系ポリマー及びそ
の塩類、ポリアクリルアミド系ポリマー及びその塩類、
ポリN−ビニルカルボン酸アミドなどの高吸水性ポリマ
ー、コンドロイチン硫酸、アガロース、アルギン酸ナト
リウムなどが挙げられる。これらは、1種用いてもよ
く、2種以上を組み合わせて用いてもよい。中でも特に
高吸水性ポリマー、とりわけポリアクリル酸系ポリマー
やポリアクリルアミド系ポリマー及びその塩類、ポリN
−ビニルカルボン酸アミドが好ましい。吸水性凝固剤の
使用量は、泥土の含水率、泥土の凝固状態、コストの観
点から、泥土100質量部に対して通常0.001〜2
質量部、好ましくは0.1〜1.0質量部の範囲で使用
するのがよい。泥土に吸水性凝固剤を添加する際、泥土
の種類によってはいわゆる凝集剤を併用することができ
る。凝集剤は吸水性は示さないが泥土微粒子を凝集させ
る作用を有するものであり、本発明の目的に有用であり
える。例えば、硫酸アルミニウム、ポリ塩化アルミニウ
ムなどが知られている。本発明の固化改質材は、必須の
成分として、水硬化性石膏(a)、廃微砂(b)を含
み、任意に、さらにアルミン酸カルシウム又はアルミン
酸カルシウムを必須成分とする無機物ないし鉱物から選
ばれた少なくとも1種の固化促進材(c)を含む。この
固化促進材は水硬性石膏と水和反応してエトリンガイト
を形成して凝結固化を促進する機能を有する。固化改質
材の使用量は、泥土のpH、土質(シルト分、粘土分、コ
ロイド分など)、泥土の固化効率、固化土壌の所要固化
度(コーン指数)に応じて適宜選択すればよいが、一般
的には、泥土100質量部に対して通常1〜50質量
部、より好ましくは5〜30質量部の範囲で使用するの
がよい。
The water-absorbing coagulant of the present invention is not particularly limited as long as it has a water-absorbing and water-retaining property. Preferred water-absorbing coagulants include, for example, an alkali hydrolyzate of a starch-based graft polymer (for example, An alkali hydrolyzate of a starch / acrylonitrile graft polymer), a polyoxyethylene-based polymer, a polyvinyl alcohol-based polymer, a polyacrylic acid-based polymer and its salts, a polyacrylamide-based polymer and its salts,
Highly water-absorbing polymers such as poly-N-vinylcarboxylic acid amide, chondroitin sulfate, agarose, sodium alginate and the like can be mentioned. These may be used alone or in combination of two or more. Among them, particularly superabsorbent polymers, especially polyacrylic acid-based polymers and polyacrylamide-based polymers and their salts, poly N
-Vinyl carboxylic acid amides are preferred. The amount of the water-absorbing coagulant is usually 0.001 to 2 parts per 100 parts by mass of the mud from the viewpoint of the water content of the mud, the solidification state of the mud, and the cost.
It is good to use it by mass, preferably in the range of 0.1 to 1.0 mass part. When adding the water-absorbing coagulant to the mud, a so-called flocculant can be used in combination depending on the type of the mud. The flocculant does not exhibit water absorption, but has a function of flocculating mud fine particles, and may be useful for the purpose of the present invention. For example, aluminum sulfate and polyaluminum chloride are known. The solidification modifier of the present invention contains, as essential components, water-setting gypsum (a) and waste fine sand (b), and optionally further contains calcium aluminate or an inorganic substance or mineral containing calcium aluminate as an essential component. At least one solidification promoting material (c) selected from the group consisting of: This solidification promoting material has a function of hydrating with hydraulic gypsum to form ettringite and promoting setting and solidification. The amount of the solidification modifier used may be appropriately selected according to the pH of the mud, the soil quality (silt, clay, colloid, etc.), the solidification efficiency of the mud, and the required degree of solidification of the solidified soil (corn index). Generally, the amount is preferably 1 to 50 parts by mass, more preferably 5 to 30 parts by mass with respect to 100 parts by mass of mud.

【0010】水硬性石膏(a)は、水の存在下で泥土凝
集固化物を凝結固化する役割を果たすものである。この
ような成分(a)の好ましい例としては、例えば半水石
膏や、排煙脱硫石膏(石油の精製工程)、燐酸石膏(燐
酸製造時)、廃棄石膏型材(精密鋳造・歯科・外科等の
医療・美術工芸・陶磁器)、廃棄石膏(石膏ボード工
場)等を加熱処理して得られる焼石膏などが挙げられる
が、場合によっては無水石膏を使用することもできる。
これらは、単独で用いてもよく、2種以上を組み合わせ
て用いてもよい。
[0010] Hydraulic gypsum (a) plays a role of coagulating and solidifying mud aggregated solidified material in the presence of water. Preferred examples of the component (a) include, for example, hemihydrate gypsum, flue gas desulfurization gypsum (a petroleum refining process), phosphate gypsum (when phosphoric acid is produced), and waste gypsum profiles (precision casting, dental, surgical, etc.). For example, calcined gypsum obtained by heat-treating waste gypsum (gypsum board factory) and the like can be used. In some cases, anhydrous gypsum can be used.
These may be used alone or in combination of two or more.

【0011】本発明の廃微砂(b)は、砂型鋳造に用い
る砂型の製造時(例えば混練砂の製造時、該混練砂によ
る砂型の造型時)、又は鋳造後の砂型の残骸(以下、使
用済み砂型という)から鋳物砂を回収、再生および分級
する際に得られる微細な鋳物砂であり、従来は微細であ
るために鋳物砂として再使用できず産業廃棄物として処
分されてきた微砂である。本発明によれば、鋳物砂の出
発物質としての元砂(新砂)を粒度調整する際に得られ
る微砂は、本発明の廃微砂から除外されるものである。
本発明の廃微砂とは元砂を含む出発物質を用いて砂型の
製造を開始した以降の機械的、化学的、熱的等の処理を
行なわれている際中あるいはその後に発生する廃微砂を
指称するものである。理由は不明であるが、このような
廃微砂において本発明の効果が特異的に奏されることが
見い出された。
The waste fine sand (b) of the present invention can be used for the production of a sand mold used for sand casting (for example, for the production of kneaded sand, the molding of a sand mold with the kneaded sand), or the remains of the sand mold after casting (hereinafter, referred to as the following). This is fine sand obtained when recovering, regenerating and classifying molding sand from used sand molds.Since it is so fine, it cannot be reused as molding sand and has been disposed of as industrial waste. It is. According to the present invention, fine sand obtained when adjusting the particle size of raw sand (fresh sand) as a starting material for foundry sand is excluded from the waste fine sand of the present invention.
The waste fine sand of the present invention is waste fine generated during or after mechanical, chemical, thermal, or other treatments after the start of sand mold production using starting materials including original sand. It refers to sand. Although the reason is unknown, it has been found that the effect of the present invention is specifically exhibited in such waste fine sand.

【0012】さらに詳細にいえば、廃微砂とは、砂型
の製造時、又は鋳造後の使用済み砂型を粗砕して得た
回収砂を再生処理、例えば研磨再生(有機物・カーボン
・その他の無機物などを機械的除去)、又は焙焼再生
(流動焙焼炉〈カルサイナー〉、ロータリーキルン等の
焙焼装置内で、例えば400℃以上の高温により有機物
などを燃焼除去)し、その後必要に応じて研磨処理およ
び/または分級処理(粒度調整)して再生砂を製造する
際に得られる平均粒径0.1〜100μm以下、好まし
くは1〜50μm以下の微砂である。中でも、環境問題
(例えば土壌・水質汚染等)に繋がる恐れのない焙焼再
生の際、その後の研磨および/または分級の際に得られ
る微砂が好ましい。これらの廃微砂は、1種用いてもよ
く、2種以上を組み合わせて用いてもよい。なお、廃微
砂の主原料源である砂型としては、ケイ砂に代表される
鋳物砂とベントナイトの混合物を常温で加圧固化させて
なる生型、鋳物砂と熱硬化性フェノール樹脂系の混練物
を加熱硬化させてなるシェルモールド型、鋳物砂とフェ
ノール樹脂とポリイソシアネートの混練物をアミン系触
媒の通気により硬化させてなるコールドボックス型、鋳
物砂とフラン樹脂と酸硬化剤の混練物を常温で硬化させ
てなる有機自硬性型などが例示される。
More specifically, waste fine sand refers to a reclaimed sand obtained during the production of a sand mold or by roughly crushing a used sand mold after casting, for example, polishing and reclaiming (organic matter, carbon, and other materials). Mechanical removal of inorganic substances, etc.) or roasting regeneration (combustion removal of organic substances, etc. at a high temperature of 400 ° C. or more, for example, in a roasting apparatus such as a fluidized roasting furnace <calciner> or rotary kiln), and then, if necessary. Fine sand having an average particle size of 0.1 to 100 μm or less, preferably 1 to 50 μm or less, which is obtained when a reclaimed sand is produced by polishing and / or classification (particle size adjustment). Among them, fine sand obtained during roasting and regeneration that does not lead to environmental problems (for example, soil and water pollution) and subsequent polishing and / or classification is preferable. These waste fine sands may be used alone or in combination of two or more. The sand mold, the main raw material source of waste fine sand, is a green mold obtained by pressing and solidifying a mixture of foundry sand typified by silica sand and bentonite at room temperature, and kneading of molding sand and thermosetting phenolic resin. A shell mold type obtained by heating and curing the product, a cold box type obtained by curing a kneaded product of molding sand, phenolic resin and polyisocyanate by ventilation of an amine-based catalyst, and a kneaded product of molding sand, furan resin and an acid curing agent An organic self-hardening type cured at room temperature is exemplified.

【0013】この種の廃微砂は、高度の水分吸着能を有
するため、吸水性ポリマーにより形成された泥土凝固物
中の水分固化改質材層中に吸着滲出させることにより水
硬性石膏と固化促進材との水和反応を惹起し、さらには
エトリンガイトの生成に基づく固化増進に寄与する。そ
の結果、べたつきや固着が少ない固化土壌が生産効率よ
く製造される。併せて、水硬性石膏の分散効率、泥土凝
固物の団粒化が改善されるため、取扱いに優れた改良土
の形成が容易となる。しかも、廃微砂を添加したことに
より適宜な湿り気を持つ固化土壌は、その養生、乾燥時
でも粉塵の発生(平成7年環境庁告示第63号による粉
塵濃度測定)がみられない利点がある。さらに驚くこと
には、泥土が有する悪臭を軽減した固化土壌(平成7年
環境庁告示第63号による臭気濃度測定)に転換するこ
とができる。このような好ましい特質を有する廃微砂
は、通常、0.5〜100m2 /gの比表面積(BET
法)を有するが、特に5〜50m2 /gのものが好まし
い。0.5m2 /g未満では悪臭の軽減度や泥土凝固物
の団粒化の改善効果が小さく、逆に100m2 /gを超
えると固化土壌のべたつきや固着を生じる傾向がある。
ここで、廃微砂(b)は、水硬性石膏(a)100質量
部に対して通常1〜100質量部、好ましくは5〜50
質量%の範囲で使用される。1質量部未満では固化性の
改善効果が少なく、逆に、100質量部を超えると固化
土壌のべたつきや固着を生じる傾向がある。本発明の泥
土固化材は上記の如き廃微砂のみを含むことが望ましい
が、効果を阻害しない範囲において他の砂あるいは類似
物を含んでもよい。本発明の固化改良材においては、好
ましくは、さらに、水硬性石膏(a)と共に、固化促進
材(c)を併用することにより、両者の水和反応による
エトリンガイトを生成し、実用のコーン指数を有する固
化土壌を短時間に形成することができる。かかる固化促
進材(c)としては、アルミン酸カルシウム、又はアル
ミン酸カルシウムを必須の成分として有する無機物ない
しは鉱物、例えば、アルミナセメント、ハイアルミナス
ラグ、高炉スラグ、転炉スラグ、電気炉スラグ及びこれ
らの混合物などが挙げられるが、これらに限定されるも
のではない。中でもアルミン酸カルシウム、アルミナセ
メント、電気炉スラグなどが好ましい。特に好ましくは
電気炉スラグである。固化促進材(c)の平均粒径とし
ては、0.1〜100μm程度であればよく、特に1〜
50μmの範囲が好ましい。固化促進材の使用量は、水
硬性石膏100質量部に対して通常1〜50質量部、好
ましくは3〜45質量部、より好ましくは5〜40質量
部の範囲がよい。1質量部未満では固化土壌のコーン指
数の早期発現効果が少なく、逆に、50質量部を超える
と固化土壌に接した水のpHの排水基準内確保が難しく又
硬くなり過ぎて固化土壌としての使用が制限される。
[0013] This kind of waste fine sand has a high moisture adsorbing ability, and is adsorbed and exuded into the moisture solidifying modifier layer in the mud coagulate formed by the water-absorbing polymer to solidify with the hydraulic gypsum. It induces a hydration reaction with the accelerator and further contributes to solidification enhancement based on the formation of ettringite. As a result, solidified soil with less stickiness and sticking is produced with high production efficiency. In addition, since the dispersion efficiency of the hydraulic gypsum and the agglomeration of the mud solidified material are improved, the formation of an improved soil excellent in handling becomes easy. Moreover, the solidified soil having appropriate moisture due to the addition of the waste fine sand has an advantage that no dust is generated (dust concentration measurement according to the notification of the Environment Agency 1995 No. 63) even during curing and drying. . Even more surprisingly, it can be converted to solidified soil (odor concentration measurement according to the Notification of the Environment Agency, No. 63, 1995) in which the bad smell of the mud is reduced. Waste fine sand having such favorable characteristics is usually 0.5 to 100 m 2 / g specific surface area (BET).
Method), but those having 5 to 50 m 2 / g are particularly preferable. If it is less than 0.5 m 2 / g, the degree of reduction of the offensive odor and the effect of improving the agglomeration of the mud solidified material are small, while if it exceeds 100 m 2 / g, the solidified soil tends to be sticky or sticky.
Here, the waste fine sand (b) is usually 1 to 100 parts by mass, preferably 5 to 50 parts by mass with respect to 100 parts by mass of the hydraulic gypsum (a).
Used in the range of mass%. If the amount is less than 1 part by mass, the effect of improving the solidification property is small, and if it exceeds 100 parts by mass, the solidified soil tends to be sticky or sticky. The mud solidifying material of the present invention desirably contains only the waste fine sand as described above, but may contain other sand or similar substances as long as the effect is not impaired. In the solidification improving material of the present invention, preferably, by further using the setting accelerator (c) together with the hydraulic gypsum (a), ettringite is generated by a hydration reaction of both, and a practical cone index is obtained. The solidified soil can be formed in a short time. As such a solidification promoting material (c), calcium aluminate, or an inorganic substance or mineral having calcium aluminate as an essential component, for example, alumina cement, high alumina slag, blast furnace slag, converter slag, electric furnace slag, and the like Examples thereof include, but are not limited to, mixtures. Among them, calcium aluminate, alumina cement, electric furnace slag and the like are preferable. Particularly preferred is electric furnace slag. The solidification accelerator (c) may have an average particle size of about 0.1 to 100 μm, and
A range of 50 μm is preferred. The use amount of the solidification accelerator is usually in the range of 1 to 50 parts by mass, preferably 3 to 45 parts by mass, more preferably 5 to 40 parts by mass with respect to 100 parts by mass of hydraulic gypsum. If the amount is less than 1 part by mass, the early manifestation effect of the corn index of the solidified soil is small, and if it exceeds 50 parts by mass, it is difficult to secure the pH of the water in contact with the solidified soil within the drainage standard, and the solidified soil becomes too hard. Limited use.

【0014】本発明の泥土固化材を用いる泥土の固化方
法について、攬拌機を備えたバッチ式ミキサーによる固
化土壌の製造について例示的に説明する。先ず、攬拌状
態にあるミキサー内に泥土を投入し、吸水性凝固剤を添
加混合(例えば30〜300秒)して、泥土中の水や土
成分を捕捉、凝集固定化した泥土凝固物を形成し、引続
き固化改質材を添加混合(例えば15〜60秒)するこ
とにより、泥土凝固物を団粒化するとともに固化してべ
たつきや固着がない取扱いに優れた粒状の改良土を得る
ことができる。なお、泥土の含水率が低い場合には、各
添加材を予め混合したもの又は個別にほぼ同時的に添加
する方法が好適である。しかしながら、得られた固化土
壌は一般にその後の養生、乾燥によりコーン指数はさら
に高まる傾向があるので、固化改質材の使用量は固化土
壌の使用目的に応じて設定する必要がある。また、含水
率が75%質量以上の場合は予め凝集分離や機械分離に
より含水率を低下させておくことが望ましい。
As to the method for solidifying mud using the mud solidifying material of the present invention, the production of solidified soil by a batch mixer equipped with an agitation mixer will be exemplified. First, mud is poured into a mixer in a mixed state, and a water-absorbing coagulant is added and mixed (for example, for 30 to 300 seconds) to capture water and soil components in the mud and coagulate and fix the mud coagulated material. Forming and subsequently adding and mixing the solidification modifier (for example, for 15 to 60 seconds) to agglomerate and solidify the mud solidified material to obtain a granular improved soil that is excellent in handling without stickiness or sticking. Can be. In addition, when the water content of the mud is low, a method in which each additive is mixed in advance or a method in which the individual additives are added almost simultaneously is preferable. However, the obtained solidified soil generally tends to have a higher corn index due to subsequent curing and drying. Therefore, the amount of the solidified modifier used needs to be set according to the purpose of use of the solidified soil. When the water content is 75% by mass or more, it is desirable to previously reduce the water content by coagulation separation or mechanical separation.

【0015】ここで、用いるミキサーの種類としては、
特に限定はなく、例えばモルタルミキサー、セメントミ
キサー、ワールミキサー、パドルミキサー、スクリュー
ミキサー、ニーダーなどが例示されるが、バッチ式ミキ
サーでも連続ミキサーでも差し支えない。また、混合に
際しては、予め泥土を加温し、混合時にミキサーを加温
し、ミキサー内に温風を導入し、又はミキサー内を減圧
にして団粒固化を促進することができる。本発明の泥土
固化材を用い、上述の固化方法に従って泥土を処理して
得られる固化土壌は、上記の如く、べたつきや固着がな
い団粒化された粒状土であるが、流水や雨水に曝しても
濁水が生じないし、固化土壌と接した水のpHは、水質汚
濁防止法で定められた水質基準範囲内であることから、
路盤材、堤防、土地造成等の埋戻し土として再利用でき
るほか、植生土壌や、コンクリート用骨材として使用す
ることができる。
Here, the type of mixer used is as follows.
There is no particular limitation, and examples thereof include a mortar mixer, a cement mixer, a whirl mixer, a paddle mixer, a screw mixer, and a kneader, but a batch mixer or a continuous mixer may be used. Further, at the time of mixing, the mud is heated in advance, the mixer is heated at the time of mixing, warm air is introduced into the mixer, or the inside of the mixer is depressurized to promote the solidification of aggregates. The solidified soil obtained by treating the mud according to the solidifying method described above using the mud solidifying material of the present invention is, as described above, an aggregated granular soil without stickiness or sticking, but is exposed to running water or rainwater. Even if turbid water does not occur, the pH of the water in contact with the solidified soil is within the water quality standard range specified by the Water Pollution Control Law,
It can be reused as backfill soil for roadbed materials, embankments, land reclamation, etc., and can also be used as vegetated soil and aggregate for concrete.

【0016】本発明に係る泥土固化材により、前述した
ような好ましい特質を有する粒状の固化土壌が早期に得
られる理由は定かではないが次のように推察される。す
なわち、本発明において、泥土固化材を構成する吸水性
凝固剤は、泥土中の水分を取り込むとともに、土成分は
勿論、シルト分、粘土分、コロイド分も捕捉、凝集固定
化して泥土の凝固物を形成する。この泥土凝固物は引き
続き添加される比表面積の大きな廃微砂による打ち粉
(増粘)効果と攬拌との相乗によって団粒化(粒子の複
合化)が容易に進行し、しかも同時に廃微砂の水分吸着
能により、泥土凝固物から吸着滲出させた水分を介して
水硬性石膏が水和硬化して土壌が固化(凝結、コーン指
数が発現)し、固化土壌が得られる。さらに、水硬性石
膏と共に固化促進材が存在すると、これらが水和反応を
生起してエトリンガイト(水和鉱物等)を形成すること
により、固化増進(コーン指数の早期発現)が図られて
早期に粒状の固化土壌が得られる。
The reason why the solidified granular material according to the present invention can provide a granular solidified soil having the preferable characteristics as described above at an early stage is not clear, but is presumed as follows. That is, in the present invention, the water-absorbing coagulant constituting the mud solidifying material takes in the water in the mud and captures not only the soil components but also the silt, clay, and colloid components, and coagulates and fixes the coagulated mud. To form Agglomeration (composite of particles) of this mud solidified easily proceeds by the synergistic effect of the powdering (thickening) effect of waste fine sand with a large specific surface area and the mixing of the waste, and at the same time, the waste fineness Due to the water adsorption capacity of the sand, the hydraulic gypsum is hydrated and hardened through the water adsorbed and exuded from the mud coagulate, and the soil is solidified (coagulation, cone index is developed), and the solidified soil is obtained. Furthermore, if a solidification accelerator is present together with the hydraulic gypsum, they cause a hydration reaction to form ettringite (a hydrated mineral or the like), thereby increasing the solidification (early expression of the cone index) and promptly A granular solidified soil is obtained.

【0017】[0017]

【発明の効果】以上説明した通り、本発明によれば下記
の効果を奏する。 (1)本発明の泥土固化材は、廃微砂の使用による泥土
凝固物の団粒化の改善、および団粒化とともに進行する
水硬性石膏及び固化促進剤の反応により、コーン指数の
調整が容易で、べたつきや粒子同士の固着がない取扱い
に優れた粒状の改良土を、効率よく、容易に製造するこ
とができる。 (2)また、かかる作業性の改善により、建設現場での
発生泥土をその場で容易に改良土に転換できる。 (3)また、改良土の臭気を軽減することができる。 (4)本発明により得られる固化土壌は、該土壌に接し
た水のpHが水質汚濁防止法で定められた水質基準範囲内
で、また流水や雨水に曝しても濁水を生じないため、土
壌汚染や自然環境を汚すことはない。また、廃微砂の保
湿効果により、固化土壌の養生、乾燥時での表面のぱさ
つきによる粉塵の発生がない。
As described above, the present invention has the following effects. (1) The clay solidification material of the present invention can control the cone index by improving the agglomeration of the mud coagulate by using waste fine sand, and by the reaction of the hydraulic gypsum and the solidification accelerator progressing with the agglomeration. It is possible to efficiently and easily produce a granular improved soil which is easy and has excellent handling without stickiness or sticking of particles. (2) Further, by improving the workability, the mud generated at the construction site can be easily converted to the improved soil at the site. (3) Further, the odor of the improved soil can be reduced. (4) The solidified soil obtained according to the present invention has a pH in the water in contact with the soil within a water quality standard range defined by the Water Pollution Control Law, and does not generate turbid water even when exposed to running water or rainwater. It does not pollute the natural environment. Also, due to the moisturizing effect of the waste fine sand, there is no generation of dust due to surface roughness during curing and drying of the solidified soil.

【0018】このような好ましい性質を有する本発明の
泥土固化材は、例えばトンネル工事(シールド工事)、
堀削工事(ボーリング、杭埋設)、建築工事等の建設現
場での発生泥土、湖沼、河川、港湾等の浚渫泥土、浄水
場の泥土、下水処理の泥土、工場廃水の泥土、ヘドロ、
濁水、廃ベントナイト泥水、セメントミルク、地盤改良
などの固化処理にも好適に適用することができる。
The mud solidification material of the present invention having such preferable properties can be used, for example, in tunnel construction (shield construction),
Excavation work (boring, pile burial), mud generated at construction sites such as construction work, dredging mud in lakes, marshes, rivers, harbors, etc.
The present invention can also be suitably applied to solidification treatments such as turbid water, waste bentonite mud, cement milk, and ground improvement.

【0019】[0019]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。なお、泥水の含水率は赤外線水分計、改良土のコー
ン指数は泥土工学会基準(JSF T716)、固化土
壌との接触水のpHはガラス電極式pHメーター計及び流出
水の濁りは肉眼観察により測定した。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples. The moisture content of muddy water is measured by infrared moisture meter, cone index of improved soil is mud engineering standard (JSF T716), pH of contact water with solidified soil is measured by glass electrode type pH meter, and turbidity of runoff is visually observed. It was measured.

【0020】実施例1 攬拌機を備えたバッチ式ミキサー内に建設現場で発生し
た泥土(含水率38%、pH7.4)100質量部を投入
し、攬拌混合下に吸水性凝固剤(ポリアクリルアミド系
高吸水性ポリマー)0.2質量部を添加して3分間混合
した。引き続き、固化改質材として半水石膏と砂型から
回収した鉱物砂をカルサイナー焙焼再生した際に得られ
た比表面積12m2 /gの廃微砂との混合物{半水石
膏:廃微砂=100:25(質量比)}10質量部を添
加して30秒間混合後ミキサーより排出し、30分放置
して粒状のコーン指数220kN/m2 の固化土壌を得
た。なお、混合時の団粒化性は良好であった。得られた
固化土壌については、さらに24時間放置後、固化土壌
との接触水のpH、流出水の濁り状態を調査した。なお、
上記の混合操作、放置及び測定はいずれも恒温室内恒温
室(温度20℃、相対湿度60%)で行った。その結果
を表2に示す。
Example 1 100 parts by mass of mud (moisture content 38%, pH 7.4) generated at a construction site was charged into a batch type mixer equipped with an agitator, and a water absorbing coagulant ( (Polyacrylamide superabsorbent polymer) 0.2 part by mass was added and mixed for 3 minutes. Subsequently, a mixture of hemihydrate gypsum as a solidifying modifier and waste fine sand having a specific surface area of 12 m 2 / g obtained when calciner roasting and regenerating mineral sand recovered from a sand mold {hemihydrate gypsum: waste fine sand = 100: 25 (mass ratio) 比 10 parts by mass was added, mixed for 30 seconds, discharged from the mixer, and allowed to stand for 30 minutes to obtain solidified soil having a granular cone index of 220 kN / m 2 . In addition, the aggregation property at the time of mixing was good. After leaving the obtained solidified soil for 24 hours, the pH of the contact water with the solidified soil and the turbidity of the effluent were examined. In addition,
The above mixing operation, standing, and measurement were all performed in a constant temperature room (temperature 20 ° C., relative humidity 60%). Table 2 shows the results.

【0021】実施例2 実施例1において、固化改質材として実施例1で用いた
半水石膏および廃微砂に固化促進材として電気炉スラグ
を加えた混合物{半水石膏:廃微砂:電気炉スラグ=1
00:29:14(質量比)}10質量部を使用した以
外は実施例1と同様にしてコーン指数300kN/m2
固化土壌を得た。また、混合時の団粒化性は良好であっ
た。得られた固化土壌については、実施例1と同様に接
触水のpH、流出水の濁り状態の調査を行った。その結果
を表2に示す。また、平成7年環境庁告示第63号によ
り固化土壌の臭気濃度を測定した結果、固化土壌の臭気
指数は10以下となり、汚泥の処理前の臭気指数44に
対して臭気が著しく軽減した。
Example 2 In Example 1, a mixture of the hemihydrate gypsum used in Example 1 as a solidifying modifier and waste electric fine slag as a solidification accelerator was added to the hemihydrate gypsum used in Example 1. Electric furnace slag = 1
A solidified soil having a cone index of 300 kN / m 2 was obtained in the same manner as in Example 1 except that 00:29:14 (mass ratio)} 10 parts by mass was used. Also, the aggregation property during mixing was good. About the obtained solidified soil, the pH of the contact water and the turbidity of the effluent were investigated in the same manner as in Example 1. Table 2 shows the results. Further, as a result of measuring the odor concentration of the solidified soil according to the Notification of the Environment Agency of Japan No. 63 in 1995, the odor index of the solidified soil was 10 or less, and the odor was significantly reduced from the odor index 44 before the treatment of the sludge.

【0022】比較例1 実施例1において、固化改質材として半水石膏10質量
部を使用した以外は実施例1と同様にしてコーン指数1
90kN/m2 の固化土壌を得た。混合時の団粒化性は実
施例1及び2よりやや劣るものであった。得られた固化
土壌については、実施例1と同様に接触水のpH、流出水
の濁り状態の調査を行った。その結果を表2に示す。
Comparative Example 1 A cone index of 1 was obtained in the same manner as in Example 1 except that 10 parts by mass of gypsum hemihydrate was used as a solidifying modifier.
A solidified soil of 90 kN / m 2 was obtained. Agglomeration during mixing was slightly inferior to Examples 1 and 2. About the obtained solidified soil, the pH of the contact water and the turbidity of the effluent were investigated in the same manner as in Example 1. Table 2 shows the results.

【0023】比較例2 実施例1において、固化改質材として半水石膏と電気炉
スラグの混合物{半水石膏:電気炉スラグ=100:1
4(質量比)}10質量部を使用した以外は実施例1と
同様にしてコーン指数270kN/m2 の固化土壌を得
た。混合時の団粒化性は実施例1及び2よりやや劣るも
のであった。得られた固化土壌については実施例1と同
様に接触水のpH、流出水の濁り状態の調査を行った。そ
の結果を表2に示す。また、平成7年環境庁告示第63
号により改良土の臭気濃度を測定した結果、固化土壌の
臭気指数は30(汚泥の処理前の臭気指数44)であ
り、実施例2ほどの臭気の軽減は認められなかった。
COMPARATIVE EXAMPLE 2 In Example 1, a mixture of hemihydrate gypsum and electric furnace slag as a solidifying modifier {gypsum hemihydrate: electric furnace slag = 100: 1
Solidified soil having a cone index of 270 kN / m 2 was obtained in the same manner as in Example 1 except that 4 (mass ratio)} 10 parts by mass was used. Agglomeration during mixing was slightly inferior to Examples 1 and 2. With respect to the obtained solidified soil, the pH of the contact water and the turbidity of the effluent were investigated in the same manner as in Example 1. Table 2 shows the results. Also, 1995 Environment Agency Notification 63
As a result of measuring the odor concentration of the improved soil according to No. 2, the odor index of the solidified soil was 30 (the odor index before sludge treatment was 44), and the odor reduction as in Example 2 was not recognized.

【0024】比較例3 実施例1において、固化改質材成分の廃微砂を比表面積
0.1m2 /gの珪砂に代えた以外は実施例2と同様に
してコーン指数220kN/m2 の固化土壌を得た。混合
時の団粒化性は実施例1及び2より劣るものであった。
得られた固化土壌については、実施例1と同様に接触水
のpH、流出水の濁り状態の調査を行った。その結果を表
2に示す。
Comparative Example 3 The procedure of Example 1 was repeated, except that the waste fine sand as the solidifying modifier component was replaced with silica sand having a specific surface area of 0.1 m 2 / g, and a cone index of 220 kN / m 2 was used. Solidified soil was obtained. Agglomeration during mixing was inferior to Examples 1 and 2.
About the obtained solidified soil, the pH of the contact water and the turbidity of the effluent were investigated in the same manner as in Example 1. Table 2 shows the results.

【0025】[0025]

【表2】 [Table 2]

【0026】表2より明らかなごとく、実施例1〜2の
固化土壌は、実用固化度(コーン指数200kN/m2
上)を有し、その土壌に接した水のpHは水質汚濁防止法
で定められた水質基準範囲内のため安全性に優れ、流出
水の濁りも認められず臭気も軽減されるなど、再利用で
きることが確認されたことから、本発明に係る泥土固化
材は泥土等の処理に有効であることがわかった。
As is clear from Table 2, the solidified soils of Examples 1 and 2 have a practical solidification degree (cone index of 200 kN / m 2 or more), and the pH of water in contact with the soil is determined by the water pollution control method. It is excellent in safety because it is within the defined water quality standard range, turbidity of effluent is not recognized and odor is reduced, and it has been confirmed that it can be reused. It turned out to be effective for processing.

【0027】応用例 市販の園芸用材料である朝明砂(商品名、材質:花闇
岩、粒径5mm以下)60質量部と実施例1で得られた固
化土壌40質量部を混合して検討品とした。また、前記
朝明砂60質量部に園芸用土壌改良材料として鹿沼土4
0質量部を混合して対照品とした。さらに、上記の検討
品又は対照品と園芸用土をそれぞれ体積比で70:30
の割合で混合して二種類の床材を調合した。次ぎに、各
床材15kgをプランタンに入れて、小松葉を植えて40
日経過後に床材の吸水性、保水性、pH、植物の根腐れの
有無を確認した。表3から明らかなように、市販材料か
ら構成された市販床材と比較して、固化土壌を含有する
床材は、吸水性、保水性、根腐れ、pHのいずれの点にお
いても遜色のない結果を示した。なお、使用した固化土
壌と市販の園芸用材料の粒度分布は表4に示す通りであ
った。
APPLICATION EXAMPLES A study was conducted by mixing 60 parts by mass of Asahisa sand (commercial name, material: granite, particle size of 5 mm or less) which is a commercially available horticultural material with 40 parts by mass of the solidified soil obtained in Example 1. Product. In addition, 60 parts by mass of the morning light sand was used as a horticultural soil improvement material.
0 parts by mass were mixed to obtain a control product. Furthermore, the above-mentioned examination product or control product and the horticultural soil are each 70:30 by volume ratio.
To mix two kinds of flooring materials. Next, put 15 kg of each flooring material in the plantin, plant the komatsuba and 40
After a lapse of days, the floor material was checked for water absorption, water retention, pH, and the presence or absence of root rot of the plant. As is clear from Table 3, compared with the commercial flooring composed of commercial materials, the flooring containing the solidified soil is comparable to any of water absorption, water retention, root rot, and pH. The results are shown. In addition, the particle size distribution of the used solidified soil and commercially available horticultural materials was as shown in Table 4.

【0028】[0028]

【表3】 [Table 3]

【0029】[0029]

【表4】 [Table 4]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松岡 武男 三重県三重郡菰野町大字永井3085番地の1 株式会社日本資源リサイクル内 Fターム(参考) 2D043 CA20 DA10 DD18 EB06  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Takeo Matsuoka 3085 Nagai, Komono-cho, Mie-gun, Mie Prefecture F-term in Japan Resource Recycling Co., Ltd. 2D043 CA20 DA10 DD18 EB06

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 (A)吸水性凝固剤と、(B)(a)水
硬性石膏及び(b)鋳造用砂型の製造の際又は鋳造後の
鋳物砂の回収、再生もしくは分級の際に得られる廃微砂
を含む固化改質材とを組合せて成ることを特徴とする泥
土固化材。
1. A method for producing (A) a water-absorbing coagulant and (B) (a) hydraulic gypsum and (b) at the time of producing, casting, or recovering, regenerating or classifying molding sand after casting. And a solidification modifier containing waste fine sand.
【請求項2】 前記固化改質材(B)が、さらに(c)
アルミン酸カルシウム又はアルミン酸カルシウムを必須
成分とする無機物ないし鉱物から選ばれた少なくとも1
種の固化促進材を、水硬性石膏100質量部に対して1
〜50質量部の割合で含むことを特徴とする請求項1記
載の泥土固化材。
2. The solidification modifier (B) further comprises (c)
At least one selected from calcium aluminate or an inorganic substance or mineral containing calcium aluminate as an essential component;
1 kind of solidification accelerator is added to 100 parts by mass of hydraulic gypsum.
The mud solidification material according to claim 1, wherein the solidification material is contained in an amount of from 50 to 50 parts by mass.
【請求項3】 前記廃微砂が、鋳造後に回収される鋳物
砂の焙焼再生の際、さらに必要に応じて付加される機械
的研磨又は分級の際に得られる微砂である請求項1また
は2に記載の泥土固化材。
3. The fine sand obtained from the method according to claim 1, wherein the waste fine sand is obtained by roasting and regenerating molding sand recovered after casting, and further by mechanical polishing or classification added as necessary. Or the mud solidifying material according to 2.
【請求項4】 BET法により測定される廃微砂の比表
面積が0.5〜100m2 /gである請求項1〜3のい
ずれかに記載の泥土固化材。
4. The solidified mud material according to claim 1, wherein the specific surface area of the waste fine sand measured by the BET method is 0.5 to 100 m 2 / g.
【請求項5】 廃微砂が水硬性石膏100質量部に対し
て1〜100質量部である請求項1〜4のいずれかに記
載の泥土固化材。
5. The soil hardening material according to claim 1, wherein the amount of the waste fine sand is 1 to 100 parts by mass with respect to 100 parts by mass of the hydraulic gypsum.
【請求項6】 攬拌混合下、泥土中に吸水性凝固材
(A)を添加した後、請求項1〜5のいずれかに記載の
固化改質材(B)を添加することを特徴とする泥土の固
化方法。
6. The solidification modifier (B) according to any one of claims 1 to 5, wherein the solidification modifier (B) according to any one of claims 1 to 5 is added after mixing the water-absorbent coagulant (A) into the mud under mixing and stirring. How to solidify the mud.
【請求項7】 攬拌混合下、泥土中に請求項1〜5のい
ずれかに記載の吸水性凝固材(A)と固化改質材(B)
とを同時に添加することを特徴とする泥土の固化方法。
7. The water-absorbent coagulant (A) and the solidification modifier (B) according to any one of claims 1 to 5, in a mud under mixing and stirring.
A method for solidifying mud, characterized by simultaneously adding
JP37541599A 1999-12-28 1999-12-28 Muddy soil solidifying material and muddy soil solidifying method Pending JP2001182044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37541599A JP2001182044A (en) 1999-12-28 1999-12-28 Muddy soil solidifying material and muddy soil solidifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37541599A JP2001182044A (en) 1999-12-28 1999-12-28 Muddy soil solidifying material and muddy soil solidifying method

Publications (1)

Publication Number Publication Date
JP2001182044A true JP2001182044A (en) 2001-07-03

Family

ID=18505488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37541599A Pending JP2001182044A (en) 1999-12-28 1999-12-28 Muddy soil solidifying material and muddy soil solidifying method

Country Status (1)

Country Link
JP (1) JP2001182044A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004092304A (en) * 2002-09-03 2004-03-25 Kawashima Kogyo:Kk Form unit for constructing road and constructing method for road
JP2005218959A (en) * 2004-02-05 2005-08-18 Kurita Water Ind Ltd High moisture content mud treatment method, high moisture content mud treating agent, and method for making granulated soil from high moisture content mud
JP2009285590A (en) * 2008-05-30 2009-12-10 Toa Grout Kogyo Co Ltd Engineering method of neutral solidification of mud and novel gypsum-based solidification improving material
JP2010240519A (en) * 2009-04-01 2010-10-28 Daiyanitorikkusu Kk Method of treating water to be treated containing inorganic sludge
JP2014025315A (en) * 2012-07-30 2014-02-06 Jfe Steel Corp Banking construction method
JP2015205337A (en) * 2014-04-23 2015-11-19 株式会社木村鋳造所 Manufacturing method of sand mold for casting
JP2016069444A (en) * 2014-09-29 2016-05-09 アイシン高丘株式会社 Soil modifier for wet soil and recovery method of soil
JP2018100409A (en) * 2016-12-19 2018-06-28 太平洋セメント株式会社 Soil granulating additive
JP2018138643A (en) * 2017-02-24 2018-09-06 清水建設株式会社 Soil modifying composition and soil modification method
CN114276108A (en) * 2021-12-28 2022-04-05 河北嘉固新材料科技有限公司 Self-compacting, large-flow-state and ultra-early-strength solidified waste soil-stone slurry and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004092304A (en) * 2002-09-03 2004-03-25 Kawashima Kogyo:Kk Form unit for constructing road and constructing method for road
JP2005218959A (en) * 2004-02-05 2005-08-18 Kurita Water Ind Ltd High moisture content mud treatment method, high moisture content mud treating agent, and method for making granulated soil from high moisture content mud
JP4506184B2 (en) * 2004-02-05 2010-07-21 栗田工業株式会社 High water content mud treatment method, high water content mud treatment agent, and granulated treated soil production method from high water content mud soil
JP2009285590A (en) * 2008-05-30 2009-12-10 Toa Grout Kogyo Co Ltd Engineering method of neutral solidification of mud and novel gypsum-based solidification improving material
JP2010240519A (en) * 2009-04-01 2010-10-28 Daiyanitorikkusu Kk Method of treating water to be treated containing inorganic sludge
JP2014025315A (en) * 2012-07-30 2014-02-06 Jfe Steel Corp Banking construction method
JP2015205337A (en) * 2014-04-23 2015-11-19 株式会社木村鋳造所 Manufacturing method of sand mold for casting
JP2016069444A (en) * 2014-09-29 2016-05-09 アイシン高丘株式会社 Soil modifier for wet soil and recovery method of soil
JP2018100409A (en) * 2016-12-19 2018-06-28 太平洋セメント株式会社 Soil granulating additive
JP7073088B2 (en) 2016-12-19 2022-05-23 太平洋セメント株式会社 Soil reforming method
JP2018138643A (en) * 2017-02-24 2018-09-06 清水建設株式会社 Soil modifying composition and soil modification method
CN114276108A (en) * 2021-12-28 2022-04-05 河北嘉固新材料科技有限公司 Self-compacting, large-flow-state and ultra-early-strength solidified waste soil-stone slurry and preparation method thereof

Similar Documents

Publication Publication Date Title
CN105254166B (en) A kind of dewatered sludge curing agent, preparation method and application method
JP3824844B2 (en) Improving material for solidifying / neutralizing mud substances and method for solidifying / neutralizing mud substances
JP2001182044A (en) Muddy soil solidifying material and muddy soil solidifying method
KR101357829B1 (en) Recycling material of industrial sludge for use of fill material, cover material and subbase material and method for producing the same
JP2002282894A (en) Agent and method for solidifying sludge
JPH10328700A (en) Treatment of waste sludge
JP3803076B2 (en) Admixture for soil stabilization and soil stabilization method using the same
JP3220202B2 (en) Wastewater treatment method for construction
JP4034419B2 (en) Method for treating dehydrated cake for reuse as roadbed material
JP2002121552A (en) Solidifier for water-containing soil and process for solidifying water-containing soil using this
JP3628661B2 (en) Method for producing porous granular material using inorganic waste as raw material
JP4160467B2 (en) Artificial aggregate manufacturing method and artificial aggregate manufactured by the method
JP2006000692A (en) Treatment method for dehydrating/hardening dredged soil or the like
JP3678834B2 (en) Usage of hard dehydrated cake fine particles
JPH10272498A (en) Recycling system for mud and the like
JP4380154B2 (en) Solidification method of mud
JP5533690B2 (en) Granular materials for civil engineering work
JP3235019B2 (en) Construction sludge regeneration treatment method
KR100426425B1 (en) Method of improving sludge into soil using fly ash and cement
CN113526810A (en) Dredged sediment curing method based on mixed curing agent
JP3451171B2 (en) Method for drying and solidifying mud and material for drying and solidifying mud
JP5117930B2 (en) Neutral solidification method of mud and new stone-kow-based solidification improver
JP3922604B2 (en) Manufacturing method of building materials made from slender
JP4298139B2 (en) Recycling method for mud containing organic components
JP2821728B2 (en) Processing equipment for dewatered cake recovered from aggregate manufacturing equipment with washing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707