JP2009285590A - Engineering method of neutral solidification of mud and novel gypsum-based solidification improving material - Google Patents

Engineering method of neutral solidification of mud and novel gypsum-based solidification improving material Download PDF

Info

Publication number
JP2009285590A
JP2009285590A JP2008141890A JP2008141890A JP2009285590A JP 2009285590 A JP2009285590 A JP 2009285590A JP 2008141890 A JP2008141890 A JP 2008141890A JP 2008141890 A JP2008141890 A JP 2008141890A JP 2009285590 A JP2009285590 A JP 2009285590A
Authority
JP
Japan
Prior art keywords
mud
solidification
stone
particle size
neutral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008141890A
Other languages
Japanese (ja)
Other versions
JP5117930B2 (en
Inventor
Hiroyuki Kawanami
弘之 川浪
Iwahiko Fujita
以和彦 藤田
Takumi Iride
巧 入出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Grout Kogyo Co Ltd
Tokyo Metropolitan Sewerage Service Corp
Fujiki Co Ltd
Original Assignee
Toa Grout Kogyo Co Ltd
Tokyo Metropolitan Sewerage Service Corp
Fujiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Grout Kogyo Co Ltd, Tokyo Metropolitan Sewerage Service Corp, Fujiki Co Ltd filed Critical Toa Grout Kogyo Co Ltd
Priority to JP2008141890A priority Critical patent/JP5117930B2/en
Publication of JP2009285590A publication Critical patent/JP2009285590A/en
Application granted granted Critical
Publication of JP5117930B2 publication Critical patent/JP5117930B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain improved soil which is at least fourth treated soil (cone index of 200 kN/m<SP>2</SP>or more) and preferably third treated soil (cone index of 400 kN/m<SP>2</SP>or more), shows neutral pH, is excellent in vegetation and is suitable for planting soil in an engineering method using grain size adjusted ash together when mud is solidified by a gypsum-based solidification material. <P>SOLUTION: In the engineering method of neutral solidification improvement of mud for subjecting the mud to neutral solidification treatment by the gypsum-based solidification material to obtain improved soil, the engineering method of neutral solidification of mud, in which the gypsum-based solidification material and sludge incineration ash subjected to grain size adjusting treatment are compounded together with the mud, is applied. Further, a novel gypsum-based improving material obtained by compounding the gypsum-based solidification material with the sludge incineration ash subjected to grain size adjusting treatment is used in this engineering method. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、泥土の中性固化工法及び当該中性固化工法に使用される新規石コウ系固化改良材に関する。   TECHNICAL FIELD The present invention relates to a neutral solidification method for mud and a novel stone-cure-based solidification improving material used in the neutral solidification method.

現在、下水道の普及・処理の高度化に伴い、大量の汚泥が発生しており、例えば東京都だけで年間100万トンの汚泥(脱水汚泥)が生じている(汚泥は、全量焼却処理し、45,000トンの焼却灰が発生。)。   Currently, with the spread of sewerage and advanced treatment, a large amount of sludge is generated, for example, 1 million tons of sludge (dehydrated sludge) is produced annually in Tokyo alone (the sludge is incinerated in its entirety, 45,000 tons of incineration ash is generated.)

これらの焼却灰は、凝集状態にあるため、これを分級、粉砕処理して微細粒子として分散せしめ、粒径を調整したもの(以下、「粒度調整灰」という。)は、粒子が微細化され、その分散性、比表面積が増大する等の物理的特性が改善されているので、土木用資材の原料として活用され始めている。   Since these incineration ash is in an agglomerated state, it is classified, pulverized and dispersed as fine particles, and the particle size adjusted (hereinafter referred to as “particle size adjusted ash”) is refined. Since physical properties such as dispersibility and specific surface area have been improved, it has begun to be used as a raw material for civil engineering materials.

しかしながら、このような用途(需要)として使用できる量は十分ではなく、40%近くは依然として、産業廃棄物として埋め立て処分されている。周知のように、いずれの自治体においても、既存の埋め立て地は、連日ひきもきらずに搬入されてくる大量のゴミ・産業廃棄物で充満しており、新たに利用できる埋め立て処分地は、もはや物理的に限界に達していて、担当者はその確保に苦慮している状態にある。   However, the amount that can be used for such applications (demand) is not sufficient, and nearly 40% is still disposed of as landfill as industrial waste. As is well known, in all local governments, the existing landfills are filled with a large amount of garbage and industrial waste that is brought in every day. The limit has been reached and the person in charge is struggling to secure it.

また、当該焼却灰をそのまま廃棄した場合は、場合によっては当該焼却灰中に濃縮された水銀、カドミウム、鉛等の土壌汚染物質(有害物質)が、廃棄サイトの土壌中に溶出、拡散するおそれがあり、かかる観点からも焼却土をそのまま廃棄することはできない。   In addition, if the incineration ash is discarded as it is, soil pollutants (toxic substances) such as mercury, cadmium, and lead concentrated in the incineration ash may elute and diffuse into the soil at the disposal site. In view of this, incinerated soil cannot be disposed of as it is.

このような状況にあるため、下水汚泥由来の焼却灰を原料とした粒度調整灰の土木資材への新規な用途を創出することは喫緊の課題となっている。   Under such circumstances, it has become an urgent issue to create a new use of particle size-adjusted ash made from incinerated ash derived from sewage sludge for civil engineering materials.

一方、シールド工事や浚渫工事、地盤改良工事等の各種建設工事、土木工事の現場では、含水率の高い泥土や泥水(以下、単に「泥土」と称する。)が大量に発生する。これらは泥状で、そのままでは、ダンプカーでの輸送も出来ないので、固化材で処理して、運搬等に適した性状まで固化している。   On the other hand, in various construction works such as shield work, dredging work, ground improvement work, and civil engineering work, a large amount of mud and muddy water (hereinafter simply referred to as “mud”) are generated. Since these are mud and cannot be transported by a dump truck as they are, they are treated with a solidifying material and solidified to properties suitable for transportation.

従来固化材としては、セメント系固化材や石灰系固化材が一般的であったが、これらは強いアルカリ性であるため、得られた固化物(改良土)が強いアルカリ性を呈し、当該固化土壌では、植物の植生に大きな問題となるので、再利用困難である。   Conventionally, cement-based solidified material and lime-based solidified material were generally used as the solidified material, but since these are strong alkaline, the obtained solidified material (improved soil) exhibits strong alkaline properties. Because it becomes a big problem in plant vegetation, it is difficult to reuse.

このため最近では、中性の固化材として石コウ系固化材が注目されている(例えば、特許文献1〜5を参照。)。   For this reason, recently, a stone-solid type solidified material has attracted attention as a neutral solidified material (see, for example, Patent Documents 1 to 5).

本発明者らの知見によれば、前記した粒度調整灰自体は、それ自体では、泥土の固化には殆ど効果がないが、石コウ系固化材と併用し、または石コウ系固化材の一部を置換して使用する場合には、予想外のことに、むしろ石コウ系固化材の固化作用を促進するか、またはその効果を落とすことなく、置換できることを見いだした。
According to the knowledge of the present inventors, the particle size-adjusted ash itself has little effect on solidification of mud by itself, but it is used in combination with a stone-cobalt solidifying material or one of stone-stone-based solidifying material. It was unexpectedly found that, when parts are used in substitution, they can be replaced without promoting the solidification action of the stone-cured solidification material or reducing its effect.

特開2001−182044号公報(特許請求の範囲(請求項1〜7)、〔0007〕〜〔0021〕)JP 2001-182044 A (Claims (Claims 1 to 7), [0007] to [0021]) 特開2002−1394号公報(特許請求の範囲(請求項1〜6)、〔0001〕〜〔0015〕)JP 2002-1394 A (Claims (Claims 1 to 6), [0001] to [0015]) 特開2003−20478号公報(特許請求の範囲(請求項1〜2)、〔0015〕〜〔0022〕)JP 2003-20478 A (Claims (Claims 1 and 2), [0015] to [0022]) 特開2004−130278号公報(特許請求の範囲(請求項1〜3)、〔0016〕〜〔0021〕)JP 2004-130278 A (Claims (Claims 1 to 3), [0016] to [0021]) 特開2006−225475号公報(特許請求の範囲(請求項1〜5)、〔0001〕〜〔0018〕)JP 2006-225475 A (Claims (Claims 1 to 5), [0001] to [0018]) 前田ら、「改質した下水汚泥焼却灰の有効利用に関する研究」、下水道協会誌、第42巻、513号、2005年、7月号、127〜140頁)Maeda et al., “Study on effective use of modified sewage sludge incineration ash”, Journal of Sewerage Society, Vol. 42, No. 513, 2005, July, 127-140)

本発明の目的は、泥土を石コウ系固化材で固化するに際し、粒度調整灰を併用する工法において、少なくとも第4種の改良土(コーン指数200kN/m2以上(以下特に断らない場合同じ意味を表す。))、好ましくは第3種の改良土(コーン指数400kN/m2以上(以下特に断らない場合同じ意味を表す。))で、かつ、改良土が中性のpHを呈し、植生にも優れた改良土(改質土)を得ることである。 The object of the present invention is to use at least a fourth kind of improved soil (cone index of 200 kN / m 2 or more (hereinafter the same meaning unless otherwise specified) in the method of using a particle size-adjusted ash when solidifying mud with a stone-coal solidifying material. )), Preferably a third type improved soil (cone index 400 kN / m 2 or more (hereinafter the same meaning unless otherwise specified)), and the improved soil exhibits a neutral pH, It is also possible to obtain improved soil (modified soil).

本発明に従えば、以下の中性固化工法及び改良固化材が提供される。
〔1〕
泥土を石コウ系固化材により、中性固化処理して、当該泥土を改良土とする中性固化改良工法において、当該石コウ系固化材と共に粒度調整処理した汚泥焼却灰を配合・併用することを特徴とする泥土の中性固化工法。
According to the present invention, the following neutral solidification method and improved solidification material are provided.
[1]
Mix and use sludge incineration ash that has been subjected to particle size adjustment treatment together with the stone-coal solidification material in the neutralization improvement method using the clay-based solidification material to neutralize the mud soil and improve the mud soil. A neutral solidification method of mud.

〔2〕
前記粒度調整焼却灰を、前記石コウ系固化材に対して、5〜50質量%使用する〔1〕に記載の泥土の中性固化工法。
[2]
The neutral solidification method of mud according to [1], wherein the particle size-adjusted incineration ash is used in an amount of 5 to 50% by mass with respect to the stone-carp solidified material.

〔3〕
前記粒度調整焼却灰の平均粒径が、5〜20μmのものである〔1〕又は〔2〕に記載の泥土の中性固化工法。
[3]
The neutral solidification method of mud according to [1] or [2], wherein the particle size-adjusted incinerated ash has an average particle size of 5 to 20 μm.

〔4〕
泥土1m3に対して、前記石コウ系固化材及び粒度調整焼却灰を1〜300Kg使用する〔1〕〜〔3〕のいずれかに記載の泥土の中性固化工法。
[4]
Neutral solidification method for mud according to any one of [1] to [3], wherein 1 to 300 kg of the above-mentioned stone-and-coal solidification material and particle size-adjusted incinerated ash are used for 1 m 3 of mud.

〔5〕
前記泥土が建設泥土又は浚渫泥土である〔1〕〜〔4〕のいずれかに記載の泥土の中性固化工法。
[5]
The neutral solidification method of mud according to any one of [1] to [4], wherein the mud is construction mud or dredged mud.

また、本発明に従えば、以下の新規な石コウ系固化改良材が提供される。
〔6〕
泥土を中性固化する中性固化改良工法に使用される石コウ系固化材に粒度調整処理した汚泥焼却灰を配合してなる新規石コウ系固化改良材。
In addition, according to the present invention, the following novel stone-carp solidification improving material is provided.
[6]
A new stone-cure-based solidification improver, which is made by mixing sludge incineration ash that has been subjected to particle size adjustment treatment into a stone-cow-based solidified material used in the neutralization-improving method for neutralizing mud.

〔7〕
前記粒度調整焼却灰を前記石コウ系固化材に対して、5〜50質量%配合した〔6〕に記載の新規石コウ系固化改良材。
[7]
[6] The new stone-cure-based solidification improving material according to [6], wherein the particle size-adjusted incineration ash is blended in an amount of 5 to 50% by mass with respect to the stone-carp-based solidified material.

〔8〕
前記粒度調整焼却灰の平均粒径が5〜20μmのものである〔6〕又は〔7〕に記載の新規石コウ系固化改良材。
[8]
[6] or [7], wherein the average particle size of the particle size-adjusted incinerated ash is 5 to 20 μm.

〔9〕
泥土1m3に対して、1〜300Kg使用される〔6〕〜〔8〕のいずれかに記載の新規石コウ系固化改良材。
[9]
1 to 300 kg of 1 m 3 of mud is used. [6] to [8].

〔10〕
適用される泥土が建設泥土又は浚渫泥土である〔6〕〜〔9〕のいずれかに記載の新規石コウ系固化改良材。
[10]
The novel stone-cure-based solidification improving material according to any one of [6] to [9], wherein the applied mud is construction mud or dredged mud.

以下に詳述するように、本発明の石コウ系固化材を用いた固化工法および石コウ系固化改良材によれば、泥土を石コウ系固化材で固化するに際し、粒度調整灰を併用する工法において、少なくとも第4種の改良土(200kN/m2以上)、好ましくは第3種の改良土(400kN/m2以上)で、かつ、中性のpHの改良土を得ることができる。 As will be described in detail below, according to the solidification method using the stone-kow type solidification material and the stone-kow type solidification material of the present invention, when mud is solidified with the stone-kow type solidification material, the particle size adjustment ash is used in combination. In the construction method, it is possible to obtain at least a fourth type of improved soil (200 kN / m 2 or more), preferably a third type of improved soil (400 kN / m 2 or more), and a neutral pH improved soil.

以下、本発明の中性固化工法について詳細に説明する。
(粒度調整灰)
図7は本発明の工法を示すモデル図である。以下、図面を参照しながら本発明を説明する。
Hereinafter, the neutral solidification method of the present invention will be described in detail.
(Grain size adjusted ash)
FIG. 7 is a model diagram showing the construction method of the present invention. The present invention will be described below with reference to the drawings.

図において、粒度調整灰自体10の製法自体は、公知であり、活性汚泥による下水処理場の余剰汚泥等が濃縮槽で濃縮され、汚泥脱水機により脱水された後、焼却炉にて焼却された汚泥焼却灰をサイクロンで粗粉(凝集物)と微粉に分級した後、当該粗粉をさらに粉砕機により粉砕することにより、容易に製造される(非特許文献1を参照。)。当該粒度調整灰は例えばいわゆる「スーパーアッシュ」なる名称として製造されているもの(販売者、東京都下水道サービス社)が入手可能である。   In the figure, the method for producing the particle size-adjusted ash itself 10 is well known, and surplus sludge and the like of a sewage treatment plant with activated sludge is concentrated in a concentration tank, dehydrated by a sludge dehydrator, and then incinerated in an incinerator. The sludge incineration ash is easily manufactured by classifying the coarse powder into coarse powder (aggregate) and fine powder with a cyclone, and then further pulverizing the coarse powder with a pulverizer (see Non-Patent Document 1). The particle size-adjusted ash is available, for example, as a so-called “super ash” (seller, Tokyo Sewerage Service Company).

粒度調整灰の物性は、原料汚泥の種類等によって変わりうるが、通常、中心径が1〜15μm、体積平均系が5〜20μm、比表面積が6000〜15000cm2/g程度のものである。 The physical properties of the particle size-adjusted ash can vary depending on the type of raw material sludge and the like, but usually have a center diameter of 1 to 15 μm, a volume average system of 5 to 20 μm, and a specific surface area of about 6000 to 15000 cm 2 / g.

また、その化学組成(質量%)は、通常、SiO2:20〜35(%)、CaO:8〜20(%)、Fe23:3〜12(%)、Al23:10〜18(%)、MgO:2〜5(%)程度のものである。 Further, its chemical composition (wt%) is usually, SiO 2: 20~35 (%) , CaO: 8~20 (%), Fe 2 O 3: 3~12 (%), Al 2 O 3: 10 ˜18 (%), MgO: about 2 to 5 (%).

なお、電子顕微鏡観察により、原料灰の凝集物(団粒)は、殆ど解砕され、丸みを帯びた微細粒子からなるものであることが確認されている。   In addition, it has been confirmed by electron microscope observation that the aggregates (aggregates) of the raw ash are almost crushed and consist of rounded fine particles.

(石コウ系固化材)
石コウ系固化材20とは、半水石コウ(CaSO4・(1/2)H2O)及び/又は無水石コウ(CaSO4)(以下、単に「半水石コウ等」という)を主体とし、Al23、MgO、Fe23、SiO2、などの強度や固化を促進する成分(以下、「固化促進成分」という。)を配合したものであり、CaSO4の割合が、20〜80質量%、好ましくは30〜70質量%のものである。当該半水石コウ等は、天然に産出されるものでも、リン鉱石の硫酸分解によるリン酸製造工程において、副生される副生石コウでもよく、特に限定するものではない。これらは、市販されているものを好適に使用することができる。
(Stone-Koh solidified material)
The stone-coal-based solidifying material 20 is mainly composed of hemihydrate stone (CaSO 4 · (1/2) H 2 O) and / or anhydrous stone (CaSO 4 ) (hereinafter, simply referred to as “hemihydrate stone, etc.”). , Al 2 O 3 , MgO, Fe 2 O 3 , SiO 2 , and other components that promote strength and solidification (hereinafter referred to as “solidification promoting component”), and the proportion of CaSO 4 is 20 -80 mass%, preferably 30-70 mass%. The hemihydrate koji may be produced naturally or by-product koji produced as a by-product in the phosphoric acid production process by sulfuric acid decomposition of phosphate rock, and is not particularly limited. Those which are commercially available can be suitably used.

半水石コウとしては、α型、β型いずれでもよく、また粒径1〜100μm、好ましくは10〜60μmのものである。   The hemihydrate stone may be either α-type or β-type, and has a particle size of 1 to 100 μm, preferably 10 to 60 μm.

より具体的には、固化促進成分として、酸化アルミニウム、水酸化アルミニウム、スラグ(高炉スラグ、転炉スラグ、電気炉スラグ)、アルミニウム、ケイ砂、酸化鉄、水酸化鉄、酸化マグネシウム、シリカゲル、アルミン酸カルシウム等が使用される。   More specifically, as solidification promoting components, aluminum oxide, aluminum hydroxide, slag (blast furnace slag, converter slag, electric furnace slag), aluminum, silica sand, iron oxide, iron hydroxide, magnesium oxide, silica gel, and aluminum Acid calcium or the like is used.

半水石コウ等は、水の存在下に2水和物(CaSO4・2H2O)まで、結晶化する過程で、泥土の水分を固定化し、これを凝集・固化する基本的な役割を奏する。 Hemihydrate stones, etc. play the basic role of fixing the mud's moisture in the process of crystallization to dihydrate (CaSO 4 · 2H 2 O) in the presence of water, and coagulating and solidifying this. .

本発明においては、石コウ系固化材と併用し、または石コウ系固化材の一部(特定量)を置換して上記粒度調整灰を使用することにより、石コウ系固化材の固化作用を促進するか、またはその効果を落とすことがない。すなわち、本発明においては、粒度調整灰を、石コウ系固化材に対して5〜50質量%、好ましくは10〜40質量%、さらに好ましくは15〜25質量%、最も好ましく20質量%程度を使用する。なお、ここにいう質量%(X)とは、石コウ系固化材の質量部をA、粒度調整灰の質量部をSとすれば、X=(S/(A+S))×100で算出されるものである。   In the present invention, the solidification effect of the stone-kou-based solidified material is obtained by using the particle size-adjusted ash in combination with the stone-kou-based solidified material or by replacing a part (specific amount) of the stone-kou-based solidified material. Does not promote or reduce its effectiveness. That is, in the present invention, the particle size-adjusted ash is 5 to 50% by mass, preferably 10 to 40% by mass, more preferably 15 to 25% by mass, and most preferably about 20% by mass with respect to the stone-solidified solidified material. use. The mass% (X) mentioned here is calculated as X = (S / (A + S)) × 100, where A is the mass part of the stone-cured solidified material and S is the mass part of the particle size-adjusted ash. Is.

(凝集剤)
本発明においては、泥土の凝集を促進するため、後記するように、凝集剤30を配合することも好ましい。
(Flocculant)
In the present invention, in order to promote agglomeration of mud, it is also preferable to add a flocculant 30 as described later.

凝集剤としては、吸収性及び/又は保水性を有する、水溶性高分子化合物が好ましい。たとえば、ポリビニールアルコール系ポリマー、ポリアクリル酸系ポリマー及びそのナトリウムやカリウム塩類、ポリアクリルアミド系ポリマー及びそのナトリウムやカリウム塩、ポリオキシエチレン系ポリマー、ポリN−ビニルカルボン酸アミド、デンプン系グラフト重合体のアルカリ加水分解物(例えばデンプン/アクリロニトリルグラフト重合体のアルカリ加水分解物)、アルギン酸ナトリウム、アルギン酸カリウム、コンドロイチン硫酸、アガロース等が好ましいものとして挙げられる。これらは、単独でまたは2種以上組み合わせて配合することができる。   As the flocculant, a water-soluble polymer compound having absorbency and / or water retention is preferable. For example, polyvinyl alcohol polymers, polyacrylic acid polymers and their sodium and potassium salts, polyacrylamide polymers and their sodium and potassium salts, polyoxyethylene polymers, poly N-vinylcarboxylic acid amides, starch-based graft polymers Preferred examples include alkaline hydrolysates (eg, alkaline hydrolysates of starch / acrylonitrile graft polymer), sodium alginate, potassium alginate, chondroitin sulfate, agarose and the like. These can be blended alone or in combination of two or more.

なお、凝集剤としては、泥土の含水率等に応じて、さらに補助的に、ポリ塩化アルミニウム、硫酸アルミニウム、硫酸バンド等をさらに配合してもよい。   In addition, as a flocculant, you may further mix | blend polyaluminum chloride, aluminum sulfate, a sulfuric acid band, etc. further according to the moisture content etc. of a mud.

凝集剤は、対象泥土の含水率、砂含量、凝固状態等により異なりうるが、通常、対象泥土1m3に対し0.1〜10kg、好ましくは0.5〜5kg、さらに好ましくは1〜3kg配合する。なお、これら凝集剤を使用する場合は、石コウ系固化材系と同時に泥土に添加してもよいが、好ましくは、当該凝集剤を先に泥土に添加して、泥土を凝集状態とすることである。 The flocculant may vary depending on the water content, sand content, solidification state, etc. of the target mud, but is usually 0.1 to 10 kg, preferably 0.5 to 5 kg, more preferably 1 to 3 kg per 1 m 3 of the target mud. To do. When these flocculants are used, they may be added to the mud simultaneously with the stone-kou solidified material system, but preferably the flocculant is first added to the mud to make the mud agglomerated. It is.

(対象泥土)
本発明の対象とする泥土40としては、特に限定するものではなく、例えばトンネル工事(シールド工事)、堀削工事(ボーリング、杭埋設)、建築工事等の建設現場での発生建設泥土;湖沼、河川、港湾等で発生する浚渫泥土;を主体とするが、さらには、下水処理の泥土、浄水場の泥土に対しても好適に適用可能である。
(Target mud)
The mud 40 targeted by the present invention is not particularly limited. For example, construction mud generated at a construction site such as tunnel construction (shield construction), excavation construction (boring, pile burying), construction work, etc .; Although it is mainly composed of dredged mud generated in rivers, harbors, etc., it can also be suitably applied to sewage treatment mud and water purification plant mud.

(中性固化処理工程)
本発明は、図7に示したように、上記した対象泥土40を、石コウ系固化材20により、中性固化処理50するに際し、粒度調整処理した汚泥焼却灰10を配合・併用することを特徴とする泥土の中性固化工法であるが、当該中性固化処理を行う装置としては、ミキサー(混合機)または捏和機が好ましい。
(Neutral solidification process)
In the present invention, as shown in FIG. 7, when the above-described target mud 40 is subjected to the neutral solidification treatment 50 with the stone-coal solidification material 20, the sludge incineration ash 10 subjected to the particle size adjustment treatment is blended and used together. Although it is a characteristic neutralization method of mud soil, a mixer (mixer) or a kneader is preferable as an apparatus for performing the neutralization treatment.

使用するミキサー等としては、少なくとも撹拌機、又は撹拌手段を備え、泥土を収容し、これに石コウ系固化材系、粒度調整灰、さらには凝集剤を加えてスラリー状にてこれらを効率良く混合して泥土の凝集、固化反応を行わしめ、改良土を排出しうるものであれば、特に限定するものではない。   As a mixer, etc. to be used, at least a stirrer or a stirring means is provided, mud is contained, and a stone-kow-based solidifying material system, a particle size adjustment ash, and further a flocculant are added to efficiently make them in a slurry form. There is no particular limitation as long as it can be mixed to cause agglomeration and solidification reaction and discharge the improved soil.

例えば、回転型混合機でも、固定型混合機のいずれでもよく、前者では円筒型混合機、二重円錐型混合機、V型混合機等が使用可能であり、後者としては、スクリュー型混合機、リボン型混合機、回転円板型混合機、流動化型混合機等の混合機が使用可能である。これらは、回分式でも、連続式のいずれの方式で実施することも可能である。   For example, either a rotary mixer or a fixed mixer may be used. In the former, a cylindrical mixer, a double cone mixer, a V mixer, or the like can be used, and as the latter, a screw mixer. A mixer such as a ribbon mixer, a rotating disk mixer, or a fluidized mixer can be used. These can be carried out either batchwise or continuously.

(石コウ系固化改良材)
本発明においては、本発明の好ましい態様である図8に示すように、粒度調整灰10と石コウ系固化材20をあらかじめ十分に混合工程22に付し、新規石コウ系固化改良材25としておくことが、取り扱いの便宜上から、またはよりその効果を再現性よく、安定的に奏させるために好ましい。
(Stone Kou solidification improver)
In the present invention, as shown in FIG. 8, which is a preferred embodiment of the present invention, the particle size-adjusted ash 10 and the stone-cure-based solidified material 20 are sufficiently subjected to the mixing step 22 in advance to obtain a novel stone-cured-based solidification improving material 25. It is preferable for the sake of convenience for handling or to make the effect more stable with good reproducibility.

混合装置としては、特に限定するものでなく、通常使用されるV型混合機、リボン型混合機、二重円錐型混合機、ミューラー型混合機、単軸または複軸型混合機等が好適に使用される。また、上記中性固化処理工程に使用される固体混合機をこの固化改良材の調製に使用することも可能である。   The mixing apparatus is not particularly limited, and a normally used V-type mixer, ribbon-type mixer, double-cone mixer, Mueller-type mixer, single-shaft or double-shaft mixer, etc. are suitable. used. Moreover, it is also possible to use the solid mixer used for the said neutral solidification process process for preparation of this solidification improving material.

中性処理固化工程50自体は、泥土(含水量、砂分含量等)の種類、処理量、使用ミキサーの種類等によって変わりうるが、一般的には、以下のようにして行われる。   The neutral treatment solidification step 50 itself may vary depending on the type of mud (water content, sand content, etc.), the amount treated, the type of mixer used, etc., but is generally performed as follows.

まず、使用するミキサーにスラリー状の泥土40を供給、投入し、通常、まず凝集剤30を加えて常法により、30秒〜5分、好ましくは40秒〜3分、さらに好ましくは50秒〜2分程度撹拌して、泥土中の水分を泥土粒子とともに固定して泥土粒子凝集体を生成せしめる。凝集剤の添加量は、すでに説明したように、対象泥土1m3に対し通常0.1〜10kg、好ましくは0.5〜5kg、さらに好ましくは1〜3kg配合する。 First, the slurry-like mud 40 is supplied to the mixer to be used and charged. Usually, the flocculant 30 is first added, and by a conventional method, 30 seconds to 5 minutes, preferably 40 seconds to 3 minutes, more preferably 50 seconds to Stir for about 2 minutes to fix the water in the mud together with the mud particles to form mud particle aggregates. As described above, the amount of the flocculant is usually 0.1 to 10 kg, preferably 0.5 to 5 kg, more preferably 1 to 3 kg with respect to 1 m 3 of the target mud.

ひきつづいて、撹拌しながら石コウ系固化材20及び粒度調整灰10を、好ましくは、図8に示すように、あらかじめ石コウ系固化改良材25として調製したものを添加して、混合を60秒〜10分、好ましくは80秒〜6分、さらに好ましくは100秒〜4分程度継続することにより、上記泥土粒子凝集体を、そのまま団粒化・固化することにより、強度のある団粒物からなる改良土(改質土)が形成される。すなわち、石コウ系固化材中の半水石コウ等が水分と反応して二水石コウに結晶化し、凝固(硬化)する際に、この土粒子凝集体をそのまま全体として硬化、一体化させるのである。   Subsequently, while stirring, the stone-carp solidified material 20 and the particle size-adjusted ash 10 are preferably added in advance, as shown in FIG. 10 minutes, preferably 80 seconds to 6 minutes, and more preferably 100 seconds to 4 minutes. By continuing the agglomeration and solidification of the mud particle aggregates as they are, a strong aggregate is obtained. An improved soil (modified soil) is formed. In other words, when the semi-hydrated stone in the stone-solidified solidified material reacts with moisture to crystallize and solidify (harden), the soil particle aggregate is cured and integrated as a whole. .

石コウ系固化材20の使用量は、基本的に、泥土1m3に対して、1〜300Kg、好ましくは10〜100Kg、さらに好ましくは30〜80Kg程度であるが、本発明によれば、当該石コウ系固化材と共に前記した粒度調整灰を配合・併用することができ、この場合、石コウ系固化材の少なくとも一部を、同量の粒度調整灰で置換しても、石コウ系固化材単独使用の場合より高い固化作用が奏されるか、少なくとも同程度の効果が奏されるものであるから、石コウ系固化材及び粒度調整灰の合計(すなわち石コウ系固化改良材)を、泥土1m3に対して、1〜300kg、好ましくは1〜150Kg、さらに好ましくは10〜100Kg、最も好ましくは30〜80Kg程度使用することになる。 The amount of use of the stone-solidified solidifying material 20 is basically 1 to 300 Kg, preferably 10 to 100 Kg, more preferably about 30 to 80 Kg, with respect to 1 m 3 of mud. The above-mentioned particle size-adjusted ash can be blended and used together with the stone kou-based solidified material. In this case, even if at least a part of the stone koji-based solidified material is replaced with the same amount of the particle size-adjusted ash, Since it has a higher solidification effect than at the time of using a single material, or at least the same level of effect, the sum of the stone-kou solidified material and the particle size-adjusted ash (that is, the stone-kou solidification improving material) , 1 to 300 kg, preferably 1 to 150 kg, more preferably 10 to 100 kg, and most preferably about 30 to 80 kg per 1 m 3 of mud.

なお、粒度調整灰の石コウ系固化材に対する配合量は、すでに述べたように、石コウ系固化材に対して5〜50質量%、好ましくは10〜40質量%、さらに好ましくは15〜25質量%、最も好ましく20質量%程度である。   In addition, as already stated, the blending amount of the particle size-adjusted ash with respect to the stone-kou-based solidified material is 5-50 mass%, preferably 10-40 mass%, more preferably 15-25 with respect to the stone-kou-based solidified material. % By mass, most preferably about 20% by mass.

以下に詳述するように、本発明の石コウ系固化材を用いた固化工法および新規石コウ系固化改良材によれば、泥土を石コウ系固化材で固化するに際し、粒度調整灰を併用する工法において、少なくとも第4種の改良土(200kN/m2以上)、好ましくは第3種の改良土(400kN/m2以上)で、かつ、中性のpHの改良土を得ることができ、さらに、泥土の種類等によっては、第2種の改良土(800kN/m2以上)に対応する改良土を得ることができる。 As will be described in detail below, according to the solidification method using the stone-kow type solidification material of the present invention and the new stone-kow type solidification improver, when solidifying mud with a stone-kow type solidification material, particle size adjustment ash is used in combination. In this construction method, at least the fourth kind of improved soil (200 kN / m 2 or more), preferably the third kind of improved soil (400 kN / m 2 or more), and a neutral pH improved soil can be obtained. Furthermore, depending on the type of mud, etc., improved soil corresponding to the second type of improved soil (800 kN / m 2 or more) can be obtained.

以上のごとくして、好ましくは、凝集剤を添加して泥土の凝集処理、さらに石コウ系固化材及び粒度調整灰を添加して凝集体の団粒化・固化処理を行うことにより、泥土は中性状態で固化され、中性の改良土(改質土)が生成する。当該改良土は中性のpHを呈し、植物の植生に実害を与えない植栽土であるため、効果的に泥土をリサイクルすることができる。   As described above, preferably, the mud is agglomerated by adding a flocculant, and further, agglomeration of the agglomerate is performed by adding a stone koji-based solidifying material and a particle size-adjusted ash. Solidified in a neutral state to produce neutral improved soil (modified soil). Since the improved soil has a neutral pH and is a planting soil that does not cause any harmful effects on plant vegetation, the mud can be effectively recycled.

なお、対象泥土の種類によっては(例えば砂含量が高いもの等)、汚泥焼却灰のうち、凝集体の含量が比較的少ないものについては、粒度調整せずにそのまま使用することも可能である。   Depending on the type of target mud (for example, sand having a high content), sludge incineration ash having a relatively small aggregate content can be used as it is without adjusting the particle size.

以下、実施例をあげて本発明を具体的に説明するが、本発明の技術的範囲がこれに限定されるものではない。なお、%とあるものは、とくに断りなき限り、質量%である。   Hereinafter, the present invention will be specifically described with reference to examples, but the technical scope of the present invention is not limited thereto. Unless otherwise specified, “%” means “% by mass”.

(1)試験対象泥土としては、泥土圧シールドの切削泥土を使用し、この砂分%を調整して3種類の試料泥土(α、β、γ)とした。すなわち、泥土αは、砂含量δは30%、含水比62.7%、泥土βは、砂含量δは50%、含水比47.7%、泥土γは、砂含量δは70%、含水比28.0%のものである。(注:ここで、砂含量は、泥土を乾燥後の固体質量基準である。また、泥土の状態は、いずれもヘドロ状を呈するものであった。) (1) As the mud to be tested, cutting mud of a mud pressure shield was used, and the sand content% was adjusted to obtain three types of sample mud (α, β, γ). That is, the mud α has a sand content δ of 30% and a moisture content of 62.7%, the mud β has a sand content of δ 50% and a moisture content of 47.7%, and the mud γ has a sand content δ of 70% and a moisture content. The ratio is 28.0%. (Note: Here, the sand content is based on the mass of the solid after drying the mud. Also, the mud was in a sludge state.)

(2)粒度調整灰としては、下水汚泥焼却灰を分級・粉砕処理して粒径調整したもの(東京都下水道サービス社販売、スーパーアッシュ、中心径5.6〜10.3μm、体積平均径8.3〜14.0μm、比表面積8360〜12700cm2/g、真比重2.5〜2.6)を使用した。なお、当該粒度調整灰の化学組成は、当該粒度調整前の通常の焼却灰と変わらないものであった。 (2) As the particle size adjustment ash, sewage sludge incineration ash was classified and pulverized to adjust the particle size (Tokyo Sewer Service Company sales, super ash, center diameter 5.6 to 10.3 μm, volume average diameter 8 0.3-14.0 μm, specific surface area 8360-12700 cm 2 / g, true specific gravity 2.5-2.6). In addition, the chemical composition of the said particle size adjustment ash was the same as the normal incineration ash before the said particle size adjustment.

(3)石コウ系固化材としては、半水石コウを主体とし、これにアルミナ、シリカ、酸化鉄、酸化マグネシウムを配合したもので、主成分はCaSO4 、65%、SiO2、7%、Al23、3%、MgO、1%、Fe23、0.05%である。
凝集剤としては、粉状のアクリルアミド/アクリル酸ナトリウムの共重合体を2kg使用した。
(3) As the stone-solid-based solidification material, mainly composed of hemihydrate stone, which is blended with alumina, silica, iron oxide and magnesium oxide, the main components are CaSO 4 , 65%, SiO 2 , 7%, Al 2 O 3 , 3%, MgO, 1%, Fe 2 O 3 , 0.05%.
As the flocculant, 2 kg of a powdery acrylamide / sodium acrylate copolymer was used.

(4)粒度調整灰配合石コウ系固化改良材として、当該配合灰(S)の含量を、(S/(A+S))=0%、10%、20%、30%、及び40%のものをあらかじめ調製し、これを上記試料泥土に配合して固化処理試験を行った。 (4) Particle size-adjusted ash blended stone Kou solidification improver with a blended ash (S) content of (S / (A + S)) = 0%, 10%, 20%, 30%, and 40% Was prepared in advance, and this was blended in the sample mud and subjected to a solidification treatment test.

(5)試験装置としては、強制2軸式試験練りミキサー(冨士機社製、パドル撹拌方式、容量5リットル)を用いた。所定量の上記調整した泥土をミキサーに仕込み、凝集剤2kgを添加して1分間混合した。引き続き、上記した、粒度調整灰配合量を変えた石コウ系固化材(石コウ系固化改良材)を、石コウ質量(A)として、泥土1m3あたり、30kg又は50kg添加し、さらに2分間混合し、改良土を得た。 (5) As a test apparatus, a forced biaxial test kneading mixer (manufactured by Fuji Machine Co., Ltd., paddle stirring method, capacity 5 liters) was used. A predetermined amount of the adjusted mud was charged into a mixer, and 2 kg of a flocculant was added and mixed for 1 minute. Subsequently, 30 kg or 50 kg per 1 m 3 of mud is added to the above-mentioned stone koji-based solidification material (stone-kow-based solidification improving material) with a changed particle size-adjusted ash blending amount as stone-kow mass (A), and further 2 minutes. Mixed to obtain improved soil.

得られた改良土をミキサーから排出して自然養生を行い、養生時間θ=3時間後、及び12時間後の改良土の物性(コーン指数C、pH、溶出成分濃度)の測定を行った。
(a)コーン指数Cは地盤工学会(締固めた土のコーン指数の試験方法(JGST716)に準じて行った。
(b)また改良土等のpH測定は、地盤工学会基準「土懸濁液のpH試験方法」(JGS0211−2000)に準じて行った。
The obtained improved soil was discharged from the mixer for natural curing, and the physical properties (corn index C, pH, elution component concentration) of the improved soil after curing time θ = 3 hours and 12 hours were measured.
(A) The cone index C was measured according to the Geotechnical Society (consolidated soil cone index test method (JGST716)).
(B) Further, the pH of the improved soil and the like was measured in accordance with the Geotechnical Society standard “Method for testing pH of soil suspension” (JGS0211-2000).

(6)結果の考察
結果を表1〜6、図1〜6にまとめて示す。このうち、表1〜3、図1〜3は養生時間θが3時間の場合、表4〜6、図4〜6は養生時間θが12時間の場合である。
(6) Discussion of results The results are shown in Tables 1 to 6 and FIGS. Of these, Tables 1 to 3 and FIGS. 1 to 3 show cases where the curing time θ is 3 hours, and Tables 4 to 6 and FIGS. 4 to 6 show cases where the curing time θ is 12 hours.

例えば表1(図1)には、泥土(砂分30%)養生時間θ=3時間の結果を示すが、焼却灰の添加率X(=S/(A+S))が約20%までは、コーン指数Cは石コウ系固化材そのものを配合した場合(X=0%)と、実質的に変化ないか、又はそれよりもやや高い値を示すことが特筆される。   For example, Table 1 (FIG. 1) shows the result of mud (sand content 30%) curing time θ = 3 hours, but the incineration ash addition rate X (= S / (A + S)) is about 20%, It is noted that the corn index C is substantially the same as or slightly higher than the case where the masonry solidified material itself is blended (X = 0%).

実際には、粒土調整灰配合量X=40%の石コウ系固化改良材をしても、泥土の種類により(例えば砂含量δ=50%、δ=70%の場合等)は、十分使用可能であるとしてよい。   Actually, even if a stone-kow type solidification improving material with a grain soil adjustment ash content X = 40%, depending on the type of mud (for example, when the sand content δ = 50%, δ = 70%, etc.) is sufficient It may be usable.

Figure 2009285590
Figure 2009285590

Figure 2009285590
Figure 2009285590

Figure 2009285590
Figure 2009285590

また、表4〜6、図4〜6は、養生時間θが12時間の場合を示すが、ほとんどθが3時間の場合と変わらない結果がえられることがわかった。
(なお、当然のことながら、改良土のpHは、石コウ系固化材のpH7.35〜7.45、粒度調整灰のpH7.36〜7.41の範囲にあった。)
Tables 4 to 6 and FIGS. 4 to 6 show the case where the curing time θ is 12 hours, but it has been found that the results are almost the same as when θ is 3 hours.
(Naturally, the pH of the improved soil was in the range of pH 7.35 to 7.45 of the stone-carp solidified material and pH 7.36 to 7.41 of the particle size adjusted ash.)

Figure 2009285590
Figure 2009285590

Figure 2009285590
Figure 2009285590

Figure 2009285590
また、以上実施例の結果得られた改良土については、泥土α、β、γともアルキル水銀化合物、総水銀、カドミウム、鉛、六価クロム、セレン、シアンは、不検出であった。
Figure 2009285590
In addition, in the improved soil obtained as a result of the above examples, no alkylmercury compound, total mercury, cadmium, lead, hexavalent chromium, selenium and cyanide were detected in the mud α, β and γ.

以上により、泥土を石コウ系固化材で中性処理する場合、このうちのかなりの部分(例えば10〜40%、好ましくは20%前後)を粒度調整灰を配合して置換し、新規な石コウ系固化改良材として使用することができる。このよう粒度調整灰配合石コウ系固化改良材を使用することにより、実質的に石コウ系固化材と同等の固化処理を行うことが可能である。   As described above, when the mud is neutrally treated with the stone-coal solidifying material, a considerable part (for example, 10 to 40%, preferably around 20%) is replaced by blending the particle size-adjusted ash to obtain a new stone. It can be used as a Kou solidification improver. By using such a particle size-adjusted ash-blended stone kou solidification improver, it is possible to perform a solidification treatment substantially equivalent to that of a stone kou solidification material.

これはまた2つの利点を有する。すなわち、石コウ系固化材はpHが中性であり、改良土の植生上大きな利点があるが、セメント系固化材より高価とされているところ、これを安価な粒度調整灰で配合して、その一部またはかなりの部分を置換することにより、コストを大幅に下げられる。   This also has two advantages. That is, the stone-carp solidified material is neutral in pH and has a great advantage on the vegetation of the improved soil, but it is more expensive than the cement-based solidified material. Replacing some or a significant portion of it can greatly reduce costs.

また、従来産業廃棄物として廃棄せざるを得なかった粒度調整灰を、泥土処理の石コウ系固化材に配合する新規な用途として活用、消費できるので、まさに一石二鳥の効果を奏するものであり、その産業上の利用可能性、その意義はきわめて大きいと云わざるを得ないのである。   In addition, the particle size-adjusted ash that had to be disposed of as industrial waste can be used and consumed as a new application to be blended with mud-treated stone-kow solidified material, so it has the effect of two birds with one stone. It must be said that the industrial applicability and its significance are extremely large.

本発明の石コウ系固化材を用いた固化工法および新規石コウ系固化改良材によれば、泥土を石コウ系固化材で固化するに際し、粒度調整灰を併用する工法において、少なくとも第4種の改良土(200kN/m2以上)、好ましくは第3種の改良土(400kN/m2以上)で、かつ、中性のpHの改良土を得ることができる。また、泥土の種類等によっては、第2種の改良土(800kN/m2以上)に対応する改良土を得ることができる。 According to the solidification method using the stone-kow type solidification material and the new stone-kow type solidification material of the present invention, when solidifying mud with the stone-kow type solidification material, at least the fourth type Improved soil (200 kN / m 2 or more), preferably a third type improved soil (400 kN / m 2 or more), and a neutral pH improved soil. Depending on the type of mud, etc., improved soil corresponding to the second type of improved soil (800 kN / m 2 or more) can be obtained.

また、本発明によれば、粒度調整灰を石コウ系固化材と併用することにより、石コウ系固化材の使用量を減らすとともに、従来廃棄していた粒度調整灰を有効に活用、消費できるので、その産業上の利用可能性はきわめて大きい。   Further, according to the present invention, by using the particle size-adjusted ash together with the stone-kow type solidified material, the amount of stone-kow type solidified material can be reduced, and the particle size-adjusted ash that has been conventionally discarded can be effectively utilized and consumed. Therefore, its industrial applicability is extremely large.

実施例の結果を示すグラフである。It is a graph which shows the result of an Example. 実施例の結果を示すグラフである。It is a graph which shows the result of an Example. 実施例の結果を示すグラフである。It is a graph which shows the result of an Example. 実施例の結果を示すグラフである。It is a graph which shows the result of an Example. 実施例の結果を示すグラフである。It is a graph which shows the result of an Example. 実施例の結果を示すグラフである。It is a graph which shows the result of an Example. 本発明の工法を示すモデル図である。It is a model figure which shows the construction method of this invention. 本発明の工法の別の態様を示すモデル図である。It is a model figure which shows another aspect of the construction method of this invention.

符号の説明Explanation of symbols

10 粒度調整灰
20 石コウ系固化材
22 混合工程
25 新規石コウ系固化改良材
30 凝集剤
40 泥土
50 中性固化処理工程
60 改質土又は改良土
DESCRIPTION OF SYMBOLS 10 Grain size adjustment ash 20 Stone Kou system solidification material 22 Mixing process 25 New stone Kou system solidification improving material 30 Flocculant 40 Mud soil 50 Neutral solidification processing process 60 Modified soil or improved soil

Claims (10)

泥土を石コウ系固化材により、中性固化処理して、当該泥土を改良土とする中性固化改良工法において、当該石コウ系固化材と共に粒度調整処理した汚泥焼却灰を配合・併用することを特徴とする泥土の中性固化工法。   Mix and use sludge incineration ash that has been subjected to particle size adjustment treatment together with the stone-coal solidification material in the neutralization improvement method using the clay-type solidification material to neutralize the mud soil and improve the mud soil. A neutral solidification method of mud. 前記粒度調整焼却灰を、前記石コウ系固化材に対して、5〜50質量%使用する請求項1に記載の泥土の中性固化工法。   The neutral solidification method of mud according to claim 1, wherein the particle size-adjusted incineration ash is used in an amount of 5 to 50% by mass with respect to the stone-carp solidified material. 前記粒度調整焼却灰の平均粒径が、5〜20μmのものである請求項1又は2に記載の泥土の中性固化工法。   The neutral solidification method of mud according to claim 1 or 2, wherein the particle size-adjusted incineration ash has an average particle size of 5 to 20 µm. 泥土1m3に対して、前記石コウ系固化材及び粒度調整焼却灰を1〜300Kg使用する請求項1〜3のいずれかに記載の泥土の中性固化工法。 The neutral solidification construction method of the mud according to any one of claims 1 to 3 , wherein 1 to 300 kg of the stone-coal solidification material and the particle size-adjusted incineration ash are used for 1 m 3 of the mud. 前記泥土が建設泥土又は浚渫泥土である請求項1〜4のいずれかに記載の泥土の中性固化工法。   The neutral solidification method of mud according to any one of claims 1 to 4, wherein the mud is construction mud or dredged mud. 泥土を中性固化する中性固化改良工法に使用される石コウ系固化材に粒度調整処理した汚泥焼却灰を配合してなる新規石コウ系固化改良材。   A new stone-cure-based solidification improver, which is made by mixing sludge incineration ash that has been subjected to particle size adjustment treatment into a stone-cow-based solidified material used in the neutralization-improving method for neutralizing mud. 前記粒度調整焼却灰を前記石コウ系固化材に対して、5〜50質量%配合した請求項6に記載の新規石コウ系固化改良材。   The novel stone-cure-based solidification improving material according to claim 6, wherein the particle size-adjusted incineration ash is blended in an amount of 5 to 50% by mass with respect to the stone-carp-based solidified material. 前記粒度調整焼却灰の平均粒径が5〜20μmのものである請求項6又は7に記載の新規石コウ系固化改良材。   The novel stone-carp-based solidification improving material according to claim 6 or 7, wherein the particle size-adjusted incinerated ash has an average particle size of 5 to 20 µm. 泥土1m3に対して、1〜300Kg使用される請求項6〜8のいずれかに記載の新規石コウ系固化改良材。 The novel stone-carp-based solidification improving material according to any one of claims 6 to 8, wherein 1 to 300 kg is used per 1 m 3 of mud. 適用される泥土が建設泥土又は浚渫泥土である請求項6〜9のいずれかに記載の新規石コウ系固化改良材。   The mud clay applied is a construction mud mud or a dredged mud mud.
JP2008141890A 2008-05-30 2008-05-30 Neutral solidification method of mud and new stone-kow-based solidification improver Active JP5117930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008141890A JP5117930B2 (en) 2008-05-30 2008-05-30 Neutral solidification method of mud and new stone-kow-based solidification improver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008141890A JP5117930B2 (en) 2008-05-30 2008-05-30 Neutral solidification method of mud and new stone-kow-based solidification improver

Publications (2)

Publication Number Publication Date
JP2009285590A true JP2009285590A (en) 2009-12-10
JP5117930B2 JP5117930B2 (en) 2013-01-16

Family

ID=41455339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008141890A Active JP5117930B2 (en) 2008-05-30 2008-05-30 Neutral solidification method of mud and new stone-kow-based solidification improver

Country Status (1)

Country Link
JP (1) JP5117930B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025315A (en) * 2012-07-30 2014-02-06 Jfe Steel Corp Banking construction method

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157818A (en) * 1994-12-05 1996-06-18 Asou Cement Kk Cement-based hardening material
JPH101667A (en) * 1996-06-19 1998-01-06 Terabondo:Kk Semihydrated gypsum agent for improving water-containing soil
JPH10251641A (en) * 1997-03-07 1998-09-22 Mitsui Chem Inc Composition for grouting into ground and technique therefor
JPH11189771A (en) * 1997-12-26 1999-07-13 Taiheiyo Cement Corp Soil improver for greening and improvement of soil by using the same
JPH11244815A (en) * 1998-03-03 1999-09-14 Taiheiyo Cement Corp Contaminated metal fixing and stabilizing agent and its treatment
JPH11278911A (en) * 1998-03-30 1999-10-12 Taiheiyo Cement Corp Solidifying material
JP2000129258A (en) * 1998-10-29 2000-05-09 Mitsubishi Materials Corp Hydraulic material
JP2001182044A (en) * 1999-12-28 2001-07-03 Asahi Organic Chem Ind Co Ltd Muddy soil solidifying material and muddy soil solidifying method
JP2001335778A (en) * 2000-03-21 2001-12-04 Ishihara Sangyo Kaisha Ltd Soil improver
JP2002001397A (en) * 2000-06-19 2002-01-08 Chiyoda Eco Recycle Kk Modifier and process for solidifying and neutralizing muddy material
JP2002001394A (en) * 2000-06-22 2002-01-08 Hanshin Expressway Public Corp Recycling method of mud containing organic component
JP2002088362A (en) * 2000-09-14 2002-03-27 Sueo Wada Setting agent for soil
JP2002241754A (en) * 2001-02-20 2002-08-28 Hazama Gumi Ltd Material for promoting fluidization of geologic material and geologic material composite
JP2002363563A (en) * 2001-06-01 2002-12-18 Taiyu Kensetsu Co Ltd Mud caking material
JP2003020478A (en) * 2001-07-11 2003-01-24 Aisin Takaoka Ltd Soil conditioner
JP2003313553A (en) * 2002-04-18 2003-11-06 Kawai Sekkai Kogyo Kk Soil-stabilizing material and molded product made of soil
JP2004099870A (en) * 2002-07-16 2004-04-02 Chugoku Electric Power Co Inc:The Soil conditioning material and method for conditioning the soil
JP2004130276A (en) * 2002-10-15 2004-04-30 Fujiki:Kk Mud recycle apparatus
JP2004323599A (en) * 2003-04-22 2004-11-18 Jfe Material Co Ltd Soil-solidifying agent and method for solidifying soil
JP2005013973A (en) * 2003-06-25 2005-01-20 Eco Project:Kk Solidification material of sludge, processing method of sludge using the same and reutilizing method of solidified sludge
JP2005113025A (en) * 2003-10-08 2005-04-28 Takataro Mizuta Aggregate-shaped solidifying material for stabilizing soil, containing inorganic macromolecular coagulant and organic macromolecular coagulant
JP2005179428A (en) * 2003-12-17 2005-07-07 Hazama Corp Fluidization treatment method of construction emission
JP2005272546A (en) * 2004-03-24 2005-10-06 Kawai Sekkai Kogyo Kk Soil neutralizing and solidifying material, and improved method for neutralizing and solidifying soil
JP2006175413A (en) * 2004-12-24 2006-07-06 Nippon Steel Corp Method for improving construction sludge property and apparatus used for it
JP2006225475A (en) * 2005-02-16 2006-08-31 Komurisu:Kk Solidifier and method for improving solidification of soil by using the solidifier
JP2006241232A (en) * 2005-03-01 2006-09-14 Mino Namacon Kk Soil improving and solidifying material
JP2007176793A (en) * 2007-03-12 2007-07-12 Nippon Recycle Gijutsu Kk Method for manufacturing fired product of incineration ash
JP2008050522A (en) * 2006-08-28 2008-03-06 Katayama Chem Works Co Ltd Soil conditioner, and method for conditioning soil using it
JP2008106088A (en) * 2006-10-23 2008-05-08 Anotsu Giken:Kk Powder solidifying material for soft mud soil and method for producing the same

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08157818A (en) * 1994-12-05 1996-06-18 Asou Cement Kk Cement-based hardening material
JPH101667A (en) * 1996-06-19 1998-01-06 Terabondo:Kk Semihydrated gypsum agent for improving water-containing soil
JPH10251641A (en) * 1997-03-07 1998-09-22 Mitsui Chem Inc Composition for grouting into ground and technique therefor
JPH11189771A (en) * 1997-12-26 1999-07-13 Taiheiyo Cement Corp Soil improver for greening and improvement of soil by using the same
JPH11244815A (en) * 1998-03-03 1999-09-14 Taiheiyo Cement Corp Contaminated metal fixing and stabilizing agent and its treatment
JPH11278911A (en) * 1998-03-30 1999-10-12 Taiheiyo Cement Corp Solidifying material
JP2000129258A (en) * 1998-10-29 2000-05-09 Mitsubishi Materials Corp Hydraulic material
JP2001182044A (en) * 1999-12-28 2001-07-03 Asahi Organic Chem Ind Co Ltd Muddy soil solidifying material and muddy soil solidifying method
JP2001335778A (en) * 2000-03-21 2001-12-04 Ishihara Sangyo Kaisha Ltd Soil improver
JP2002001397A (en) * 2000-06-19 2002-01-08 Chiyoda Eco Recycle Kk Modifier and process for solidifying and neutralizing muddy material
JP2002001394A (en) * 2000-06-22 2002-01-08 Hanshin Expressway Public Corp Recycling method of mud containing organic component
JP2002088362A (en) * 2000-09-14 2002-03-27 Sueo Wada Setting agent for soil
JP2002241754A (en) * 2001-02-20 2002-08-28 Hazama Gumi Ltd Material for promoting fluidization of geologic material and geologic material composite
JP2002363563A (en) * 2001-06-01 2002-12-18 Taiyu Kensetsu Co Ltd Mud caking material
JP2003020478A (en) * 2001-07-11 2003-01-24 Aisin Takaoka Ltd Soil conditioner
JP2003313553A (en) * 2002-04-18 2003-11-06 Kawai Sekkai Kogyo Kk Soil-stabilizing material and molded product made of soil
JP2004099870A (en) * 2002-07-16 2004-04-02 Chugoku Electric Power Co Inc:The Soil conditioning material and method for conditioning the soil
JP2004130276A (en) * 2002-10-15 2004-04-30 Fujiki:Kk Mud recycle apparatus
JP2004323599A (en) * 2003-04-22 2004-11-18 Jfe Material Co Ltd Soil-solidifying agent and method for solidifying soil
JP2005013973A (en) * 2003-06-25 2005-01-20 Eco Project:Kk Solidification material of sludge, processing method of sludge using the same and reutilizing method of solidified sludge
JP2005113025A (en) * 2003-10-08 2005-04-28 Takataro Mizuta Aggregate-shaped solidifying material for stabilizing soil, containing inorganic macromolecular coagulant and organic macromolecular coagulant
JP2005179428A (en) * 2003-12-17 2005-07-07 Hazama Corp Fluidization treatment method of construction emission
JP2005272546A (en) * 2004-03-24 2005-10-06 Kawai Sekkai Kogyo Kk Soil neutralizing and solidifying material, and improved method for neutralizing and solidifying soil
JP2006175413A (en) * 2004-12-24 2006-07-06 Nippon Steel Corp Method for improving construction sludge property and apparatus used for it
JP2006225475A (en) * 2005-02-16 2006-08-31 Komurisu:Kk Solidifier and method for improving solidification of soil by using the solidifier
JP2006241232A (en) * 2005-03-01 2006-09-14 Mino Namacon Kk Soil improving and solidifying material
JP2008050522A (en) * 2006-08-28 2008-03-06 Katayama Chem Works Co Ltd Soil conditioner, and method for conditioning soil using it
JP2008106088A (en) * 2006-10-23 2008-05-08 Anotsu Giken:Kk Powder solidifying material for soft mud soil and method for producing the same
JP2007176793A (en) * 2007-03-12 2007-07-12 Nippon Recycle Gijutsu Kk Method for manufacturing fired product of incineration ash

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025315A (en) * 2012-07-30 2014-02-06 Jfe Steel Corp Banking construction method

Also Published As

Publication number Publication date
JP5117930B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP2008106088A (en) Powder solidifying material for soft mud soil and method for producing the same
JP4506184B2 (en) High water content mud treatment method, high water content mud treatment agent, and granulated treated soil production method from high water content mud soil
JP6779069B2 (en) Method for solidifying modified materials such as soft soil and residual soil
WO2019244856A1 (en) Heavy metal-insolubilized solidification material and technique for improving contaminated soil
JP2004323599A (en) Soil-solidifying agent and method for solidifying soil
JP5117930B2 (en) Neutral solidification method of mud and new stone-kow-based solidification improver
JP2019143030A (en) Modifier of soft weak soil or the like, and solidification treatment method of remaining soil
JP4112666B2 (en) Solidified material
JP2008126185A (en) Calcined object and its manufacturing method
JP4209224B2 (en) Method for producing calcium sulfide heavy metal fixing agent
JP2006231208A (en) Method for solidifying soft soil
JP4748608B2 (en) Soil-solidifying agent and soil-solidifying method
JP2005041750A (en) Industrial waste regenerated aggregate and method of producing the same
JP2006265885A (en) Treating method of construction sludge generated in cellular shield construction method
JP4979186B2 (en) Method for producing granulated material
JP2005179428A (en) Fluidization treatment method of construction emission
JP4632865B2 (en) Construction sludge improvement method and improvement equipment used therefor
JP4139371B2 (en) Manufacturing method of pipework laying back material and pipework laying back material
JP4616202B2 (en) Soil improver and method for producing soil improver
JP3266112B2 (en) Ground improvement method
JP2004197356A (en) Soil column material, soil column, and construction method for soil column
JP6289407B2 (en) Ash granulated solidified body
JP3966916B2 (en) Solidifying agent and solidifying method for refining hydrous soil
JP2006175413A (en) Method for improving construction sludge property and apparatus used for it
JP4174818B2 (en) Granulated soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5117930

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250