JP2014025315A - Banking construction method - Google Patents

Banking construction method Download PDF

Info

Publication number
JP2014025315A
JP2014025315A JP2012168690A JP2012168690A JP2014025315A JP 2014025315 A JP2014025315 A JP 2014025315A JP 2012168690 A JP2012168690 A JP 2012168690A JP 2012168690 A JP2012168690 A JP 2012168690A JP 2014025315 A JP2014025315 A JP 2014025315A
Authority
JP
Japan
Prior art keywords
embankment
soil
constructed
particle size
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012168690A
Other languages
Japanese (ja)
Other versions
JP5998713B2 (en
Inventor
Misao Suzuki
操 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012168690A priority Critical patent/JP5998713B2/en
Publication of JP2014025315A publication Critical patent/JP2014025315A/en
Application granted granted Critical
Publication of JP5998713B2 publication Critical patent/JP5998713B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To construct banking with which shaking-down settlement of a banking support foundation or long-term banking settlement is suppressed and which has high stability so as to prevent functionality from being impaired even in the case of a major earthquake.SOLUTION: A source foundation A is excavated, the excavated part is filled back by a replacement material B of (i) or (ii) and banking C is constructed thereon by using sediment generated by the excavation. The replacement material B of (i) includes earth and stones comprised of one kind or more of a concrete recycled material, an artificial earth and stone material obtained by mixing a solidification material into sea-bottom soil or dredge soil and solidifying the soil, and the like and having a grain size of an average grain diameter D50>10 mm or a grain size of a 10% grain diameter D10>1 mm. The replacement material B of (ii) includes soil which is comprised of one kind or more of construction resultant soil, soil which is modified by mixing a modifier into the construction resultant soil, and the like, has a grain size in which the ratio of a grain diameter smaller than 0.075 mm exceeds 35 mass% or a gain size in which the ratio of a grain diameter smaller than 0.075 mm exceeds 30 mass% and is equal to or less than 35 mass%, and the ratio of a grain diameter smaller than 0.005 mm exceeds 15 mass%, and has a cone index being equal to or more than 400kN/m.

Description

本発明は、盛土の安定性を向上させるため、盛土の支持地盤を掘削置換工法によって置換材で置換して地盤改良を行い、その上に盛土を構築する盛土施工方法に関する。   The present invention relates to a banking construction method for improving the ground by replacing the supporting ground of the bank with a replacement material by excavation and replacement, and constructing the bank on the ground in order to improve the stability of the bank.

盛土構造は、経済的で材料の入手や施工が比較的容易なことから、かなり古い時代から道路、鉄道、河川盛土、海岸堤防などに広く利用されている。
盛土を構築する場合、一般的に設計計算は省略され、盛土支持地盤条件、勾配、材料などの仕様を満足するように構築され、支持地盤の改良は非常に軟弱な場合に限られる。
The embankment structure has been widely used for roads, railways, river embankments, coastal embankments, etc. since a very old age because it is economical and it is relatively easy to obtain and construct materials.
When a bank is constructed, design calculations are generally omitted, and it is constructed so as to satisfy the specifications such as bank support ground conditions, gradient, material, etc., and the improvement of the support ground is limited to a very soft case.

従来、盛土の自重による圧密沈下を防止し、盛土の安定化を図ることを目的として、掘削置換工法により盛土支持地盤の地盤改良を行い、掘削置換によって発生した土砂により盛土を構築する工法が知られており、特許文献1には、地盤改良に用いる置換材を盛土材よりも軽量な材料とする工法が示されている。
また、盛土の材料については、トンネル工事、地下鉄工事、下水道工事などに伴う建設発生土を用いる、一部天然由来の重金属等が含まれている建設発生土に重金属等の溶出防止策を施したものを用いる、廃棄タイヤチップと砂を混合した材料を用いる、などの方法が知られている(特許文献2,3など)。
Conventionally, there is a known method of constructing the embankment using the soil generated by excavation and replacement by improving the ground of the embankment support ground by excavation and replacement method in order to prevent consolidation settlement due to its own weight and stabilizing the embankment. Patent Document 1 discloses a construction method in which a replacement material used for ground improvement is a lighter material than the embankment material.
In addition, for embankment materials, measures were taken to prevent elution of heavy metals, etc., in construction-generated soils that partially contain heavy metals of natural origin, etc., using construction-generated soils associated with tunnel construction, subway construction, sewerage construction, etc. There are known methods such as using a material, or using a material in which waste tire chips and sand are mixed (Patent Documents 2 and 3, etc.).

特開平11−229380号公報JP-A-11-229380 特開2009−249554号公報JP 2009-249554 A 特開2008−184808号公報JP 2008-184808 A

従来の盛土構造では、大きな地震動が生じた場合、盛土の揺すり込み沈下の他に、支持地盤の揺すり込み沈下が生じ、これらが合わさって盛土構造全体が大きく沈下・変形し、最悪の場合には滑動や崩壊などによって盛土機能が大きく損なわれる恐れがある。
また、特許文献1のように、掘削置換工法により支持地盤を盛土材よりも軽い材料で地盤改良した場合は、一般的に、水平方向の外力に対して盛土の変形が大きくなる傾向があり、特に水平方向の力が繰返して作用する地震時には、大きな変形に伴い、滑動や崩壊などで盛土機能が大きく損なわれる恐れがある。
In the conventional embankment structure, if a large earthquake motion occurs, in addition to the embankment subsidence, the support ground will also subsidize, and these combine to greatly subsidize and deform the entire embankment structure. The embankment function may be greatly impaired by sliding or collapse.
In addition, as in Patent Document 1, when the support ground is improved with a material that is lighter than the embankment material by excavation and replacement method, generally, the deformation of the embankment tends to increase with respect to the horizontal external force, In particular, during an earthquake in which horizontal forces are applied repeatedly, the embankment function may be greatly impaired due to sliding or collapse due to large deformation.

また、特許文献2,3のように、盛土の材料が建設発生土や重金属等の溶出防止策を施した建設発生土、或いは廃タイヤチップと砂の混合材などの場合、溶出成分が環境基準を満たしていたとしても、地域住民の十分な安心が得られにくく、使用されるケースが限られる。
したがって本発明の目的は、盛土支持地盤の揺すり込み沈下や長期にわたる盛土の沈下が抑えられるとともに、大地震時にもその機能が損なわれることがない高い安定性を備え、しかも環境負荷や環境リスクが小さい盛土を施工することができる盛土施工方法を提供することにある。
In addition, as disclosed in Patent Documents 2 and 3, if the material of the embankment is construction-generated soil with measures for preventing the dissolution of construction-generated soil or heavy metals, or a mixture of waste tire chips and sand, etc., the eluted components are environmental standards. Even if the above conditions are satisfied, it is difficult to obtain a sufficient level of security for local residents, and the use cases are limited.
Therefore, the object of the present invention is to suppress the rock subsidence of the embankment support ground and the subsidence of the embankment over a long period of time, and has high stability that does not impair its function even in the event of a large earthquake, and also has an environmental load and environmental risk An object of the present invention is to provide a banking construction method capable of constructing a small banking.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]盛土を施工する場所の原地盤(A)を掘削し、該掘削部を下記(i)又は(ii)の置換材(B)で埋め戻し、その上に、前記掘削により発生した土砂を用いて盛土(C)を構築することを特徴とする盛土施工方法。
(i)コンクリート再生材、海底土又は浚渫土に固化材を混合して固化させた人工土石材、海底土又は浚渫土に鉄鋼スラグを混合して改質した人工土石材、鉄鋼スラグの中から選ばれる1種以上からなり、平均粒径D50>10mmの粒度又は10%粒径D10>1mmの粒度を有する土石材
(ii)建設発生土、建設発生土に改質材を混合して改質した土の中から選ばれる1種以上からなり、粒径0.075mm未満の割合が35質量%を超える粒度、又は粒径0.075mm未満の割合が30質量%を超え35質量%以下であって且つ粒径0.005mm未満の割合が15質量%を超える粒度を有するとともに、コーン指数400kN/m以上である土
The gist of the present invention for solving the above problems is as follows.
[1] Excavating the original ground (A) where the embankment is to be constructed, refilling the excavated part with the replacement material (B) of (i) or (ii) below, and then the earth and sand generated by the excavation The embankment construction method characterized by constructing embankment (C) using.
(I) From recycled concrete material, artificial debris material that has been solidified by mixing solidified material with seabed soil or dredged soil, artificial debris material that has been modified by mixing steel slag with seabed soil or dredged soil, and steel slag A debris material consisting of one or more selected particles and having an average particle size D50> 10 mm or a 10% particle size D10> 1 mm. (Ii) Construction-generated soil; It is composed of one or more selected from among the selected soils, and the particle size with a particle size of less than 0.075 mm exceeds 35% by mass, or the particle size with a particle size of less than 0.075 mm exceeds 30% by mass and is 35% by mass or less. And a soil having a particle size of more than 15% by mass with a particle size of less than 0.005 mm and a cone index of 400 kN / m 2 or more.

[2]上記[1]の施工方法において、掘削部を埋め戻した置換材(B)の上面の端部を覆う盛土部分の厚さが30cm以上であることを特徴とする盛土施工方法。
[3]上記[2]の施工方法において、掘削部を埋め戻した置換材(B)の上面が、原地盤面よりも30cm以上深い位置にあることを特徴とするに記載の盛土施工方法。
[4]上記[1]〜[3]のいずれかの施工方法において、原地盤(A)の掘削により発生した土砂に、固化材、鉄鋼スラグの中から選ばれる1種以上を混合することでコーン指数400kN/m以上に改質した後、該土砂を用いて盛土(C)を構築することを特徴とする盛土施工方法。
[2] The embankment construction method according to the construction method of [1], wherein a thickness of the embankment portion covering the end portion of the upper surface of the replacement material (B) backfilled with the excavation portion is 30 cm or more.
[3] The embankment construction method according to [2], wherein the upper surface of the replacement material (B) in which the excavated portion is backfilled is at a position deeper than the original ground surface by 30 cm or more.
[4] In the construction method according to any one of [1] to [3] above, by mixing at least one selected from solidified material and steel slag into the earth and sand generated by excavation of the original ground (A) The embankment construction method characterized by constructing embankment (C) using this earth and sand, after improving to cone index 400kN / m < 2 > or more.

[5]上記[1]〜[4]のいずれかの施工方法において、下記工程(ア)〜(ウ)を順に行うことで盛土を施工することを特徴とする盛土施工方法。
(ア)施工しようとする盛土の長手方向一端側の位置から施工を開始し、当該位置の原地盤(a)を掘削し、その掘削部(d)の少なくとも一部を置換材(b)で埋め戻す。
(イ)施工しようとする盛土の長手方向に沿って、「前工程の掘削部(d)に隣接した原地盤(an+1)を掘削し、この掘削により発生した土砂を用いて、前工程で埋め戻された置換材(b)の上に盛土の一部(c)を構築するとともに、その掘削部(dn+1)の少なくとも一部を置換材(bn+1)で埋め戻す」ことを複数回繰り返すことで、盛土をその長手方向で順次施工する。(nは1以上の整数)
(ウ)施工しようとする盛土の長手方向他端側の位置において、前記工程(ア)の掘削部(d)から発生した土砂を用いて盛土の終端部(cEND)を構築する。
[5] A banking construction method according to any one of the above [1] to [4], wherein the banking is constructed by sequentially performing the following steps (a) to (c).
(A) Construction is started from a position on one end side in the longitudinal direction of the embankment to be constructed, the original ground (a 1 ) at the position is excavated, and at least a part of the excavated part (d 1 ) is replaced with a replacement material (b 1 ) Backfill.
(B) along the longitudinal direction of the embankment to be construction, excavating excavation of the "pre-step (d n) to an adjacent original ground (a n + 1), using a sand generated by the excavation, before step in addition to constructing the backfilled substituted material (b n) a part of the embankment on the (c n), backfilled with the drilling unit (d n + 1) at least a portion of the replacement material (b n + 1) "that By repeating the above several times, the embankment is sequentially constructed in the longitudinal direction. (N is an integer of 1 or more)
(C) At the position on the other end side in the longitudinal direction of the embankment to be constructed, the end portion (c END ) of the embankment is constructed using the earth and sand generated from the excavation part (d 1 ) of the step (a).

[6]上記[1]〜[5]のいずれかの施工方法において、下記(1)式を満足するように盛土を施工することを特徴とする盛土施工方法。
(S2/S1)(X2/X1)≧0.8 …(1)
但し S1:構築された盛土(C)の幅方向における断面積(m
S2:掘削部に埋め戻された置換材(B)の盛土幅方向における断面積(m
X1:原地盤(A)の単位体積重量(kN/m
X2:置換材(B)の単位体積重量(kN/m
[6] A banking construction method according to any one of the above [1] to [5], wherein the banking is constructed so as to satisfy the following formula (1).
(S2 / S1) (X2 / X1) ≧ 0.8 (1)
However, S1: Cross-sectional area in the width direction of the constructed embankment (C) (m 2 )
S2: Cross-sectional area (m 2 ) in the fill width direction of the replacement material (B) backfilled in the excavation part
X1: Unit volume weight of raw ground (A) (kN / m 3 )
X2: Unit volume weight (kN / m 3 ) of the replacement material (B)

本発明の盛土施工方法によれば、盛土を設置する原地盤を特定の材料で置換して地盤改良することにより、盛土支持地盤の揺すり込み沈下や長期にわたる盛土の沈下が抑えられるとともに、大地震時にもその機能が損なわれることがない高い安定性を備えた盛土構造物を施工することができ、加えて、以下のような効果が得られる。
(i)盛土を設置する原地盤の置換材として、コンクリート再生材、海底土や浚渫土を固化又は改質した人工土石材、鉄鋼スラグ、建設発生土、建設発生土を改質した土などのリサイクル材のみを使用し、天然土砂材を使用しないため、環境負荷を低減できる。
(ii)仮に置換材が環境リスクのあるリサイクル材であっても、常時土中での使用であり、人為的にも自然災害時にも掘返すことがほとんど考えられない場所での使用であるため、安心して使用することができる。
(iii)盛土材は元の地山(原地盤)の土砂であるため、周辺環境への影響が小さく、また、植生の生育にも有効である。
したがって、本発明法によれば、これらの効果が複合的に得られることにより、リサイクル材を有効利用しつつ、高い安定性を備え且つ環境負荷や環境リスクが小さく、植生にも適した盛土を低コストに施工することができる。
According to the embankment construction method of the present invention, by replacing the original ground on which the embankment is installed with a specific material and improving the ground, the embankment supporting ground can be prevented from swaying and sinking over a long period of time, and a large earthquake. An embankment structure with high stability that does not impair its function sometimes can be constructed, and in addition, the following effects are obtained.
(I) As a substitute material for the original ground where the embankment is to be installed, such as concrete reclaimed material, artificial debris material that solidifies or modifies the seabed soil and dredged soil, steel slag, construction generated soil, modified construction soil, etc. Since only recycled materials are used and natural earth and sand materials are not used, environmental impact can be reduced.
(Ii) Even if the replacement material is a recycled material with an environmental risk, it is always used in the soil, and it is used in a place where it is almost impossible to dig up even during an artificial or natural disaster. Can be used with confidence.
(Iii) Since the embankment material is earth and sand of the original natural ground (original ground), it has little influence on the surrounding environment and is also effective for the growth of vegetation.
Therefore, according to the method of the present invention, these effects can be obtained in combination, so that an embankment suitable for vegetation can be obtained that has high stability and has low environmental burden and environmental risk while effectively using recycled materials. Can be constructed at low cost.

本発明法により施工された盛土の一実施形態について、盛土幅方向の縦断面を模式的に示す説明図Explanatory drawing which shows typically the longitudinal cross-section of the embankment width direction about one embodiment of the embankment constructed by this invention method 本発明法により施工された盛土の他の実施形態について、盛土幅方向の縦断面を模式的に示す説明図Explanatory drawing which shows typically the longitudinal cross-section of the embankment width direction about other embodiment of the embankment constructed by this invention method 図2の実施形態の盛土を道路に適用した場合について、盛土幅方向の縦断面を模式的に示す説明図Explanatory drawing which shows typically the longitudinal cross-section of the embankment width direction about the case where the embankment of embodiment of FIG. 2 is applied to a road. 図2の実施形態の盛土を防潮堤林に適用した場合について、盛土幅方向の縦断面を模式的に示す説明図Explanatory drawing which shows typically the longitudinal cross-section of the embankment width direction about the case where the embankment of embodiment of FIG. 2 is applied to a seawall. 本発明法により施工される盛土について、盛土高さhと置換材による置換深さzを示す説明図Explanatory drawing which shows the embankment height h and the substitution depth z by a substitution material about the embankment constructed by this invention method 一般的に想定される盛土の規模を示すもので、図6(a)は最小規模の盛土、図6(b)は最大規模の盛土の各幅方向断面図を示す説明図FIG. 6 (a) shows the scale of a generally assumed bank, and FIG. 6 (b) is an explanatory diagram showing cross-sectional views in the width direction of the bank of the maximum scale. 盛土荷重による半無限体中の鉛直応力を求める影響値の図表(オスターバーク図表)Chart of influence values for determining vertical stress in semi-infinite body due to embankment load (Osterburk chart) 地盤のせん断抵抗角φと支持力係数との関係を示すグラフGraph showing the relationship between the shear resistance angle φ of the ground and the bearing capacity factor 斜面の安定係数を求める図(テーラー図表)Figure to find slope stability coefficient (Taylor chart) 本発明法の施工手順の具体例を示す説明図Explanatory drawing which shows the concrete example of the construction procedure of this invention method

図1は本発明法の一実施形態を示すもので、施工された盛土の幅方向縦断面を模式的に示したものである。
本発明の盛土施工方法は、盛土を施工する場所の原地盤Aを掘削し、この掘削部を下記(i)又は(ii)の置換材Bで埋め戻し、その上に、前記掘削により発生した土砂を用いて盛土Cを構築するものである。
(i)「コンクリート再生材」、「海底土又は浚渫土に固化材を混合して固化させた人工土石材」、「海底土又は浚渫土に鉄鋼スラグを混合して改質した人工土石材」、「鉄鋼スラグ」の中から選ばれる1種以上からなり、平均粒径D50>10mmの粒度又は10%粒径D10>1mmの粒度を有する土石材
(ii)「建設発生土」、「建設発生土に改質材を混合して改質した土」の中から選ばれる1種以上からなり、粒径0.075mm未満の割合が35質量%を超える粒度、又は粒径0.075mm未満の割合が30質量%を超え35質量%以下であって且つ粒径0.005mm未満の割合が15質量%を超える粒度を有するとともに、コーン指数400kN/m以上である土
FIG. 1 shows one embodiment of the method of the present invention, and schematically shows a longitudinal section in the width direction of a constructed embankment.
The embankment construction method of the present invention excavates the original ground A where the embankment is to be constructed, and backfills this excavated portion with the replacement material B of (i) or (ii) below, and is generated by the excavation thereon. The embankment C is constructed using earth and sand.
(I) "Concrete reclaimed material", "Artificial stone material solidified by mixing solidified material with seabed soil or dredged soil", "Artificial stone material modified by mixing steel slag with seabed soil or dredged soil" , A debris material consisting of one or more selected from “steel slag” and having an average particle size D50> 10 mm or a 10% particle size D10> 1 mm (ii) “construction generated soil”, “construction generated” It consists of one or more materials selected from “modified soil mixed with a modifying material”, and a particle size with a particle size of less than 0.075 mm exceeds 35% by mass, or a particle size with a particle size of less than 0.075 mm. Is a soil having a particle size of more than 30% by mass and not more than 35% by mass and a particle size of less than 0.005 mm exceeding 15% by mass and having a cone index of 400 kN / m 2 or more.

上記(i)、(ii)の材料(置換材)は、所謂リサイクル材を有効利用したものである。このうち上記(i)の土石材は、所定レベル以上の粒度を有することにより、原地盤の掘削部に埋め戻された置換材が十分に締め固められるようにし、これにより盛土構造の安定性を高められるようにしたものである。一方、上記(ii)の土は、所定レベル以上の強度を有することにより、原地盤の掘削部に埋め戻された置換材が十分に締め固められるようにし、これにより盛土構造の安定性を高められるようにしたものである。   The above materials (i) and (ii) (substitution materials) are obtained by effectively using so-called recycled materials. Among these, the debris material (i) above has a particle size of a predetermined level or more so that the replacement material backfilled in the excavation part of the original ground can be sufficiently compacted, thereby improving the stability of the embankment structure. It is intended to be enhanced. On the other hand, the soil of (ii) above has a strength of a predetermined level or more so that the replacement material buried in the excavation part of the original ground is sufficiently compacted, thereby improving the stability of the embankment structure. It is intended to be.

本発明では、置換材Bとして、上記(i)の材料と上記(ii)の材料を選択的に用いることが重要である。すなわち、(i)の材料は透水性が高いため、置換材を構成する粒子骨格だけで外部応力を負担する有効応力の考え方で設計を行うことで、また、(ii)の材料は透水性が低いため、置換材を構成する粒子骨格とその間隙にある水とで外部応力を負担する全応力の考え方で設計を行うことで、各々の材料特性に応じた適切な設計を行い、安定した改良地盤を設置することができる。これに対して、(i)と(ii)の材料を混合して用いると、置換材の応力の状態が複雑になり、設計的に不安定となる恐れがある。   In the present invention, it is important to selectively use the material (i) and the material (ii) as the replacement material B. That is, since the material of (i) has high water permeability, it is possible to design by the concept of effective stress that bears external stress only by the particle skeleton constituting the replacement material, and the material of (ii) has water permeability. Since the design is based on the concept of total stress that bears external stress with the particle skeleton constituting the replacement material and the water in the gap, the design is appropriate for each material characteristic and stable improvements are made. The ground can be installed. On the other hand, when the materials (i) and (ii) are mixed and used, the stress state of the replacement material becomes complicated, and the design may become unstable.

上記(i)の材料のなかで、「コンクリート再生材」とは、廃コンクリートを破砕して利用用途に応じて粒度調整したものであり、再生骨材、再生砕石、再生埋戻し材等として国や自治体が定める品質基準を満足したものである。
このコンクリート再生材を用いる場合、コンクリートに微量に含まれる6価クロムを固定して、その溶出を防止するために、高炉徐冷スラグや脱硫スラグなどの硫黄含有鉄鋼スラグを適量(例えば、溶出レベルに応じて1〜10質量%程度)混合したり、共存させるように設置することが好ましい。これにより、溶出量を大幅に低減して、環境リスクの十分低い状態で使用することができる。
Among the materials of (i) above, “concrete recycled material” is a material obtained by crushing waste concrete and adjusting the particle size according to the intended use, and is used as recycled aggregate, recycled crushed stone, recycled backfill material, etc. And quality standards established by local governments.
When this recycled concrete material is used, an appropriate amount of sulfur-containing steel slag such as blast furnace slow-cooled slag or desulfurized slag (for example, elution level) is used to fix hexavalent chromium contained in trace amounts in concrete and prevent its elution. (About 1 to 10% by mass depending on the condition)), or it is preferably installed so as to coexist. Thereby, the amount of elution can be reduced significantly and it can be used in a state with a sufficiently low environmental risk.

また、「海底土又は浚渫土に固化材を混合して固化させた人工土石材」とは、海底から掘り出された底泥(海底土)や浚渫工事で水底から掘り出された底泥(浚渫土)に固化材を加えて十分に混合し、必要に応じて養生することで得られた土石材である。固化材としては、セメント、セメント系固化材、石灰系固化材などが挙げられ、これらの1種以上を用いることができる。ここで、セメント系固化材、石灰系固化材とは、セメントや石灰では固化しにくい土や現場に対応するため、セメントを母材として1種以上の有効成分(固化促進剤)を添加した固化材(セメント系固化材)、石灰を母材として1種以上の有効成分(固化促進剤)を添加した固化材(石灰系固化材)のことである。固化材の配合量は、海底土又は浚渫土の含水状態に応じて、海底土又は浚渫土の5〜30%(質量比)程度が適当である。   In addition, “artificial debris that has been solidified by mixing solidification material with seabed soil or dredged soil” means bottom mud excavated from the seabed (seafloor soil) or bottom mud excavated from the bottom of the dredging work ( It is a debris material obtained by adding a solidifying material to dredged soil and mixing it thoroughly and curing it as necessary. Examples of the solidifying material include cement, cement-based solidified material, lime-based solidified material, and the like, and one or more of these can be used. Here, cement-based solidified material and lime-based solidified material are solidified by adding one or more active ingredients (solidification accelerator) using cement as a base material in order to deal with soil and sites that are difficult to solidify with cement and lime. It is a solidified material (lime-based solidified material) in which one or more active ingredients (solidification accelerator) are added using lime as a base material (cement-based solidified material). The blending amount of the solidifying material is suitably about 5 to 30% (mass ratio) of the seabed soil or dredged soil depending on the water content of the seabed soil or dredged soil.

また、「海底土又は浚渫土に鉄鋼スラグを混合して改質した人工土石材」とは、上述したような海底土又は浚渫土に鉄鋼スラグを加えて十分に混合し、必要に応じて養生、粒度調整して得られた土石材である。鉄鋼スラグ(鉄鋼製造プロセスで発生するスラグ)としては、高炉スラグ、製鋼スラグ、鉱石還元スラグなどが挙げられ、これらの1種以上を用いることができる。高炉スラグには、高炉徐冷スラグ、高炉水砕スラグがある。また、製鋼スラグとしては、溶銑予備処理、脱炭吹錬、鋳造などの工程で発生する製鋼系スラグ(例えば、脱炭スラグ、脱燐スラグ、脱硫スラグ、脱珪スラグ、造塊スラグなど)、電気炉スラグなどが挙げられる。これらスラグのなかでも、脱炭スラグや脱燐スラグなどのような転炉系の製鋼スラグが海底土や浚渫土の改質に適しており、また、そのなかでも特にCaOを30質量%以上含有し、且つ粒径が40mm以下のものが望ましい。これは、製鋼スラグ中のCa成分と、海底土や浚渫土中のSi成分が反応して固化が促進され、改質効果が高まるためであり、実用的には製鋼スラグの粒径が40mm以下であれば混合作業も容易であり、固化反応も速やかに進むためである。鉄鋼スラグの配合量は、海底土又は浚渫土の含水状態に応じて、海底土又は浚渫土の20〜50%(質量比)程度が適当である。   In addition, “artificial debris modified by mixing steel slag with seabed soil or dredged soil” means that steel slag is added to seabed soil or dredged soil as described above and mixed thoroughly, and cured as necessary. A debris material obtained by adjusting the particle size. Examples of the steel slag (slag generated in the steel manufacturing process) include blast furnace slag, steelmaking slag, ore reduction slag, and one or more of these can be used. Blast furnace slag includes blast furnace slow cooling slag and blast furnace granulated slag. In addition, as steelmaking slag, steelmaking slag generated in the processes such as hot metal pretreatment, decarburization blowing, casting (for example, decarburization slag, dephosphorization slag, desulfurization slag, desiliconization slag, ingot slag, etc.), Examples include electric furnace slag. Among these slags, converter steelmaking slag, such as decarburized slag and dephosphorized slag, is suitable for the modification of seabed soil and dredged soil, and among them, particularly contains 30% by mass or more of CaO. And a particle size of 40 mm or less is desirable. This is because the Ca component in the steelmaking slag reacts with the Si component in the seabed soil or dredged soil to accelerate the solidification and improve the reforming effect. In practice, the particle size of the steelmaking slag is 40 mm or less. If so, the mixing operation is easy, and the solidification reaction proceeds promptly. The blending amount of steel slag is appropriately about 20 to 50% (mass ratio) of the seabed soil or dredged soil depending on the water content of the seabed soil or dredged soil.

また、上記(i)の材料自体として用いる「鉄鋼スラグ」についても、上述した各種スラグの1種以上を用いることができる。また、これらスラグのなかでも、所定の粒度を確保するという観点から、高炉水砕スラグ以外の鉄鋼スラグが好ましく、なかでも脱炭スラグや脱燐スラグなどのような転炉系の製鋼スラグが特に好ましい。
上記(i)の材料は、「平均粒径D50>10mmの粒度」又は「10%粒径D10>1mmの粒度」を有する必要がある。ここで、平均粒径D50とは、一般にメジアン粒径と言われるものであり、横軸を対数目盛りで篩目開き、縦軸をその篩を通過する材料の質量百分率としてプロットした累積粒径分布曲線において、質量分率が50%となる粒径(篩目開き)である。またD10とは、上記累積粒径分布曲線において、質量分率が10%となる粒径である。(i)の材料の粒度が本条件よりも小さいと、置換材が地下水で飽和状態にあって振動を受ける場合、地下水の水圧が上昇し、それに伴い地下水が移動してしまうため、全体として強度が低下し、安定性を失ってしまう。(i)の材料の粒径の上限は、設計的にも機能的にも特にないが、あまり大きすぎると施工が困難となることから、施工性を考慮して40mm以下であることが望ましい。
Moreover, also about the "iron and steel slag" used as the material itself of said (i), 1 or more types of the various slag mentioned above can be used. Among these slags, steel slag other than granulated blast furnace slag is preferable from the viewpoint of securing a predetermined particle size, and converter steelmaking slag such as decarburized slag and dephosphorized slag is particularly preferable. preferable.
The material (i) must have “average particle size D50> 10 mm particle size” or “10% particle size D10> 1 mm particle size”. Here, the average particle diameter D50 is generally referred to as the median particle diameter. The cumulative particle size distribution is plotted with the horizontal axis as a logarithmic scale and the vertical axis as the mass percentage of the material passing through the sieve. In a curve, it is a particle size (a sieve opening) with a mass fraction of 50%. D10 is the particle size at which the mass fraction is 10% in the cumulative particle size distribution curve. If the particle size of the material of (i) is smaller than this condition, when the replacement material is saturated with groundwater and receives vibration, the water pressure of the groundwater rises and the groundwater moves accordingly. Decreases and loses stability. The upper limit of the particle size of the material (i) is not particularly in terms of design or function, but if it is too large, the construction becomes difficult.

上記(ii)の材料のなかで、「建設発生土に改質材を混合して改質した土」は、コーン指数が400kN/m以上となるように、建設発生土に改質材を加えて十分に混合し、必要に応じて養生させて得られたものである。改質材としては、セメント、セメント系固化材、石灰系固化材などが挙げられ、これらの1種以上を用いることができる。ここで、セメント系固化材、石灰系固化材とは、セメントや石灰では固化しにくい土や現場に対応するため、セメントを母材として1種以上の有効成分(固化促進剤)を添加した固化材(セメント系固化材)、石灰を母材として1種以上の有効成分(固化促進剤)を添加した固化材(石灰系固化材)のことである。改質材の配合量は、建設発生土の含水状態に応じて、建設発生土の5〜30%(質量比)程度が適当である。 Among the materials of (ii) above, “the soil modified by mixing the modifying material with the construction generated soil” means that the modifying material is applied to the construction generated soil so that the cone index is 400 kN / m 2 or more. In addition, it was obtained by thoroughly mixing and curing as necessary. Examples of the modifier include cement, cement-based solidified material, lime-based solidified material, and the like, and one or more of these can be used. Here, cement-based solidified material and lime-based solidified material are solidified by adding one or more active ingredients (solidification accelerator) using cement as a base material in order to deal with soil and sites that are difficult to solidify with cement and lime. It is a solidified material (lime-based solidified material) in which one or more active ingredients (solidification accelerator) are added using lime as a base material (cement-based solidified material). The blending amount of the modifying material is suitably about 5 to 30% (mass ratio) of the construction generated soil depending on the moisture content of the construction generated soil.

上記(ii)の材料は、「粒径0.075mm未満の割合が35質量%を超える粒度」又は「粒径0.075mm未満の割合が30質量%を超え35質量%以下であって且つ粒径0.005mm未満の割合が15質量%を超える粒度」を有し、且つコーン指数400kN/m以上である必要がある。(ii)の材料の粒度が上記の条件よりも大きいと、一般的に透水性が良くなり、上述のように置換材が地下水で飽和状態にあって振動を受ける場合、全体として強度が低下し、安定性を失ってしまう。また、コーン指数が400kN/m未満では、(a)強度が不足して盛土荷重を支えることができなくなる、(b)締固めが困難になる、(c)施工機械が沈込みやすく、安定して稼動できなくなる、などの問題を生じる。
なお、コーン指数は、JIS−A−1228「締固めた土のコーン指数の試験
方法」により求まる値であり、一種の貫入抵抗力である。
The material of (ii) above is “a particle size in which the ratio of particle size less than 0.075 mm exceeds 35% by mass” or “the ratio of particle size less than 0.075 mm exceeds 30% by mass and is 35% by mass or less. It is necessary that the ratio of the diameter less than 0.005 mm has a particle size exceeding 15% by mass and the cone index is 400 kN / m 2 or more. When the particle size of the material of (ii) is larger than the above conditions, the water permeability is generally improved, and when the replacement material is saturated with ground water and receives vibration as described above, the strength decreases as a whole. , Lose stability. If the cone index is less than 400 kN / m 2 , (a) the strength is insufficient and the embankment load cannot be supported, (b) compaction is difficult, (c) the construction machine is easy to sink and stable. Cause problems such as being unable to operate.
The cone index is a value determined by JIS-A-1228 “Testing method for cone index of compacted soil” and is a kind of penetration resistance.

本発明法で施工される盛土構造では、何らかの原因で盛土Cの一部が欠損したような場合に、置換材Bが露出してしまうことがないように、掘削部を埋め戻した置換材Bの上面2の端部20を覆う盛土部分の厚さが30cm以上、好ましくは50cm以上であることが望ましい。
図1の実施形態のように、置換材Bを原地盤面1とほぼ同じレベルまで埋め戻した場合、盛土幅方向両側位置において置換材Bの上面2の端部20が地表と近くなり、この端部20を覆う盛土部分の厚さを30cm以上(好ましくは50cm以上)とするには、盛土構造として本来必要とされる以上に盛土幅を大きくする必要がある。そこで、図2の実施形態のように、掘削部を埋め戻した置換材Bの上面2を、原地盤面1よりも深い位置にすることが好ましく、これにより、盛土幅を必要以上に大きくすることなく、端部20を覆う盛土部分の厚さを確保することができる。特に、掘削部を埋め戻した置換材Bの上面2を、原地盤面1よりも30cm以上、より好ましくは50cm以上深い位置とすること(すなわち、図2の深さxが30cm以上、より好ましくは50cm以上)が望ましい。
以上のように掘削部を埋め戻した置換材Bの上面2の端部20を覆う盛土部分の厚さを十分に厚くすること(好ましくは、置換材Bの上面2を原地盤面1よりも十分に深い位置とすること)により、何らかの原因で盛土Cの一部が欠損したような場合でも置換材Bが露出してしまうことがなく、しかも、盛土に防風林や防潮林のような植生を設ける場合において、植生基盤の主体を原地盤の土壌とすることができ、植生の成育にも有利である。
In the embankment structure constructed by the method of the present invention, the replacement material B in which the excavation part is backfilled so that the replacement material B is not exposed when a part of the embankment C is lost for some reason. The thickness of the embankment portion covering the end 20 of the upper surface 2 is 30 cm or more, preferably 50 cm or more.
When the replacement material B is backfilled to substantially the same level as the original ground surface 1 as in the embodiment of FIG. 1, the end portions 20 of the upper surface 2 of the replacement material B are close to the ground surface at both side positions in the embankment width direction. In order to make the thickness of the embankment part which covers the edge part 20 30 cm or more (preferably 50 cm or more), it is necessary to make the embankment width larger than originally required as a embankment structure. Therefore, as in the embodiment of FIG. 2, it is preferable to place the upper surface 2 of the replacement material B backfilled with the excavated portion at a position deeper than the original ground surface 1, thereby increasing the embankment width more than necessary. The thickness of the embankment part which covers the edge part 20 can be ensured without. In particular, the upper surface 2 of the replacement material B in which the excavated portion is backfilled is positioned 30 cm or more, more preferably 50 cm or more deeper than the original ground surface 1 (that is, the depth x in FIG. 2 is more than 30 cm, more preferably Is preferably 50 cm or more.
As described above, the thickness of the embankment portion that covers the end 20 of the upper surface 2 of the replacement material B that has backfilled the excavation part is sufficiently increased (preferably, the upper surface 2 of the replacement material B is made to be larger than the original ground surface 1. The replacement material B will not be exposed even if a part of the embankment C is lost for some reason, and vegetation such as windbreak forest or tide forest is applied to the embankment. In the case of providing, the main vegetation base can be the soil of the original ground, which is advantageous for the growth of vegetation.

また、原地盤Aの掘削により発生した土砂に、固化材、鉄鋼スラグの中から選ばれる1種以上を混合することでコーン指数400kN/m以上に改質した後、この土砂を用いて盛土Cを構築することが好ましい。
土砂に固化材を混合する場合、コーン指数が400kN/m以上となるように、さきに挙げたような固化材を加えて十分に混合する。固化材の配合量は、土砂の含水状態に応じて、土砂の5〜30%(質量比)程度が適当である。
また、土砂に鉄鋼スラグを混合する場合、コーン指数が400kN/m以上となるよう、さきに挙げたような鉄鋼スラグを加えて十分に混合する。鉄鋼スラグの配合量は、土砂の含水状態に応じて、土砂の20〜50%(質量比)程度が適当である。
このように盛土Cを構築するための土砂を、コーン指数400kN/m以上に改質することにより、盛土自体の安定性を高めることができる。
In addition, the soil generated by excavation of the original ground A is mixed with at least one selected from solidified material and steel slag to improve it to a cone index of 400 kN / m 2 or more, and then filled with this soil It is preferable to construct C.
When the solidifying material is mixed with the earth and sand, the solidifying material as mentioned above is added and sufficiently mixed so that the cone index is 400 kN / m 2 or more. The blending amount of the solidifying material is suitably about 5 to 30% (mass ratio) of the earth and sand depending on the moisture content of the earth and sand.
Moreover, when mixing steel slag with earth and sand, the steel slag as mentioned above is added and mixed sufficiently so that the cone index becomes 400 kN / m 2 or more. The blending amount of steel slag is appropriately about 20 to 50% (mass ratio) of the earth and sand depending on the moisture content of the earth and sand.
Thus, the stability of the embankment itself can be improved by modifying the earth and sand for constructing the embankment C to a cone index of 400 kN / m 2 or more.

また、本発明法では、下記(1)式、望ましくは下記(2)式を満足するように盛土を施工することが好ましい。これにより、盛土構造物全体の安定性が高く、且つ沈下が生じにくい構造とすることができる。
地震の際の盛土の振動振幅を小さくすることは盛土構造物全体の安定性と沈下抑制に効果的であり、そのためには、盛土全体が置換材全体よりも軽いことが求められる。数値シミュレーションの結果、おおむね(1)式が満たされれば、好ましくは(2)式が満たされれば、比較的振動振幅が小さく、盛土の沈下も少なく、盛土構造物全体が安定することが判明したので、好ましい条件として規定した。
(S2/S1)(X2/X1)≧0.8 …(1)
(S2/S1)(X2/X1)≧1.0 …(2)
但し S1:構築された盛土(C)の幅方向における断面積(m
S2:掘削部に埋め戻された置換材(B)の盛土幅方向における断面積(m
X1:原地盤(A)の単位体積重量(kN/m
X2:置換材(B)の単位体積重量(kN/m
In the method of the present invention, it is preferable to apply the embankment so as to satisfy the following formula (1), desirably the following formula (2). Thereby, it can be set as the structure where stability of the whole embankment structure is high, and subsidence does not arise easily.
Reducing the vibration amplitude of the embankment in the event of an earthquake is effective for the stability of the entire embankment structure and suppression of settlement, and for this purpose, the entire embankment is required to be lighter than the entire replacement material. As a result of numerical simulation, it was found that if the equation (1) is satisfied, preferably the equation (2) is satisfied, the vibration amplitude is relatively small, the settlement of the embankment is small, and the entire embankment structure is stable. Therefore, it was defined as a preferable condition.
(S2 / S1) (X2 / X1) ≧ 0.8 (1)
(S2 / S1) (X2 / X1) ≧ 1.0 (2)
However, S1: Cross-sectional area in the width direction of the constructed embankment (C) (m 2 )
S2: Cross-sectional area (m 2 ) in the fill width direction of the replacement material (B) backfilled in the excavation part
X1: Unit volume weight of raw ground (A) (kN / m 3 )
X2: Unit volume weight (kN / m 3 ) of the replacement material (B)

次に、本発明法で施工された盛土構造について、(A)原地盤の支持力の安全率、(B)置換材による改良地盤の安定性、(C)盛土の安定性、について説明する。なお、置換材による改良地盤とは、原地盤の掘削部を置換材Bで埋め戻した地盤をいう。
(A)原地盤の支持力の安全率
盛土の自重により有害な沈下が生じない範囲を地盤改良(置換材Bによる置換)するものとし、図5に示すように、概ね盛土高さhと同じ深さ(置換深さz)までを地盤改良(置換材Bによる置換)するものとする。
図6は、一般的に想定される盛土の規模を示すもので、図6(a)は最小規模の盛土、図6(b)は最大規模の盛土の各幅方向断面図を示しており、盛土高さhを5〜10m、盛土幅Wを25〜45mとする。
Next, (A) the safety factor of the bearing capacity of the original ground, (B) the stability of the improved ground by the replacement material, and (C) the stability of the embankment will be described for the embankment structure constructed by the present invention method. In addition, the improved ground by a substitute material means the ground which backfilled the excavation part of the original ground with the substitute material B.
(A) Safety factor of the bearing capacity of the original ground The area where harmful settlement does not occur due to the weight of the embankment shall be improved (replacement with the replacement material B), and as shown in Fig. 5, it is almost the same as the embankment height h The ground up to the depth (replacement depth z) is to be improved (replacement by the replacement material B).
FIG. 6 shows the generally assumed scale of the embankment. FIG. 6 (a) shows a minimum scale embankment, and FIG. 6 (b) shows a cross-sectional view in each width direction of the maximum scale embankment. The embankment height h is 5-10 m, and the embankment width W is 25-45 m.

重要構造物の設計的事項として、地盤の支持力の安全率は一般的に長期(常時)3、短期(地震時)1.5とすることが多い。置換深さzを盛土高さhと同じ(z=h)とし、想定される盛土規模を高さ5〜10m、法勾配1:2とした場合(図6参照)、図7(川上房義、「新編 土質力学」、森北出版、1978年、p.171)に示すオスターバーク図表(盛土荷重による半無限体中の鉛直応力を求める影響値の図表)より、置換材Bによる改良地盤直下の原地盤における盛土による応力増加σz1は、盛土材の単位体積重量=置換材の単位体積重量=γとすると、以下のようになる。
σz1=0.47〜0.44γz
・盛土高さ5mの場合
a/z=10/5=2、b/z=5/5=1
オスターバーク図表よりI=0.47
・盛土高さ10mの場合
a/z=20/10=2、b/z=5/10=0.5
オスターバーク図表よりI=0.44
As a design matter of important structures, the safety factor of the bearing capacity of the ground is generally set to 3 for long-term (always) and 1.5 for short-term (during earthquake). When the replacement depth z is the same as the embankment height h (z = h), the assumed embankment scale is 5-10 m in height, and the normal gradient is 1: 2 (see FIG. 6), FIG. , “New edition of soil mechanics”, Morikita Publishing, 1978, p.171), from the Osterbark chart (the chart of influence values for determining vertical stress in semi-infinite bodies due to embankment load) The stress increase σz1 due to embankment in the original ground is as follows, where unit volume weight of embankment material = unit volume weight of replacement material = γ.
σz1 = 0.47 ~ 0.44γz
・ When the height is 5m
a / z = 10/5 = 2, b / z = 5/5 = 1
From the Osterburk chart I = 0.47
・ When the height is 10m
a / z = 20/10 = 2, b / z = 5/10 = 0.5
From Osterburk chart I = 0.44

一方、単純に置換深さzの置換材Bによる改良地盤の自重σz0は、σz0=γzである。したがって、置換材Bによる改良地盤直下の原地盤の地盤応力σは、下記のようになる。
σ=σz1+σz0=(1.47〜1.44)γz
この値は短期(地震時)の安全率1.5を下回っており、盛土を安全に支持できるということである。
On the other hand, the weight σz0 of the improved ground by the replacement material B having the replacement depth z is σz0 = γz. Therefore, the ground stress σ of the original ground just below the improved ground due to the replacement material B is as follows.
σ = σz1 + σz0 = (1.47-1.44) γz
This value is below the short-term (earthquake) safety factor of 1.5, which means that the embankment can be safely supported.

(B)置換材による改良地盤の安定性
改良地盤の安定性を、改良地盤表面の支持力(テルツアギの支持力式)で評価した場合、次のようになる。想定する盛土は、図6に示すように、盛土高さhを5〜10m、盛土幅Wを25〜45mとする。また、盛土の単位体積重量γは16kN/m3とする。
なお、土のせん断強さsと粘着力c(せん断強度)、せん断面に垂直な応力σ、せん断抵抗角φは下式の関係にある。
s=c+σ・tanφ
表1に、土の各せん断抵抗角φでの支持力係数Nc、Nrを示す。また、図8に地盤のせん断抵抗角φと支持力係数との関係を示す。
(B) Stability of improved ground with replacement material The stability of the improved ground is evaluated by the bearing capacity of the improved ground surface (Tertuagi's bearing capacity formula) as follows. As shown in FIG. 6, the assumed embankment has an embankment height h of 5 to 10 m and an embankment width W of 25 to 45 m. The unit volume weight γ of the embankment is 16 kN / m 3 .
Note that the shear strength s and adhesive strength c (shear strength) of the soil, the stress σ perpendicular to the shear plane, and the shear resistance angle φ are in the relationship of the following equations.
s = c + σ · tanφ
Table 1 shows the bearing capacity coefficients Nc and Nr at each shear resistance angle φ of the soil. FIG. 8 shows the relationship between the ground shear resistance angle φ and the bearing force coefficient.

Figure 2014025315
Figure 2014025315

まず、盛土の自重σzは、上記単位体積重量γと盛土高さhから、以下のように計算される。
σz=γ・h=16×(5〜10)=80〜160kN/m2
置換材Bが上記(i)の材料の場合、置換材Bの粘着力c=0、せん断抵抗角φ=25°と仮定すると、置換材Bによる改良地盤の支持力qdは、支持力係数Nc=9.9、Nr=3.3より、以下のように計算される。
支持力qd=c・Nc+(1/2)・γ・W・Nr=(1/2)×16×(25〜45)×3.3=660〜1180kN/m2
ここで、上記のように盛土の自重σzは80〜160kN/m2であるので、上記(i)の材料(置換材B)からなる改良地盤は十分な支持力(支持力qd:660〜1180kN/m2)を有していることになる。つまり、安定である。
First, the own weight σz of the embankment is calculated as follows from the unit volume weight γ and the embankment height h.
σz = γ ・ h = 16 × (5-10) = 80-160kN / m 2
When the replacement material B is the material (i) above, assuming that the adhesive force c = 0 of the replacement material B and the shear resistance angle φ = 25 °, the support force qd of the improved ground by the replacement material B is the support force coefficient Nc = 9.9 and Nr = 3.3, it is calculated as follows.
Supporting force qd = c · Nc + (1/2) · γ · W · Nr = (1/2) × 16 × (25 to 45) × 3.3 = 660 to 1180 kN / m 2
Here, since the weight σz of the embankment is 80 to 160 kN / m 2 as described above, the improved ground composed of the material (i) (substitution material B) has a sufficient supporting force (supporting force qd: 660 to 1180 kN). / m 2 ). That is, it is stable.

また、置換材Bが上記(ii)の材料の場合、置換材Bの粘着力c=40kN/m2、せん断抵抗角φ=0と仮定すると、置換材Bによる改良地盤の支持力qdは、支持力係数Nc=5.3、Nr=0より、以下のように計算される。
支持力qd=c・Nc+(1/2)・γ・W・Nr=40×5.3=212kN/m2
ここで、上記のように盛土の自重σzは80〜160kN/m2であるので、上記(ii)の材料(置換材B)からなる改良地盤は十分な支持力(支持力qd:212kN/m2)を有していることになる。つまり、安定である。
Further, when the replacement material B is the material (ii) above, assuming that the adhesive force c of the replacement material B is 40 kN / m 2 and the shear resistance angle φ = 0, the bearing capacity qd of the improved ground by the replacement material B is From the bearing force coefficient Nc = 5.3 and Nr = 0, calculation is performed as follows.
Supporting force qd = c ・ Nc + (1/2) ・ γ ・ W ・ Nr = 40 × 5.3 = 212kN / m 2
Here, as described above, since the weight σz of the embankment is 80 to 160 kN / m 2 , the improved ground made of the material (ii) (substitution material B) has sufficient supporting force (supporting force qd: 212 kN / m). 2 ) will have. That is, it is stable.

これに対して、本発明法のような置換材Bによる地盤改良をしない場合、原地盤の土砂の粘着力c=25kN/m2、せん断抵抗角φ=0と仮定すると、その地盤の支持力qdは、支持力係数Nc=5.3、Nr=0より、以下のように計算される。
支持力qd=c・Nc+(1/2)・γ・W・Nr=25×5.3=133kN/m2
ここで、上記のように盛土の自重σzは80〜160kN/m2であるので、置換材Bによる地盤改良をしない場合、盛土高さが10mに近くなると地盤の支持力が不足することになる。つまり、不安定である。
On the other hand, in the case where the ground improvement by the replacement material B as in the present invention is not performed, assuming that the adhesion force c = 25 kN / m 2 of the ground soil and the shear resistance angle φ = 0, the bearing capacity of the ground qd is calculated as follows from the bearing capacity coefficient Nc = 5.3 and Nr = 0.
Supporting force qd = c ・ Nc + (1/2) ・ γ ・ W ・ Nr = 25 × 5.3 = 133kN / m 2
Here, since the weight σz of the embankment is 80 to 160 kN / m 2 as described above, when the ground height is not improved by the replacement material B, the supporting force of the ground is insufficient when the embankment height is close to 10 m. . That is, it is unstable.

(C)盛土の安定性
(C-1)置換材Bが上記(i)の材料の場合
地盤改良前の原地盤の土砂の粘着力c=25kN/m2、単位体積重量γ=16kN/m3とし、改良地盤の置換材Bの粘着力c=25kN/m2、単位体積重量γ=16kN/m3、せん断抵抗角φ=5°として、置換材Bによる地盤改良しない場合と地盤改良した場合について、それぞれの盛土の限界高さHcを図9(山内豊聡、「土質力学」、理工図書、1977年、p.166〜168)のテーラー図表(斜面の安定係数を求める図)から求めると、以下のようになる。
・地盤改良しない場合(Nc=5.5)
Hc=c・Nc/γ=25×5.5/16=8.6m
・地盤改良した場合(Nc=9.5)
Hc=c・Nc/γ=25×9.5/16=14.8m
ここで、想定盛土の高さは5〜10mであり、したがって、地盤改良をしない場合には盛土高さ10mでは安定しないが、地盤改良(置換)により盛土の限界高さが約1.7倍高くなり、10mの盛土でも安定する。
(C) Stability of embankment (C-1) When the replacement material B is the material of (i) above Adhesive strength c of the soil before the ground improvement c = 25kN / m 2 , Unit volume weight γ = 16kN / m 3. Adhesive strength c of improved ground replacement material B c = 25kN / m 2 , unit volume weight γ = 16kN / m 3 , shear resistance angle φ = 5 °, ground improvement with replacement material B and ground improvement For each case, the limit height Hc of each embankment is obtained from the tailor chart (figure for calculating the slope stability coefficient) in Fig. 9 (Toyohiro Yamauchi, "Soil Mechanics", Science and Engineering Book, 1977, p.166-168). And the following.
・ When the ground is not improved (Nc = 5.5)
Hc = c ・ Nc / γ = 25 × 5.5 / 16 = 8.6m
・ When the ground is improved (Nc = 9.5)
Hc = c ・ Nc / γ = 25 × 9.5 / 16 = 14.8m
Here, the height of the assumed embankment is 5 to 10 m. Therefore, if the ground is not improved, the height of the embankment is not stable at 10 m, but the limit height of the embankment is about 1.7 times higher due to the ground improvement (replacement). Stable even on 10m bank.

(C-2)置換材Bが上記(ii)の材料の場合
地盤改良前の原地盤の土砂の粘着力c=25kN/m2、単位体積重量γ=16kN/m3とし、改良地盤の置換材Bの粘着力c=40kN/m2(≒コーン指数400kn/m2)、単位体積重量γ=16kN/m3として、置換材Bによる地盤改良しない場合と地盤改良した場合について、それぞれの盛土の限界高さHcを図9のテーラー図表から求めると、以下のようになる。
・地盤改良しない場合(Nc=5.5)
Hc=c・Nc/γ=25×5.5/16=8.6m
・地盤改良した場合(Nc=5.5)
Hc=c・Nc/γ=40×5.5/16=12.5m
ここで、想定盛土の高さは5〜10mであり、したがって、地盤改良をしない場合には盛土高さ10mでは安定しないが、地盤改良(置換)により盛土の限界高さが約1.5倍高くなり、10mの盛土でも安定する。
(C-2) When the replacement material B is the material of (ii) above, the soil adhesion of the ground before the ground improvement is c = 25kN / m 2 and the unit volume weight γ = 16kN / m 3 to replace the improved ground Adhesive strength of material B c = 40kN / m 2 (≒ cone index 400kn / m 2 ), unit volume weight γ = 16kN / m 3 When the limit height Hc is determined from the tailor chart of FIG. 9, it is as follows.
・ When the ground is not improved (Nc = 5.5)
Hc = c ・ Nc / γ = 25 × 5.5 / 16 = 8.6m
・ When the ground is improved (Nc = 5.5)
Hc = c ・ Nc / γ = 40 × 5.5 / 16 = 12.5m
Here, the height of the assumed embankment is 5 to 10m. Therefore, if the ground is not improved, the height of the embankment is not stable at 10m. Stable even on 10m bank.

(D)上記(A)〜(C)の総合評価
本発明法で施工した盛土構造の安定性を総合的に評価すると表2のようになり、本発明によれば非常に安定した盛土構造が得られることが判る。

Figure 2014025315
(D) Comprehensive evaluation of the above (A) to (C) Comprehensive evaluation of the stability of the embankment structure constructed by the method of the present invention is as shown in Table 2. According to the present invention, a very stable embankment structure is obtained. It turns out that it is obtained.
Figure 2014025315

図3は、図2の実施形態の盛土を道路(盛土道路)に適用した場合について、盛土幅方向の縦断面を模式的に示したものであり、3は道路である。この場合、盛土支持地盤を地盤改良してあるので、地震時も地震後も盛土の変形を最小限に抑え、道路機能を損なうことなく、ライフラインとして十分活用することができる。
図4は、図2の実施形態の盛土を防潮堤林に適用した場合について、盛土幅方向の縦断面を模式的に示したものであり、4は植生である。この場合、大地震による津波が押し寄せても、地震による盛土機能の低下が最小限であり、津波を抑制することが可能である。当然、荒天等による大洪水時にも水難を抑制することが可能である。
FIG. 3 schematically shows a vertical section in the width direction of the embankment when the embankment of the embodiment of FIG. 2 is applied to a road (embankment road), and 3 is a road. In this case, since the embankment supporting ground has been improved, deformation of the embankment can be minimized during and after the earthquake, and can be sufficiently utilized as a lifeline without impairing road functions.
FIG. 4 schematically shows a longitudinal section in the width direction of the embankment when the embankment of the embodiment of FIG. 2 is applied to a tide bank forest, and 4 is vegetation. In this case, even if a tsunami caused by a large earthquake hits, the deterioration of the embankment function due to the earthquake is minimal, and the tsunami can be suppressed. Naturally, it is possible to control drowning even during a heavy flood due to stormy weather.

本発明法により道路や防潮堤林用の盛土を施工する場合の基本的な手順を以下に示す。但し、以下の手順に限られるものではない。
(1)準備工
(2)地盤改良工
(i)原地盤Aの掘削:地山(原地盤A)をブルドーザー、バックホウなどの掘削機で掘削する。
(ii)掘削土を運搬し、仮置き又は盛土工で施工する。
(iii)掘削土の材料特性評価:コーン指数等を確認(400kN/m2以上等)する。
(iv)置換材Bの施工(掘削部の埋戻し):掘削部に置換材Bを投入し、まき出し、締固めを行う(仕様を満足する施工方法、施工管理を採る)。必要に応じて、まき出し、締固めを繰り返す。
The basic procedure for constructing banking for roads and seawalls according to the method of the present invention is shown below. However, it is not limited to the following procedure.
(1) Preparatory work (2) Ground improvement work (i) Excavation of the original ground A: Excavate the natural ground (original ground A) with excavators such as bulldozers and backhoes.
(Ii) Transport excavated soil and construct by temporary placement or embankment.
(Iii) soil excavated material characterization: Review Cone Index, etc. (400 kN / m 2 or more, etc.).
(Iv) Construction of the replacement material B (backfilling of the excavation part): The replacement material B is put into the excavation part, and is rolled out and compacted (the construction method and construction management satisfying the specifications are taken). Repeat sprinkling and compaction as necessary.

(3)盛土工
(i)盛土材の施工:上記(2)-(iii)の結果に基づいて必要に応じ掘削土の土質改良を行った後、盛土材(原地盤Aの掘削土)のまきだし、転圧・締固めを行う(仕様を満足する施工方法、施工管理を採る。)必要に応じて、まき出し、転圧・締固めを繰り返す。
(ii)盛土道路の場合、一般的な道路工(路床工、路盤工、舗装工)を行う。防潮堤林の場合、一般的な植生工を行う。
なお、周辺土壌への間隙水の流出を抑制するために、置換材Bの下に遮水シートを敷いてもよい。
(3) Embankment work (i) Construction of embankment material: After improving the soil quality of the excavated soil as necessary based on the results of (2)-(iii) above, the embankment material (the excavated soil of the original ground A) Rolling out, rolling and compacting (Use construction method and construction management that satisfy the specifications.) Repeat rolling and compacting and compacting as necessary.
(Ii) In the case of embankment roads, general road works (roadbed work, roadbed work, pavement work) are performed. In the case of a seawall, general vegetation is performed.
In addition, in order to suppress the outflow of pore water to the surrounding soil, a water shielding sheet may be laid under the replacement material B.

本発明法により施工される盛土は、盛土道路や防潮堤林などとして利用されるため、一定の長さ(例えば、数km〜数十km程度)に構築される。このような盛土を効率的に施工するために、以下のような方法を採ることが好ましい。すなわち、この施工方法は、下記工程(ア)〜(ウ)を順に行うことで盛土を施工するものである。
(ア)施工しようとする盛土の長手方向一端側の位置から施工を開始し、当該位置の原地盤(a)を掘削し、その掘削部(d)の少なくとも一部を置換材(b)で埋め戻す。
(イ)施工しようとする盛土の長手方向に沿って、「前工程の掘削部(d)に続く原地盤(an+1)を掘削し、この掘削により発生した土砂を用いて、前工程で埋め戻された置換材(b)の上に盛土の一部(c)を構築するとともに、その掘削部(dn+1)の少なくとも一部を置換材(bn+1)で埋め戻す」ことを複数回繰り返すことで、盛土をその長手方向で順次施工する。(nは1以上の整数)
(ウ)施工しようとする盛土の長手方向他端側の位置において、前記工程(ア)の掘削部dから発生した土砂を用いて盛土の終端部cENDを構築する。
Since the embankment constructed by the method of the present invention is used as an embankment road, a seawall, etc., it is constructed with a certain length (for example, about several kilometers to several tens of kilometers). In order to construct such banking efficiently, it is preferable to adopt the following method. That is, this construction method constructs the embankment by sequentially performing the following steps (a) to (c).
(A) Construction is started from a position on one end side in the longitudinal direction of the embankment to be constructed, the original ground (a 1 ) at the position is excavated, and at least a part of the excavated part (d 1 ) is replaced with a replacement material (b 1 ) Backfill.
(B) Along the longitudinal direction of the embankment to be constructed, “excavate the original ground (a n + 1 ) following the excavation part (d n ) of the previous process, and use the earth and sand generated by this excavation, in the previous process with building a backfilled substituted material part of embankment on the (b n) (c n) , that the at least a portion of the drilling unit (d n + 1) backfilled with replacement material (b n + 1) " By repeating a plurality of times, the embankment is sequentially constructed in the longitudinal direction. (N is an integer of 1 or more)
(C) at the location of the other end side in the longitudinal direction of the embankment to be construction, constructing the terminal portion c END of embankments using sediment generated from excavation d 1 of the step (A).

図10は、上記施工方法の施工手順の具体例を示す説明図である。
図10(1)及び図10(2)に示すように、施工しようとする盛土の長手方向一端側の位置から施工を開始し、当該位置の原地盤aを一定長さで掘削し(掘削部d)、その掘削した土砂eを任意の場所に仮置きする。次いで、図10(3)に示すように、その掘削部dの少なくとも一部を置換材bで埋め戻す。
図10(4)及び図10(5)に示すように、施工しようとする盛土の長手方向に沿って、掘削部dに隣接した原地盤aを一定長さで掘削し(掘削部d)、この掘削により発生した土砂を用いて、最初に埋め戻された置換材bの上に盛土の一部cを構築するとともに、図10(6)に示すように、その掘削部dの少なくとも一部を置換材bで埋め戻す。この工程を複数回繰り返すことにより、図10(7)〜図10(9)に示すように、盛土をその長手方向で順次施工する。ここで、図10(9)において、bは一連の工程において最後から2番目に埋め戻される置換材を、bN+1は同じく最後に埋め戻される置換材を、cは同じく最後から2番目に構築される盛土部分(盛土の一部)を、それぞれ示している。そして、一連の工程の最後に、図10(9)に示すように、施工しようとする盛土の長手方向他端側の位置(盛土の施工終端位置)において、最初の掘削部dから発生した土砂eを用いて盛土の終端部cENDを構築し、盛土が完成する。
FIG. 10 is an explanatory diagram showing a specific example of the construction procedure of the construction method.
As shown in FIG. 10 (1) and FIG. 10 (2), construction is started from a position on one end in the longitudinal direction of the embankment to be constructed, and the original ground a 1 at the position is excavated with a certain length (excavation) Part d 1 ) and the excavated earth and sand e 1 are temporarily placed in an arbitrary place. Then, as shown in FIG. 10 (3), backfilled at least a portion of the drilling unit d 1 substituted material b 1.
10 (4) and FIG. 10 (5), along the longitudinal direction of the embankment to be construction, the original ground a 2 adjacent to the digging unit d 1 was drilled at a predetermined length (excavation d 2 ) Using the earth and sand generated by the excavation, a part c 1 of the embankment is constructed on the replacement material b 1 that is first backfilled, and the excavation part is shown in FIG. 10 (6). At least part of d 2 is backfilled with the replacement material b 2 . By repeating this step a plurality of times, as shown in FIGS. 10 (7) to 10 (9), the embankment is sequentially applied in the longitudinal direction. Here, in FIG. 10 (9), second a b N of the substituent material backfilled second from last in a series of steps, the b N + 1-substituted material which also finally backfilled, c N is also the last The embankment part (part of embankment) to be constructed is shown respectively. Then, at the end of the series of steps, as shown in FIG. 10 (9), at the location of the other end side in the longitudinal direction of the embankment to be construction (construction end position embankment), generated from the first excavation d 1 The bank c1 END is constructed using the earth and sand e 1 to complete the banking.

A 原地盤
B 置換材
C 盛土
〜a 原地盤
,b,b,bN+1 置換材
,c,c,cEND 盛土の一部
〜d 掘削部
土砂
1 原地盤面
2 置換材上面
3 道路
4 植生
20 置換材上面の端部
A Original ground B Replacement material C Embankment a 1 to a 3 Original ground b 1 , b 2 , b N , b N + 1 Replacement material c 1 , c 2 , c N , c END Part of embankment d 1 to d 3 excavation part e 1 earth and sand 1 raw ground surface 2 replacement material top surface 3 road 4 vegetation 20 edge of replacement material top surface

Claims (6)

盛土を施工する場所の原地盤(A)を掘削し、該掘削部を下記(i)又は(ii)の置換材(B)で埋め戻し、その上に、前記掘削により発生した土砂を用いて盛土(C)を構築することを特徴とする盛土施工方法。
(i)コンクリート再生材、海底土又は浚渫土に固化材を混合して固化させた人工土石材、海底土又は浚渫土に鉄鋼スラグを混合して改質した人工土石材、鉄鋼スラグの中から選ばれる1種以上からなり、平均粒径D50>10mmの粒度又は10%粒径D10>1mmの粒度を有する土石材
(ii)建設発生土、建設発生土に改質材を混合して改質した土の中から選ばれる1種以上からなり、粒径0.075mm未満の割合が35質量%を超える粒度、又は粒径0.075mm未満の割合が30質量%を超え35質量%以下であって且つ粒径0.005mm未満の割合が15質量%を超える粒度を有するとともに、コーン指数400kN/m以上である土
Excavate the original ground (A) where the embankment is to be constructed, backfill the excavated part with the replacement material (B) of (i) or (ii) below, and then use the earth and sand generated by the excavation A banking construction method characterized by constructing banking (C).
(I) From recycled concrete material, artificial debris material that has been solidified by mixing solidified material with seabed soil or dredged soil, artificial debris material that has been modified by mixing steel slag with seabed soil or dredged soil, and steel slag A debris material consisting of one or more selected particles and having an average particle size D50> 10 mm or a 10% particle size D10> 1 mm. (Ii) Construction-generated soil; It is composed of one or more selected from among the selected soils, and the particle size with a particle size of less than 0.075 mm exceeds 35% by mass, or the particle size with a particle size of less than 0.075 mm exceeds 30% by mass and is 35% by mass or less. And a soil having a particle size of more than 15% by mass with a particle size of less than 0.005 mm and a cone index of 400 kN / m 2 or more.
掘削部を埋め戻した置換材(B)の上面の端部を覆う盛土部分の厚さが30cm以上であることを特徴とする請求項1に記載の盛土施工方法。   The embankment construction method according to claim 1, wherein the thickness of the embankment part covering the end of the upper surface of the replacement material (B) backfilling the excavation part is 30 cm or more. 掘削部を埋め戻した置換材(B)の上面が、原地盤面よりも30cm以上深い位置にあることを特徴とする請求項2に記載の盛土施工方法。   The embankment construction method according to claim 2, wherein the upper surface of the replacement material (B) in which the excavated portion is backfilled is at a position deeper than the original ground surface by 30 cm or more. 原地盤(A)の掘削により発生した土砂に、固化材、鉄鋼スラグの中から選ばれる1種以上を混合することでコーン指数400kN/m以上に改質した後、該土砂を用いて盛土(C)を構築することを特徴とする請求項1〜3のいずれかに記載の盛土施工方法。 The soil generated by excavation of the original ground (A) is mixed with at least one selected from solidified material and steel slag to improve the cone index to 400 kN / m 2 or more, and then embankment using the soil The embankment construction method according to claim 1, wherein (C) is constructed. 下記工程(ア)〜(ウ)を順に行うことで盛土を施工することを特徴とする請求項1〜4のいずれかに記載の盛土施工方法。
(ア)施工しようとする盛土の長手方向一端側の位置から施工を開始し、当該位置の原地盤(a)を掘削し、その掘削部(d)の少なくとも一部を置換材(b)で埋め戻す。
(イ)施工しようとする盛土の長手方向に沿って、「前工程の掘削部(d)に隣接した原地盤(an+1)を掘削し、この掘削により発生した土砂を用いて、前工程で埋め戻された置換材(b)の上に盛土の一部(c)を構築するとともに、その掘削部(dn+1)の少なくとも一部を置換材(bn+1)で埋め戻す」ことを複数回繰り返すことで、盛土をその長手方向で順次施工する。(nは1以上の整数)
(ウ)施工しようとする盛土の長手方向他端側の位置において、前記工程(ア)の掘削部(d)から発生した土砂を用いて盛土の終端部(cEND)を構築する。
The embankment construction method according to claim 1, wherein the embankment is constructed by sequentially performing the following steps (a) to (c).
(A) Construction is started from a position on one end side in the longitudinal direction of the embankment to be constructed, the original ground (a 1 ) at the position is excavated, and at least a part of the excavated part (d 1 ) is replaced with a replacement material (b 1 ) Backfill.
(B) along the longitudinal direction of the embankment to be construction, excavating excavation of the "pre-step (d n) to an adjacent original ground (a n + 1), using a sand generated by the excavation, before step in addition to constructing the backfilled substituted material (b n) a part of the embankment on the (c n), backfilled with the drilling unit (d n + 1) at least a portion of the replacement material (b n + 1) "that By repeating the above several times, the embankment is sequentially constructed in the longitudinal direction. (N is an integer of 1 or more)
(C) At the position on the other end side in the longitudinal direction of the embankment to be constructed, the end portion (c END ) of the embankment is constructed using the earth and sand generated from the excavation part (d 1 ) of the step (a).
下記(1)式を満足するように盛土を施工することを特徴とする請求項1〜5のいずれかに記載の盛土施工方法。
(S2/S1)(X2/X1)≧0.8 …(1)
但し S1:構築された盛土(C)の幅方向における断面積(m
S2:掘削部に埋め戻された置換材(B)の盛土幅方向における断面積(m
X1:原地盤(A)の単位体積重量(kN/m
X2:置換材(B)の単位体積重量(kN/m
The embankment construction method according to any one of claims 1 to 5, wherein the embankment is constructed so as to satisfy the following expression (1).
(S2 / S1) (X2 / X1) ≧ 0.8 (1)
However, S1: Cross-sectional area in the width direction of the constructed embankment (C) (m 2 )
S2: Cross-sectional area (m 2 ) in the fill width direction of the replacement material (B) backfilled in the excavation part
X1: Unit volume weight of raw ground (A) (kN / m 3 )
X2: Unit volume weight (kN / m 3 ) of the replacement material (B)
JP2012168690A 2012-07-30 2012-07-30 Filling method Active JP5998713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012168690A JP5998713B2 (en) 2012-07-30 2012-07-30 Filling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012168690A JP5998713B2 (en) 2012-07-30 2012-07-30 Filling method

Publications (2)

Publication Number Publication Date
JP2014025315A true JP2014025315A (en) 2014-02-06
JP5998713B2 JP5998713B2 (en) 2016-09-28

Family

ID=50199194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012168690A Active JP5998713B2 (en) 2012-07-30 2012-07-30 Filling method

Country Status (1)

Country Link
JP (1) JP5998713B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017048617A (en) * 2015-09-02 2017-03-09 株式会社竹中工務店 Banking structure and construction method for the same
JP2017166141A (en) * 2016-03-14 2017-09-21 株式会社フジタ Vegetation base and construction method thereof
JP2017190667A (en) * 2016-04-11 2017-10-19 Jfeスチール株式会社 Improvement method for water bottom ground, operation ship, and inner bucket pressure controlling system
JP6393004B1 (en) * 2018-01-29 2018-09-19 Jfeスチール株式会社 Backfill device and backfill method
JP6393003B1 (en) * 2018-01-29 2018-09-19 Jfeスチール株式会社 Press-fitting device and press-fitting method to submerged ground
JP2019039222A (en) * 2017-08-25 2019-03-14 西日本旅客鉄道株式会社 Embankment widening method and embankment
JP2021025396A (en) * 2019-07-31 2021-02-22 大坪Gsi株式会社 Artificial water shut-off soil used in water shut-off zone of reservoir bank body
CN113481963A (en) * 2021-07-09 2021-10-08 中交第三航务工程勘察设计院有限公司 Dynamic design-based cooperative construction method for pushing riprap in deep silt base into seawall
CN114775571B (en) * 2022-05-24 2024-04-19 国网甘肃省电力公司经济技术研究院 Method for preparing hypotonic gradient heat-insulating foundation by using solidified polluted clay

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107558463B (en) * 2017-08-18 2019-05-14 西北矿冶研究院 Method for manufacturing anti-sedimentation reinforcing wall of desert gobi mine refuse dump foundation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452327A (en) * 1990-06-19 1992-02-20 Sumitomo Cement Co Ltd Stabilized soil and construction method using this soil
JPH11229380A (en) * 1998-02-19 1999-08-24 Taisei Corp Banking structure and banking method
JP2001182044A (en) * 1999-12-28 2001-07-03 Asahi Organic Chem Ind Co Ltd Muddy soil solidifying material and muddy soil solidifying method
JP2005218959A (en) * 2004-02-05 2005-08-18 Kurita Water Ind Ltd High moisture content mud treatment method, high moisture content mud treating agent, and method for making granulated soil from high moisture content mud
JP2007244203A (en) * 2006-03-13 2007-09-27 Fujita Corp Method for creating reed-community vegetation base
JP2009249999A (en) * 2008-04-11 2009-10-29 Eternal Preserve Kk Construction method for suppressing deformation of filling
JP2009285590A (en) * 2008-05-30 2009-12-10 Toa Grout Kogyo Co Ltd Engineering method of neutral solidification of mud and novel gypsum-based solidification improving material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452327A (en) * 1990-06-19 1992-02-20 Sumitomo Cement Co Ltd Stabilized soil and construction method using this soil
JPH11229380A (en) * 1998-02-19 1999-08-24 Taisei Corp Banking structure and banking method
JP2001182044A (en) * 1999-12-28 2001-07-03 Asahi Organic Chem Ind Co Ltd Muddy soil solidifying material and muddy soil solidifying method
JP2005218959A (en) * 2004-02-05 2005-08-18 Kurita Water Ind Ltd High moisture content mud treatment method, high moisture content mud treating agent, and method for making granulated soil from high moisture content mud
JP2007244203A (en) * 2006-03-13 2007-09-27 Fujita Corp Method for creating reed-community vegetation base
JP2009249999A (en) * 2008-04-11 2009-10-29 Eternal Preserve Kk Construction method for suppressing deformation of filling
JP2009285590A (en) * 2008-05-30 2009-12-10 Toa Grout Kogyo Co Ltd Engineering method of neutral solidification of mud and novel gypsum-based solidification improving material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017048617A (en) * 2015-09-02 2017-03-09 株式会社竹中工務店 Banking structure and construction method for the same
JP2017166141A (en) * 2016-03-14 2017-09-21 株式会社フジタ Vegetation base and construction method thereof
JP2017190667A (en) * 2016-04-11 2017-10-19 Jfeスチール株式会社 Improvement method for water bottom ground, operation ship, and inner bucket pressure controlling system
JP2019039222A (en) * 2017-08-25 2019-03-14 西日本旅客鉄道株式会社 Embankment widening method and embankment
JP6393004B1 (en) * 2018-01-29 2018-09-19 Jfeスチール株式会社 Backfill device and backfill method
JP6393003B1 (en) * 2018-01-29 2018-09-19 Jfeスチール株式会社 Press-fitting device and press-fitting method to submerged ground
JP2021025396A (en) * 2019-07-31 2021-02-22 大坪Gsi株式会社 Artificial water shut-off soil used in water shut-off zone of reservoir bank body
JP7041330B2 (en) 2019-07-31 2022-03-24 大坪Gsi株式会社 Artificial blade gold soil used for the impermeable zone of the reservoir body
CN113481963A (en) * 2021-07-09 2021-10-08 中交第三航务工程勘察设计院有限公司 Dynamic design-based cooperative construction method for pushing riprap in deep silt base into seawall
CN113481963B (en) * 2021-07-09 2023-01-31 中交第三航务工程勘察设计院有限公司 Dynamic design-based cooperative construction method for pushing riprap in deep silt base into seawall
CN114775571B (en) * 2022-05-24 2024-04-19 国网甘肃省电力公司经济技术研究院 Method for preparing hypotonic gradient heat-insulating foundation by using solidified polluted clay

Also Published As

Publication number Publication date
JP5998713B2 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
JP5998713B2 (en) Filling method
CN102995602A (en) Structure and construction method of muddy coast sheet pile wharf
CN212001226U (en) Backfill miscellaneous soil composite foundation structure
Gunawan Geofoam: a potential for Indonesia’s soil problem
CN102296591A (en) Rapid drainage solidifying treatment method of soft soil foundation
CN207228101U (en) A kind of sand compaction pile for being used in the soft soil foundation of deep water off-lying sea reinforce vertical type shore protection
CN110004876A (en) Low stake gravity type quay and its construction method suitable for soft soil foundation
KR20020072416A (en) Lightweight fill materials using waste styrofoam beads and lightweight fill method applying the same
CN210658236U (en) Slag stacking structure
JP6327215B2 (en) Gravity breakwater
Kumar et al. Constructing structures on backfilled opencast mine spoil for better sustainability
CN208183722U (en) A kind of mud and soft soil foundation in-situ solidifying foundation structure
Janssen et al. Busan-Geoje Link: Immersed tunnel opening new horizons
Yee et al. Ground Improvement—a green technology towards a sustainable housing, infrastructure and utilities developments in Malaysia
JP3738496B2 (en) Artificial consolidation material
JP3363219B2 (en) Sabo dam structure
CN109797616A (en) A kind of water quenching ferronickel slag, which changes, doses muscle cushion layer structure and its construction method
KR101607865B1 (en) Numerical Analysis method of Light-weight Air Foamed Soils Using Dredged Soils for Ground Treatment and Backfill, and The Recording Medium
Ameratunga et al. Ground improvement methods for soft clays
Cazzuffi et al. Landfills Volume Increase with Reinforced Soil Embankments: Basic Theory and Case Studies
Mitchell Recent developments in ground improvement for mitigation of seismic risk to existing embankment dams
JP7238257B2 (en) Ground material and ground improvement method
Juvik et al. Settlements of spread footing foundations on quick clay stabilized with lime and cement
Kwong et al. Stabilizing landslides using rammed aggregate piers
KR20030095376A (en) Lightweight fill method applying lightweight fill materials using waste styrofoam beads

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160815

R150 Certificate of patent or registration of utility model

Ref document number: 5998713

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250