JP3738496B2 - Artificial consolidation material - Google Patents

Artificial consolidation material Download PDF

Info

Publication number
JP3738496B2
JP3738496B2 JP27208096A JP27208096A JP3738496B2 JP 3738496 B2 JP3738496 B2 JP 3738496B2 JP 27208096 A JP27208096 A JP 27208096A JP 27208096 A JP27208096 A JP 27208096A JP 3738496 B2 JP3738496 B2 JP 3738496B2
Authority
JP
Japan
Prior art keywords
strength
fiber
water
replacement
relationship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27208096A
Other languages
Japanese (ja)
Other versions
JPH10120453A (en
Inventor
俊行 田中
栄造 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP27208096A priority Critical patent/JP3738496B2/en
Publication of JPH10120453A publication Critical patent/JPH10120453A/en
Application granted granted Critical
Publication of JP3738496B2 publication Critical patent/JP3738496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、土木構造物の施工において置換工法用の置換材料や山留壁や止水壁の構成充填材として好適な人工固結材料に関するもので、適用用途としては、(1)ケーソン沈設置換工法用の置換材料、(2)土留め壁・止水壁の構築材料、(3)フィルダムのコア部の遮水材料、(4)鉄道路盤、鉄道路床・路盤、空港滑走路盤の材料、(5)切土法面の表面の保護材料、(6)急傾斜盛土体の法面補強構成材料、(7)トンネル工法カルバート構築材料などで使用するものである。
【0002】
【従来の技術】
例えば、ケーソン躯体や地中壁パネル等のコンクリート地下構造物を自重や積載荷重により沈下させる場合に、沈設中の先端部の地盤支持力の均等化を図り、傾斜を防止し、また、内部の地下水位の低下を図るため先行削孔して置換壁を構築し、その内壁側を掘削しながらこのコンクリート地下構造物を沈設することが行われる。
【0003】
また、山留壁や止水壁で、柱列等の掘削充填部に後で鋼材等による芯材を建込むようなこともある。
【0004】
このような置換や芯材の挿入を目的とした置換壁や充填部としては、掘削の障害にならない程度に低強度のものとするには砂で施工することが代表的であるが、砂では止水性に乏しいので、原位置攪拌柱列固化工法(SMW)でのソイルセメント、セメントベントナイト等が挙げられる。
【0005】
【発明が解決しようとする課題】
しかし、前記ソイルセメントやベントナイトセメントによる置換壁や充填部は、遮水性に関しては、靱性に乏しく、衝撃に対しての耐久性も欠如している。また、深度による強度の変化やバラツキが大きく、安定性に欠ける。さらに、海水の水質汚濁に対する懸念が大きい。これに加えて、打設時に流出や損失があり、経済性も悪い。
【0006】
本発明の目的は前記従来例の不都合を解消し、掘削の障害にならない程度に低強度で、止水壁として機能する程度の強度を有する置換材や充填材として、遮水性のみならず、強度の安定性に富み、環境保全や経済性にもすぐれる人工固結材料を提供することにある。
【0007】
【課題を解決するための手段】
本発明は前記目的を達成するため、土木構造物の施工において、掘削の障害にならない程度に低強度で、止水壁として機能する程度の強度を有する置換材や充填材としての人工固結材料であり、礫を含む普通コンクリートに粘土とファイバーを混合したファイバー混入粘土コンクリートからなるものであり、ファイバーは水中で分散する大きさを選定したビニロン繊維で、これを体積重量比で0.5 〜1%混入させることを要旨とするものである。
【0008】
詳しくは、普通コンクリートは、礫(G)、砂(S)、セメント(C)、水からなるが、一例として使用材料は下記表1のごときものである。
【0009】
【表1】

Figure 0003738496
ファイバー(F)は水中で分散する大きさを選定した。
【0010】
図1に各材料の粒度分布を示す。
【0011】
本発明の人工固結材料は、粘土の存在で、一軸圧縮強さ10〜20kgf/cmの低強度のものとすることができ、打設の際には水中不分離性に優れている。
【0012】
また、礫の存在が、深度方向での強度変化が小さいものとすることができ、安定した施工が可能となる。しかも、ファイバーの存在が、高い遮水性を有し、打継目の一体性を確保することができ、靱性に強く、耐衝撃性に優れたものとすることができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を詳細に説明する。本発明の人工固結材料の実施形態としての配合例を表2に示す。なお、No.3はファイバーを混入しない比較例を示す。
【0014】
【表2】
Figure 0003738496
【0015】
前記表2に基づく配合条件に応じた本発明の人工固結材料の効果を試すため、一軸圧縮試験、曲げ強度試験、加圧養生確認試験、透水試験を行った。
【0016】
まず、一軸圧縮試験での、一軸圧縮強さquと材令の関係図を図2に、また、一軸圧縮強さquとセメント量Cの関係図を図3に、セメント量C=150(kg/m)の場合の一軸圧縮強さquとファイバー混入率VFの関係図を図4に示す。
【0017】
これら図2〜図4から要求性能である強度10〜20(kgf/cm)に対して、仮に目標強度quを18(kgf/cm)であるとすると、適合するセメント量は50(kg/m)であるが、実工事ではこの量はあまりに少な過ぎて混合のばらつきの原因となることも考えられる。一軸圧縮強さquとファイバー混入率VFの関係では、quは、Cが一定の場合VFの変化によらず、ほぼ変化ないことがわかった。
【0018】
曲げ強度試験について結果の一覧表を下記表3に示す。また、図5、図6に曲げ強度σbとたわみの関係を、図7に曲げ靱性係数(強度)σbとファイバー混入率VFの関係を、図8にσbと一軸圧縮強さquの関係を示す。
【0019】
【表3】
Figure 0003738496
【0020】
これらの結果から、σbはVF=0%のとき、ピーク値を越えると、その後は急激に減少するが、VFが増加するに従って、ピーク強度を越えても減少せず、靱性に卓越していることが判る。また、曲げ強度σbのピーク値は、VFによらずほぼ同等の値をとる。曲げ靱性係数σbは、VFの増加に伴って大きくなり、ファイバーを混入することで高い靱性を得ることができる。
【0021】
加圧養生試験結果を下記表4に示す。また、図9に一軸圧縮強さquと上載圧力pの関係を示す。試験条件は、C=100kgf/cmで材令は28日(20℃)とした。なお、比較のため、一軸圧縮強さqu=18.8kgf/cm(材令28日)のマンメイドロック〔粘土モルタル〕(砂+セメント+粘土+水)の試験結果も併記する。
【0022】
【表4】
Figure 0003738496
【0023】
この試験結果から、本発明のファイバー混入粘土コンクリートによる人工固結材は、同じ強度を有するマンメイドロック〔粘土モルタル〕と比較して上載圧力が大きくなってもquはそれほど大きくなっていない。これは、礫を混入することで礫相互にかみ合わせによる骨格が形成され、加圧・圧密によって沈下を抑制して強度増加を抑えられているものと考えられる。
【0024】
透水試験結果の一覧表を下記表5に示す。また、図10に透水係数kとセメント量Cの関係を、図11にkと一軸圧縮強さquを示す。通水圧は、0.5 〜3.0 kgf/cmまで変化させた。
【0025】
【表5】
Figure 0003738496
【0026】
この試験結果から、透水係数は、セメント量Cの増加に伴って小さくなる。ファイバー混入率VFがVF=0.5(%)と一定の場合、通水圧を3.0kgf/cmまで上げた通水はなかった。また、VFの違いによるk はほとんど変わりない。
【0027】
【発明の効果】
以上述べたように本発明の人工固結材料は、掘削の障害にならない程度に低強度で、止水壁として機能する程度の強度を有する置換材や充填材として、遮水性のみならず、強度の安定性に富み、環境保全や経済性にもすぐれるものである。そして、利用分野は、ケーソン沈設置換工法用の置換材料、土留め壁・止水壁の構築材料、フィルダムのコア部の遮水材料、鉄道路盤、鉄道路床・路盤、空港滑走路盤の材料、切土法面の表面の保護材料、急傾斜盛土体の法面補強構成材料、トンネル工法カルバート構築材料など多岐にわたるものである。
【図面の簡単な説明】
【図1】 本発明の人工固結材料の使用材料における粒度分布図である。
【図2】 一軸圧縮強さと材令の関係図である。
【図3】 一軸圧縮強さとセメント量の関係図である。
【図4】 一軸圧縮強さとファイバー混入率の関係図である。
【図5】 曲げ強度とたわみの関係図である。
【図6】 曲げ強度とたわみの関係図である。
【図7】 曲げ強度とファイバー混入率の関係図である。
【図8】 曲げ強度、曲げ靱性係数と一軸圧縮強さの関係図である。
【図9】 一軸圧縮強さと上載圧力の関係図である。
【図10】 透水係数とセメント量の関係図である。
【図11】 透水係数と一軸圧縮強さの関係図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a replacement material for a replacement method in construction of civil engineering structures and an artificially consolidated material suitable as a structural filler for mountain retaining walls and water blocking walls.As an application, (1) caisson substituting replacement Replacement materials for construction methods, (2) Construction materials for earth retaining walls and water blocking walls, (3) Water shielding materials for core parts of fill dams, (4) Materials for railway road boards, railway floors and roadbeds, airport runway roads, It is used for (5) material for protecting the surface of cut slope, (6) material for reinforcing steep slopes, (7) tunnel culvert construction material, etc.
[0002]
[Prior art]
For example, when sinking concrete underground structures such as caisson enclosures and underground wall panels by their own weight or loading load, the ground support force at the tip of the sinking is equalized to prevent inclination, In order to lower the groundwater level, a replacement wall is constructed by drilling in advance, and this concrete underground structure is submerged while excavating the inner wall side.
[0003]
In some cases, cores made of steel or the like are later built in excavation and filling sections such as column rows, such as mountain retaining walls and water blocking walls.
[0004]
For such replacement walls and fillers for the purpose of replacement and core material insertion, it is typical to construct with sand in order to make it low-strength so as not to hinder excavation, Since the water-stopping property is poor, soil cement, cement bentonite, and the like in the in-situ stirring column row solidification method (SMW) can be used.
[0005]
[Problems to be solved by the invention]
However, the replacement wall and the filling portion made of the soil cement or bentonite cement have poor toughness and lack durability against impact in terms of water shielding. Moreover, the intensity | strength change and variation with depth are large, and stability is lacking. Furthermore, there are great concerns about the pollution of seawater. In addition to this, there are outflows and losses at the time of placement, and the economy is poor.
[0006]
The object of the present invention is to eliminate the disadvantages of the conventional example, and as a replacement material or filler having such a low strength that it does not become an obstacle to excavation and functioning as a water barrier, It is to provide an artificially consolidated material which is rich in stability and excellent in environmental conservation and economy.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention provides an artificially consolidated material as a replacement material or filler having a strength low enough not to hinder excavation and a strength to function as a water blocking wall in the construction of a civil engineering structure. It is made of fiber-mixed clay concrete in which clay and fiber are mixed with ordinary concrete containing gravel , and fiber is a vinylon fiber whose size is selected to be dispersed in water, and this is 0.5 to 1% by volume / weight ratio. The gist is to mix them.
[0008]
Specifically, ordinary concrete consists of gravel (G), sand (S), cement (C), and water. As an example, the materials used are as shown in Table 1 below.
[0009]
[Table 1]
Figure 0003738496
The fiber (F) was selected to be dispersed in water.
[0010]
FIG. 1 shows the particle size distribution of each material.
[0011]
The artificial caking material of the present invention can be made into a low-strength material having a uniaxial compressive strength of 10 to 20 kgf / cm 2 in the presence of clay, and is excellent in water inseparability at the time of casting.
[0012]
Moreover, the presence of gravel can make the intensity | strength change small in a depth direction, and stable construction is attained. In addition, the presence of the fiber has a high water-impervious property, can ensure the integrity of the seam, and has high toughness and excellent impact resistance.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail. Table 2 shows a blending example as an embodiment of the artificially consolidated material of the present invention. In addition, No. 3 shows the comparative example which does not mix a fiber.
[0014]
[Table 2]
Figure 0003738496
[0015]
In order to test the effect of the artificially consolidated material of the present invention according to the blending conditions based on Table 2, a uniaxial compression test, a bending strength test, a pressure curing confirmation test, and a water permeability test were performed.
[0016]
First, in FIG. 2, the relationship between the uniaxial compression strength qu and the material age in the uniaxial compression test is shown in FIG. 2, the relationship between the uniaxial compression strength qu and the cement amount C is shown in FIG. 3, and the cement amount C = 150 (kg FIG. 4 shows the relationship between the uniaxial compressive strength qu and the fiber mixing rate VF in the case of / m 3 ).
[0017]
2 to 4, if the target strength qu is 18 (kgf / cm 2 ) for the required strength of 10 to 20 (kgf / cm 2 ), the amount of cement to be applied is 50 (kg / M 3 ), but in actual construction, this amount is too small and may cause mixing variation. From the relationship between the uniaxial compressive strength qu and the fiber mixing ratio VF, it was found that qu is almost unchanged regardless of the change in VF when C is constant.
[0018]
Table 3 below lists the results of the bending strength test. 5 and 6 show the relationship between the bending strength σb and the deflection, FIG. 7 shows the relationship between the bending toughness coefficient (strength) σb and the fiber mixing ratio VF, and FIG. 8 shows the relationship between σb and the uniaxial compressive strength qu. .
[0019]
[Table 3]
Figure 0003738496
[0020]
From these results, when σb exceeds the peak value when VF = 0%, it rapidly decreases thereafter, but as VF increases, it does not decrease even when the peak intensity is exceeded, and it excels in toughness. I understand that. Further, the peak value of the bending strength σb takes almost the same value regardless of VF. The bending toughness coefficient σb increases with an increase in VF, and high toughness can be obtained by mixing fibers.
[0021]
The results of the pressure curing test are shown in Table 4 below. FIG. 9 shows the relationship between the uniaxial compressive strength qu and the mounting pressure p. The test conditions were C = 100 kgf / cm 2 and the material age was 28 days (20 ° C.). For comparison, the test results of Manmade Rock [clay mortar] (sand + cement + clay + water) with uniaxial compressive strength qu = 18.8kgf / cm 2 (material age 28 days) are also shown.
[0022]
[Table 4]
Figure 0003738496
[0023]
From this test result, the artificial cemented material made of the fiber-mixed clay concrete of the present invention does not have a large qu even when the mounting pressure is increased as compared with a manmade rock (clay mortar) having the same strength. This is thought to be due to the inclusion of pebbles to form a skeleton by interlocking with the pebbles, which suppresses settlement by pressurization and consolidation, thereby suppressing an increase in strength.
[0024]
Table 5 below shows a list of water permeability test results. FIG. 10 shows the relationship between the hydraulic conductivity k and the cement amount C, and FIG. 11 shows k and the uniaxial compressive strength qu. The water pressure was changed from 0.5 to 3.0 kgf / cm 2 .
[0025]
[Table 5]
Figure 0003738496
[0026]
From this test result, the water permeability coefficient decreases as the cement amount C increases. When the fiber mixing rate VF was constant at VF = 0.5 (%), there was no water flow that increased the water flow pressure to 3.0 kgf / cm 2 . Also, k due to the difference in VF is almost unchanged.
[0027]
【The invention's effect】
As described above, the artificially consolidated material of the present invention has a low strength that does not become an obstacle to excavation, and as a replacement material or filler having a strength that functions as a water blocking wall, It is highly stable and has excellent environmental conservation and economic efficiency. And the application fields are replacement materials for caisson laying replacement method, construction materials for earth retaining walls and water barrier walls, water shielding materials for core parts of fill dams, railway road boards, railway road floors / roadbeds, airport runway materials, There are a wide variety of materials, such as protective materials for the surface of cut slopes, slope reinforcement embankment slope construction materials, tunnel construction culvert construction materials.
[Brief description of the drawings]
FIG. 1 is a particle size distribution diagram of a material used for an artificially consolidated material of the present invention.
FIG. 2 is a relationship diagram between uniaxial compressive strength and material age.
FIG. 3 is a relationship diagram between uniaxial compressive strength and cement amount.
FIG. 4 is a relationship diagram between uniaxial compressive strength and fiber mixing rate.
FIG. 5 is a relationship diagram between bending strength and deflection.
FIG. 6 is a relationship diagram between bending strength and deflection.
FIG. 7 is a relationship diagram between bending strength and fiber mixing rate.
FIG. 8 is a relationship diagram of bending strength, bending toughness coefficient and uniaxial compressive strength.
FIG. 9 is a relationship diagram between uniaxial compression strength and mounting pressure.
FIG. 10 is a relationship diagram between a water permeability coefficient and a cement amount.
FIG. 11 is a relationship diagram between a water permeability coefficient and uniaxial compressive strength.

Claims (1)

土木構造物の施工において、掘削の障害にならない程度に低強度で、止水壁として機能する程度の強度を有する置換材や充填材としての人工固結材料であり、礫を含む普通コンクリートに粘土とファイバーを混合したファイバー混入粘土コンクリートからなるものであり、ファイバーは水中で分散する大きさを選定したビニロン繊維で、これを体積重量比で0.5 〜1%混入させることを特徴とした人工固結材料。 In the construction of civil engineering structures, it is a low-strength material that does not hinder excavation and is an artificially consolidated material as a replacement material or filler that has the strength to function as a water barrier. It is made of fiber-mixed clay concrete mixed with fiber, and the fiber is vinylon fiber that is selected to disperse in water, and it is artificially consolidated by mixing 0.5 to 1% by volume / weight ratio. material.
JP27208096A 1996-10-15 1996-10-15 Artificial consolidation material Expired - Lifetime JP3738496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27208096A JP3738496B2 (en) 1996-10-15 1996-10-15 Artificial consolidation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27208096A JP3738496B2 (en) 1996-10-15 1996-10-15 Artificial consolidation material

Publications (2)

Publication Number Publication Date
JPH10120453A JPH10120453A (en) 1998-05-12
JP3738496B2 true JP3738496B2 (en) 2006-01-25

Family

ID=17508820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27208096A Expired - Lifetime JP3738496B2 (en) 1996-10-15 1996-10-15 Artificial consolidation material

Country Status (1)

Country Link
JP (1) JP3738496B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110482954A (en) * 2019-08-30 2019-11-22 北京建筑大学 A kind of earth material and its application suitable for thin-walled rammed earth wall

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678496B2 (en) * 2005-05-23 2011-04-27 東洋建設株式会社 Impervious structure of waste disposal site
JP5950544B2 (en) * 2011-11-18 2016-07-13 東日本旅客鉄道株式会社 Roadbed material with glass foam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110482954A (en) * 2019-08-30 2019-11-22 北京建筑大学 A kind of earth material and its application suitable for thin-walled rammed earth wall

Also Published As

Publication number Publication date
JPH10120453A (en) 1998-05-12

Similar Documents

Publication Publication Date Title
JP6166264B2 (en) How to build a retaining wall
JP5998713B2 (en) Filling method
CN206070508U (en) Device for reinforcing foundation
CN107740434A (en) It is a kind of to be used for sandy gravel, the construction method of dolomite crushed zone dam foundation ditch water protecting curtain
CN101008178B (en) Soft base processing construction process using excavating and stirring method
EP1067241B1 (en) Basin construction for catchment of a traffic road
CN101029490B (en) Method for preventing and managing rock/upper side slope
CN102839683B (en) Granular pile-permeable concrete stake dual compound foundation and processing method
CN1304471A (en) Method of stabilising ground in road construction work
JP3738496B2 (en) Artificial consolidation material
KR100451093B1 (en) Lightweight fill materials using waste styrofoam beads
JP2577518B2 (en) Construction method of foundation ground such as road on soft ground
CN207228101U (en) A kind of sand compaction pile for being used in the soft soil foundation of deep water off-lying sea reinforce vertical type shore protection
CN109763513A (en) A kind of anchor cable lattice and the compound retaining structure of Modified soil retaining wall and its construction method
JP3583181B2 (en) Embankment construction method
CN206070564U (en) A kind of NEW TYPE OF COMPOSITE retaining structure
KR20240003601A (en) Construction method for tunnel of slope
CN106917388A (en) The check dam and construction method of a kind of use Fill Reinforced With Geogrids modified cement soil clad
CN113089645A (en) Slotted hole structure system for reinforcing concrete impervious wall by penetrating silt layer and construction method
Boyes USES OF BENTONITE IN CIVIL ENGINEERING.
JP4612356B2 (en) How to create a slope
KR100451092B1 (en) Lightweight fill method applying lightweight fill materials using waste styrofoam beads
JPH06313314A (en) Foundation ground improving construction method for low storied building
KR100462529B1 (en) Lightweight fill method applying lightweight fill materials using waste styrofoam beads
JPH11247200A (en) Caisson settlement method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term