JP4632865B2 - Construction sludge improvement method and improvement equipment used therefor - Google Patents

Construction sludge improvement method and improvement equipment used therefor Download PDF

Info

Publication number
JP4632865B2
JP4632865B2 JP2005151800A JP2005151800A JP4632865B2 JP 4632865 B2 JP4632865 B2 JP 4632865B2 JP 2005151800 A JP2005151800 A JP 2005151800A JP 2005151800 A JP2005151800 A JP 2005151800A JP 4632865 B2 JP4632865 B2 JP 4632865B2
Authority
JP
Japan
Prior art keywords
construction sludge
fine powder
furnace slag
less
index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005151800A
Other languages
Japanese (ja)
Other versions
JP2006326446A (en
Inventor
良広 高野
久光 藍
慎一郎 萩原
昭一 長田
寛 額賀
健詞 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP2005151800A priority Critical patent/JP4632865B2/en
Publication of JP2006326446A publication Critical patent/JP2006326446A/en
Application granted granted Critical
Publication of JP4632865B2 publication Critical patent/JP4632865B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、建設汚泥を粒状固化して性状を改良する方法およびそれに用いる改良設備に関する。
具体的には、例えば、アースドリル工法やシールド工法などによる建設現場において発生する建設汚泥を粒状固化して有効活用するための建設汚泥の改良方法およびそれに用いる改良設備に関する。
The present invention relates to a method for improving the properties by solidifying construction sludge in granular form and an improved facility used therefor.
Specifically, for example, the present invention relates to a method for improving construction sludge for effectively solidifying and effectively utilizing construction sludge generated at a construction site by an earth drill method, a shield method, or the like, and an improvement facility used therefor.

アースドリル工法やシールド工法などによる建設現場において発生する建設汚泥は、脱水処理された後でも含水比が30%以上であり、性状が粘土質で強度が低いため、有効利用が難しく、一般にはトラック等による搬送の後、埋め立て処分されているのが大半である。
しかしながら、近年・埋立地の枯渇、環境上の問題等から、従来の埋め立て処分による方法では、限界が生じ始めている。
Construction sludge generated at the construction site by the earth drill method or shield method has a moisture content of 30% or more even after dehydration, and its properties are clay and low in strength. Most of them are disposed of in landfills after being transported.
However, due to the recent depletion of landfills and environmental problems, the conventional landfill methods have started to limit.

そこで、この高含水汚泥を埋め立てしないで有効活用する方法が提案されているが、未だにその活用において、種々の課題を有している。
例えば、特開2001−115158号公報には、建設現場や土木現場で発生する含水土壌にごみの焼却灰を溶融した後、これを固化、かつ粒子化してなる約20重量%の溶融炉スラグを混合撹拌して粒状化しやすい混合土を得た後、カルボキシル基含有水溶性重合体を添加して混合撹拌し粒状化させ、さらに石灰等の固化材で処理するごみの溶融炉スラグを用いた粒状土の製造方法が開示されている。
しかしながら、この特開2001−115158号公報に開示されている方法は、カルボキシル基含有水溶性重合体からなる有機溶剤を添加して粒状化させ、さらに石灰等の固化材で処理するため、処理コストが高いという問題点があった。
Then, although the method of utilizing this high water content sludge effectively without being reclaimed is proposed, it still has various problems in the utilization.
For example, Japanese Patent Laid-Open No. 2001-115158 discloses a melting furnace slag of about 20% by weight obtained by melting incineration ash of garbage into water-containing soil generated at a construction site or a civil engineering site, and then solidifying and granulating it. After obtaining mixed soil that is easy to be granulated by mixing and stirring, granulated using melting furnace slag of waste that is added with carboxyl group-containing water-soluble polymer, mixed and stirred and granulated, and further treated with solidifying material such as lime A method for producing soil is disclosed.
However, the method disclosed in Japanese Patent Application Laid-Open No. 2001-115158 adds an organic solvent composed of a carboxyl group-containing water-soluble polymer, granulates it, and further treats it with a solidifying material such as lime. There was a problem that was high.

また、特開平11−189771号公報には、都市ごみ焼却灰、下水汚泥焼却灰の1種以上を原料とした焼成物と石膏からなる混合物に、都市ゴミ焼却灰、下水汚泥焼却灰の1種以上を原料とした溶融物のスラグ微粉を混合したものを、改良対象土に混合することにより、緑化用地盤改良材およびそれを用いた地盤改良方法が開示されている。
しかしながら、この特開平11−189771号公報に開示されている方法は、緑化用の地盤改良を目的とするものであるため利用用途が限られ、また外部燃料を用いて製造された焼成物や石膏が用いられているため処理コストが高いという問題があった。
さらにこれら従来技術では、発生場所や工法に応じて、含水比等が大きく変化する建設汚泥に対し、処理土の強度を制御する方法を開示するまでには至っておらず、建設汚泥の含水比や処理土の用途に応じて、都度、物性を確認する必要があるという課題があった。
特開2001−115158号公報 特開平11−189771号公報
Japanese Patent Application Laid-Open No. 11-189771 discloses a mixture of municipal waste incineration ash and sewage sludge incineration ash as a raw material and a mixture of calcined product and gypsum, and municipal waste incineration ash and sewage sludge incineration ash. A ground improvement material for greening and a ground improvement method using the same are disclosed by mixing a mixture of slag fine powder of a melt obtained from the above into the soil to be improved.
However, since the method disclosed in Japanese Patent Application Laid-Open No. 11-189771 is intended to improve the ground for greening, its use is limited, and a calcined product or gypsum produced using an external fuel is used. Has a problem that the processing cost is high.
Furthermore, these conventional technologies have not yet disclosed a method for controlling the strength of the treated soil for construction sludge whose water content ratio varies greatly depending on the location and method of construction. There was a problem that it was necessary to check the physical properties each time depending on the use of the treated soil.
JP 2001-115158 A Japanese Patent Laid-Open No. 11-189771

そこで、本発明は、前述のような従来技術の問題点を解決し、各種の建設現場で発生した建設汚泥を埋め立てすることなく、有用な土木用資材(第1種〜第4種建設改良土)に簡便かつ低コストで改良する方法およびそれを具現化する改良設備を提供することを課題とする。   Therefore, the present invention solves the problems of the prior art as described above, and does not reclaim construction sludge generated at various construction sites, so that it is useful for civil engineering materials (type 1 to type 4 construction improved soil). The present invention aims to provide a simple and low-cost improvement method and an improvement facility that embodies it.

本発明は、前述の課題を解決すべく考案されたものであって、建設汚泥に廃棄物溶融炉で無害化および再資源化された溶融炉スラグや鉄鋼スラグを混合攪拌することによって、建設汚泥を有用な土木用資材に簡便かつ低コストで改良する方法およびそれを具現化する改良設備を提供するものであり、その要旨とするところは、特許請求の範囲に記載した通りの下記内容である。
(1)コーン指数200kN/m2未満の建設汚泥を改良する方法であって、
前記建設汚泥に、平均粒径が40μm以下の溶融炉スラグ微粉末または/および高炉スラグ微粉末を下記(A)式を満足するように添加して混合攪拌することにより、コーン指数200kN/m2以上の改良土とすることを特徴とする建設汚泥の改良方法。

Figure 0004632865
(2)コーン指数200kN/m2未満の建設汚泥を改良する方法であって、
前記建設汚泥に、比表面積を2000cm2/g以上の値に調整した平均粒径が40μm以下の溶融炉スラグ微粉末または/および高炉スラグ微粉末を下記(A)式を満足するように添加して混合攪拌することにより、コーン指数200kN/m2以上の改良土とすることを特徴とする建設汚泥の改良方法。
Figure 0004632865
(3)コーン指数200kN/m2未満の建設汚泥を改良する方法であって、
前記建設汚泥に、平均粒径150μm以下の粒子を10質量%以上含み、酸化カルシウムと酸化珪素の質量比が2.0〜3.5である製鋼スラグを下記(B)式を満足するように添加して混合攪拌することにより、コーン指数200kN/m2以上の改良土とすることを特徴とする建設汚泥の改良方法。
Figure 0004632865
(4)コーン指数200kN/m2未満の建設汚泥を改良する方法であって、
前記建設汚泥に、平均粒径40μm以下の溶融炉スラグ微粉末および/または高炉スラグ微粉末と、平均粒径150μm以下の粒子を10質量%以上含み、酸化カルシウムと酸化珪素の質量比が2.0〜3.5である製鋼スラグとの混合物を下記(C)式を満足するように添加して混合攪拌することによりコーン指数200kN/m2以上の改良土とすることを特徴とする建設汚泥の改良方法。
Figure 0004632865
(5)コーン指数200kN/m2未満の建設汚泥を改良する方法であって、
前記建設汚泥に、比表面積を2000cm2/g以上の値に調整した平均粒径40μm以下の溶融炉スラグ微粉末および/または高炉スラグ微粉末と、平均粒径150μm以下の粒子を10質量%以上含み、酸化カルシウムと酸化珪素の質量比が2.0〜3.5である製鋼スラグとの混合物を下記(C)式を満足するように添加して混合攪拌することによりコーン指数200kN/m2以上の改良土とすることを特徴とする建設汚泥の改良方法。
Figure 0004632865
Figure 0004632865
Figure 0004632865
The present invention has been devised to solve the above-mentioned problems, and is constructed by mixing and stirring a melting furnace slag or steel slag detoxified and recycled in a waste melting furnace into a construction sludge. Is a simple and low-cost method for improving civil engineering materials, and an improvement facility that embodies the method. The gist of the invention is as follows. .
(1) A method for improving construction sludge having a corn index of less than 200 kN / m2,
A corn index of 200 kN / m2 or more is obtained by adding molten furnace slag fine powder and / or blast furnace slag fine powder having an average particle size of 40 μm or less to the construction sludge so as to satisfy the following formula (A) and mixing and stirring. A method for improving construction sludge, characterized by using improved soil.
Figure 0004632865
(2) A method for improving construction sludge having a corn index of less than 200 kN / m2,
To the construction sludge, molten furnace slag fine powder or / and blast furnace slag fine powder having a specific surface area adjusted to a value of 2000 cm 2 / g or more and an average particle diameter of 40 μm or less are added so as to satisfy the following formula (A): A method for improving construction sludge, characterized in that improved soil having a cone index of 200 kN / m2 or more is obtained by mixing and stirring.
Figure 0004632865
(3) A method for improving construction sludge having a corn index of less than 200 kN / m2,
Steelmaking slag containing 10% by mass or more of particles having an average particle size of 150 μm or less and having a mass ratio of calcium oxide to silicon oxide of 2.0 to 3.5 is added to the construction sludge so as to satisfy the following formula (B) and mixed. A method for improving construction sludge, characterized in that, by stirring, improved soil having a cone index of 200 kN / m 2 or more is obtained.
Figure 0004632865
(4) A method for improving construction sludge having a corn index of less than 200 kN / m2,
The construction sludge contains 10 mass% or more of molten furnace slag fine powder and / or blast furnace slag fine powder having an average particle diameter of 40 μm or less and particles having an average particle diameter of 150 μm or less, and the mass ratio of calcium oxide to silicon oxide is 2.0 to A method for improving construction sludge, characterized in that a mixture with steelmaking slag of 3.5 is added so as to satisfy the following formula (C) and mixed and stirred to obtain improved soil having a cone index of 200 kN / m2 or more.
Figure 0004632865
(5) A method for improving construction sludge having a corn index of less than 200 kN / m2,
The construction sludge contains 10% by mass or more of molten furnace slag fine powder and / or blast furnace slag fine powder having an average particle size of 40 μm or less and a specific surface area adjusted to a value of 2000 cm 2 / g or more, and particles having an average particle size of 150 μm or less. Then, a mixture of steelmaking slag having a mass ratio of calcium oxide and silicon oxide of 2.0 to 3.5 is added so as to satisfy the following formula (C), and mixed and stirred to obtain improved soil having a cone index of 200 kN / m2 or more. A method for improving construction sludge characterized by the above.
Figure 0004632865
Figure 0004632865
Figure 0004632865

よって、本発明によれば、安価でかつ調達のしやすい溶融炉スラグ微粉末や高炉スラグ微粉末、および製鋼スラグを改質材として用いるため、処理コストを極めて低廉にすることが可能である。また、これらの材料の比表面積や混合量を、建設汚泥の含水比や処理土の利用目的に応じて、前記(A)式、(B)式、(C)式をもとに制御することで、従来技術では叶わなかった、種々の強度の処理土を造り分けることが可能となるものである。
従来技術である建設汚泥等の高含水土壌に固化・粒子化した溶融炉スラグとカルボキシル基含有水溶性重合体を添加して混合撹拌して粒状化させ、さらに石灰等の固化材で処理して粒状土を得る方法、あるいは都市ごみ焼却灰や下水汚泥焼却灰を原料とした焼成物と石膏からなる混合物に、都市ゴミ焼却灰や下水汚泥焼却灰を原料とした溶融物のスラグ微粉を混合したものを混合する方法等とは異なるものである。
すなわち、式(A)から(C)の意味合いは、第一として添加するスラグの種類や添加量により所望の強度(第1種改良土から第4種改良土)に作りこむことができることである。この点は従来技術のように単にカルボルキル基水溶性重合体や石膏を添加してただ固めるだけで所望の強度に作りこむということはできない。また第2として、建設汚泥の密度が含水比や土粒子の成分によりばらつくこと、また混合するスラグ類の密度が、使用するスラグの種類や成分により変動することから、従来技術の各材料の配合割合を規定する質量比(または%)やモル比(または%)では、安定した強度の改良土が得られないことを解明し、それに変わる手段として、強度が各材料の質量を密度で除した体積による配合比率に依存することを見出すことにより、本発明を成したものである。
以上により、本願請求項1〜5の手段で、建設汚泥を第1種から第4種建設改良土に改良できるものである。
Therefore, according to the present invention, since the melting furnace slag fine powder, the blast furnace slag fine powder, and the steelmaking slag, which are inexpensive and easy to procure, are used as the reforming material, the processing cost can be extremely low. In addition, the specific surface area and mixing amount of these materials should be controlled based on the formulas (A), (B), and (C) according to the moisture content of construction sludge and the purpose of use of the treated soil. Thus, it becomes possible to make differently treated soils of various strengths, which were not realized in the prior art.
Solidified and granulated melting furnace slag and carboxyl group-containing water-soluble polymer are added to a highly water-containing soil such as construction sludge, which is a conventional technology, mixed and stirred, granulated, and further treated with a solidifying material such as lime. A method of obtaining granular soil, or a mixture of baked material and gypsum made from municipal waste incineration ash or sewage sludge incineration ash, and slag fine powder of melt made from municipal waste incineration ash or sewage sludge incineration ash as raw materials It is different from the method of mixing things.
In other words, the implications of formulas (A) to (C) are that the desired strength (from first type improved soil to fourth type improved soil) can be created depending on the type and amount of slag added as the first. . In this respect, it is not possible to create a desired strength by simply adding a carboalkyl-based water-soluble polymer or gypsum and hardening it as in the prior art. Second, the density of construction sludge varies depending on the water content and soil particle components, and the density of slags to be mixed varies depending on the type and components of the slag used. Elucidating that stable soil with improved strength cannot be obtained with mass ratio (or%) or molar ratio (or%) that define the ratio, and as a means to replace it, the strength divided the mass of each material by the density. The present invention has been made by finding that it depends on the mixing ratio by volume.
As described above, the construction sludge can be improved from the first type to the fourth type construction improved soil by the means of claims 1 to 5 of the present application.

本発明を実施するための最良の形態について図1を用いて詳細に説明する。
図1は、本発明における建設汚泥の改良方法の実施形態を例示する図である。
図1において、1は建設汚泥受入ヤード、2は建設汚泥供給ホッパー、3はに設けられた計量器により計量されて予め設定された量に調整混合され、建設汚泥溶融炉スラグ貯留ホッパー、4は製鋼スラグ貯留ホッパー、5は高炉スラグ貯留ホッパー、6は混合機、7はシャトルコンベア、8は製品ヤードを示す。
まず、アースドリル工法やシールド工法などによる建設現場において発生する建設汚泥が建設汚泥受入ヤードに集積され、建設汚泥供給ホッパー2によって、混合機6に供給される。
このとき、溶融炉スラグ貯留ホッパー3から溶融炉スラグ微粉末が供給され、必要に応じて、製鋼スラグ貯留ホッパー4から製鋼スラグ微粉末と、高炉スラグ貯留ホッパー5から高炉スラグ微粉末が供給され、これらを混合機6によって混合することによって粒状固化された改良土がシャトルコンベヤ7によって製品ヤード8に搬送される。
The best mode for carrying out the present invention will be described in detail with reference to FIG.
FIG. 1 is a diagram illustrating an embodiment of a method for improving construction sludge according to the present invention.
In FIG. 1, 1 is a construction sludge receiving yard, 2 is a construction sludge supply hopper, 3 is weighed by a meter provided in and adjusted and mixed to a preset amount, a construction sludge melting furnace slag storage hopper, Steelmaking slag storage hopper, 5 is a blast furnace slag storage hopper, 6 is a mixer, 7 is a shuttle conveyor, and 8 is a product yard.
First, construction sludge generated at a construction site by an earth drill method or a shield method is accumulated in a construction sludge receiving yard and supplied to a mixer 6 by a construction sludge supply hopper 2.
At this time, the melting furnace slag fine powder is supplied from the melting furnace slag storage hopper 3, and the steelmaking slag fine powder is supplied from the steelmaking slag storage hopper 4, and the blast furnace slag fine powder is supplied from the blast furnace slag storage hopper 5, as necessary. The improved soil, which has been solidified by mixing with the mixer 6, is conveyed to the product yard 8 by the shuttle conveyor 7.

建設汚泥、溶融炉スラグ微粉末、高炉スラグ微粉末および製鋼スラグ微粉末の供給量は、各ホッパーの量や含水率に応じて予め設定された量のスラグを調整混合することができる。
なお、上記混合機6の方式は問わないが、混合効率および汎用性の観点から、ソイルカッターおよびロータリーハンマによって、建設汚泥とスラグとを攪拌混合する方式が好ましい。
The supply amount of construction sludge, melting furnace slag fine powder, blast furnace slag fine powder, and steelmaking slag fine powder can be adjusted and mixed with a predetermined amount of slag according to the amount of each hopper and moisture content.
In addition, although the system of the said mixer 6 is not ask | required, the system which stirs and mixes construction sludge and slag with a soil cutter and a rotary hammer from a viewpoint of mixing efficiency and versatility is preferable.

そこで本発明者等は、前記建設汚泥に、廃棄物溶融炉で無害化および再資源化された溶融炉スラグ微粉末、さらには高炉スラグ微粉末や製鋼スラグ微粉末を、適切な量添加して混合攪拌することにより、粘土状の建設汚泥が粒状固化され、該建設汚泥のコーン指数を200kN/m2以上とすることができることを見出し本発明をなしたものであり、無害化および再資源化された各スラグを建設汚泥に添加することによって、建設汚泥改良土のコーン指数を200kN/m2以上にすることを特徴とする。   Therefore, the present inventors added an appropriate amount of molten furnace slag fine powder that has been rendered harmless and recycled in a waste melting furnace, further blast furnace slag fine powder and steelmaking slag fine powder, to the construction sludge. By mixing and stirring, clay-like construction sludge is granulated and the cone index of the construction sludge is found to be 200 kN / m 2 or more, and the present invention has been made. It is made harmless and recycled. By adding each slag to construction sludge, the corn index of the construction sludge improved soil is set to 200 kN / m 2 or more.

具体的には、本発明の建設汚泥の改良方法は、コーン指数200kN/m2未満の建設汚泥を改良する方法であって、前記建設汚泥に、平均粒径40μm以下の溶融炉スラグ微粉末や高炉スラグ微粉末および、平均粒径150μm以下の粒子を10質量%以上含み、酸化カルシウムと酸化珪素の質量比が2.0〜3.5である製鋼スラグ微粉末を下記(A)(B)(C)式を満足する量添加して混合攪拌することにより、コーン指数200kN/m2以上の改良土とすることを特徴とする。さらには、比表面積を2000cm2/g以上の値に調整した溶融炉スラグ微粉末や高炉スラグ微粉末を使用することで、所望の強度を有する改良土とすることを特徴とする。

Figure 0004632865
Figure 0004632865
Figure 0004632865
前記の溶融炉スラグ微粉末や高炉スラグ微粉末および製鋼スラグを上記(A)、(B)、(C)式のいずれかを満足する量添加して混合攪拌することにより、これらが、建設汚泥中の水分の吸水作用や水和作用を起こし、また粒子を凝集させ結合する役割を果たすため、泥状の建設汚泥が数ミリ程度の粒状固化物となる。この粒状固化物は過混合攪拌しても、その形状を保持せしめ、その結果強度が発現して、コーン指数200kN/m2以上の改良土とすることができる。特に、(A)、(B)、(C)式の下限値より、より大き目の添加量とすることで、容易にコーン指数400kN/m2の改良土にすることが可能である。 Specifically, the method for improving construction sludge according to the present invention is a method for improving construction sludge having a corn index of less than 200 kN / m 2, wherein the construction sludge includes a molten furnace slag fine powder having an average particle size of 40 μm or less and a blast furnace. Steelmaking slag fine powder containing 10% by mass or more of slag fine powder and particles having an average particle diameter of 150 μm or less and having a mass ratio of calcium oxide to silicon oxide of 2.0 to 3.5 is expressed by the following formulas (A), (B), and (C): By adding a satisfactory amount and mixing and stirring, it is characterized in that the improved soil has a cone index of 200 kN / m 2 or more. Furthermore, it is characterized by using a molten furnace slag fine powder or a blast furnace slag fine powder whose specific surface area is adjusted to a value of 2000 cm 2 / g or more to provide improved soil having a desired strength.
Figure 0004632865
Figure 0004632865
Figure 0004632865
By adding the amount of the melting furnace slag fine powder, blast furnace slag fine powder and steelmaking slag satisfying any of the above formulas (A), (B) and (C) and mixing and stirring them, these are the construction sludge. The water-absorbing action and hydration action of the water inside it, and the role of aggregating and bonding the particles, the mud-like construction sludge becomes a granular solid of about several millimeters. Even if this granular solidified product is overmixed and stirred, its shape is maintained, and as a result, strength is developed, and improved soil having a cone index of 200 kN / m2 or more can be obtained. In particular, improved soil having a cone index of 400 kN / m 2 can be easily obtained by setting a larger addition amount than the lower limit values of the expressions (A), (B), and (C).

コーン指数とは土の強度を示す指標であって、ポータブルコーンぺネトロメータを1cm/secの速度で地中に押し込んだときの抵抗値をコーン断面積で除した値をいう。
建設汚泥などの泥土の処理区分は、コーン指数200kN/m2以上を第4種建設改良土、コーン指数400kN/m2以上を第3種建設改良土、コーン指数800kN/m2以上を第2種建設改良土と定義されている。
この内、コーン指数200kN/m2以上である第4種改良土は、強度的に十分とは言えず、用途が埋土程度に限定される。一方、第3種改良土、第2種改良土は、強度的にも十分であり、盛土材や路床材など広範な用途に利用できるため、幅広く有効利用を図ることが可能である。
本発明によれば、建設汚泥に廃棄物溶融炉で無害化および再資源化された溶融炉スラグ、高炉スラグや鉄鋼スラグを添加して粒状に固化することによって、安全かつ低コストで建設汚泥のコーン指数を200kN/m2以上に改良し、特に簡便に200kN/m2以上に改良できることから、工作物の埋め戻し、道路路床盛土、構造物の裏込め、道路路体盛土、河川堤防、土地造成などに幅広く利用することができる。
The cone index is an index indicating the strength of the soil, and is a value obtained by dividing the resistance value when the portable cone penetrometer is pushed into the ground at a speed of 1 cm / sec by the cone cross-sectional area.
As for the treatment classification of mud such as construction sludge, corn index 200kN / m2 or more, 4th class construction improved soil, corn index 400kN / m2 or more, 3rd class construction improved soil, corn index 800kN / m2 or more, 2nd class construction improved soil It is defined as soil.
Among them, the fourth type improved soil having a cone index of 200 kN / m 2 or more is not sufficient in strength, and its use is limited to the level of buried soil. On the other hand, the third type improved soil and the second type improved soil are sufficient in strength, and can be used for a wide range of applications such as embankment materials and roadbed materials, so that they can be effectively used widely.
According to the present invention, the melting sludge, blast furnace slag and steel slag detoxified and recycled in the waste melting furnace are added to the construction sludge and solidified into granular form, so that the construction sludge can be safely and at low cost. The corn index can be improved to 200kN / m2 or more, and it can be improved to 200kN / m2 or more particularly easily. Therefore, backfilling of works, roadbed embankment, backfilling of structures, roadway embankment, river embankment, land preparation It can be used widely.

ここに、建設汚泥とは、一般にはアースドリル工法やシールド工法などを実施する建設現場において発生した、含水比が高く泥状を呈している産業廃棄物をいうが、本発明では、建設発生土の内、泥土などのように含水比が高く、コーン指数200kN/m2以下の土も含めて総称され、表1の建設汚泥、泥土、汚泥に該当する浚渫土を含むものである。
また、廃棄物溶融炉とは、一般ごみや産業廃棄物にコークスなどの還元剤を加えて1700℃程度の高温で溶融し、かつ高温還元雰囲気にて滞留保持した後に間欠的に炉底より外部排出・水砕処理を行った後、磁選機によってスラグやメタルを回収して再資源化する廃棄物処理炉をいい、溶融炉スラグとは、コークスが還元剤として溶融炉内を高温還元雰囲気に保つため、鉛、亜鉛などの有害な重金属成分を揮発させることによって溶融物を無害化し塩基度(CaO/SiO2)が0.8〜1.2の安定したスラグをいう。これ以外の方式による溶融炉スラグは、鉛などの重金属類がスラグ中に含まれることが多く、処理土から有害物が溶出する場合があるため、使用には適さない。
本発明者等は、廃棄物溶融炉から副産した溶融炉スラグを粉砕して粉末状にすると、弱いながらも水硬性を有する材料となることを見出した。JISA6206の付属書にて求められるこの溶融炉スラグ微粉末の活性度指数は、材齢28日で50〜75%であり、この値は比表面積に依存する。ここでいう比表面積とは、JISR5201の7.1に規定される比表面積試験により求められる比表面積であるが、これを建設汚泥に前記(A)式に規定する量添加して混合攪拌することで、粒状の処理土となり、特に水硬性が弱いことから処理土の強度の経時変化が少なく、土砂にセメントを混ぜた場合のような固結現象がなく、処理土を用いた造成地などでは、掘削などの事後工事が円滑に行えることが分かった。
Here, construction sludge generally refers to industrial waste that is generated at a construction site where an earth drill method, a shield method, or the like is carried out and has a high moisture content and presents a muddy state. Among them, it is a collective term including soils with a high water content ratio such as mud and soil with a cone index of 200 kN / m2 or less, and includes soils that correspond to construction sludge, mud and sludge in Table 1.
Also, the waste melting furnace is a general waste or industrial waste added with a reducing agent such as coke, melted at a high temperature of about 1700 ° C and retained in a high-temperature reducing atmosphere, and then intermittently removed from the bottom of the furnace. A waste treatment furnace that collects and recycles slag and metal using a magnetic separator after discharging and granulating, and melting furnace slag is a high-temperature reducing atmosphere in the melting furnace with coke as a reducing agent. In order to keep it, it refers to a stable slag with a basicity (CaO / SiO2) of 0.8 to 1.2, detoxifying the melt by volatilizing harmful heavy metal components such as lead and zinc. Melting furnace slag by other methods is not suitable for use because heavy metals such as lead are often contained in the slag and harmful substances may be eluted from the treated soil.
The inventors of the present invention have found that when melting furnace slag produced as a by-product from a waste melting furnace is pulverized into powder, it becomes a weak but hydraulic material. The activity index of the molten furnace slag fine powder required in the appendix of JISA 6206 is 50 to 75% at the age of 28 days, and this value depends on the specific surface area. The specific surface area referred to here is the specific surface area determined by the specific surface area test specified in 7.1 of JIS R5201, but this is added to the construction sludge and mixed and stirred. In this case, it becomes granular treated soil, especially because of its weak hydraulic property, there is little change in strength of treated soil over time, and there is no consolidation phenomenon like when cement is mixed with earth and sand. It was found that post-construction work such as excavation can be carried out smoothly.

また、製鋼スラグとは、銑鉄を鋼にする製鋼工程において副産するスラグをいい、本発明では、溶銑予備処理スラグ、転炉スラグをいう。製鋼スラグのうち、電気炉酸化スラグ等の(CaO/SiO2)が2未満のスラグは、水硬性やアルカリ刺激材としての特性が十分発揮されないため好ましくない。
次に、本発明の処理に用いる高炉スラグ微粉末は、高炉の炉前で急冷したスラグを微粉砕したものがよい。この微粉末は、JISA6206の付属書にて求められる活性度指数が、材齢28日で75%以上あり、さらに潜在水硬性を有するため、これを用いて粒状化した処理土の粒状化保持度が高く、品質の安定化が図れる。また、前記の溶融炉スラグ微粉末と適宜比率で混合することで水硬性の制御が可能となり、さらにそれぞれの微粉末の比表面積を2000cm2/g以上の所望の値に調整することで、所望の強度を有する処理土を得ることが可能となる。
次いで、前記建設汚泥に、平均粒径150μm以下の粒子を10質量%以上含み、酸化カルシウムと酸化珪素の質量比が2.0〜3.5である製鋼スラグ微粉末を添加して混合攪拌すると、同様な粒状化処理土が得られる。製鋼スラグは硬質であるため、平均粒径が5mm以上でかつ平均粒径が150μm部分が、粒状物のコアとなる役割を発揮し、粒強度の高い処理土が得られる。また、酸化カルシウムと酸化珪素の質量比が2.0から3.5である製鋼スラグは、未反応の石灰を有すため、汚泥中の水分と反応して消石灰となる際に脱水効果を発揮し、またダイカルシウムシリケートやアルミナ分を含むことから、時間の経過とともにエトリンガイトなどの水和物も生成する。これらのことから、より少ない添加量で建設汚泥を改良することが可能である。
さらに、前記微粉末と前記製鋼スラグを混合して前記建設汚泥に添加し混合攪拌すると、製鋼スラグがアルカリ刺激材の役割を発揮し、前記微粉末の水硬性を迅速に引き出すこととなり、より品質の安定した粒状の処理土となり、降雨に対する粒度変化などが少なくなることから、透水性を要する護岸の裏込め材など、従来の処理土では適用が難しい、幅広い用途に適用可能な処理土を得ることができる。
Moreover, steelmaking slag means the slag byproduced in the steelmaking process which turns pig iron into steel, and in this invention, hot metal pretreatment slag and converter slag. Among steelmaking slags, slags with (CaO / SiO2) of less than 2 such as electric furnace oxidation slag are not preferable because they do not sufficiently exhibit hydraulic properties and alkali stimulating properties.
Next, the blast furnace slag fine powder used for the treatment of the present invention is preferably a finely pulverized slag that has been quenched in front of the furnace of the blast furnace. This fine powder has an activity index required by the appendix of JIS A6206 of 75% or more at the age of 28 days, and also has a latent hydraulic property, so the degree of granulation retention of the treated soil granulated using this Is high and the quality can be stabilized. Moreover, hydraulic control becomes possible by mixing with the above-mentioned melting furnace slag fine powder at an appropriate ratio, and by adjusting the specific surface area of each fine powder to a desired value of 2000 cm 2 / g or more, a desired value can be obtained. It becomes possible to obtain treated soil having strength.
Next, when the steel sludge fine powder containing 10% by mass or more of particles having an average particle diameter of 150 μm or less and having a mass ratio of calcium oxide to silicon oxide of 2.0 to 3.5 is added to the construction sludge and mixed and stirred. A similar granulated soil is obtained. Since the steelmaking slag is hard, a portion having an average particle diameter of 5 mm or more and an average particle diameter of 150 μm serves as a core of the granular material, and a treated soil having a high particle strength can be obtained. Also, steelmaking slag with a mass ratio of calcium oxide to silicon oxide of 2.0 to 3.5 has unreacted lime, so it exhibits a dehydrating effect when it reacts with moisture in sludge to form slaked lime, Since it contains calcium silicate and alumina, hydrates such as ettringite are also formed over time. From these things, it is possible to improve construction sludge with a smaller addition amount.
Furthermore, when the fine powder and the steelmaking slag are mixed and added to the construction sludge and mixed and stirred, the steelmaking slag will play the role of an alkali stimulating material, and the hydraulic properties of the fine powder will be quickly extracted. Since it becomes a stable, granular treated soil and changes in particle size due to rainfall are reduced, a treated soil that can be applied to a wide range of uses, such as revetments for revetments that require water permeability, is difficult to apply with conventional treated soil. be able to.

本発明の建設汚泥の改良方法と効果について、実施例をもとに説明する。
<実施材料>
・建設汚泥:含水比59%、土粒子密度2.72g/cm3、改質前コーン指数 0 kN/m2
・山砂:密度2.65g/cm3、150μm以下の含有率5%
・石灰砕砂:密度2.69g/cm3、150μm以下の含有率21%
・8号珪砂:密度2.60g/cm3、平均粒径65μm
・消石灰:密度2.35g/cm3、平均粒径12μm
・溶融炉スラグ(1):密度2.85g/cm3、平均粒径630μm、含水比 2.3%
・溶融炉スラグ(2):密度2.90g/cm3、平均粒径11〜25μm、 比表面積2770〜4920cm2/g
・高炉スラグ(1):密度2.75g/cm3、平均粒径520μm、含水比2. 6%
・高炉スラグ(2):密度2.90g/cm3、平均粒径12μm、比表面積 4350cm2/g
・製鋼スラグ(1):密度3.24、CaO/SiO2≒3.4、150μm以 下の含有率10〜25%(平均22%)
・製鋼スラグ(2):密度3.20、CaO/SiO2≒2.8、150μm 以下の含有率10〜25%(平均20%)
・製鋼スラグ(3):密度2.97、CaO/SiO2≒2.0、150μm 以下の含有率10〜25%(平均30%)
上記の内、スラグ類の化学成分を表3に示す。なお、コーン指数の試験方法は、建設省通知「建設汚泥再生利用基準(案)」(平成11年3月29日)、参考資料−6、表−1処理土のコーン指数の試験方法を用いた。

Figure 0004632865
The improvement method and effect of construction sludge of this invention are demonstrated based on an Example.
<Implementation material>
・ Construction sludge: moisture content 59%, soil particle density 2.72g / cm3, corn index before reforming 0 kN / m2
・ Mountain sand: density 2.65g / cm3, content of 5% less than 150μm
・ Luminous crushed sand: density 2.69g / cm3, content 21% less than 150μm
・ No. 8 silica sand: density 2.60g / cm3, average particle size 65μm
・ Slaked lime: density 2.35g / cm3, average particle size 12μm
-Melting furnace slag (1): density 2.85g / cm3, average particle size 630μm, water content 2.3%
-Melting furnace slag (2): density 2.90g / cm3, average particle size 11-25μm, specific surface area 2770-4920cm2 / g
・ Blast furnace slag (1): density 2.75g / cm3, average particle size 520μm, water content 2.6%
・ Blast furnace slag (2): density 2.90g / cm3, average particle size 12μm, specific surface area 4350cm2 / g
-Steelmaking slag (1): Density 3.24, CaO / SiO2 ≈ 3.4, content of 10-25% below 150 μm (average 22%)
-Steelmaking slag (2): Density 3.20, CaO / SiO2 ≈ 2.8, content of 10-25% (average 20%) below 150 μm
-Steelmaking slag (3): Density 2.97, CaO / SiO2 ≒ 2.0, content of 10-25% below 150μm (average 30%)
Among the above, chemical components of slags are shown in Table 3. For the test method of the corn index, the Ministry of Construction notice “Construction Sludge Recycling Standard (draft)” (March 29, 1999), Reference Material-6, Table 1 Test method for corn index of treated soil is used. It was.
Figure 0004632865

表4は請求項1および請求項2に係る実施例を一覧にしたものである。また、図2〜図4は、表4に示すこれら実施例の結果を示す図である。
表4より、溶融炉スラグ微粉末(前記溶融炉スラグ(2))や高炉スラグ微粉末(前記高炉スラグ(2))を(A)式の値が0.9以上となるように建設汚泥に添加して混合攪拌すると、確実に200kN/m2以上のコーン指数が得られることが分かる。しかし、平均粒径の大きな溶融炉スラグ(前記溶融炉スラグ(1))や高炉スラグ(前記高炉スラグ(1))を用いた場合は、改良効果がほとんど認められない。図2はこれをグラフ化して表したものであるが、8号珪砂や消石灰などの水硬性のほとんどない材料を(A)式の値が0.9以上となるように添加しても、200kN/m2以上のコーン指数の処理土は得られない。

Figure 0004632865
図3は、溶融炉スラグ微粉末や高炉スラグ微粉末の平均粒径とコーン指数の関係を見たものであるが、本発明による(A)式の下限値0.9であれば、微粉末の平均粒径として40μm以下であれば、確実にコーン指数200kN/m2以上の処理土が得られることが分かる。
図4は、溶融炉スラグ微粉末や高炉スラグ微粉末の比表面積とコーン指数の関係を表したものであるが、これより比表面積2000cm2/g以上の範囲で、比表面積の異なる双方の微粉末を単独または混合して比表面積を所望の値に調整することで、所望のコーン指数を有する改良土を得ることができる。 Table 4 lists examples according to claims 1 and 2. 2 to 4 are graphs showing the results of these examples shown in Table 4.
From Table 4, the melting furnace slag fine powder (the melting furnace slag (2)) and the blast furnace slag fine powder (the blast furnace slag (2)) are converted into construction sludge so that the value of the formula (A) becomes 0.9 or more. It can be seen that when added and mixed and stirred, a cone index of 200 kN / m 2 or more is obtained. However, when a melting furnace slag having a large average particle size (the melting furnace slag (1)) or a blast furnace slag (the blast furnace slag (1)) is used, an improvement effect is hardly recognized. FIG. 2 is a graph of this, but even if a material having little hydraulic property such as No. 8 silica sand or slaked lime is added so that the value of the formula (A) becomes 0.9 or more, it is 200 kN. Treated soil with a cone index of more than / m2 cannot be obtained.
Figure 0004632865
FIG. 3 shows the relationship between the average particle diameter of the molten furnace slag fine powder and the blast furnace slag fine powder and the cone index. If the lower limit value of the formula (A) according to the present invention is 0.9, the fine powder It can be seen that if the average particle size of the soil is 40 μm or less, treated soil having a cone index of 200 kN / m 2 or more can be obtained with certainty.
FIG. 4 shows the relationship between the specific surface area of the melting furnace slag fine powder and the blast furnace slag fine powder and the cone index. From this, both fine powders having different specific surface areas within a specific surface area of 2000 cm 2 / g or more. By adjusting the specific surface area to a desired value by mixing singly or in combination, an improved soil having a desired cone index can be obtained.

表5は請求項3に係る実施例を一覧にしたものである。また図5は、表5に示す該実施例の結果を示す図である。
建設汚泥に山砂や石灰砕砂を混合した場合、(B)式の値を0.7以上となるように添加してもコーン指数は200kN/m2以上とはならない。これに対し、5mm以上の粒径の比率が3質量%以下で、かつ150μm以下の粒子を10質量%以上含む、CaO/SiO2=2.0〜3.4の製鋼スラグ(前記製鋼スラグ(1)〜(3))を用いて混合攪拌した場合は、未反応のカルシウム分による脱水作用、ダイカルシウムシリケートなどによる水和作用により、確実に200kN/m2以上のコーン指数を有する処理土が得られている。

Figure 0004632865
Table 5 lists examples according to claim 3. FIG. 5 is a diagram showing the results of the examples shown in Table 5.
When mountain sand or lime crushed sand is mixed with construction sludge, the corn index does not become 200 kN / m 2 or more even if the value of the formula (B) is added to 0.7 or more. On the other hand, a steelmaking slag of CaO / SiO2 = 2.0 to 3.4 containing particles having a particle diameter ratio of 5 mm or more of 3% by mass or less and 150 μm or less of 10% by mass (the steelmaking slags (1) to (3 )), The treated soil having a corn index of 200 kN / m 2 or more is surely obtained by the dehydration action due to the unreacted calcium content and the hydration action due to dicalcium silicate.
Figure 0004632865

表6は請求項4および請求項5に係る実施例を一覧にしたものである。また、図6乃至図8は、表6に示す実施例の結果を示す図である。
表6および図6より、溶融炉スラグ微粉末(前記溶融炉スラグ(2))や高炉スラグ微粉末(前記高炉スラグ(2))と平均粒径150μm以下の粒子を10質量%以上含む、CaO/SiO2=2.0〜3.4の製鋼スラグを混合し、建設汚泥に(C)式の値を満足する量添加して混合攪拌することで、ほぼ確実にコーン指数200kN/m2以上の改良土が得られる。特に、製鋼スラグのアルカリ刺激により溶融炉スラグ微粉末や高炉スラグ微粉末の潜在水硬性やカルシウムシリケート反応、カルシウムアルミネート反応が引き出され、より少ない微粉分の添加で強度の向上が期待できる。このことは、この反応が期待できない比較例−19に示す石灰砕砂を用いた場合において、(C)式の値が0.8以上においてもコーン指数が200kN/m2に達していないことからも説明できる。また、単独での使用では改質効果が得られなかった平均粒径の比較的大きい溶融炉スラグ(前記溶融炉スラグ(1))や高炉スラグ(前記高炉スラグ(1))を混合することが可能となり、製造コストが安価なこれらの材料が適用できることにより、より安価な改質処理を行うことが可能となる。
また図7に示すように、微粉末を単独で使用した場合と同様に、製鋼スラグに添加する溶融炉スラグ微粉末や高炉スラグ微粉末の比表面積を変化させることで、所望のコーン指数を有する改良土が得られることが分かる。しかも、微粉末の添加量が単独使用よりも少ない状態で、高いコーン指数を得ることができている。これは、前述した製鋼スラグのアルカリ刺激による溶融炉スラグ微粉末や高炉スラグ微粉末の潜在水硬性やカルシウムシリケート反応、カルシウムアルミネート反応が引き出された結果によるものである。このことは図8に示す混合攪拌後の含水比が、水硬性を有さない材料に比べ、大きく低下していること、材齢の進行とともにさらに低下していることからも説明できるものである。

Figure 0004632865
Table 6 lists examples according to claims 4 and 5. 6 to 8 are diagrams showing the results of the examples shown in Table 6.
From Table 6 and FIG. 6, CaO containing 10 mass% or more of melting furnace slag fine powder (the melting furnace slag (2)) or blast furnace slag fine powder (the blast furnace slag (2)) and particles having an average particle size of 150 μm or less. By mixing steelmaking slag of / SiO2 = 2.0 to 3.4, adding an amount that satisfies the value of formula (C) to the construction sludge and mixing and stirring, improved soil with a cone index of 200 kN / m2 or more can be obtained almost certainly. . In particular, the latent hydraulic property, calcium silicate reaction, and calcium aluminate reaction of molten furnace slag fine powder and blast furnace slag fine powder are drawn out by alkali stimulation of steelmaking slag, and the improvement in strength can be expected by adding a smaller amount of fine powder. This is also explained by the fact that when the crushed lime sand shown in Comparative Example-19 in which this reaction cannot be expected is used, the cone index does not reach 200 kN / m 2 even when the value of the formula (C) is 0.8 or more. it can. In addition, melting furnace slag (the melting furnace slag (1)) and blast furnace slag (the blast furnace slag (1)) having a relatively large average particle diameter, for which the reforming effect was not obtained when used alone, may be mixed. It becomes possible, and it becomes possible to perform a cheaper reforming treatment by applying these materials having a low manufacturing cost.
Moreover, as shown in FIG. 7, it has a desired cone index by changing the specific surface area of the molten furnace slag fine powder or blast furnace slag fine powder added to the steelmaking slag, as in the case where the fine powder is used alone. It can be seen that improved soil is obtained. Moreover, a high corn index can be obtained in a state where the amount of fine powder added is less than that of single use. This is because the latent hydraulic property, calcium silicate reaction, and calcium aluminate reaction of the molten furnace slag fine powder and the blast furnace slag fine powder caused by alkali stimulation of the steelmaking slag described above are derived. This can be explained from the fact that the water content ratio after mixing and stirring shown in FIG. 8 is greatly reduced as compared with the material having no hydraulic property, and further decreased with the progress of age. .
Figure 0004632865

本発明を用いた改良土のコーン指数はいずれも200kN/m2以上であり、工作物の埋め戻し、道路炉床盛土、構造物の裏込め、道路路体盛土、河川堤防、土地造成などに利用することができることが確認され、具体的には以下のことがわかった。
1)建設汚泥にスラグ系材料(溶融炉スラグ微粉末、高炉スラグ微粉末および製鋼スラグ)を必要量添加し、混合攪拌することにより、粒度改善や固化造粒作用がなされ、第4種処理土以上の強度を有する土工材料に改良することができる。
2)改良土の利用方法に応じて、混合するスラグの種類および配合割合を調整することにより、用途に適した品質の改良土を製造することができる。
3)建設汚泥に製鋼スラグと溶融炉スラグと高炉スラグ微粉末の併用して混合攪拌すると、品質の特に安定した粒状固化された処理土が得られ、また、スラグ系材料の混合率を大きくすると著しい強度発現を示す。
The corn index of the improved soil using the present invention is 200 kN / m2 or more, and it is used for backfilling works, road hearth embankment, structure backfilling, road body embankment, river embankment, land development, etc. It was confirmed that it can be done, specifically the following.
1) Add necessary amount of slag materials (melting furnace slag fine powder, blast furnace slag fine powder and steelmaking slag) to construction sludge, and mix and stir to improve particle size and solidify granulation. The earthwork material having the above strength can be improved.
2) By adjusting the type and blending ratio of the slag to be mixed according to the method of using the improved soil, it is possible to produce improved soil having a quality suitable for the application.
3) When mixing and stirring steelmaking slag, melting furnace slag, and ground granulated blast furnace slag together with construction sludge, it is possible to obtain a granular solidified soil with particularly stable quality, and to increase the mixing ratio of slag-based materials. It shows significant strength development.

本発明における建設汚泥の改良方法の実施形態を例示する図である。It is a figure which illustrates embodiment of the improvement method of the construction sludge in this invention. 本発明の(A)式の値と処理土のコーン指数との関係を示す図である。It is a figure which shows the relationship between the value of (A) Formula of this invention, and the cone index of a treated soil. 本発明の微粉末の平均粒径とコーン指数との関係を示す図である。It is a figure which shows the relationship between the average particle diameter of the fine powder of this invention, and a cone index. 本発明の微粉末を単独使用した際の微粉末の比表面積とコーン指数との 関係を示す図である。FIG. 3 is a diagram showing the relationship between the specific surface area of a fine powder and the cone index when the fine powder of the present invention is used alone. 本発明の(B)式の値と処理土のコーン指数との関係を示す図である。It is a figure which shows the relationship between the value of (B) Formula of this invention, and the cone index of a treated soil. 本発明の(C)式の値と処理土のコーン指数との関係を示す図である。It is a figure which shows the relationship between the value of (C) Formula of this invention, and the cone index of a treated soil. 本発明の微粉末と製鋼スラグとを併用して用いた際の、微粉末の比表面 積とコーン指数との関係を示す図である。It is a figure which shows the relationship between the specific surface area of a fine powder, and a cone index at the time of using together and using the fine powder of this invention and steelmaking slag. 本発明の混合攪拌後の含水比を初期の計算含水比と比較した図である。It is the figure which compared the moisture content after mixing stirring of this invention with the initial calculation moisture content.

符号の説明Explanation of symbols

1 建設汚泥受入ヤード
2 建設汚泥供給ホッパー
3 溶融炉スラグ貯留ホッパー
4 製鋼スラグ貯留ホッパー
5 高炉スラグ貯留ホッパー
6 混合機
7 シャトルコンベア
8 製品ヤード
1 Construction sludge receiving yard 2 Construction sludge supply hopper 3 Melting furnace slag storage hopper 4 Steelmaking slag storage hopper 5 Blast furnace slag storage hopper 6 Mixer 7 Shuttle conveyor 8 Product yard

Claims (5)

コーン指数200kN/m2未満の建設汚泥を改良する方法であって、
前記建設汚泥に、平均粒径が40μm以下の溶融炉スラグ微粉末または/および高炉スラグ微粉末を下記(A)式を満足するように添加して混合攪拌することにより、コーン指数200kN/m2以上の改良土とすることを特徴とする建設汚泥の改良方法。
Figure 0004632865
A method for improving construction sludge having a corn index of less than 200 kN / m2,
A corn index of 200 kN / m2 or more is obtained by adding molten furnace slag fine powder and / or blast furnace slag fine powder having an average particle size of 40 μm or less to the construction sludge so as to satisfy the following formula (A) and mixing and stirring. A method for improving construction sludge, characterized by using improved soil.
Figure 0004632865
コーン指数200kN/m2未満の建設汚泥を改良する方法であって、
前記建設汚泥に、比表面積を2000cm2/g以上の値に調整した平均粒径が40μm以下の溶融炉スラグ微粉末または/および高炉スラグ微粉末を下記(A)式を満足するように添加して混合攪拌することにより、コーン指数200kN/m2以上の改良土とすることを特徴とする建設汚泥の改良方法。
Figure 0004632865
A method for improving construction sludge having a corn index of less than 200 kN / m2,
To the construction sludge, molten furnace slag fine powder or / and blast furnace slag fine powder having a specific surface area adjusted to a value of 2000 cm 2 / g or more and an average particle diameter of 40 μm or less are added so as to satisfy the following formula (A): A method for improving construction sludge, characterized in that improved soil having a cone index of 200 kN / m2 or more is obtained by mixing and stirring.
Figure 0004632865
コーン指数200kN/m2未満の建設汚泥を改良する方法であって、
前記建設汚泥に、平均粒径150μm以下の粒子を10質量%以上含み、酸化カルシウムと酸化珪素の質量比が2.0〜3.5である製鋼スラグを下記(B)式を満足するように添加して混合攪拌することにより、コーン指数200kN/m2以上の改良土とすることを特徴とする建設汚泥の改良方法。
Figure 0004632865
A method for improving construction sludge having a corn index of less than 200 kN / m2,
Steelmaking slag containing 10% by mass or more of particles having an average particle size of 150 μm or less and having a mass ratio of calcium oxide to silicon oxide of 2.0 to 3.5 is added to the construction sludge so as to satisfy the following formula (B) and mixed. A method for improving construction sludge, characterized in that, by stirring, improved soil having a cone index of 200 kN / m 2 or more is obtained.
Figure 0004632865
コーン指数200kN/m2未満の建設汚泥を改良する方法であって、
前記建設汚泥に、平均粒径40μm以下の溶融炉スラグ微粉末および/または高炉スラグ微粉末と、平均粒径150μm以下の粒子を10質量%以上含み、酸化カルシウムと酸化珪素の質量比が2.0〜3.5である製鋼スラグとの混合物を下記(C)式を満足するように添加して混合攪拌することによりコーン指数200kN/m2以上の改良土とすることを特徴とする建設汚泥の改良方法。
Figure 0004632865
A method for improving construction sludge having a corn index of less than 200 kN / m2,
The construction sludge contains 10 mass% or more of molten furnace slag fine powder and / or blast furnace slag fine powder having an average particle diameter of 40 μm or less and particles having an average particle diameter of 150 μm or less, and the mass ratio of calcium oxide to silicon oxide is 2.0 to A method for improving construction sludge, characterized in that a mixture with steelmaking slag of 3.5 is added so as to satisfy the following formula (C) and mixed and stirred to obtain improved soil having a cone index of 200 kN / m2 or more.
Figure 0004632865
コーン指数200kN/m2未満の建設汚泥を改良する方法であって、
前記建設汚泥に、比表面積を2000cm2/g以上の値に調整した平均粒径40μm以下の溶融炉スラグ微粉末および/または高炉スラグ微粉末と、平均粒径150μm以下の粒子を10質量%以上含み、酸化カルシウムと酸化珪素の質量比が2.0〜3.5である製鋼スラグとの混合物を下記(C)式を満足するように添加して混合攪拌することによりコーン指数200kN/m2以上の改良土とすることを特徴とする建設汚泥の改良方法。
Figure 0004632865
A method for improving construction sludge having a corn index of less than 200 kN / m2,
The construction sludge contains 10% by mass or more of molten furnace slag fine powder and / or blast furnace slag fine powder having an average particle size of 40 μm or less and a specific surface area adjusted to a value of 2000 cm 2 / g or more, and particles having an average particle size of 150 μm or less. Then, a mixture of steelmaking slag having a mass ratio of calcium oxide and silicon oxide of 2.0 to 3.5 is added so as to satisfy the following formula (C), and mixed and stirred to obtain improved soil having a cone index of 200 kN / m2 or more. A method for improving construction sludge characterized by the above.
Figure 0004632865
JP2005151800A 2005-05-25 2005-05-25 Construction sludge improvement method and improvement equipment used therefor Active JP4632865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005151800A JP4632865B2 (en) 2005-05-25 2005-05-25 Construction sludge improvement method and improvement equipment used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005151800A JP4632865B2 (en) 2005-05-25 2005-05-25 Construction sludge improvement method and improvement equipment used therefor

Publications (2)

Publication Number Publication Date
JP2006326446A JP2006326446A (en) 2006-12-07
JP4632865B2 true JP4632865B2 (en) 2011-02-16

Family

ID=37548736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005151800A Active JP4632865B2 (en) 2005-05-25 2005-05-25 Construction sludge improvement method and improvement equipment used therefor

Country Status (1)

Country Link
JP (1) JP4632865B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5014961B2 (en) * 2007-11-16 2012-08-29 新日本製鐵株式会社 Mud modification material and modification method
JP2013119578A (en) * 2011-12-06 2013-06-17 Nippon Steel & Sumitomo Metal Corp Soil reformed body and execution method thereof
JP2014058828A (en) * 2012-09-18 2014-04-03 Nippon Steel & Sumitomo Metal Method for constructing strip road
JP6468031B2 (en) * 2015-03-31 2019-02-13 新日鐵住金株式会社 Method for producing modified soil

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204432A (en) * 1997-01-23 1998-08-04 Chichibu Onoda Cement Corp Material for stabilizing soil
JPH10244297A (en) * 1997-03-03 1998-09-14 Nippon Kosan Kk Regeneration treatment of construction sludge
JP2000063828A (en) * 1998-08-13 2000-02-29 Nippon Steel Corp Soft ground stabilization technique
JP2001137894A (en) * 1999-11-12 2001-05-22 Kawasaki Steel Corp Method for solidifying mud and soil and artificially solidified ground
JP2001292634A (en) * 2000-04-11 2001-10-23 Hideji Komine Method for producing improved soil by using liquid slag of waste
JP2002282894A (en) * 2001-03-27 2002-10-02 Asahi Organic Chem Ind Co Ltd Agent and method for solidifying sludge
JP2004203962A (en) * 2002-12-24 2004-07-22 Kurita Water Ind Ltd Mud-solidifying agent and solidifying method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10204432A (en) * 1997-01-23 1998-08-04 Chichibu Onoda Cement Corp Material for stabilizing soil
JPH10244297A (en) * 1997-03-03 1998-09-14 Nippon Kosan Kk Regeneration treatment of construction sludge
JP2000063828A (en) * 1998-08-13 2000-02-29 Nippon Steel Corp Soft ground stabilization technique
JP2001137894A (en) * 1999-11-12 2001-05-22 Kawasaki Steel Corp Method for solidifying mud and soil and artificially solidified ground
JP2001292634A (en) * 2000-04-11 2001-10-23 Hideji Komine Method for producing improved soil by using liquid slag of waste
JP2002282894A (en) * 2001-03-27 2002-10-02 Asahi Organic Chem Ind Co Ltd Agent and method for solidifying sludge
JP2004203962A (en) * 2002-12-24 2004-07-22 Kurita Water Ind Ltd Mud-solidifying agent and solidifying method

Also Published As

Publication number Publication date
JP2006326446A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
US10207954B2 (en) Synthetic aggregate from waste materials
Siddique Utilization of cement kiln dust (CKD) in cement mortar and concrete—an overview
CA2352926C (en) Binder for mine tailings
KR100921334B1 (en) Environment-conscious embankment material using high-volume industrial waste and manufacturing method thereby
CN1207365C (en) Soil firming agent
KR102133153B1 (en) firming agent for civil enqineering of soft ground using blast furnace slag and fly ash and method for manufacturing thereof
WO2016108245A1 (en) Process for complete conversion of multiple industrial wastes to sustainable alternatives and usable products
JP4632865B2 (en) Construction sludge improvement method and improvement equipment used therefor
Jiang et al. Recycling, reusing and environmental safety of industrial by-product gypsum in construction and building materials
KR102503145B1 (en) Expandable mortar composition and pile construction method
JP2004323599A (en) Soil-solidifying agent and method for solidifying soil
JP6633885B2 (en) Manufacturing method of earthwork material
KR102359260B1 (en) Solidifying agent composition for soft ground and method for stabilizing soft ground using the same
JP4112666B2 (en) Solidified material
JP4112667B2 (en) Solidification material for fluidization backfill
JP2006175413A (en) Method for improving construction sludge property and apparatus used for it
JP4743679B2 (en) Water-improving soil-improving solidified material, method for producing water-improving improved soil, and water-sealing
JP2005179428A (en) Fluidization treatment method of construction emission
CN108484008A (en) It is a kind of to make the hydraulic powder material on island for blowing sand
Liu et al. Evaluation of a sustainable magnesium phosphate-based binder modified with oxalic acid-activated bone meal, sodium carbonate, and fly ash for stabilizing Pb-and Cd-contaminated soils
KR102678044B1 (en) Deep mixing method to reduce carbon emissions
KR20240044013A (en) Solidifier for Improving Soil Inorganic Multi Function Eco Friendly
JP2010053327A (en) Solidifying material for oil-contaminated soil, high organic volcanic ash, and oil-containing waste fluid
TW201121918A (en) The proportion for making particles of scrapped materials from the steel factory
JP4174818B2 (en) Granulated soil

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101116

R150 Certificate of patent or registration of utility model

Ref document number: 4632865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350