JP5131005B2 - Water treatment method and water treatment apparatus - Google Patents
Water treatment method and water treatment apparatus Download PDFInfo
- Publication number
- JP5131005B2 JP5131005B2 JP2008101064A JP2008101064A JP5131005B2 JP 5131005 B2 JP5131005 B2 JP 5131005B2 JP 2008101064 A JP2008101064 A JP 2008101064A JP 2008101064 A JP2008101064 A JP 2008101064A JP 5131005 B2 JP5131005 B2 JP 5131005B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- zeta potential
- coagulation
- membrane
- floc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
Description
本発明は、凝集処理した後、膜でろ過処理する水処理方法に関する。 The present invention relates to a water treatment method in which a coagulation treatment is followed by a filtration treatment with a membrane.
多孔質ろ過膜によるろ過は、省エネルギー、省スペース、省力化および処理水の品質向上等の特長を有するため、食品工業や医療の分野、用水製造分野、水浄化処理分野、廃水処理分野等の様々な分野での適用が拡大している。 Filtration with porous filtration membranes has features such as energy saving, space saving, labor saving and quality improvement of treated water, so it can be used in various fields such as food industry, medical field, water production field, water purification treatment field, wastewater treatment field, etc. Applications in various fields are expanding.
しかし、原水をそのまま、膜でろ過すると、原水中に含まれる濁質や有機物、無機物等の除去対象物が膜面に蓄積し、膜の目詰まり(膜ファウリング)が起こる。これにより膜のろ過抵抗が上昇し、やがてろ過を継続することができなくなる。そこで、膜のろ過性能を維持するため、膜の洗浄を定期的に行う必要がある。膜の洗浄方法として、膜ろ過水を膜の2次側(ろ過水側)から1次側(原水側)へ逆流させる逆流洗浄(以下「逆洗」と称する。)や、気体を膜の一次側に供給して膜の汚れを取る空気洗浄(以下「空洗」と称する。)等の物理洗浄がある。膜のろ過抵抗の上昇速度が速い場合、逆洗を行う頻度を増加させることが必要となるが、逆洗頻度の増加は回収率の低下につながるという問題がある。また、膜面に膜ファウリングが強固に付着した場合、空洗量を増加させることが必要となるが、空洗量を増加させると膜の擦過、劣化が促進される問題がある。 However, if raw water is filtered through a membrane as it is, removal objects such as turbidity, organic matter, and inorganic matter contained in the raw water accumulate on the membrane surface, resulting in membrane clogging (membrane fouling). As a result, the filtration resistance of the membrane increases, and it becomes impossible to continue the filtration over time. Therefore, in order to maintain the filtration performance of the membrane, it is necessary to periodically wash the membrane. As a membrane washing method, reverse flow washing (hereinafter referred to as “back washing”) in which the membrane filtrate is caused to flow backward from the secondary side (filtrated water side) of the membrane to the primary side (raw water side), or gas is used as the primary membrane. There is physical cleaning such as air cleaning (hereinafter referred to as “air cleaning”) that is supplied to the side to remove the dirt on the membrane. When the rising speed of the filtration resistance of the membrane is fast, it is necessary to increase the frequency of backwashing, but there is a problem that an increase in the frequency of backwashing leads to a decrease in the recovery rate. Further, when the film fouling adheres firmly to the film surface, it is necessary to increase the amount of washing, but there is a problem that the abrasion and deterioration of the film are promoted when the amount of washing is increased.
一方、物理洗浄だけでは除去できない汚れに対しては、酸、アルカリ、界面活性剤、塩素等の酸化剤等を含む薬液を一定時間膜と接触させて洗浄する薬品洗浄が行われる。しかし、薬品洗浄を行うと膜の劣化が促進され膜寿命が短くなるという問題がある。また薬液洗浄後の廃液の処分も問題となる。 On the other hand, for dirt that cannot be removed only by physical cleaning, chemical cleaning is performed in which a chemical solution containing acid, alkali, surfactant, oxidant such as chlorine is brought into contact with the film for a certain period of time. However, when chemical cleaning is performed, there is a problem that the deterioration of the film is accelerated and the film life is shortened. Disposal of waste liquid after chemical cleaning is also a problem.
これら方法による洗浄の効率を高め、頻度を下げるために、膜ろ過を行う前に前処理を行い、膜ファウリングを低減させることが有効であり、この前処理として、凝集処理を行うことが有効である。 In order to increase the efficiency of cleaning by these methods and reduce the frequency, it is effective to perform pretreatment before membrane filtration to reduce membrane fouling, and it is effective to perform agglomeration treatment as this pretreatment. It is.
膜ろ過の前処理として凝集処理を行う場合、凝集剤の種類や凝集剤注入量等の凝集処理条件を適切に決定することが重要である。そこで、特許文献1には、特定波長の紫外線吸光度が溶存有機物の濃度の指標となることを利用し、凝集処理水を膜ろ過して取り出された膜ろ過水の紫外線吸光度を測定し、この測定値に基づき凝集剤注入量を制御することが記載されている。また、特許文献2には、原水中の有機物濃度を測定し、この測定値に基づき凝集剤注入量を制御することが、特許文献3には、凝集処理水中の有機物濃度を測定し、この測定値に基づき、凝集剤注入量を制御することが記載されている。しかし、膜ファウリングの原因物質は有機物だけではないことから、有機物に着目するだけでは膜ファウリングの進行を十分に抑制することができなかった。
When aggregating is performed as a pretreatment for membrane filtration, it is important to appropriately determine the aggregating conditions such as the type of aggregating agent and the amount of aggregating agent injected. Therefore, Patent Document 1 uses the fact that the ultraviolet absorbance at a specific wavelength is an indicator of the concentration of dissolved organic matter, and measures the ultraviolet absorbance of the membrane filtrate extracted from the agglomerated treated water by membrane filtration. It is described that the amount of the flocculant injected is controlled based on the value.
特許文献4には、凝集処理水を固液分離した試料水をフィルタで所定量ろ過するのに要する時間から凝集剤注入量を制御することが記載されている。しかし、長期間ろ過継続した場合、前記指標のみでは膜ファウリングの蓄積を制御し、安定に長期間運転することは困難であった。
また、既往の凝集沈殿砂ろ過法においては、凝集フロックのゼータ電位が凝集の適否を表すことから、これを測定し凝集処理条件を制御することが行われている。従来の凝集沈殿砂ろ過法において良好に凝集沈殿処理を行うためには、凝集フロックのゼータ電位がゼロmV近辺となるように、即ち−10mV〜+10mVの間になるように制御することがよいとされている。しかし、凝集処理を膜ろ過の前処理として適用する場合、前記範囲内に凝集フロックのゼータ電位を制御することでは、膜ファウリングの蓄積を抑制することはできず、安定に長期間運転することが困難であった。 Further, in the conventional flocculation sedimentation sand filtration method, since the zeta potential of the flocculation flocs indicates suitability of flocculation, this is measured and the flocculation treatment conditions are controlled. In order to carry out the coagulation sedimentation process well in the conventional coagulation sedimentation sand filtration method, it is preferable to control the zeta potential of the coagulation floc to be in the vicinity of zero mV, that is, between −10 mV to +10 mV. Has been. However, when agglomeration treatment is applied as a pretreatment for membrane filtration, the accumulation of membrane fouling cannot be suppressed by controlling the zeta potential of the agglomeration floc within the above range, and stable operation for a long period of time. It was difficult.
本発明は、原水を凝集処理した後、多孔質ろ過膜でろ過する水処理方法において、凝集pHにおける膜表面ゼータ電位が負である多孔質ろ過膜でろ過する場合、安定的に長期間運転するために有効な凝集処理条件の制御方法を提供することを目的とする。 The present invention is a water treatment method in which raw water is agglomerated and then filtered with a porous filtration membrane, and when filtration is performed with a porous filtration membrane having a negative membrane surface zeta potential at agglomeration pH, the water is stably operated for a long time. Therefore, an object of the present invention is to provide an effective control method for agglomeration treatment conditions.
上記の目的を達成するため、本発明の水処理方法は、次の特徴を有するものである。
(1)原水を凝集処理した後、多孔質ろ過膜でろ過処理する水処理方法において、凝集pHにおける膜表面ゼータ電位が負である多孔質ろ過膜でろ過を行うにあたり、凝集処理水中の凝集フロックのゼータ電位を求め、このゼータ電位が負荷電となるように前記凝集処理条件を制御することを特徴とする水処理方法。
(2)凝集処理水中の凝集フロックのゼータ電位が−10mV以上0mV未満の範囲内となるように凝集処理条件を制御することを特徴とする、前記(1)に記載の水処理方法。
(3)凝集フロックのゼータ電位に基づき制御する凝集処理条件が、凝集剤注入量および/または凝集pHであることを特徴とする、前記(1)または(2)に記載の水処理方法。
In order to achieve the above object, the water treatment method of the present invention has the following characteristics.
(1) In a water treatment method in which raw water is agglomerated and then filtered with a porous filtration membrane, when filtration is performed with a porous filtration membrane having a negative membrane surface zeta potential at agglomeration pH, agglomerated flocs in the agglomerated water The water treatment method is characterized in that the agglomeration treatment conditions are controlled such that the zeta potential is determined and the zeta potential becomes negatively charged.
(2) The water treatment method according to (1) above, wherein the coagulation treatment conditions are controlled so that the zeta potential of the coagulation floc in the coagulation treatment water is within a range of −10 mV to less than 0 mV.
(3) The water treatment method according to (1) or (2) above, wherein the aggregating treatment condition controlled based on the zeta potential of the agglomerating floc is an aggregating agent injection amount and / or agglomerating pH.
(4)凝集フロックのゼータ電位を、凝集処理水の流動電位から算出することを特徴とする、前記(1)〜(3)のいずれかに記載の水処理方法。
(5)凝集pHにおける膜表面ゼータ電位が、−15mV以上0mV未満である多孔質ろ過膜でろ過を行うことを特徴とする、前記(1)〜(4)のいずれかに記載の水処理方法。
(6)ポリフッ化ビニリデン系樹脂からなる多孔質ろ過膜を用いることを特徴とする、前記(1)〜(5)のいずれかに記載の水処理方法。
(7)原水に凝集剤を添加して凝集処理するための凝集処理装置と、該凝集処理装置にて凝集処理した水をろ過するための凝集pHにおける膜表面ゼータ電位が負である多孔質ろ過膜からなる多孔質膜モジュールと、凝集処理水中の凝集フロックのゼータ電位もしくは凝集処理水の流動電位を測定するための電位測定装置とを備え、さらに、該電位測定装置の測定による凝集フロックゼータ電位値に基づいて凝集フロックのゼータ電位が負荷電となるように凝集処理装置の凝集処理条件を制御する凝集処理条件制御装置を備えていることを特徴とする水処理装置。
(4) The water treatment method according to any one of (1) to (3), wherein the zeta potential of the aggregated floc is calculated from the flow potential of the aggregated treated water.
(5) The water treatment method according to any one of (1) to (4) above, wherein filtration is performed with a porous filtration membrane having a membrane surface zeta potential at flocculation pH of -15 mV or more and less than 0 mV. .
(6) The water treatment method according to any one of (1) to (5), wherein a porous filtration membrane made of a polyvinylidene fluoride-based resin is used.
(7) An aggregating apparatus for adding an aggregating agent to the raw water for an aggregating treatment , and a porous filtration having a negative membrane surface zeta potential at an agglomerating pH for filtering the agglomerated water in the aggregating apparatus comprising a multi Anashitsumaku module consisting of film, and a potential measuring device for measuring the streaming potential of the zeta potential or aggregation treated water floc aggregation process water, furthermore, floc zeta by measurement of said potential measuring device water treatment apparatus characterized by comprising a coagulation treatment condition control device for controlling the agglomeration process conditions in agglutination processing apparatus as the zeta potential of the floc is negatively charged on the basis of the potential value.
本発明法によって凝集処理条件を制御すれば、多孔質ろ過膜のファウリングを抑制でき、膜モジュールを安定的に長期間運転することができるようになる。 If the agglomeration treatment conditions are controlled by the method of the present invention, fouling of the porous filtration membrane can be suppressed, and the membrane module can be stably operated for a long time.
本発明法を実施するための最良の実施形態を、加圧型中空糸膜モジュールろ過装置を用いて膜ろ過する場合を例にとって、図1を参照しながら以下に説明する。ただし、本発明が以下に示す実施形態に限定される訳ではない。 The best mode for carrying out the method of the present invention will be described below with reference to FIG. 1, taking as an example the case of membrane filtration using a pressurized hollow fiber membrane module filtration device. However, the present invention is not limited to the embodiment described below.
図1は本発明法が適用される膜ろ過装置を示す概略フロー図である。この図の工程では、加圧型の中空糸膜モジュール10による膜ろ過が行われる。この図において、原水水槽1に溜められた原水は取水ポンプ2によって、急速攪拌槽3に導入される。急速攪拌槽3において、原水は凝集剤溶液貯槽4から凝集剤注入ポンプ5により注入された凝集剤と共に、攪拌機6により攪拌され凝集処理される。また、凝集pHを制御するためには、pH調整溶液貯槽7からpH調整溶液注入ポンプ8により、pH調整溶液を注入することが好ましい。
FIG. 1 is a schematic flow diagram showing a membrane filtration apparatus to which the method of the present invention is applied. In the process of this figure, membrane filtration by the pressure type hollow
急速攪拌槽3において凝集処理された凝集処理水は供給ポンプ9により中空糸膜モジュール10に供給される。凝集処理水は中空糸膜モジュール10内に収められた中空糸膜によって中空糸膜1次側(原水側)から中空糸膜2次側(透過水側)にろ過され、ろ過水水槽11に溜められる。
The agglomerated water that has been agglomerated in the
凝集処理水の特性を測定するために、適宜、膜供給水採水弁12を開にして、膜供給水採水管13より凝集処理水を採水し、凝集フロックのゼータ電位を測定する。凝集フロックのゼータ電位に基づき、前記凝集処理条件を制御する。
In order to measure the characteristics of the agglomerated treated water, the membrane feed
ゼータ電位とは、固体と液体の界面を横切って存在する電気的ポテンシャルを示すものであり、水中のコロイド粒子についての表面電荷を示す。通常、自然水中に含まれるコロイド粒子は負に帯電しているため、粒子同士が電気的に反発し、水中に分散している。凝集剤は、この荷電を中和することによって反発力を弱め、その後集塊、つまり凝集を行う。また、ゼータ電位は、凝集pHによっても変化する。このため、凝集pHを酸やアルカリによって制御することも、凝集処理には有効である。なお、凝集pHとは、凝集剤を注入した後の凝集処理水のpHのことである。 Zeta potential refers to the electrical potential that exists across the solid-liquid interface and refers to the surface charge for colloidal particles in water. Usually, since colloidal particles contained in natural water are negatively charged, the particles repel each other electrically and are dispersed in water. The aggregating agent weakens the repulsive force by neutralizing this charge, and then agglomerates, that is, agglomerates. The zeta potential also changes depending on the aggregation pH. For this reason, controlling the aggregation pH with an acid or alkali is also effective for the aggregation treatment. The agglomeration pH is the pH of the agglomerated water after injecting the aggregating agent.
凝集フロックのゼータ電位は、電気泳動光散乱装置(ELS−8000:大塚電子(株)製)などの表面電位測定装置を用い、凝集フロックの電気泳動による移動速度から測定することができる。また、一定圧力で凝集処理水を押し流した際に電極間に発生する電位を測定することにより得られる流動電位から、Helmholtz−Smoluchowskiの式(下記の式)を用い、凝集フロックのゼータ電位を算出する方法によって求めることもできる。 The zeta potential of the aggregated floc can be measured from the moving speed of the aggregated floc by electrophoresis using a surface potential measuring device such as an electrophoretic light scattering device (ELS-8000: manufactured by Otsuka Electronics Co., Ltd.). Also, the zeta potential of the floc floc is calculated using the Helmholtz-Smoluchowski equation (the following equation) from the flow potential obtained by measuring the potential generated between the electrodes when the agglomerated treated water is swept away at a constant pressure. It can also be determined by the method of
流動電位は、コロイド粒子電荷計(日本ルフト社製)などの流動電位測定装置により測定を行うことができる。なお、ゼータ電位測定や流動電位測定には、オンラインで連続測定可能な電位測定装置を用いることが好ましい。更に、希釈せずに原水をそのまま連続測定可能な電位測定装置を用いることがより好ましい。 The streaming potential can be measured by a streaming potential measuring device such as a colloid particle charge meter (manufactured by Nippon Luft). For zeta potential measurement and streaming potential measurement, it is preferable to use a potential measurement device capable of continuous measurement online. Furthermore, it is more preferable to use an electric potential measuring device capable of continuously measuring raw water without dilution.
凝集フロックのゼータ電位を測定する位置、即ち、測定試料を採水する場所は、凝集剤添加後からろ過膜モジュールの前であればどこで採水しても構わないが、急速攪拌槽3からろ過膜モジュール10への供給までの間に、凝集フロックの性状が変化することがあることから、ろ過膜モジュール10に極力近い位置(直前位置)で採水することが好ましい。採水のためには、膜供給水採水管13を分岐させ、膜供給水採水弁12を設けることが好ましい。
The position at which the zeta potential of the floc floc is measured, that is, the place where the measurement sample is sampled may be collected anywhere after the addition of the flocculant and before the membrane filter module. Since the properties of the flocs flocs may change before the supply to the
凝集フロックのゼータ電位が負荷電となるように、そのゼータ電位に応じて調整する凝集処理条件は、凝集剤注入量および/または凝集pHであることが好ましい。 It is preferable that the agglomeration treatment conditions to be adjusted according to the zeta potential so that the zeta potential of the agglomeration floc is negatively charged is the aggregating agent injection amount and / or the agglomeration pH.
また、原水を凝集処理する際に注入する無機凝集剤としては、例えば、硫酸バンド、ポリ塩化アルミニウム(PAC)等のアルミニウム塩や、塩化第二鉄、ポリ硫酸第二鉄等の鉄塩等を用いることができる。またこれらの無機系凝集剤とともに、有機高分子凝集剤を凝集補助剤として併用することもでき、この併用により極めて良好な凝集処理を行うことができることがある。pHの調整には、硫酸や塩酸や硝酸といった無機酸溶液や、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウムといった無機アルカリ溶液等を添加すればよい。 Examples of the inorganic flocculant injected when the raw water is agglomerated include aluminum salts such as sulfate bands and polyaluminum chloride (PAC), and iron salts such as ferric chloride and polyferric sulfate. Can be used. In addition to these inorganic flocculants, an organic polymer flocculant can be used in combination as a flocculant auxiliary agent, and by using this combination in combination, extremely good flocculation treatment may be performed. In order to adjust the pH, an inorganic acid solution such as sulfuric acid, hydrochloric acid, or nitric acid, an inorganic alkaline solution such as sodium hydroxide, sodium carbonate, or sodium bicarbonate may be added.
凝集攪拌を行う槽としては、図示したように急速攪拌槽3のみでも構わないが、急速攪拌槽の後段に緩速攪拌槽を設置しても良い。攪拌手段としては、攪拌翼を用いる攪拌手段や水路を迂回させて攪拌する手段等の一般的な撹拌手段を用いてもよい。また、攪拌槽を設けず、配管内でポンプやスタティックミキサーを用いて、原水と凝集剤を攪拌しても良い。
As the tank for coagulation and stirring, only the
また、凝集処理水は、沈殿処理、加圧浮上処理および砂、その他のろ材を用いたろ過等で懸濁物質を除去した後に、ろ過膜モジュールに供給しても良い。 Further, the agglomerated water may be supplied to the filtration membrane module after removing suspended substances by precipitation treatment, pressure levitation treatment and filtration using sand or other filter media.
本発明法において処理対象とする原水は、河川水、湖水、地下水、伏流水などの天然水、各種工場廃水や農業廃水、下水あるいはその処理水、海水等が挙げられる。なお、海水等の導電性の高い水を処理する場合のように、電場強度を上げることが難しくゼータ電位の測定が難しい場合には、希釈して測定してもよい。 The raw water to be treated in the method of the present invention includes natural water such as river water, lake water, ground water, underground water, various factory waste water, agricultural waste water, sewage or treated water, sea water, and the like. In the case where it is difficult to increase the electric field strength and it is difficult to measure the zeta potential as in the case of processing highly conductive water such as seawater, the measurement may be performed after dilution.
本発明におけるろ過膜モジュールで使用する多孔質膜は、その膜表面の細孔径が特に限定されず、精密ろ過膜であっても限外ろ過膜であっても構わないが、0.001μm〜10μmの範囲内の細孔径で便宜選択すればよい。また、その膜形態は平膜であっても中空糸膜であっても良い。前記除去性能を有する膜であれば、膜の厚み方向に同様の構造が連続した均質膜、2種類以上の構造が積層された非対称膜のいずれでもよい。多孔質膜の膜素材としては、ポリアクリロニトリル、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフォン、ポリフェニレンスルフィドスルフォン、ポリフッ化ビニリデン、ポリプロピレン等の有機素材および、セラミック等の無機素材等を挙げることができる。 The porous membrane used in the filtration membrane module in the present invention is not particularly limited in pore diameter on the membrane surface, and may be a microfiltration membrane or an ultrafiltration membrane, but 0.001 μm to 10 μm The pore diameter in the range may be selected for convenience. Further, the membrane form may be a flat membrane or a hollow fiber membrane. As long as the film has the removal performance, it may be either a homogenous film in which similar structures are continuous in the thickness direction of the film or an asymmetric film in which two or more kinds of structures are laminated. Examples of the material for the porous film include organic materials such as polyacrylonitrile, polysulfone, polyether sulfone, polyphenylene sulfone, polyphenylene sulfide sulfone, polyvinylidene fluoride, and polypropylene, and inorganic materials such as ceramic.
本発明の主旨からいって特に限定されないが、一般的に膜ファウリングが起こりやすいと言われている疎水性のポリフッ化ビニリデン系樹脂からなる多孔質膜の場合に本発明の効果が発揮され易い。ポリフッ化ビニリデン系樹脂は、フッ化ビニリデン残基構造を主単位として有するポリマーであり、即ち、フッ化ビニリデン単独重合体および/またはフッ化ビニリデン系共重合体を含有する樹脂のことである。複数の種類のフッ化ビニリデン系共重合体を含有しても構わない。この共重合体としてはフッ化ビニリデンモノマーとそれ以外のフッ素系モノマー等の共重合体が挙げられる。 Although not particularly limited in view of the gist of the present invention, the effect of the present invention is easily exhibited in the case of a porous film made of a hydrophobic polyvinylidene fluoride resin, which is generally said to cause film fouling. . The polyvinylidene fluoride resin is a polymer having a vinylidene fluoride residue structure as a main unit, that is, a resin containing a vinylidene fluoride homopolymer and / or a vinylidene fluoride copolymer. A plurality of types of vinylidene fluoride copolymers may be contained. Examples of this copolymer include copolymers of vinylidene fluoride monomer and other fluorine-based monomers.
本発明に使用する多孔質膜のゼータ電位の測定には、レーザードップラー電気泳動法を用いるのが好ましい。レーザードップラー電気泳動法の測定手段自体は、特に限定されないが、測定装置としては例えば電気泳動光散乱装置(ELS−8000:大塚電子(株)製)などを用いるのが好ましい。本発明における膜表面ゼータ電位は、未使用状態のろ過膜を測定前に10分間、所定のpHの水溶液中に保持した後、測定を行うことによって求められる膜表面ゼータ電位である。 Laser doppler electrophoresis is preferably used for measuring the zeta potential of the porous membrane used in the present invention. The measuring means of the laser Doppler electrophoresis method itself is not particularly limited, but it is preferable to use, for example, an electrophoretic light scattering apparatus (ELS-8000: manufactured by Otsuka Electronics Co., Ltd.) as the measuring apparatus. The membrane surface zeta potential in the present invention is a membrane surface zeta potential obtained by measuring after holding an unused filtration membrane in an aqueous solution having a predetermined pH for 10 minutes before measurement.
通常、自然水中に含まれる膜ファウリング成分は負に帯電していることが多いことから、静電吸着による膜ファウリング抑制のためには、凝集pHにおける膜表面ゼータ電位が負であることが効果的である。また、膜表面電位が−15mVよりも小さい(負側に大きい)場合は、正に帯電する膜ファウリング成分と静電吸着しやすくなる。従って、膜ファウリング抑制のためには、凝集pHにおける膜表面ゼータ電位が−15mV以上0mV未満であることがより好ましい。 Usually, membrane fouling components contained in natural water are often negatively charged. Therefore, in order to suppress membrane fouling by electrostatic adsorption, the membrane surface zeta potential at the aggregation pH may be negative. It is effective. On the other hand, when the membrane surface potential is smaller than −15 mV (larger on the negative side), electrostatic adsorption with the positively charged membrane fouling component is facilitated. Therefore, in order to suppress membrane fouling, the membrane surface zeta potential at the aggregation pH is more preferably −15 mV or more and less than 0 mV.
本発明においては、前記負荷電を有する多孔質ろ過膜との静電気的作用の観点から、凝集フロックのゼータ電位を負荷電となるように凝集処理条件を制御することが重要である。凝集フロックのゼータ電位が−10mV以上0mV未満となるようにすることが好ましい。凝集フロックのゼータ電位が−10mV未満であると荷電中和が十分に起こらず、反発力を保ったままコロイド粒子が浮遊するため、凝集不十分となり易く、膜ファウリングを十分に抑制することが困難である。また凝集フロックのゼータ電位が0mV以上となると、膜表面ゼータ電位が負である膜への付着力が急激に上昇し、ファウリングが促進される。凝集フロックのゼータ電位はさらには、−5±2.5mVの範囲内であることが、より好ましい。これは、凝集フロックのゼータ電位を0mVに近づけすぎて制御すると、原水水質の変化によって凝集フロックのゼータ電位の制御が誤って0mV以上となる危険性があり、凝集フロックのゼータ電位が0mV以上になると、急激に膜ファウリングが起こりやすくなるためである。 In the present invention, from the viewpoint of electrostatic action with the negatively charged porous filtration membrane, it is important to control the aggregation treatment conditions so that the zeta potential of the aggregation floc becomes negative. It is preferable that the zeta potential of the aggregated floc is −10 mV or more and less than 0 mV. When the zeta potential of the aggregation floc is less than −10 mV, charge neutralization does not occur sufficiently, and the colloidal particles float while maintaining the repulsive force, so that aggregation is likely to be insufficient, and membrane fouling can be sufficiently suppressed. Have difficulty. Further, when the zeta potential of the aggregated floc becomes 0 mV or more, the adhesion force to the membrane having a negative membrane surface zeta potential is rapidly increased, and fouling is promoted. More preferably, the zeta potential of the aggregated floc is in the range of −5 ± 2.5 mV. This is because if the zeta potential of the aggregated floc is controlled too close to 0 mV, there is a risk that the control of the zeta potential of the aggregated floc will erroneously become 0 mV or more due to changes in the raw water quality, and the zeta potential of the aggregated floc will be 0 mV or more. This is because membrane fouling is likely to occur rapidly.
本発明の水処理方法は、以下に説明する本発明の水処理装置を用いて行うことが好ましい。本発明の水処理装置の一例を図2に示す。図2において、実線矢印は被処理水、注入液、処理水の流れを示し、点線は、フィードバック制御するための情報伝達の流れを示す。 The water treatment method of the present invention is preferably performed using the water treatment apparatus of the present invention described below. An example of the water treatment apparatus of the present invention is shown in FIG. In FIG. 2, the solid line arrows indicate the flow of the water to be treated, the injection liquid, and the treated water, and the dotted line indicates the flow of information transmission for feedback control.
本発明の水処理装置は、多孔質膜モジュール10を備えており、多孔質膜モジュール10の上流側には凝集処理装置14を備えている。凝集処理装置14には、少なくとも、原水に凝集剤を添加する凝集剤添加手段と、その添加後に原水と凝集剤とを混合させるための攪拌手段を設ければよい。図2の場合、凝集剤添加手段として、凝集剤溶液貯槽4、凝集剤注入ポンプ5及びこれから延びる注入配管とを設け、また、凝集処理槽として、急速撹拌槽3と撹拌機6とを設けている。
The water treatment apparatus of the present invention includes a
また、凝集処理装置からろ過膜モジュール10へ至る前までの凝集処理水について、その中の凝集フロックのゼータ電位を測定するためのゼータ電位測定装置15を備えている。ゼータ電位測定装置用バイパス16により凝集処理水の一部が分取されてゼータ電位測定装置15に供給され、凝集フロックのゼータ電位を自動測定する。
Further, a zeta
この水処理装置には、凝集フロックのゼータ電位に基づき、前記凝集処理装置の凝集処理条件を制御する凝集処理条件制御装置17を備えている。凝集フロックのゼータ電位は、凝集剤の注入量、凝集剤の種類、凝集水のpH等を変更することにより調整することができる。そこで、凝集フロックのゼータ電位の測定値が本発明の範囲外であった時には、凝集処理条件制御装置17によって、例えば、凝集剤の添加量やpH調整溶液の注入量を変更する操作をとればよい。
This water treatment device includes a coagulation treatment
凝集剤の注入量変更のためには、凝集剤注入ポンプ5の吐出量を本発明のゼータ電位範囲内となるようにフィードバック制御する。本発明の範囲内よりもゼータ電位の値が小さい時には、凝集剤注入量を増やし、ゼータ電位の値が大きい時には、凝集剤注入量を減らすことで制御すればよい。また、pH調整溶液の注入量を変更のためには、pH調整溶液注入ポンプ8の吐出量を、本発明のゼータ電位範囲内となるようにフィードバック制御する。この場合、本発明の範囲内よりもゼータ電位の値が小さい時には、凝集水pHを酸性側にシフトさせ、ゼータ電位の値が大きい時には、アルカリ性側にシフトさせるようにpH調整溶液の注入量を制御すればよい。
In order to change the injection amount of the flocculant, feedback control is performed so that the discharge amount of the
凝集処理条件の制御としては、前記した凝集剤注入量の変更、pH調整溶液の注入量の変更のいずれか一方のみのフィードバック制御でも良いし、また、両方をフィードバック制御しても良い。また、凝集処理水の流動電位をオンラインで連続測定し、フィードバック制御しても良い。 As control of the coagulation treatment condition, feedback control of only one of the change of the coagulant injection amount and the change of the injection amount of the pH adjusting solution described above may be performed, or both may be feedback controlled. Further, the flow potential of the flocculated water may be continuously measured online and feedback controlled.
以下に具体的実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。 The present invention will be described below with reference to specific examples, but the present invention is not limited to these examples.
凝集処理条件の違いによる膜ファウリングの生成度合いを調べるため、凝集処理水を膜でろ過し、その後に膜の洗浄を行い、洗浄後のろ過抵抗を調べた。洗浄後のろ過抵抗が小さいほど、汚れが膜から剥離し易く、膜ファウリングが起こりにくかったことを示している。試験の詳細を以下に示す。 In order to investigate the generation degree of membrane fouling due to the difference in the coagulation treatment conditions, the coagulation treatment water was filtered through a membrane, the membrane was then washed, and the filtration resistance after washing was examined. It shows that the smaller the filtration resistance after washing, the easier it is for the fouling to peel off from the membrane and membrane fouling is less likely to occur. Details of the test are shown below.
減圧ろ過用フィルターホルダー(ADVANTEC社)を用い、ポリフッ化ビニリデン樹脂製MF平膜(細孔径0.08μm、直径47mm)で凝集処理水を定圧吸引ろ過(60kPa)した。凝集処理水を50mlろ過した後、前記平膜の洗浄を行い、次いで、60kPaで100mlの対照水(純水)をろ過した。対照水をろ過するに要した時間t1および対照水の水温T1を測定した。 Using a filter holder for vacuum filtration (ADVANTEC), the agglomerated water was filtered at a constant pressure (60 kPa) with a polyvinylidene fluoride resin MF flat membrane (pore size 0.08 μm, diameter 47 mm). After 50 ml of flocculated water was filtered, the flat membrane was washed, and then 100 ml of control water (pure water) was filtered at 60 kPa. The time t 1 required for filtering the control water and the water temperature T 1 of the control water were measured.
なお、予めろ過試験を行う前に、使用する平膜を用い、60kPaで100mlの対照水をろ過し、ろ過するに要した時間t2および水温T2を測定した。対照水には純水(逆浸透膜処理水:電気伝導度15μS/cm以下)を用いた。また、平膜の洗浄は、洗瓶を用いて平膜上に純水(RO処理水:電気伝導度15μS/cm以下)を約10秒間吹き付ける方法を用いた。 In addition, before conducting a filtration test in advance, using the flat membrane to be used, 100 ml of control water was filtered at 60 kPa, and time t 2 and water temperature T 2 required for filtration were measured. As control water, pure water (reverse osmosis membrane-treated water: electric conductivity of 15 μS / cm or less) was used. The flat membrane was washed using a method of spraying pure water (RO-treated water: electric conductivity of 15 μS / cm or less) on the flat membrane for about 10 seconds using a washing bottle.
洗浄後のろ過抵抗は以下に示す式(1)を用いて算出した。
上記式(1)中、Rmは、次の式(2)より算出した値である。
ここで、t1:洗浄後、対照水を100mlろ過するに要した時間、
t2:未使用膜において対照水を100mlろ過するに要した時間、である。
また、式中の膜面積は、ろ過に使用された平膜の面積であり、粘度、密度は各水温(T1、T2)における水の粘度、密度である。
Here, t 1 : time required to filter 100 ml of control water after washing,
t 2 : Time required to filter 100 ml of control water in an unused membrane.
Further, the membrane area in the formula is the area of the flat membrane used for filtration, and the viscosity and density are the viscosity and density of water at each water temperature (T 1 , T 2 ).
<実験例1>
凝集処理水は、下水二次処理水1Lに凝集剤として塩化第二鉄(FeCl3)を1mg−Fe/L添加し、pH調整を行うことなく、ジャーテスターを用い、150rpmで急速攪拌を5分間行うことにより調製した。この凝集処理水の凝集pHは6.5であり、凝集処理水中の凝集フロックのゼータ電位は−5.4mVであった。また、pH6.5における膜表面ゼータ電位は−9.7mVであった。
<Experimental example 1>
Aggregated treated water is 1 mg-Fe / L of ferric chloride (FeCl 3 ) as a flocculant added to 1 L of sewage secondary treated water, and rapidly stirred at 150 rpm using a jar tester without adjusting pH. Prepared by running for minutes. The coagulation pH of this coagulation-treated water was 6.5, and the zeta potential of the coagulation floc in the coagulation-treated water was −5.4 mV. The membrane surface zeta potential at pH 6.5 was -9.7 mV.
この凝集処理水をフィルターホルダーに入れ、前記手順にてろ過および洗浄を行い、ろ過抵抗を測定した。この場合は、ゼータ電位の関係が本発明の範囲内であったので、洗浄後のろ過抵抗は1.6×1010(m−1)と小さく、膜ファウリングが抑制されていた。 This agglomerated water was put in a filter holder, filtered and washed in the above procedure, and the filtration resistance was measured. In this case, since the relationship of the zeta potential was within the range of the present invention, the filtration resistance after washing was as small as 1.6 × 10 10 (m −1 ), and membrane fouling was suppressed.
<実験例2>
凝集処理水は、下水二次処理水1Lに凝集剤として塩化第二鉄(FeCl3)を10mg−Fe/L添加し、pH調整を行うことなく、ジャーテスターを用い、150rpmで急速攪拌を5分間行うことにより調製した。この凝集処理水の凝集pHは5.5であり、凝集処理水中の凝集フロックのゼータ電位は3.5mVであった。また、pH5.5における膜表面ゼータ電位は−5.5mVであった。
<Experimental example 2>
Aggregated treated water is 10 mg-Fe / L of ferric chloride (FeCl 3 ) as a flocculant added to 1 L of sewage secondary treated water, and rapidly stirred at 150 rpm using a jar tester without adjusting pH. Prepared by running for minutes. The coagulation pH of the coagulation-treated water was 5.5, and the zeta potential of the coagulation floc in the coagulation-treated water was 3.5 mV. The membrane surface zeta potential at pH 5.5 was -5.5 mV.
この凝集処理水をフィルターホルダーに入れ、前記手順にてろ過および洗浄を行い、ろ過抵抗を測定した。この場合は、ゼータ電位の関係が本発明の範囲外であったので、洗浄後のろ過抵抗は1.3×1011(m−1)と、実験例1の場合の8.2倍であり、膜ファウリングが大きかった。 This agglomerated water was put in a filter holder, filtered and washed in the above procedure, and the filtration resistance was measured. In this case, since the relationship of the zeta potential was outside the range of the present invention, the filtration resistance after washing was 1.3 × 10 11 (m −1 ), which is 8.2 times that in the case of Experimental Example 1. The membrane fouling was great.
<実験例3>
凝集処理水は、下水二次処理水1Lに凝集剤として塩化第二鉄(FeCl3)を0.5mg−Fe/L添加し、pH調整を行うことなく、ジャーテスターを用い、150rpmで急速攪拌を5分間行うことにより調製した。この凝集処理水の凝集pHは6.9であり、凝集処理水中の凝集フロックのゼータ電位は−12.9mVであった。また、pH6.9における膜表面ゼータ電位は−11.4mVであった。
<Experimental example 3>
Agglomerated treated water is added with 0.5 mg-Fe / L of ferric chloride (FeCl 3 ) as a coagulant to 1 L of sewage secondary treated water, and rapidly stirred at 150 rpm using a jar tester without adjusting pH. For 5 minutes. The coagulation pH of the coagulation-treated water was 6.9, and the zeta potential of the coagulation floc in the coagulation-treated water was −12.9 mV. The membrane surface zeta potential at pH 6.9 was -11.4 mV.
この凝集処理水をフィルターホルダーに入れ、前記手順にてろ過および洗浄を行い、ろ過抵抗を測定した。この場合のゼータ電位は負荷電であるものの−10mVよりも小さかったので、洗浄後のろ過抵抗は4.4×1010(m−1)と、実験例1の場合の2.8倍であった。 This agglomerated water was put in a filter holder, filtered and washed in the above procedure, and the filtration resistance was measured. The zeta potential in this case was negatively charged but was less than −10 mV, so the filtration resistance after washing was 4.4 × 10 10 (m −1 ), which was 2.8 times that in the case of Experimental Example 1. It was.
以上の実験例から、膜表面ゼータ電位が負である多孔質ろ過膜でろ過を行う場合には、凝集処理水中の凝集フロックのゼータ電位が負荷電となるように、特に−10mV以上0mV未満の範囲内となるように、凝集処理条件を制御することが、膜ファウリングの生成を抑え、ろ過抵抗の上昇を抑えるために有効であることがわかる。 From the above experimental examples, when filtration is performed with a porous filtration membrane having a negative membrane surface zeta potential, in particular, the zeta potential of the aggregated floc in the agglomerated treated water becomes negatively charged so that it is −10 mV or more and less than 0 mV. It can be seen that controlling the agglomeration treatment conditions so as to be within the range is effective in suppressing the generation of membrane fouling and the increase in filtration resistance.
本発明法は、河川水、湖水、地下水、伏流水などの天然水、各種工場廃水や農業廃水、下水あるいはその処理水、海水などを凝集処理した水を膜モジュールで膜ろ過する際に好適に利用できる。 The method of the present invention is suitable for membrane filtration of natural water such as river water, lake water, groundwater, underground water, various factory wastewater, agricultural wastewater, sewage or treated water, seawater, and the like with a membrane module. Available.
1:原水水槽
2:取水ポンプ
3:急速攪拌槽
4:凝集剤溶液貯槽
5:凝集剤注入ポンプ
6:攪拌機
7:pH調整溶液貯槽
8:pH調整溶液注入ポンプ
9:供給ポンプ
10:ろ過膜モジュール
11:ろ過水水槽
12:膜供給水採水弁
13:膜供給水採水管
14:凝集処理装置
15:ゼータ電位測定装置
16:ゼータ電位測定装置用バイパス
17:凝集処理条件制御装置
1: Raw water tank 2: Intake pump 3: Rapid stirring tank 4: Flocculant solution storage tank 5: Flocculant injection pump 6: Stirrer 7: pH adjustment solution storage tank 8: pH adjustment solution injection pump 9: Supply pump 10: Filtration membrane module 11: Filtration water tank 12: Membrane supply water sampling valve 13: Membrane supply water sampling tube 14: Coagulation treatment device 15: Zeta potential measurement device 16: Bypass for zeta potential measurement device 17: Coagulation treatment condition control device
Claims (7)
A coagulation treatment device for adding an aggregating agent to raw water for coagulation treatment and a porous filtration membrane having a negative membrane surface zeta potential at the coagulation pH for filtering water coagulated by the coagulation treatment device and a multi Anashitsumaku module, and a potential measuring device for measuring the streaming potential of the zeta potential or aggregation treated water floc aggregation process water, furthermore, the flocs zeta potential levels of the measurement of said potential measuring device water treatment apparatus characterized by zeta potential of the floc is provided with a coagulation treatment condition control device for controlling the agglomeration process conditions in agglutination processing apparatus so that the negative charge on the basis of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008101064A JP5131005B2 (en) | 2008-04-09 | 2008-04-09 | Water treatment method and water treatment apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008101064A JP5131005B2 (en) | 2008-04-09 | 2008-04-09 | Water treatment method and water treatment apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009248028A JP2009248028A (en) | 2009-10-29 |
JP5131005B2 true JP5131005B2 (en) | 2013-01-30 |
Family
ID=41309210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008101064A Active JP5131005B2 (en) | 2008-04-09 | 2008-04-09 | Water treatment method and water treatment apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5131005B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016030229A (en) * | 2014-07-28 | 2016-03-07 | 株式会社東芝 | Method for evaluating flocculation state of floc and device for evaluating flocculation state of floc |
JP2016030228A (en) * | 2014-07-28 | 2016-03-07 | 株式会社東芝 | Method for controlling flocculation conditions of floc, device for controlling flocculation conditions of floc, water treatment method and water treatment equipment |
JP2017047395A (en) * | 2015-09-04 | 2017-03-09 | 水ing株式会社 | Method for evaluating membrane-clogging property of water to be treated, membrane filtration apparatus used in the method for evaluating the membrane-clogging property, and membrane filtration method for water to be treated whose membrane-clogging property evaluation index value is determined by using the method for evaluating the membrane-clogging property |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5343655B2 (en) * | 2009-03-27 | 2013-11-13 | 東レ株式会社 | Operation method of membrane module |
JP5422516B2 (en) * | 2010-08-23 | 2014-02-19 | 株式会社日立製作所 | Aggregation magnetic separator |
AU2013275302B2 (en) * | 2012-06-15 | 2015-10-15 | Meidensha Corporation | Solid-liquid separation method |
JP5951423B2 (en) * | 2012-09-13 | 2016-07-13 | 株式会社東芝 | Flocculant injection control method and flocculant injection control system |
CN104854038B (en) * | 2012-12-25 | 2017-11-07 | 东丽株式会社 | Method for treating water |
JP2014144433A (en) * | 2013-01-29 | 2014-08-14 | Panasonic Corp | Boron-containing effluent treatment method and boron-containing effluent treatment system |
JP6173949B2 (en) * | 2014-02-28 | 2017-08-02 | 株式会社東芝 | Water treatment system, control device, and water treatment method |
JP2017095307A (en) * | 2015-11-25 | 2017-06-01 | 株式会社ダイセル | Method for producing aqueous nanodiamond dispersion |
JP6202115B2 (en) * | 2016-01-29 | 2017-09-27 | 栗田工業株式会社 | Industrial water clarification method and clarification device |
JP6730092B2 (en) * | 2016-05-26 | 2020-07-29 | 株式会社東芝 | Treatment method and treatment equipment for radioactive liquid-containing waste liquid |
JP6848615B2 (en) * | 2017-03-31 | 2021-03-24 | 栗田工業株式会社 | How to clarify industrial water |
JP7074156B2 (en) * | 2020-06-01 | 2022-05-24 | 栗田工業株式会社 | Water treatment method and water treatment equipment |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1184070A3 (en) * | 2000-09-01 | 2003-12-17 | Haldor Topsoe A/S | Method for the removal of particulate matter from aqueous suspension |
JP2002205076A (en) * | 2001-01-15 | 2002-07-23 | Toshiba Corp | Flocculating agent injection control system |
JP2005246157A (en) * | 2004-03-02 | 2005-09-15 | Toray Ind Inc | Water treatment method and water treatment apparatus |
JP4602119B2 (en) * | 2005-03-01 | 2010-12-22 | 株式会社東芝 | Streaming potential measuring device and aggregation state detection system |
JP2007245078A (en) * | 2006-03-17 | 2007-09-27 | Kurita Water Ind Ltd | Water treatment system and water treatment process |
-
2008
- 2008-04-09 JP JP2008101064A patent/JP5131005B2/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016030229A (en) * | 2014-07-28 | 2016-03-07 | 株式会社東芝 | Method for evaluating flocculation state of floc and device for evaluating flocculation state of floc |
JP2016030228A (en) * | 2014-07-28 | 2016-03-07 | 株式会社東芝 | Method for controlling flocculation conditions of floc, device for controlling flocculation conditions of floc, water treatment method and water treatment equipment |
JP2017047395A (en) * | 2015-09-04 | 2017-03-09 | 水ing株式会社 | Method for evaluating membrane-clogging property of water to be treated, membrane filtration apparatus used in the method for evaluating the membrane-clogging property, and membrane filtration method for water to be treated whose membrane-clogging property evaluation index value is determined by using the method for evaluating the membrane-clogging property |
Also Published As
Publication number | Publication date |
---|---|
JP2009248028A (en) | 2009-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5131005B2 (en) | Water treatment method and water treatment apparatus | |
JP5343655B2 (en) | Operation method of membrane module | |
JP6137176B2 (en) | Water treatment method | |
JP5489982B2 (en) | Pretreatment method for separation by reverse osmosis membrane of treated water | |
KR20140099245A (en) | Desalination system and method | |
JP2012239947A (en) | Water treatment method and water treatment apparatus | |
KR101612219B1 (en) | Device and Method for Treating Washing Water using combined coagulation-ceramic ultrafiltration membrane system | |
JP2008264723A (en) | Method and apparatus for coagulating impurity | |
US20120145546A1 (en) | All-electric coagulant generation system | |
JP2012200696A (en) | Desalting method and desalting apparatus | |
JP2009165928A (en) | Water treatment apparatus and method | |
AU2013275302B2 (en) | Solid-liquid separation method | |
WO2016038726A1 (en) | Water treatment apparatus and water treatment method | |
JP6486799B2 (en) | MEMBRANE OBSTRUCTION EVALUATION METHOD FOR TREATED WATER, MEMBRANE FILTER APPARATUS USED FOR THE MEMBRANE OBSTRUCTION EVALUATION METHOD, AND MEMBRANE FILTRATION METHOD FOR TREATED WATER WITH DETERMINING MEMBRANE OBSTRUCTION EVALUATION INDEX | |
JP2012187467A (en) | Membrane separation method and membrane separator | |
JP7403387B2 (en) | Coagulation membrane filtration system and coagulation membrane filtration method | |
JP2019155283A (en) | Chemical addition amount control device and chemical addition amount control method | |
JP6965025B2 (en) | Membrane filtration device and membrane filtration method | |
JP5106182B2 (en) | Water treatment method and water treatment apparatus | |
JP7224753B2 (en) | Cohesive membrane filtration method and cohesive membrane filtration device | |
JP2014046235A (en) | Fresh water generating method | |
KR20160123864A (en) | Water treatment apparatus and operation control method of the same | |
JP2016093789A (en) | Water treatment method and water treatment system | |
JP5993605B2 (en) | Flocculant evaluation method and flocculant processing apparatus | |
JP2019188338A (en) | Water treatment method and water treatment apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110325 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120306 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120424 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121009 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121022 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151116 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5131005 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151116 Year of fee payment: 3 |