KR100853382B1 - Method for corrosion prevention of water distribution systems by lime slurry - Google Patents

Method for corrosion prevention of water distribution systems by lime slurry Download PDF

Info

Publication number
KR100853382B1
KR100853382B1 KR1020060071531A KR20060071531A KR100853382B1 KR 100853382 B1 KR100853382 B1 KR 100853382B1 KR 1020060071531 A KR1020060071531 A KR 1020060071531A KR 20060071531 A KR20060071531 A KR 20060071531A KR 100853382 B1 KR100853382 B1 KR 100853382B1
Authority
KR
South Korea
Prior art keywords
water
slaked lime
slurry
tank
filter paper
Prior art date
Application number
KR1020060071531A
Other languages
Korean (ko)
Other versions
KR20080010872A (en
Inventor
우달식
정민경
김성일
정보희
최영준
장재국
박영복
장현정
박한규
남연우
한영욱
Original Assignee
재단법인 한국계면공학연구소
서울특별시
신도건공 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 한국계면공학연구소, 서울특별시, 신도건공 주식회사 filed Critical 재단법인 한국계면공학연구소
Priority to KR1020060071531A priority Critical patent/KR100853382B1/en
Publication of KR20080010872A publication Critical patent/KR20080010872A/en
Application granted granted Critical
Publication of KR100853382B1 publication Critical patent/KR100853382B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment

Abstract

본 발명은 소석회 슬러리를 이용한 상수도관의 부식방지 방법에 관한 것으로서, 침전지(1)에서 고형 불순물질을 응집 침전시킨 물을 여과지(2)로 이송한 후, 여과지(2)에서 정수지(3)로 이송하는 공정에서, 물의 pH를 적정하게 조절하기 위해 여과지(2)를 통과한 물에 CO2를 주입하고, 이어서, 소석회를 물에 용해시킨 소석회슬러리를 투입한 후 정수지를 통하여 상수도관으로 송출하는 것을 특징으로 하여, 공정의 단순화를 도모하고, 소석회의 특성상 석고화되는 난점으로 인해 일반펌프에 의한 정량주입의 곤란함을 스큐류형태의 펌프에 의한 이송으로 정량주입을 가능하게 하며, 효율적으로 CO2를 주입하는 방법을 제시함으로써 CO2 사용에 의한 대기오염을 방지하는 효과가 있는 것임The present invention relates to a method of preventing corrosion of a water pipe using a slurry of lime lime, wherein the water in which the solid impurity is flocculated and precipitated in the sedimentation basin (1) is transferred to the filter media (2), and then, from the filter (2) to the purified water (3). In the conveying process, CO 2 is injected into the water passing through the filter paper 2 in order to properly adjust the pH of the water, and then the slaked lime slurry in which the slaked lime is dissolved in water is introduced into the water supply pipe. It is characterized in that the simplification of the process and the difficulty of quantitative injection by a general pump due to the difficulty of gypsuming due to the characteristics of slaked lime make it possible to quantitatively inject the pump by a skew-type pump, and efficiently provide CO 2 It is effective to prevent air pollution by using CO 2 by suggesting the method of injecting

Description

소석회슬러리를 이용한 상수도관의 부식방지 방법{Method for corrosion prevention of water distribution systems by lime slurry} Method for corrosion prevention of water distribution systems by lime slurry

도 1 은 본 발명의 실시예의 공정도.1 is a process diagram of an embodiment of the present invention.

도 2 는 본 발명의 CO2용해공급장치의 설명도.2 is an explanatory view of a CO 2 dissolution supply apparatus of the present invention.

도 3 는 본 발명에 의한 53일간의 Pilot 규모 실험에서 LI의 변화를 도시한 그래프.Figure 3 is a graph showing the change in LI in 53 days pilot scale experiment according to the present invention.

도 4 은 본 발명에 의한 5일간의 Pilot 규모 실험에서 LI의 변화를 도시한 그래프.4 is a graph showing the change in LI in a 5-day pilot scale experiment according to the present invention.

도 5 는 본 발명에 의한 53일간의 Pilot 규모 실험에서 철용출농도의 변화를 도시한 그래프.5 is a graph showing the change in iron elution concentration in the pilot scale experiment for 53 days according to the present invention.

도 6 는 본 발명에 의한 5일간의 Pilot 규모 실험에서 철용출농도의 변화를 도시한 그래프.Figure 6 is a graph showing the change in iron elution concentration in a 5-day pilot scale experiment according to the present invention.

도 7 은 본 발명에 의한 53일간의 Pilot 규모 실험에서 관체 시편의 탄산칼슘 피막형성 관찰도.Figure 7 is a observation of calcium carbonate film formation of the tubular specimens in a pilot scale experiment for 53 days according to the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1. 침전지1. Settling basin

2. 여과지2. filter paper

3. 정수지3. Water Purifier

4. CO2용해공급장치4. CO 2 Melt Feeder

41. 탱크 42. CO2공급관41.Tank 42.CO 2 Supply Line

43. 횡격벽 44. CO2 및 용수 이동관43. Transverse bulkheads 44. CO 2 and water transfer pipes

45. 컵 46. 보충수공급관45.Cup 46.Refill Water Supply Line

47. 잉여 CO2 배출관 48. 탄산수배출구47. Excess CO 2 discharge pipe 48. Carbonated water outlet

5. 소석회슬러리 저장탱크5. Slaked lime slurry tank

6. 소석회용해조6. Smelting lime melting tank

7. 희석안정화조7. Dilution Stabilization Tank

81. 유량계81. Flowmeter

82. CO2 혼합조82.CO 2 mixing tank

본 발명은 정수처리장의 응집 침전 공정을 끝내고 여과지로 이송되고 여과지에서 여과 공정을 마친 후, 여과지와 정수지 사이에 소석회슬러리를 주입하여 배출함으로써, 수돗물이 상수도관 내벽에 탄산칼슘 피막을 형성시켜 상수도관 내벽의 부식을 방지하는 방법에 관한 것이다.According to the present invention, after the coagulation and precipitation process of the purified water treatment plant is transferred to the filter paper and the filtration process is completed on the filter paper, by injecting and discharging slaked lime slurry between the filter paper and the purified paper, the tap water forms a calcium carbonate film on the inner wall of the water supply pipe, A method of preventing corrosion of the inner wall.

흔히 소석회라고 불리는 수산화칼슘은 보통 백색 분말상으로 되어 있으며, 비중이 2.24이다. 이러한 소석회는 물에 아주 약간 녹으며, 온도를 올리면 도리어 용해도가 내려간다. 수용액은 석회수라 하며, 강한 알칼리성을 보인다. 석회석을 1,200~1,300℃로 가열하면 탄산가스를 방출하여 생석회(CaO)로 되고, 물과 혼합하면 열을 발생하고 수산화칼슘(소석회, Ca(OH)2)이 된다. 지금까지 정수장에서 사용되고 있는 소석회는 공업용의 분말형태로 제조되고 운반되어, 사용상의 어려움이 있다. 특히 소석회의 특성상 석고화되는 난점으로 인해 일반펌프에 의해 정량주입이 곤란하며, 석고화 방지를 위한 취급의 곤란성 등 많은 불편함을 초래하고 있다.Calcium hydroxide, commonly called slaked lime, is usually in the form of a white powder with a specific gravity of 2.24. These limes are very slightly soluble in water, and the solubility decreases with increasing temperature. The aqueous solution is called lime water and shows strong alkalinity. When limestone is heated to 1,200 ~ 1,300 ℃, carbon dioxide gas is released to make quicklime (CaO), and when mixed with water, it generates heat and becomes calcium hydroxide (calcite, Ca (OH) 2 ). The slaked lime used in water purification plants so far is manufactured and transported in the form of industrial powder, which causes difficulties in use. In particular, due to the difficulty of gypsum due to the characteristics of slaked lime, it is difficult to quantitatively inject it by a general pump and cause many inconveniences such as difficulty in handling to prevent gypsum.

국내에서 현재 시행되고 있는 기존의 통상적인 상수도관 부식방지 방법으로는 인산염 또는 규산염의 부식억제제(방청제)를 아파트 등 공동주택 및 대형빌딩의 저수조에 주입하는 방법만이 유일하게 시행되고 있는 방법이나, 이는 기온에 차이가 있어 계절적으로 고형의 부식억제제가 불균일하게 용해되어 정량 주입이 곤란한 문제점을 안고 있다.The only existing method for preventing corrosion of water pipes currently in use in Korea is to inject the corrosion inhibitor (rust inhibitor) of phosphate or silicate into the water tanks of apartment houses and large buildings such as apartments. This has a problem in that it is difficult to quantitatively dissolve due to uneven dissolution of solid corrosion inhibitors seasonally due to differences in temperature.

상수원수의 수질특성을 고려한 pH 및 경도를 가지는 알칼리물질을 주입하는 방법으로서, 지금까지 개발되어 있는 방법 중 한국특허등록 제10-0441169호(한국특허공개 2003-0068056호)는, 상수원수의 계절적 요인에 따라 부식성지수인 CCPP 값을 안정적인 범위로 자동 조절할 수 있도록 하여 자동부식제어 기능을 갖도록 응집공정 전단계에서 pH와 칼슘경도를 1단계로 조절하고, 최종정수지에서 pH와 알칼리도 조절에 의한 2단계 제어가 이루어질 수 있도록 정수된 물에 Ca(OH)2, CO2, Na2CO3, NaOH를 이용하여 칼슘경도를 조절하는 방법을 개시한다. 이 방법은 최종정수지에서 pH를 8.0~8.3으로 상승시킴으로써 pH가 먹는물 수질기준 상한값인 8.5에 근접하게 되어 pH의 안정적인 유지관리가 어렵고, Na2CO3, NaOH를 주입함에 따라 수중에 Na 성분이 과도하게 증가 되어 고혈압, 심장병, 동맥경화 환자에게는 매우 위험할 수도 있는 문제점을 안고 있다. As a method of injecting alkaline substances having pH and hardness in consideration of water quality characteristics of water supply, Korean Patent Registration No. 10-0441169 (Korean Patent Publication No. 2003-0068056) among the methods developed so far is a seasonal method of water supply. According to the factors, the CCPP value, which is the corrosive index, can be automatically adjusted to a stable range, so that the pH and calcium hardness can be adjusted to one stage before the coagulation process, and the two stage control by adjusting the pH and alkalinity in the final reservoir Disclosed is a method of controlling calcium hardness using Ca (OH) 2 , CO 2 , Na 2 CO 3 , NaOH in purified water so that it can be made. This method raises pH to 8.0 ~ 8.3 in the final reservoir, so that the pH is close to 8.5, the upper limit of drinking water quality standard, so that it is difficult to maintain stable pH, and Na component is added to the water by injecting Na 2 CO 3 , NaOH. It is excessively increased and poses a problem that may be very dangerous for patients with high blood pressure, heart disease and atherosclerosis.

한국특허등록 제10-0573223호는 정수장용 정수처리 시스템 및 이를 이용한 정수처리방법에 관한 것으로서, 소석회에 대한 효과적인 습기 및 유해대기의 차단 및 전기설비에 대한 효과적인 부식방지가 가능함과 아울러, 소석회 용해 이전의 원수에 이산화탄소를 주입하여 소석회 용해도를 증가시켜 pH를 7.5~8.5로 조절하고 탄산칼슘 피막을 형성하도록 하는 방법을 알려 준다. 그러나 이 방법 또한 칼슘의 양 및 pH의 적정 조절이 어려워 원수의 칼슘경도가 매우 낮은 국내 실정에 한계가 있는 방법이다. Korean Patent Registration No. 10-0573223 relates to a water treatment system for water purification plants and a water treatment method using the same, which effectively blocks moisture and harmful air for slaked lime and effectively prevents corrosion on electrical facilities, Inject the carbon dioxide into the raw water to increase the solubility of lime, adjust the pH to 7.5 ~ 8.5 and tells you how to form a calcium carbonate film. However, this method is also difficult to properly adjust the amount of calcium and pH is a method of limiting the domestic situation of very low calcium hardness of raw water.

그리고, 일본특허공고 제1992-0002811호는, 수돗물의 부식성을 저하시키기 위해 수산화칼슘 및 이산화탄소 가스를 주입하여 LI 지수(물의 부식성지수임)를 향상시키는 방법을 개시하고 있다. 이 방법에 의해 처리된 물 또한 최종처리수의 pH가 8.4로 매우 높아 국내 현장에 적용은 매우 어렵다고 판단된다.Japanese Patent Publication No. 1992-0002811 discloses a method of improving the LI index (corrosive index of water) by injecting calcium hydroxide and carbon dioxide gas in order to reduce the corrosiveness of tap water. The water treated by this method is also very difficult to apply to domestic sites because the pH of the final treated water is very high as 8.4.

그리고 기존의 CO2 주입기술은 CO2의 용해능력을 고려하지 않는 주입방법을 이용하여 사용량보다 과잉의 CO2가 주입됨으로 인하여 용해되지 않은 CO2가 대기 중으로 방출된다. 따라서 지구온난화를 방지하기 위하여 전세계적으로 추진되고 있는 CO2 발생량 감축노력에 역행하는 기술로 작용하는 문제점을 갖게 된다.And conventional CO 2 injection technique and is released into the atmosphere a CO 2 that is not using the injection method which does not consider the dissolving ability of the CO 2 dissolved in the CO 2 excess due doemeuro than injection amount. Therefore, in order to prevent global warming, there is a problem that acts as a technology against the efforts to reduce CO 2 emissions that are being promoted around the world.

이에 따라 본 발명자들은, 상기 제시한 발명의 단점들인 적정 pH의 유지의 어려움, 분말 소석회의 이송 및 취급의 어려움, 공정의 복잡성 등을 보완할 수 있는 본 발명을 개발하게 되었다. 본 발명은 그동안 취급에 어려움이 많았던 분말형태의 소석회를 액상의 형태로 전환하고, 정수장의 응집공정에 소석회를 주입하고 부족분을 채우기 위해 정수지에 주입하는 과거의 행태를 지양하고, 최종정수지에 직접 소석회슬러리를 주입함으로써 공정의 단순화를 도모하고, 소석회의 특성상 석고화되는 난점으로 인해 일반펌프에 의한 정량주입의 곤란함을 스큐류형태의 펌프에 의한 이송으로 정량주입을 가능하게 하였다. 또한 경제성을 유지하면서 효율적으로 CO2를 주입하는 방법을 결합함으로써 CO2 사용에 의한 대기오염을 방지하는 혁 신적인 기술을 제공하고자 한다.Accordingly, the present inventors have developed the present invention which can compensate for the difficulties of maintaining the proper pH, the difficulty of transporting and handling the powdered lime and the complexity of the process, which are disadvantages of the present invention. The present invention converts the powdered slaked lime, which has been difficult to handle in the past, into a liquid form, and avoids the past behavior of injecting slaked lime into the coagulation process of a water purification plant and injecting it into purified water to fill shortages. By injecting the slurry, the process is simplified, and the difficulty of quantitative injection by a general pump due to the difficulty of gypsum due to the characteristics of slaked lime makes it possible to quantitatively inject by a skew type pump. In addition, by combining the method of efficiently injecting CO 2 while maintaining economic feasibility, it is intended to provide an innovative technology to prevent air pollution by using CO 2 .

본 발명은, 공정도인 도 1에 도시된 것과 같이, 침전지(1)에서 고형 불순물질을 응집 침전시킨 물을 여과지(2)로 이송한 후, 여과지(2)에서 정수지(3)로 이송하는 공정에서, 물의 pH를 적정하게 조절하기 위해 여과지(2)를 통과한 물에 CO2를 주입하고, 이어서, 소석회를 물에 용해시킨 소석회슬러리를 투입하는 것을 특징으로 한다. The present invention, as shown in Figure 1 of the process diagram, the step of transferring the water in which the solid impurity coagulated precipitated in the settling basin 1 to the filter paper 2, and then transfer from the filter paper 2 to the purified paper 3 in, characterized in that the injection of CO 2 in the water passing through the filter paper (2), in a calcium hydroxide slurry which is then dissolved in the calcium hydroxide in water in order to adjust properly the water pH.

여과지(2)를 통과한 물에 CO2를 주입함에 있어서, 그 주입량을 적정하게 유지할 수 있게 하기 위해서, 본 발명은, CO2를 물에 직접 주입함에 갈음하여 여과된 물에 CO2를 용해시킨 탄산수를 주입하는 것을 특징으로 한다. 일정량의 CO2를 용해시킨 탄산수를 여과수에 투입하기 위하여 여과지(2) 출측에 설치되는 CO2용해공급장치(4)는 다음과 같은 구성을 가지게 하는 것이 바람직하다. In order to maintain the injection amount appropriately when injecting CO 2 into the water passing through the filter paper 2, the present invention substitutes CO 2 directly with water to dissolve CO 2 in the filtered water. It is characterized by injecting carbonated water. In order to inject carbonated water in which a certain amount of CO 2 is dissolved into the filtered water, the CO 2 dissolution supply device 4 installed on the filter paper 2 exit side is preferably configured to have the following configuration.

CO2용해공급장치(4)는 탱크(41)와 탱크(41)의 저부에 폭기식으로 설치되는 CO2공급관(42)과 CO2공급관(42)의 상부에 설치된 횡격벽(43)과 횡격벽(43)에 설치된 CO2 및 용수 이동관(44)과 CO2 및 용수 이동관(44)의 상부에 설치된 컵(45)과 그 상부에 설치되는 보충수공급관(46) 및 미용해 잉여 CO2를 배출시키는 잉여 CO2 배출 관(47)으로 구성되는 단위장치(가)를 기본으로 하며 이러한 단위 장치는 첨부된 도면에 도시된 바와 같이 3개 단으로 구성시키는 것이 바람직하나, 3개 단 이상의 다수 단을 직렬로 설치하여 구성시킬 수 있다. 이러한 단위장치에 있어서, CO2 및 용수 이동관(44)은 그의 하단이 횡격벽(43) 이하로 돌출되게 함으로써 탱크(41)내에 CO2가 공급되면 CO2의 압력으로 수위가 낮아지면서 CO2가 CO2 및 용수 이동관(44)으로 배출되게 한다. 따라서, CO2 및 용수 이동관(44)의 길이는 탱크(41)내의 압력(Cm/H2O)을 결정한다. CO2 및 용수 이동관(44)의 상단은 횡격벽(43)의 상부로 돌출되게 구성시키며 그 상부에 컵(45)을 설치한다. 컵(45)의 하단 주연의 높이는 CO2 및 용수 이동관(44)의 상단보다 낮게 형성시키어 그 높이 차가 CO2의 배출압력(Cm/H2O)을 결정한다. CO 2 dissolved in the supply device 4 is the tank 41 and the transverse bulkhead 43 provided on the upper portion of the CO 2 supply pipe 42 and a CO 2 supply pipe 42, which is installed in the aeration way to the bottom of the tank 41 and the cross The CO 2 and the water transfer pipe 44 installed on the partition 43 and the cup 45 installed on the upper portion of the CO 2 and the water transfer pipe 44, the supplemental water supply pipe 46 installed on the upper portion thereof, and the undissolved surplus CO 2 are provided. It is based on the unit (A) consisting of the surplus CO 2 discharge pipe 47 for discharging, and the unit is preferably composed of three stages as shown in the accompanying drawings, three or more stages Can be configured in series. In this unit system, CO 2 and water Lee Dong - kwan 44 when his lower the CO 2 is supplied into the tank 41, by protruding below the transverse bulkhead 43, the water level at a pressure of CO 2 lower As CO 2 is To the CO 2 and water transfer pipe (44). Thus, the length of the CO 2 and water transfer pipe 44 determines the pressure (Cm / H 2 O) in the tank 41. The upper end of the CO 2 and the water movement pipe 44 is configured to protrude to the upper portion of the transverse bulkhead 43 and a cup 45 is installed on the upper portion. The height of the lower periphery of the cup 45 is made lower than the top of the CO 2 and the water transfer pipe 44 so that the height difference determines the discharge pressure (Cm / H 2 O) of the CO 2 .

이와 같은 단위장치(가)는 CO2 공급관(42)으로 공급되는 CO2가 탱크(41)내에서 폭기식으로 공급되면, CO2가 물에 녹으면서 횡격벽(43)에까지 상승하고, 계속되는 CO2의 압력으로 수위가 낮아져 그 수위가 CO2 및 용수 이동관(44)의 하단을 초과하면 CO2가 CO2 및 용수 이동관(44)을 통하여 배출된다. 이와 같이, 탱크(41) 내에서 CO2는 압력에 의해서 용해가 촉진되며, 미용해된 CO2는 CO2 및 용수 이동관(44)을 통해 배출되는데, CO2 및 용수 이동관(44)의 상부엔 또다시 컵(45)이 설치되어 배출되는 CO2를 재차 물에 용해시키게 된다. 그리고, CO2를 용해시킨 탄산수는 이를 탄산수배출구(48)[다수의 단위장치(가, 나, 다)를 직렬로 설치하였을 경우에는 각 단위장치(가, 나, 다)의 탄산수배출구를 결합하여 그 농도를 일정하게 하여]를 통해 여과수에 투입한다. When the above unit device (a) is the CO 2 fed to the CO 2 supply pipe 42 supplied from the tank 41 to the bubbling type, CO 2 is continued melting in the water rises far transverse bulkheads 43, and CO When the water level is lowered by the pressure of 2 and the water level exceeds the lower end of the CO 2 and the water moving pipe 44, the CO 2 is discharged through the CO 2 and the water moving pipe 44. Thus, the tank 41 in the CO 2 is dissolved is promoted by the pressure, the un-dissolved CO 2 is there is discharged through the CO 2 and water Lee Dong - kwan 44, CO 2 and the upper yen of water Lee Dong - kwan 44 The cup 45 is installed again to dissolve the discharged CO 2 in water again. The carbonated water in which CO 2 is dissolved is combined with the carbonated water outlet of each unit device (a, b, c) when the carbonated water outlet 48 (a plurality of unit devices (a, b, c) is installed in series). The concentration is constant] into the filtrate.

위와 같이 하여 탱크(41)에 공급되는 CO2의 압력을 증가시키면, CO2의 분압과 용해력의 관계에 의하여 CO2가 물에 용해되고, 용해되지 않는 탄산가스는 상층부의 용해장치로 이동하여 동일한 원리에 의하여 일부의 CO2를 용해시킨다. 따라서 여러 단의 용해장치를 설치하면 효율적으로 CO2를 물에 용해시켜 본 발명에서 요구하는 pH 범위를 충족시킬 수 있다.Increasing the pressure of the CO 2 to be supplied to the tank 41 as described above, by the relationship between the partial pressure and solubility of CO 2 CO 2 is soluble in water, the carbon dioxide does not dissolve the same, go to the dissolution apparatus of the upper layer By principle, some CO 2 is dissolved. Therefore, by installing a multi-stage dissolving device, CO 2 can be efficiently dissolved in water to satisfy the pH range required by the present invention.

CO2용해공급장치(4)에 의하여 생성된 탄산수는 이를 펌프와 같은 장치를 이용하여 여과수에 투입하게 되는 바, 이와 같은 여과수로의 투입으로 인하여 부족하게 되는 용수는 상층부에 설치한 보충수공급관(46)을 이용하여 신수를 공급함으로써 탱크(41)내의 물질수지를 일정하게 유지할 수 있다.The carbonated water produced by the CO 2 dissolution supply device 4 is introduced into the filtrate by using a device such as a pump, and the water that is insufficient due to the input to the filtrate is supplemented with a water supply pipe installed in the upper layer ( By supplying fresh water using 46), the mass balance in the tank 41 can be kept constant.

최종단의 단위장치에서도 용해되지 않은 CO2는 회수관을 통해 다시 공급펌프로 환수되어 재차 탱크(41)로 공급된다. 따라서, 본 발명의 CO2용해공급장치(4)는 CO2의 대기 방출 염려없이 여과수에 탄산수를 공급하여 pH를 조절할 수 있게 한다. CO 2 which is not dissolved even in the unit of the final stage is returned to the feed pump through the recovery pipe and supplied again to the tank 41. Therefore, the CO 2 dissolution supply device 4 of the present invention can adjust the pH by supplying carbonated water to the filtered water without fear of release of CO 2 into the atmosphere.

소석회슬러리 저장탱크(5)에 저장된 소석회슬러리는 스크류형태의 정량주입펌프를 이용해 소석회 소석회용해조(6)에 유입시키고, 다시 희석안정화조(7)를 거쳐 곧바로 정수지(3)에 주입하게 된다. 이와 같은 본 발명의 방법은 탄산수의 공급량과 석회수의 공급량의 정량적 조절이 용이하므로, 그 공급량을 조정함으로써, 정수지(3)에 이르는 정수의 pH는 이를 7.5~8.0으로 조절하고, 탄산칼슘 경도는 100~200mg/L로 조절하여 부식지수인 LI를 -0.5∼ 0.5로 조절할 수 있게 하고, 그리하여 상수도관에 탄산칼슘 피막을 형성시켜 상수도관 내벽의 부식을 방지한다.The slaked lime slurry stored in the slaked lime slurry storage tank (5) is introduced into the slaked lime slaked lime dissolution tank (6) using a screw-type injection pump, and then injected into the purified water (3) directly through the dilution stabilization tank (7). Since the method of the present invention as described above is easy to quantitatively control the amount of carbonated water and the amount of lime water supplied, the pH of the purified water reaching the water purification paper 3 is adjusted to 7.5 to 8.0, and the calcium carbonate hardness is 100 The corrosion index LI can be adjusted to -0.5 to 0.5 by controlling the concentration to -200 mg / L, thereby forming a calcium carbonate film on the water supply pipe to prevent corrosion of the inner wall of the water supply pipe.

본 발명의 실시에 있어서, 탄산수의 공급량과 석회수의 공급량 조절 기술을 설명하면 다음과 같다. 즉, 도 1 에 도시된 바와 같이, 정수처리장의 응집 침전공정 후단인 여과지(2)를 통과한 여과수에는 CO2용해공급장치(4)에 의해서 탄산수를 정량적으로 조절할 수 있는 유량계(81)를 통해 탄산가수 CO2 혼합조(82)에 주입하여 pH를 4.5~6.5의 범위(pH미터1에 의해 측정되어진다)로 조절한다. 다음 공정으로, 소석회슬러리 저장탱크(5)로부터 공급되는 소석회슬러리와, 탄산수가 혼합되어 pH가 4.5~6.5의 범위(pH미터2에 의해 측정되어진다)로 조절 된 여과수를 소석회용해조(6)에서 혼합하되, 탄산수와 소석회슬러리가 충분히 혼합되도록 교반하고, 위와 같이 혼합된 물을 희석안정화조(7)를 거쳐 정수지(3)로 보낸다. 소석회용해조(6)로 보내는 소석회슬러리의 양은 정수지(3)에 보내어지는 물이 pH 7.5~8.0, 칼슘경도 100~200mg/L as CaCO3가 될 수 있도록 조절한다.In the practice of the present invention, a description will be given of techniques for adjusting the supply amount of carbonated water and the supply amount of lime water. That is, as shown in Figure 1, the filtered water passing through the filter paper 2, which is the end of the flocculation settling process of the purified water treatment plant through a flow meter 81 that can quantitatively control the carbonated water by the CO 2 dissolution supply device (4) adjusted to acid hydrolysis CO 2 (pH is measured by the meter 1) the pH injected into the mixing chamber 82, the range of 4.5 to 6.5. In the next step, the slaked lime slurry supplied from the slaked lime slurry storage tank 5 and the filtered water adjusted to a pH range of 4.5 to 6.5 (measured by a pH meter 2) by mixing carbonated water in the slaked lime slurry tank 6 While mixing, stirring so that the carbonated water and the slaked lime slurry is sufficiently mixed, the mixed water as described above is sent to the purified water (3) through the dilution stabilization tank (7). The amount of slaked lime slurry sent to the slaked lime dissolution tank (6) is adjusted so that the water sent to the purified water (3) can have a pH of 7.5 to 8.0 and a calcium hardness of 100 to 200 mg / L as CaCO 3 .

이와 같이 구성된 본 발명은, 기존의 정수처리장에서 분말형태의 공업용 소석회를 사용함으로써 이송 및 취급의 어려움이 있는 결점을 해소하였을 뿐만 아니라, 소석회슬러리를 여과지와 정수지 사이에 직접 주입하여 공정의 단순화를 도모하고, 정수장의 작업자들이 분말상 소석회를 사용함으로 인한 취급의 어려움을 극복할 수 있어 그동안 정수장 관리자들로부터 기피되어 왔던 소석회 주입공정이 더욱 활기를 보일 것으로 기대된다. 또한 소석회슬러리를 스크류 형태의 정량주입펌프를 이용하여 정량으로 주입할 수 있게 함으로써 원하는 pH 및 칼슘경도, 알칼리도를 맞출 수 있는 장점이 있다. The present invention configured as described above not only solves the drawbacks of transport and handling difficulties by using powdered industrial slaked lime in existing water treatment plants, but also simplifies the process by directly injecting slaked lime slurry between filter paper and purified water. In addition, it is expected that the operators of the purification plant will overcome the difficulties of handling due to the use of the powdered lime in the limestone injection process, which has been avoided by the managers. In addition, by allowing the lime slurry to be injected in a quantitative manner using a screw-type injection pump, there is an advantage in that the desired pH, calcium hardness and alkalinity can be adjusted.

이를 입증하기 위해 본 발명의 방법에 따라 소석회슬러리(Ca(OH)2)와 CO2를 주입하여 Pilot 규모로 53일간, 5일간 각각 실험한 결과, 부식성 지수 LI의 변화는 도 3 및 도4에 나타낸 바와 같이 유입수의 LI가 -1.4, -1.3에서 처리수인 반응수의 LI가 -0.5, 0.2로 상승하였으며, 부식시편의 철용출 농도도 도 5 및 도 6에 나타낸 바와 같이 철용출 농도 저감 효과가 각각 35.1%, 16.8%로 나타내어 상수도관의 부식제어 효과를 보았다. 도 7 은 53일간 실험 후 소석회슬러리를 주입한 관체 표면과 주입하지 않은 관체 표면을 주사전자현미경으로 관찰한 것이다. 도 7에서 나타낸 바와 같이 소석회슬러리를 주입한 관체의 표면에는 미세한 탄산칼슘 피막이 도포된 것을 확인할 수 있었다.In order to prove this, by injecting slaked lime slurry (Ca (OH) 2 ) and CO 2 according to the method of the present invention for 53 days and 5 days on a pilot scale, the change in the corrosive index LI is shown in FIGS. 3 and 4. As shown, the LI of the influent water increased from -1.4 and -1.3 to LI -0.5 and 0.2 of the reaction water, and the iron elution concentration of the corrosion specimens was also shown in FIGS. Were 35.1% and 16.8%, respectively. FIG. 7 shows the surface of the tube infused with the lime slurry and the surface of the tube not injected with a scanning electron microscope. As shown in FIG. 7, it was confirmed that a fine calcium carbonate film was applied to the surface of the tube into which the slaked lime slurry was injected.

Claims (5)

삭제delete 삭제delete 침전지(1)에서 고형 불순물질을 응집 침전시킨 물을 여과지(2)로 이송한 후, 여과지(2)에서 정수지(3)로 이송하는 공정에서, 물의 pH를 적정하게 조절하기 위해 여과지(2)를 통과한 물에 CO2를 주입하고, 이어서, 소석회를 물에 용해시킨 소석회슬러리를 투입한 후 정수지를 통하여 상수도관으로 송출하며, 여과지(2)를 통과한 물에 CO2를 주입하는 일은, CO2를 물에 직접 주입함에 갈음하여 여과된 물에 CO2를 용해시킨 탄산수를 주입하는 것에 있어서, CO2를 용해시킨 탄산수를 여과수에 투입하기 위하여 여과지(2) 출측에 설치되는 CO2용해공급장치(4)는 탱크(41)와 탱크(41)의 저부에 폭기식으로 설치되는 CO2공급관(42)과 CO2공급관(42)의 상부에 설치된 횡격벽(43)과 횡격벽(43)에 설치된 CO2 및 용수 이동관(44)과 CO2 및 용수 이동관(44)의 상부에 설치된 컵(45)과 그 상부에 설치되는 보충수공급관(46) 및 미용해 잉여 CO2를 배출시키는 잉여 CO2 배출관(47)으로 구성되는 단위장치(가)를 기본으로 하며 이러한 단위 장치는 3개 단 이상의 다수 단을 직렬로 설치하여 구성된 것을 특징으로 하는 소석회 슬러리를 이용한 상수도관의 부식방지 방법. In the process of transferring the water in which the solid impurity coagulated and precipitated in the sedimentation basin (1) to the filter paper (2), and then from the filter paper (2) to the purified water (3), the filter paper (2) in order to properly adjust the pH of the water Injecting CO 2 into the water passed through, and then the slaked lime slurry in which the slaked lime was dissolved in water is introduced into the water supply pipe through the purified water, and injecting CO 2 into the water passed through the filter paper (2), according to injecting the carbonated water by dissolving the CO 2 in the water filtered through replaced as direct injection of CO 2 in the water, CO 2 dissolved in the supply to be installed on the filter paper (2), the outlet in order to input the carbonated water by dissolving the CO 2 in the water filtered device 4 is the tank 41 and a CO 2 supply pipe 42, and the upper transverse bulkhead 43 and the transverse bulkhead 43 provided in the CO 2 supply pipe 42, which is installed in the aeration way to the bottom of the tank 41 CO 2 and water transfer pipe 44 installed in the upper portion and the cup 45 installed on the CO 2 and water transfer pipe 44 And a unit consisting of a supplementary water supply pipe 46 installed at an upper portion thereof and a surplus CO 2 discharge pipe 47 for discharging undissolved surplus CO 2. The unit is composed of three or more stages. Corrosion prevention method of water pipe using the lime slurry slurry, characterized in that installed in series. 제 3 항에 있어서, 소석회슬러리의 투입은 소석회슬러리 저장탱크(5)에 저장된 소석회슬러리를 스크류형태의 정량주입펌프로 소석회 소석회용해조(6)에 유입시키고, 다시 희석안정화조(7)를 거쳐 곧바로 정수지(3)에 주입하는 것을 특징으로 하는 소석회 슬러리를 이용한 상수도관의 부식방지 방법. 4. The method of claim 3, wherein the input of the slaked lime slurry is introduced into the slaked lime slurry solution tank (6) with a screw-type metering injection pump stored in the slaked lime slurry storage tank (5), and then immediately through the dilution stabilization tank (7). A method for preventing corrosion of water supply pipes using a slurry of slaked lime, characterized in that it is injected into a purified water (3). 제 4 항에 있어서, 탄산수의 공급량과 석회수의 공급량은, 정수지(3)에 이르는 정수의 pH가 7.5~8.0, 탄산칼슘 경도가 100~200mg/L, 부식지수인 LI가 -0.5∼ 0.5가 되도록 결정되는 것을 특징으로 하는 소석회 슬러리를 이용한 상수도관의 부식방지 방법. The amount of carbonated water and the amount of lime water supplied are such that the pH of the purified water reaching the purified paper 3 is 7.5 to 8.0, the calcium carbonate hardness is 100 to 200 mg / L, and the corrosion index LI is -0.5 to 0.5. Corrosion prevention method of water pipes using the lime slurry, characterized in that determined.
KR1020060071531A 2006-07-28 2006-07-28 Method for corrosion prevention of water distribution systems by lime slurry KR100853382B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060071531A KR100853382B1 (en) 2006-07-28 2006-07-28 Method for corrosion prevention of water distribution systems by lime slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060071531A KR100853382B1 (en) 2006-07-28 2006-07-28 Method for corrosion prevention of water distribution systems by lime slurry

Publications (2)

Publication Number Publication Date
KR20080010872A KR20080010872A (en) 2008-01-31
KR100853382B1 true KR100853382B1 (en) 2008-08-25

Family

ID=39222802

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060071531A KR100853382B1 (en) 2006-07-28 2006-07-28 Method for corrosion prevention of water distribution systems by lime slurry

Country Status (1)

Country Link
KR (1) KR100853382B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101129233B1 (en) * 2009-07-30 2012-03-26 신도이앤씨 (주) A water pipes corrosion prevention system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100979250B1 (en) * 2008-11-14 2010-09-01 서울특별시 Method for Supplying Water with Controlled Corrosive Characteristics
KR101469890B1 (en) * 2013-12-31 2014-12-05 재단법인 한국계면공학연구소 Total corrotion controll system for detecting corrotioning water pipe

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194893A (en) * 1989-01-24 1990-08-01 Kureha Chem Ind Co Ltd Method and apparatus for improving langelier index of drinking water
JPH0478488A (en) * 1990-07-23 1992-03-12 Kureha Chem Ind Co Ltd Method and device for improving langelier index of city water
JPH05138180A (en) * 1991-11-13 1993-06-01 Kureha Chem Ind Co Ltd Treatment of city water
JPH0741967A (en) * 1993-07-28 1995-02-10 Ikuo Inafune Remote monitoring controller for quality of rust inhibiting water
KR19990017664U (en) * 1999-02-12 1999-05-25 송점원 A device for throwing active carbon into water of a filtration plant
KR20010045035A (en) * 1999-11-02 2001-06-05 하진규 Water corrosivity control method to reduce corrosion in water distribution system and the method of the same
JP2001293483A (en) * 2000-04-14 2001-10-23 Kureha Techno Enji Kk Water treating method
KR200341811Y1 (en) 2003-10-31 2004-02-14 (주)에코데이 Reactor for gas dissolution and reaction
KR200346814Y1 (en) 2003-12-31 2004-04-06 (주)에코데이 Reactor for contact gas and liquid
KR20050053421A (en) * 2003-12-02 2005-06-08 주식회사 오이코스 The method of removing natural organic material from water and controlling pipe corrosion phenomenon by water, and apparatus for them
KR100573223B1 (en) 2005-10-11 2006-04-24 한국수자원공사 Water quality stabilization system for purification plant and purifying method using the same
KR200427038Y1 (en) 2006-01-11 2006-09-20 주식회사 삼영건설기술공사 System for controlling the quality of water real-time for reducing pipe corrosion in a water supply pipe

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194893A (en) * 1989-01-24 1990-08-01 Kureha Chem Ind Co Ltd Method and apparatus for improving langelier index of drinking water
JPH0478488A (en) * 1990-07-23 1992-03-12 Kureha Chem Ind Co Ltd Method and device for improving langelier index of city water
JPH05138180A (en) * 1991-11-13 1993-06-01 Kureha Chem Ind Co Ltd Treatment of city water
JPH0741967A (en) * 1993-07-28 1995-02-10 Ikuo Inafune Remote monitoring controller for quality of rust inhibiting water
KR19990017664U (en) * 1999-02-12 1999-05-25 송점원 A device for throwing active carbon into water of a filtration plant
KR20010045035A (en) * 1999-11-02 2001-06-05 하진규 Water corrosivity control method to reduce corrosion in water distribution system and the method of the same
JP2001293483A (en) * 2000-04-14 2001-10-23 Kureha Techno Enji Kk Water treating method
KR200341811Y1 (en) 2003-10-31 2004-02-14 (주)에코데이 Reactor for gas dissolution and reaction
KR20050053421A (en) * 2003-12-02 2005-06-08 주식회사 오이코스 The method of removing natural organic material from water and controlling pipe corrosion phenomenon by water, and apparatus for them
KR200346814Y1 (en) 2003-12-31 2004-04-06 (주)에코데이 Reactor for contact gas and liquid
KR100573223B1 (en) 2005-10-11 2006-04-24 한국수자원공사 Water quality stabilization system for purification plant and purifying method using the same
KR200427038Y1 (en) 2006-01-11 2006-09-20 주식회사 삼영건설기술공사 System for controlling the quality of water real-time for reducing pipe corrosion in a water supply pipe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101129233B1 (en) * 2009-07-30 2012-03-26 신도이앤씨 (주) A water pipes corrosion prevention system

Also Published As

Publication number Publication date
KR20080010872A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
CN105060545B (en) A kind of system and method for sofening treatment Desulphurization for Coal-fired Power Plant waste water
AU2013308317B2 (en) Method for removing sulphate, calcium and/or other soluble metals from waste water
CN105923822A (en) Mud and salt separation zero-discharge process of desulfurization wastewater
JP5419697B2 (en) Organic waste treatment method and apparatus
MX2007003616A (en) Device and method for purifying waste water.
CN110950477A (en) Sludge dewatering high-alkalinity tail water treatment device and method
KR100853382B1 (en) Method for corrosion prevention of water distribution systems by lime slurry
US20080053913A1 (en) Nutrient recovery process
JP4519485B2 (en) Phosphorus recovery method and apparatus
JP4423676B2 (en) Method and apparatus for treating phosphorus-containing water
JP2010137141A (en) Method and system for treating waste ash washing water
WO2008030234A1 (en) Nutrient recovery process
KR100495193B1 (en) The method of removing natural organic material from water and controlling pipe corrosion phenomenon by water, and apparatus for them
CN214693615U (en) System for reducing scaling in softening treatment of reverse osmosis concentrated brine caustic soda/lime soda ash
CN104692557A (en) Chemical pretreatment method and device thereof for treating high-salinity wastewater
KR101129233B1 (en) A water pipes corrosion prevention system
JP3614251B2 (en) Method for suppressing hydrogen sulfide in sewage treatment
KR101626532B1 (en) Apparatus for treating seawater using limestone and method thereof
JP2021151642A (en) Sewage sludge incineration treatment method and sewage sludge incineration treatment facility
KR101805350B1 (en) Drinking water treatment methods and ayatems with calcium
JP4190679B2 (en) Method and apparatus for treating phosphorus-containing water
JPS58223481A (en) Method for controlling ph of tap water
JP2004174386A (en) Treatment method for phosphoric acid-containing wastewater
KR20190044350A (en) Potabilization method and apparatus for producing potable water from desalinated water
Wang et al. Recarbonation and softening

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120716

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130726

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140818

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150624

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160809

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170810

Year of fee payment: 10