JP2017113671A - Method for treating water purification sludge and water purification sludge treatment device - Google Patents

Method for treating water purification sludge and water purification sludge treatment device Download PDF

Info

Publication number
JP2017113671A
JP2017113671A JP2015249366A JP2015249366A JP2017113671A JP 2017113671 A JP2017113671 A JP 2017113671A JP 2015249366 A JP2015249366 A JP 2015249366A JP 2015249366 A JP2015249366 A JP 2015249366A JP 2017113671 A JP2017113671 A JP 2017113671A
Authority
JP
Japan
Prior art keywords
sludge
water
concentration
floc
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015249366A
Other languages
Japanese (ja)
Other versions
JP6197021B2 (en
Inventor
安永 利幸
Toshiyuki Yasunaga
利幸 安永
弘明 仲田
Hiroaki Nakata
弘明 仲田
康輔 森
Kosuke Mori
康輔 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Original Assignee
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp filed Critical Swing Corp
Priority to JP2015249366A priority Critical patent/JP6197021B2/en
Publication of JP2017113671A publication Critical patent/JP2017113671A/en
Application granted granted Critical
Publication of JP6197021B2 publication Critical patent/JP6197021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Abstract

PROBLEM TO BE SOLVED: To provide a method for treating a water purification sludge high in dehydration efficiency and capable of preventing filter stain of a dehydration means, and provide a water purification sludge treatment device.SOLUTION: The water purification sludge treatment device 10 has an aggregate admixture means 30 for generating a floc, a concentration means 60 for concentrating sludge of floc, and a dehydration means 71 for dehydrating the concentrated sludge. Sludge concentration is conducted by adding poly(meth)acrylic acid salt to sludge in the concentration means 60. The poly(meth)acrylic acid salt has 0.1% salt viscosity of 2 to 5 mPa s, anion equivalent of -9.0 or less, and filter stain is prevented because sludge concentration is efficiently high and dehydration efficiency is enhanced as well as viscosity of concentrated sludge is low by using the poly (meth)acrylic acid salt.SELECTED DRAWING: Figure 1

Description

本発明は、浄水汚泥の処理方法に関するものであり、より詳しくは汚泥の濃縮性や脱水効率が向上した浄水汚泥の処理方法及びその処理装置に関するものである。   The present invention relates to a method for treating purified water sludge, and more particularly, to a method for treating purified water sludge with improved sludge concentration and dewatering efficiency, and a treatment apparatus therefor.

従来より、浄水処理においては、懸濁物質を含有する被処理水(以下「原水」ともいう)に硫酸バンドやポリ塩化アルミニウム(PAC)等の無機凝集剤を注入し、懸濁物質を取り込んだ凝集フロックを形成させ、この凝集フロックを沈殿槽で沈降分離させることによって、懸濁物質を除去している。沈降分離された懸濁物質は汚泥(浄水汚泥)となり、沈殿槽から引き抜かれ通常は濃縮槽で濃縮した後、天日乾燥するか機械脱水して処分している。   Conventionally, in water purification treatment, an inorganic flocculant such as a sulfate band or polyaluminum chloride (PAC) is injected into water to be treated containing suspended solids (hereinafter also referred to as “raw water”), and suspended solids are taken in. The aggregated flocs are formed and the aggregated flocs are settled and separated in a sedimentation tank to remove suspended substances. The suspended solids that have been settled and separated become sludge (purified water sludge), which is withdrawn from the sedimentation tank and usually concentrated in a concentration tank, and then either sun-dried or mechanically dehydrated for disposal.

原水として湖沼水やダム水を使用している場合には、高温時にアオコなどの藻類が発生し凝集不良を引き起こすことがある。   When lake water or dam water is used as raw water, algae such as blue-green algae are generated at high temperatures, which may cause poor aggregation.

凝集不良時の凝集フロックは、沈降性も不良であり、沈殿槽で十分沈降しないので発生する汚泥も濃度が低いものとなる。そのため、濃縮槽でも満足できる濃度まで濃縮できないので低濃度のまま機械脱水しなければならない。   The coagulation flocs at the time of coagulation failure also have poor sedimentation properties, and sludge generated is not sufficiently settled in the sedimentation tank, so that the generated sludge has a low concentration. For this reason, it cannot be concentrated to a satisfactory concentration even in a concentration tank, so it must be mechanically dehydrated at a low concentration.

特に、脱水機がフィルタプレスの場合には、打ち込み時間が長くなり、かつ脱水ケーキも含水率が高く、フィルタからの脱水ケーキの剥離性が悪くなるという問題があり、更には、フィルタの洗浄に時間が掛かるといった問題も生じている。   In particular, when the dehydrator is a filter press, there is a problem that the driving time is long, the dehydrated cake has a high moisture content, and the delamination of the dehydrated cake from the filter is deteriorated. There is also a problem that it takes time.

特開平7−308700JP 7-308700 A 特開平9−225208JP-A-9-225208 特開昭55−84505JP 55-84505 A 特公昭34− 612Japanese Patent Publication No. 34-612

上述した従来の浄水汚泥の処理方法では、浄水汚泥の濃縮性を改善するために、ポリアクリルアミド系のアニオン系高分子凝集剤を濃縮槽で併用することが検討されている。   In the above-described conventional method for treating purified water sludge, in order to improve the concentration of purified water sludge, it has been studied to use a polyacrylamide-based anionic polymer flocculant in a concentration tank.

この方法によれば、確かに、汚泥の濃縮性は著しく改善され、高濃度の汚泥が得られる。しかし、この濃縮汚泥を構成する凝集フロックは粘性の高いものとなり、この濃縮汚泥をフィルタプレスにより脱水した場合、フィルタからの脱水ケーキの剥離性が悪くなる恐れがある。   According to this method, the concentration property of the sludge is certainly improved and a high concentration sludge can be obtained. However, the coagulated floc constituting the concentrated sludge becomes highly viscous, and when this concentrated sludge is dehydrated by a filter press, the peelability of the dewatered cake from the filter may be deteriorated.

特許文献1では、浄水工程から生じる濃縮された汚泥にポリアクリル酸ソーダを添加しているが、濃縮汚泥は一般に高濃度である為、凝集剤との均一な混合が困難であり、汚泥と未反応の余剰凝集剤が残留する場合がある。凝集剤は粘着性を有するため、特にフィルタプレスで脱水した場合、ろ布からの脱水ケーキの剥離性が悪くなるおそれがある。   In Patent Document 1, sodium polyacrylate is added to the concentrated sludge generated from the water purification process. However, since the concentrated sludge is generally high in concentration, it is difficult to uniformly mix with the flocculant. An excess flocculant of the reaction may remain. Since the flocculant has adhesiveness, particularly when it is dehydrated with a filter press, the peelability of the dewatered cake from the filter cloth may be deteriorated.

本発明は、上記課題を鑑み成されたものであり、その目的は、高濃度の濃縮汚泥を脱水や乾燥した場合に、脱水ケーキの剥離性を向上させ、適度な含水率の乾燥汚泥を生成する浄水汚泥の処理方法及びその処理装置を提供することにある。   The present invention has been made in view of the above problems, and its purpose is to improve the peelability of a dehydrated cake when high-concentration concentrated sludge is dehydrated or dried, and to produce dry sludge with an appropriate moisture content. It is providing the processing method of the purified water sludge to be performed, and its processing apparatus.

上記課題を解決するために、本発明の浄水汚泥処理方法は以下の構成とすることができる。   In order to solve the above problems, the water purification sludge treatment method of the present invention can be configured as follows.

(1)被処理水に無機凝集剤を添加して凝集フロックを生成するフロック生成工程と、前記被処理水から分離した前記凝集フロックの汚泥に対し高分子凝集剤を添加して汚泥を濃縮する濃縮工程と、濃縮汚泥を脱水する脱水工程とを有する処理方法であって、高分子凝集剤として、0.1%塩粘度が2〜5mPa・sであり、かつ、アニオン当量が−9.0以下のポリ(メタ)アクリル酸塩を使用する。   (1) A floc generating step of adding an inorganic flocculant to the water to be treated to generate a flocs floc, and adding a polymer flocculant to the sludge of the flocs floc separated from the water to be treated to concentrate the sludge A treatment method comprising a concentration step and a dehydration step for dewatering the concentrated sludge, wherein the polymer flocculant has a 0.1% salt viscosity of 2 to 5 mPa · s and an anion equivalent of −9.0. The following poly (meth) acrylates are used.

(2)汚泥濃縮用の高分子凝集剤は、ポリアクリル酸ナトリウムを含むものが好ましく、より好ましくはポリアクリル酸ナトリウムを主成分とするものを使用する。   (2) The polymer flocculant for sludge concentration preferably contains sodium polyacrylate, and more preferably contains sodium polyacrylate as a main component.

(3)汚泥の脱水工程は機械脱水が好ましく、フィルタを用いて脱水するフィルタプレス脱水が特に好ましい。   (3) Mechanical dehydration is preferable in the sludge dehydration step, and filter press dehydration in which dewatering is performed using a filter is particularly preferable.

また、本発明の浄水汚泥処理装置は以下の構成とすることができる。   Moreover, the purified water sludge treatment apparatus of this invention can be set as the following structures.

(4)処理装置は凝集混和手段と、凝集フロック生成手段と、濃縮手段と、脱水手段とを有する装置であって、凝集混和手段は無機凝集剤を添加した被処理水を急速撹拌して凝集フロックを生成し、その被処理水を凝集フロック形成手段が緩速攪拌して凝集フロックを増大させて汚泥を形成する。濃縮手段は被処理水から分離した凝集フロックの汚泥と高分子凝集剤を混合して汚泥を濃縮し、脱水手段は濃縮した汚泥を脱水する。ここで、濃縮手段が使用する高分子凝集剤は、0.1%塩粘度が2〜5mPa・sであり、かつ、アニオン当量が−9.0以下のポリ(メタ)アクリル酸塩を使用する。   (4) The treatment apparatus is an apparatus having a coagulation / mixing means, a coagulation floc generating means, a concentration means, and a dehydrating means, and the coagulation / mixing means rapidly agitate the water to be treated to which an inorganic flocculant has been added for coagulation. The flocs are generated, and the water to be treated is slowly stirred by the flocculant floc forming means to increase the flocculent flocs and form sludge. The concentration means mixes sludge of the floc floc separated from the water to be treated and the polymer flocculant to concentrate the sludge, and the dewatering means dehydrates the concentrated sludge. Here, the polymer flocculant used by the concentration means uses a poly (meth) acrylate having a 0.1% salt viscosity of 2 to 5 mPa · s and an anion equivalent of −9.0 or less. .

(5)好ましい脱水手段は、フィルタを有し、加圧によりフィルタを介して汚泥から水分を除去するフィルタプレス型脱水手段である。   (5) A preferable dehydrating means is a filter press type dehydrating means having a filter and removing moisture from the sludge through the filter by pressurization.

本発明によれば、浄水汚泥の濃縮性が改善され、高濃度汚泥を得ることができる。特定のポリ(メタ)アクリル酸塩を添加するだけで濃縮汚泥の剥離性が向上し、機械脱水の際に装置やフィルタの汚染が防止される上、適度な含水率の脱水ケーキを得ることができる。   According to the present invention, the concentration of purified water sludge is improved, and high-concentration sludge can be obtained. Addition of specific poly (meth) acrylate improves the peelability of concentrated sludge, prevents contamination of equipment and filters during mechanical dehydration, and provides a dehydrated cake with an appropriate water content it can.

本発明の浄水汚泥処理装置の一例を示す模式図である。It is a schematic diagram which shows an example of the purified water sludge processing apparatus of this invention. 本発明の浄水汚泥処理方法を説明するフロー図である。It is a flowchart explaining the purified water sludge processing method of this invention.

以下、本発明を具体的に説明するが、本発明は特定の具体例に限定されるものではない。   Hereinafter, the present invention will be specifically described, but the present invention is not limited to a specific example.

本発明は、図2に示すように、被処理水(原水)に凝集剤を添加して凝集フロックを生成する工程と、超固液分離して得た凝集フロックの汚泥に特定のポリ(メタ)アクリル酸塩を添加して濃縮する工程と、濃縮後の汚泥を脱水する工程とを有する。   As shown in FIG. 2, the present invention includes a step of adding a flocculant to water to be treated (raw water) to generate a floc floc, and a sludge of floc floc obtained by ultra-solid-liquid separation. ) Having a step of adding acrylate and concentrating, and a step of dewatering the sludge after concentration.

先ず、フロックの生成工程に用いる凝集剤と、汚泥の濃縮工程に用いる高分子凝集剤について具体例を説明する。   First, specific examples of the flocculant used in the floc generation process and the polymer flocculant used in the sludge concentration process will be described.

[フロック生成用の凝集剤]
フロック生成用の凝集剤は特に限定されないが、一般に無機凝集剤を使用し、必要であれば他の凝集剤(高分子凝集剤等)と組み合わせて使用する。
[Flocting flocculant]
The flocculant for generating flocs is not particularly limited, but generally an inorganic flocculant is used, and if necessary, it is used in combination with another flocculant (polymer flocculant, etc.).

無機凝集剤は特に限定されず、浄水処理に通常使用される無機凝集剤を使用することができる。具体的には、鉄系凝集剤とアルミニウム系凝集剤のいずれか一方又は両方を使用可能であり、より具体的には、硫酸バンド、ポリ塩化アルミニウム(PAC)、塩化アルミニウム、ポリ硫酸第二鉄(ポリ鉄)、塩化第二鉄及びこれらの混合物からなる群より選択されるいずれか1種以上を用いることができる。   An inorganic flocculant is not specifically limited, The inorganic flocculant normally used for a water purification process can be used. Specifically, one or both of an iron-based flocculant and an aluminum-based flocculant can be used, and more specifically, a sulfuric acid band, polyaluminum chloride (PAC), aluminum chloride, polyferric sulfate. Any one or more selected from the group consisting of (polyiron), ferric chloride, and mixtures thereof can be used.

なお、フロック成長促進の目的で、凝集助剤、pH調整剤、緩衝剤、高分子凝集剤から選択される1種以上の助剤を、無機凝集剤と一緒に或いは無機凝集剤とは別に添加してもよい。フロック成長用の高分子凝集剤は、無機凝集剤を添加、急速撹拌した後の被処理水に添加することが好ましい。   For the purpose of promoting floc growth, one or more auxiliaries selected from a coagulant aid, a pH adjuster, a buffer agent, and a polymer coagulant are added together with or separately from the inorganic coagulant. May be. The polymer flocculant for floc growth is preferably added to the water to be treated after the inorganic flocculant is added and rapidly stirred.

この高分子凝集剤は特に限定されないが、ポリ(メタ)アクリル酸塩系、ポリアクリルアミド系、ポリアクリルアミド共重合系、ポリアクリル酸エステル系、アクリル酸エステル共重合系等多様なものを用いることができるが、好ましくは、汚泥濃縮用と同じポリ(メタ)アクリル塩を使用する。   The polymer flocculant is not particularly limited, but various materials such as poly (meth) acrylate, polyacrylamide, polyacrylamide copolymer, polyacrylate ester, acrylate copolymer can be used. Preferably, the same poly (meth) acrylic salt as used for sludge concentration is used.

[汚泥濃縮用の高分子凝集剤]
汚泥濃縮の用途に用いる高分子凝集剤は、0.1%塩粘度が2〜5mPa・s、アニオン当量が−9.0以下のポリ(メタ)アクリル酸塩を含有するものであれば特に限定されないが、そのポリ(メタ)アクリル酸塩の含有量が少なくとも50質量%以上、好ましくは80質量%以上、特に好ましくは99質量%以上であって、実質的に上記ポリ(メタ)アクリル酸塩からなるものを用いる。
[Polymer coagulant for sludge concentration]
The polymer flocculant used for sludge concentration is particularly limited as long as it contains a poly (meth) acrylate having a 0.1% salt viscosity of 2 to 5 mPa · s and an anion equivalent of −9.0 or less. Although the content of the poly (meth) acrylate is at least 50% by mass, preferably at least 80% by mass, particularly preferably at least 99% by mass, the poly (meth) acrylate is substantially The thing consisting of is used.

ここで、ポリ(メタ)アクリル酸塩は特に限定されず、例えば、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、ポリアクリル酸アンモニウム、ポリメタクリル酸、ポリメタクリル酸ナトリウム、ポリメタクリル酸カリウム、ポリメタクリル酸アンモニウムからなる群より選択されるいずれか1種以上を用いることが可能であり、好ましくはポリアクリル酸ナトリウムである。   Here, the poly (meth) acrylate is not particularly limited. For example, polyacrylic acid, sodium polyacrylate, potassium polyacrylate, ammonium polyacrylate, polymethacrylic acid, polysodium methacrylate, polypotassium methacrylate. Any one or more selected from the group consisting of polyammonium methacrylate can be used, and preferably sodium polyacrylate.

ポリ(メタ)アクリル酸塩はホモポリマー、コポリマーのいずれであってもよく、好ましくは、(メタ)アクリル酸又はその塩、マレイン酸又はその塩、ビニルスルホン酸又はその塩等を重合単位として含むコポリマー又はホモポリマーである。   The poly (meth) acrylate may be either a homopolymer or a copolymer, and preferably contains (meth) acrylic acid or a salt thereof, maleic acid or a salt thereof, vinylsulfonic acid or a salt thereof as a polymerized unit. Copolymer or homopolymer.

ポリ(メタ)アクリル酸塩は、単独又は混合物として用いることができる。ポリ(メタ)アクリル酸塩の混合物を用いる場合は、混合物全体の0.1%塩粘度が2〜5mPa・sであり、かつ、混合物全体のアニオン当量が−9.0以下であることが好ましい。   Poly (meth) acrylates can be used alone or as a mixture. When using a mixture of poly (meth) acrylates, the 0.1% salt viscosity of the entire mixture is preferably 2 to 5 mPa · s, and the anion equivalent of the entire mixture is preferably −9.0 or less. .

なお、塩粘度は、1Nの塩化ナトリウム水溶液に、ポリ(メタ)アクリル酸塩をその濃度が0.1質量%になるよう溶解した試料を、B型粘度計にて25℃の条件で測定した値であり、単位はmPa・sである。   In addition, the salt viscosity measured the sample which melt | dissolved the poly (meth) acrylate in the sodium chloride aqueous solution of 1N so that the density | concentration might be 0.1 mass% on 25 degreeC conditions with a B-type viscosity meter. It is a value and the unit is mPa · s.

0.1%塩粘度が2未満では凝集フロックが十分に大きく成長せず、沈降性の改善が望めない。一方、0.1%塩粘度が5を超えると、脱水時に剥離不良を起こしたり、ケーキ含水率の上昇を招くことになる。このポリ(メタ)アクリル酸塩のアニオン当量は−9.0以下、より好ましくは−11.0〜−9.0であり、アニオン当量が−9.0より大きい値(すなわち、アニオン当量がゼロに近づく、あるいはプラスの値になる)となると、強固なフロックを形成せず脱水時に剥離不良を起こしたり、ケーキ含水率の上昇を招くことになる。   When the 0.1% salt viscosity is less than 2, the aggregated floc does not grow sufficiently large, and improvement in sedimentation cannot be expected. On the other hand, if the 0.1% salt viscosity exceeds 5, peeling failure may occur during dehydration or the moisture content of the cake will increase. The anion equivalent of the poly (meth) acrylate is −9.0 or less, more preferably −11.0 to −9.0, and the anion equivalent is greater than −9.0 (that is, the anion equivalent is zero). When it is close to or becomes a positive value), a strong floc is not formed, and peeling failure occurs at the time of dehydration, or an increase in the moisture content of the cake is caused.

アニオン当量は以下の測定法で求めることができる値であって、単位はmeq/gである。ポリ(メタ)アクリル酸塩0.1%水溶液を調整し、メチルグリコールキトサン溶液(N/200)を5ml添加し、攪拌後、トイジンブルー指示薬を2〜3滴添加し、ポリビニル硫酸カリウム溶液(PVSK,N/400)で滴定し、変色して10秒以上保持する時点を終点とする。同上の操作で試料を添加せずにブランク試験を行い、下記式によりアニオン当量Avを算出する。   The anion equivalent is a value that can be determined by the following measurement method, and the unit is meq / g. Prepare a 0.1% aqueous solution of poly (meth) acrylate, add 5 ml of methyl glycol chitosan solution (N / 200), add 2 to 3 drops of toidin blue indicator after stirring, and add polyvinyl potassium sulfate solution ( Titrate with PVSK, N / 400), and change the color and hold for 10 seconds or longer as the end point. A blank test is performed without adding a sample by the same operation, and an anion equivalent Av is calculated by the following formula.

アニオン当量(Av)[meq/g] =
(ブランク滴定量ml−サンプル滴定量ml)×1/2×PVSKの力価
Anion equivalent (Av) [meq / g] =
(Blank titration ml-Sample titration ml) x 1/2 x PVSK titer

ポリ(メタ)アクリル酸塩の混合物を用いる場合、その混合物のアニオン当量値を直接測定してもよいが、各ポリ(メタ)アクリル酸塩のアニオン当量値(Av)[meq/g]が既知の場合は、個別のポリ(メタ)アクリル酸塩のアニオン当量(Av)に、そのポリ(メタ)アクリル酸塩が混合物全体に占める質量割合(個別質量/合計質量)を乗じた値を合算し、混合物全体のアニオン当量とする。   When using a mixture of poly (meth) acrylates, the anion equivalent value of the mixture may be measured directly, but the anion equivalent value (Av) [meq / g] of each poly (meth) acrylate is known. In the case of, the value obtained by multiplying the anion equivalent (Av) of the individual poly (meth) acrylate by the mass ratio of the poly (meth) acrylate to the whole mixture (individual mass / total mass) is added. The anion equivalent of the entire mixture.

一般に、コロイド当量(meq/g)が−7以下の高分子凝集剤は高アニオン性であり、コロイド当量が−2.8以下で−7.0を超える高分子凝集剤は中アニオン性であり、コロイド当量が−0.7以下で−2.8を超える高分子凝集剤は低アニオン性である。本発明に用いるポリ(メタ)アクリル酸塩は、アニオン当量が−0.9以下、すなわち、高アニオン性凝集剤の中でもアニオン性がより高いことを特徴とする。   In general, a polymer flocculant having a colloid equivalent (meq / g) of -7 or less is highly anionic, and a polymer flocculant having a colloid equivalent of -2.8 or less and exceeding -7.0 is medium anionic. A polymer flocculant having a colloid equivalent of -0.7 or less and more than -2.8 is low anionic. The poly (meth) acrylate used in the present invention is characterized in that the anion equivalent is −0.9 or less, that is, the anionic property is higher among the high anionic flocculants.

次に、この高分子凝集剤を用いる本発明の浄水汚泥処理装置と、本発明の浄水汚泥処理方法について説明する。   Next, the purified water sludge treatment apparatus of the present invention using this polymer flocculant and the purified water sludge treatment method of the present invention will be described.

[浄水汚泥処理装置]
本発明の浄水汚泥処理装置は特に限定されず、実用化されている設備であればいかなる設備も用いることができる。例えば、横流式沈殿設備を有する浄水施設、高速凝集沈殿設備を有する浄水設備が挙げられる。高速凝集沈殿設備としてはスラリー循環型、スラッジ・ブランケット型いずれも適用可能である。
[Purified water sludge treatment equipment]
The water purification sludge treatment apparatus of the present invention is not particularly limited, and any equipment can be used as long as it is a practical equipment. For example, a water purification facility having a cross-flow type precipitation facility and a water purification facility having a high-speed coagulation sedimentation facility can be mentioned. Either a slurry circulation type or a sludge / blanket type can be applied as the high-speed coagulating sedimentation equipment.

横流式沈殿設備を有する浄水施設を例として以下に具体的に説明する。   A specific description will be given below with a water purification facility having a cross-flow type precipitation facility as an example.

図1の10は浄水汚泥処理装置の一例を示しており、この浄水汚泥処理装置10は、フロックを凝集する凝集混和手段30と、フロックを増大(成長)させて汚泥を得る凝集フロック形成手段40と、分離したフロックの汚泥を濃縮する濃縮手段60と、濃縮した汚泥の脱水手段71とを有している。次に、各手段30、60、71の具体的構造を説明する。   1 of FIG. 1 has shown an example of the purified water sludge processing apparatus, and this purified water sludge processing apparatus 10 is the aggregation mixing means 30 which aggregates a floc, and the aggregation floc formation means 40 which obtains sludge by increasing (growing) a floc. And a concentration means 60 for concentrating the separated floc sludge and a dewatering means 71 for the concentrated sludge. Next, the specific structure of each means 30, 60, 71 will be described.

凝集混和手段30は凝集混和槽31を1台以上有している。凝集混和槽31は、原水の供給源1に直接又は着水井等の前処理部を介して間接的に接続され、凝集混和槽31には原水(被処理水)が送水される。   The agglomeration and mixing means 30 has one or more agglomeration and mixing tanks 31. The coagulation mixing tank 31 is directly connected to the raw water supply source 1 or indirectly through a pretreatment unit such as a landing well, and raw water (treated water) is fed to the coagulation mixing tank 31.

凝集混和槽31と、それよりも上流側の装置(供給源1、配管21、着水井等)のうち、いずれか1台以上には供給手段35が接続されている。この供給手段35又は手作業により、無機凝集剤は、被処理水とは別に凝集混和槽31に直接注入されるか、被処理水と一緒に上流側の装置から凝集混和槽31に間接的に注入される。   A supply means 35 is connected to any one or more of the agglomeration and mixing tank 31 and the upstream devices (the supply source 1, the pipe 21, the landing well, etc.). By this supply means 35 or manual work, the inorganic flocculant is directly injected into the coagulation mixing tank 31 separately from the water to be treated, or indirectly from the upstream apparatus to the coagulation mixing tank 31 together with the water to be treated. Injected.

凝集混和槽31には、攪拌羽、攪拌ポンプなどの攪拌手段が設置されている。この攪拌手段は、所定の撹拌エネルギーを付与する撹拌速度(回転数)が設定され、無機凝集剤が注入された被処理水を急速撹拌する。   The agglomeration mixing tank 31 is provided with stirring means such as a stirring blade and a stirring pump. The stirring means is set with a stirring speed (number of rotations) for applying predetermined stirring energy, and rapidly stirs the water to be treated into which the inorganic flocculant has been injected.

ここで、撹拌エネルギーの指標の一例はG値であって、G値は、単位時間単位体積あたりの仕事量Pから被処理水の粘性係数μを除した値の平方根である(日本水道協会水道施設設計指針2000、P188より)。   Here, an example of the index of the stirring energy is a G value, and the G value is a square root of a value obtained by dividing the work coefficient P per unit time unit volume by the viscosity coefficient μ of the water to be treated (Japan Water Works Association Waterworks). (From Facility Design Guidelines 2000, P188).

凝集混和槽31での急速撹拌の結果、被処理水中の濁質が凝集して微細フロック(マイクロフロック)として成長する。   As a result of rapid stirring in the agglomeration mixing tank 31, the suspended matter in the water to be treated aggregates and grows as fine flocs (micro flocs).

凝集フロック形成手段40は、無機凝集剤の供給手段35の下流側に設置される。凝集フロック形成手段40には必要に応じて他の凝集剤の供給手段を設置し、フロック成長用の高分子凝集剤を微細フロックが成長した被処理水に添加してもよく、この被処理水を下流側の凝集混和槽31又はフロック形成槽41で緩速攪拌する。例えば、緩速攪拌は、急速撹拌よりも低G値になるよう回転速度等が設定され、微細フロックは崩壊することなく凝集して巨大フロックへ成長する。   The aggregation floc forming means 40 is installed downstream of the inorganic flocculant supply means 35. If necessary, the flocculant floc forming means 40 may be provided with other flocculant supply means, and a polymer flocculant for floc growth may be added to the water to be treated on which fine flocs are grown. Is slowly stirred in the agglomeration mixing tank 31 or the floc forming tank 41 on the downstream side. For example, in the slow stirring, the rotational speed and the like are set so that the G value is lower than that in the rapid stirring, and the fine flocs aggregate and grow into a huge floc without collapsing.

成長したフロックを固液分離するため、横流式沈殿設備では、凝集混和槽31又はフロック形成槽41の下流側に沈澱池51を設置することが好ましい。沈澱池51の構造は特に限定されないが、一般的にその内部に傾斜板又は傾斜管が設けられ、沈殿池51に被処理水を送水すると、巨大フロックを主に含む沈殿物(汚泥)と、巨大フロックが分離された液相とに分離される。   In order to solid-liquid-separate the grown flocs, it is preferable to install a sedimentation basin 51 on the downstream side of the agglomeration mixing tank 31 or the floc formation tank 41 in the cross-flow type precipitation facility. Although the structure of the sedimentation basin 51 is not particularly limited, generally, an inclined plate or an inclined pipe is provided therein, and when water to be treated is sent to the sedimentation basin 51, a sediment (sludge) mainly containing giant flocs, The giant floc is separated into the separated liquid phase.

この液相は、ろ過塔とろ過膜(フィルタ)の少なくとも一方を含むろ過手段55に送られる。液相には、残留フロックや過剰な添加剤(高分子凝集剤)が残留する場合があるが、これら残留汚染物質は、例えば、ろ過砂(珪砂)やアンスラサイトが充填されたろ過塔を通過する間に除去され、浄水6となる。   This liquid phase is sent to filtration means 55 including at least one of a filtration tower and a filtration membrane (filter). Residual floc and excessive additives (polymer flocculant) may remain in the liquid phase, but these residual contaminants pass, for example, through filtration towers filled with filtration sand (silica sand) or anthracite. In the meantime, it is removed to become purified water 6.

他方、液相から沈降分離したフロックは、クラリファイヤ等の集積手段で集められ、浄水汚泥(スラッジ)として濃縮手段60へ送られる。   On the other hand, the floc settled and separated from the liquid phase is collected by a collecting means such as clarifier and sent to the concentrating means 60 as purified water sludge.

濃縮手段60は1台以上の濃縮槽65を有しており、必要に応じて濃縮槽65と沈澱池51の間に排泥池61等の他の設備が設置される。沈殿池51には汚泥引抜弁等の引抜装置が設けられており、浄水汚泥は定期的又は不定期に引き抜かれ、排泥池61に送られる。排泥池61は撹拌手段を有しており、浄水汚泥を撹拌しながら貯蔵する。   The concentrating means 60 has one or more concentrating tanks 65, and other equipment such as a mud pond 61 is installed between the concentrating tank 65 and the sedimentation basin 51 as necessary. The sedimentation basin 51 is provided with a withdrawal device such as a sludge withdrawal valve, and the purified water sludge is withdrawn regularly or irregularly and sent to the waste mud basin 61. The drainage pond 61 has a stirring means, and stores the purified water sludge while stirring.

排泥池61又はその下流側には、浄水汚泥を濃縮槽65へ送る排泥装置(排泥ポンプ62)が接続されており、所定量の汚泥が所定間隔を空けて或いは連続して排泥池61から濃縮槽65に送られる。   A sludge drain device (sludge pump 62) for sending purified water sludge to the concentration tank 65 is connected to the sludge pond 61 or downstream thereof, and a predetermined amount of sludge is discharged at a predetermined interval or continuously. It is sent from the pond 61 to the concentration tank 65.

濃縮槽65は、浄水汚泥を更に濃縮するための装置であれば特に限定されないが、重力濃縮又は機械濃縮、好ましくは重力濃縮を行い、濃縮槽65下部に沈降濃縮した汚泥を掻寄板等で掻き寄せ、脱水手段71へ送る。   The concentration tank 65 is not particularly limited as long as it is an apparatus for further concentrating the purified water sludge, but gravity concentration or mechanical concentration, preferably gravity concentration is performed, and the sludge settled and concentrated in the lower part of the concentration tank 65 is a scraping plate or the like. Scraping and sending to the dehydrating means 71.

この脱水手段は、機械脱水と乾燥(天日や熱乾燥)のいずれか一方の工程により脱水を行う装置であり、効率面から少なくとも機械脱水を行う。   This dehydrating means is a device that performs dehydration by either one of mechanical dehydration and drying (sunlight or heat drying), and at least performs mechanical dehydration from the viewpoint of efficiency.

この機械脱水は、多様な方法を採用可能であり、例えば、ベルトプレス型、遠心脱水型、スクリュープレス型、真空脱水型などを単独で或いは2種以上を組み合わせて使用することができるが、処理能力が高く、ランニングコストも低いという点でフィルタプレス型の脱水手段71が最も好ましい。   A variety of methods can be used for this mechanical dehydration. For example, a belt press type, a centrifugal dehydration type, a screw press type, a vacuum dehydration type, or the like can be used alone or in combination of two or more types. The filter press-type dewatering means 71 is most preferable in terms of high capacity and low running cost.

フィルタプレス型の脱水手段71は、ろ布走行式、ろ布固定式、ダイヤフラム型等特に限定されないが、いずれも、加圧により、ろ布(フィルタ)を介して汚泥固形分から水分を分離する装置である。   The filter press type dewatering means 71 is not particularly limited, such as a filter cloth traveling type, a filter cloth fixed type, a diaphragm type, etc., all of which are devices for separating moisture from sludge solids through a filter cloth (filter) by pressurization. It is.

フィルタは特に限定されないが、例えば、単繊維径が0.1〜0.3mm程度の繊維を、不織布又は織布(朱子織、平織、綾織、杉綾織、フェルト、二重織等)としてシート状に成形したものであって、その材質も特に限定されず、例えば、ナイロン、ポリエステル、ポリプロピレン、レーヨン、アセテート、プロミックス、キュプラ、ビニロン、ビニリデン、ポリ塩化ビニル、アクリル、ポリエチレン、ポリウレタン、炭素繊維、フッ素繊維、ポリアミド等から選択されるいずれか1種以上の繊維を用いることができる。   Although the filter is not particularly limited, for example, a fiber having a single fiber diameter of about 0.1 to 0.3 mm is formed into a sheet shape as a nonwoven fabric or a woven fabric (eg, satin weave, plain weave, twill weave, sugi twill, felt, double weave) The material is not particularly limited, for example, nylon, polyester, polypropylene, rayon, acetate, promix, cupra, vinylon, vinylidene, polyvinyl chloride, acrylic, polyethylene, polyurethane, carbon fiber, Any one or more kinds of fibers selected from fluorine fibers, polyamides and the like can be used.

いずれのフィルタを使用した場合も、浄水汚泥の水分は加圧によりフィルタを通過するが、固形分はフィルタを通過せず、脱水ケーキ75として残る。   In any case, the water of the purified water sludge passes through the filter by pressurization, but the solid content does not pass through the filter and remains as a dehydrated cake 75.

濃縮汚泥は、その固形分濃度が高い程脱水効率が高いため、従来の装置では、ポリアクリルアミド系の高分子凝集剤を添加して、汚泥を濃縮することもあった。しかし、この方法では、濃縮汚泥の粘性が高く、脱水ケーキ75のフィルタ剥離性が悪化し、フィルタ目詰りや水切れ不良、ひいては脱水手段71への汚泥打ち込み量の低下や、脱水ケーキ75の含水率高止まりの原因となる。   Since concentrated sludge has a higher dewatering efficiency as its solid content concentration increases, the conventional apparatus sometimes adds a polyacrylamide polymer flocculant to concentrate the sludge. However, in this method, the viscosity of the concentrated sludge is high, the filter peelability of the dewatered cake 75 is deteriorated, the filter is clogged, the water runs out poorly, and the amount of sludge driven into the dewatering means 71 is reduced. It will cause high stagnation.

この問題を解決するため、本発明の浄水汚泥処理装置10では、濃縮手段60に高分子凝集剤の供給手段45を設置し、この供給手段45又は手作業により、汚泥濃縮用の高分子凝集剤(ポリ(メタ)アクリル酸塩)を浄水汚泥に添加する。   In order to solve this problem, in the purified water sludge treatment apparatus 10 of the present invention, the polymer flocculant supply means 45 is installed in the concentration means 60, and the polymer flocculant for sludge concentration is provided by the supply means 45 or by manual work. (Poly (meth) acrylate) is added to the purified water sludge.

供給手段45には溶解槽を設置することが好ましく、この溶解槽に高分子凝集剤を溶解(分散)した水溶液を収容する。流量制御手段等で高分子凝集剤水溶液の流量を調整すれば、所望量の高分子凝集剤を注入することができる。   The supply means 45 is preferably provided with a dissolution tank, and an aqueous solution in which the polymer flocculant is dissolved (dispersed) is accommodated in the dissolution tank. A desired amount of the polymer flocculant can be injected by adjusting the flow rate of the polymer flocculant aqueous solution with a flow rate control means or the like.

供給手段45の設置場所は特に限定されないが、脱水手段71より上流側の装置、好ましくは濃縮槽65又は濃縮槽65より上流側の装置のうち1か所以上に接続されている。より好ましくは、供給手段45は、濃縮槽65と排泥池61との間の装置(配管23)、特に好ましくは、排泥ポンプ62の接続箇所と濃縮槽65の間の位置で配管23に接続されており、排泥池61で均一撹拌された汚泥は高分子凝集剤と、配管23、不図示の混合槽、又は濃縮槽65内で混合される。   Although the installation place of the supply means 45 is not particularly limited, it is connected to one or more of the apparatuses upstream of the dehydrating means 71, preferably the concentration tank 65 or the apparatus upstream of the concentration tank 65. More preferably, the supplying means 45 is connected to the pipe 23 at a position between the concentrating tank 65 and the waste mud basin 61 (pipe 23), particularly preferably between the connection point of the mud pump 62 and the thickening tank 65. The sludge that is connected and uniformly stirred in the mud pond 61 is mixed with the polymer flocculant in the pipe 23, a mixing tank (not shown), or the concentration tank 65.

次に、この浄水汚泥処理設備10を用いた浄水汚泥処理方法について説明する。
[浄水汚泥処理方法]
本発明で処理する被処理水は特に限定されず、工場排水、家庭排水、海水などの処理も可能ではあるが、特に適しているのは河川水、湖沼水、貯水地水、雨水、伏流水、地下水、井水である。
Next, a purified water sludge treatment method using this purified water sludge treatment facility 10 will be described.
[Purified water sludge treatment method]
The treated water to be treated in the present invention is not particularly limited, and it is possible to treat industrial wastewater, domestic wastewater, seawater, etc., but particularly suitable is river water, lake water, reservoir water, rainwater, underground water , Groundwater, well water.

必要であれば、被処理水の水質をジャーテストなどで予め調べ、水質に合わせて無機凝集剤の注入量を予め設定しておき、供給手段35或いは作業者の手作業により、被処理水1リットルあたり5〜200mg、好ましくは10〜100mgの範囲内で上記の無機凝集剤を注入し、凝集混和槽31で急速撹拌する。   If necessary, the quality of the water to be treated is checked in advance by a jar test or the like, the injection amount of the inorganic flocculant is set in advance according to the water quality, and the water to be treated 1 is manually prepared by the supply means 35 or the operator. The inorganic flocculant is injected within a range of 5 to 200 mg, preferably 10 to 100 mg per liter, and rapidly stirred in the flocculent mixing tank 31.

次いで、微細フロックが成長した被処理水を緩速攪拌し、フロックを更に成長させる。緩速攪拌の開始前または緩速攪拌の間、必要であれば、フロック成長用の高分子凝集剤を適量(被処理水1リットル当たり0.05〜20mg程度)添加してもよい。更に、無機凝集剤若しくは高分子凝集剤と一緒に又はこれら凝集剤とは別に、pH調整剤、緩衝剤、凝集助剤、殺菌剤などの1種以上の添加剤を添加してもよい。   Next, the water to be treated on which the fine floc has grown is gently stirred to further grow the floc. If necessary, an appropriate amount of a polymer flocculant for floc growth (about 0.05 to 20 mg per liter of water to be treated) may be added before the start of slow stirring or during slow stirring. Furthermore, together with the inorganic flocculant or the polymer flocculant or separately from these flocculants, one or more additives such as a pH adjusting agent, a buffering agent, an aggregating aid, and a bactericidal agent may be added.

フロックが成長した被処理水は、沈澱池51で固液分離し、分離したフロック(浄水汚泥)を排泥池61に送泥する。沈澱池51では汚泥を撹拌し、固形分が均一分散された汚泥を排泥池61から濃縮槽65へ送る。   The treated water in which the floc has grown is solid-liquid separated in the sedimentation basin 51, and the separated floc (purified water sludge) is sent to the mud basin 61. In the sedimentation basin 51, the sludge is stirred, and the sludge in which the solid content is uniformly dispersed is sent from the waste mud basin 61 to the concentration tank 65.

水道水、蒸留水、浄水6、被処理水から選択される1種以上の水に、汚泥濃縮用の高分子凝集剤を溶解(分散)させ、必要であれば他の添加剤(pH調整剤、緩衝剤、分散剤、殺菌剤、他の高分子凝集剤等)を1種以上添加して高分子凝集剤水溶液を作製し、供給手段45の溶解槽に収容しておく。   A polymer flocculant for sludge concentration is dissolved (dispersed) in one or more kinds of water selected from tap water, distilled water, purified water 6 and water to be treated, and other additives (pH adjusters if necessary) 1 or more of a buffering agent, a dispersing agent, a bactericidal agent, other polymer flocculants, etc.) are added to prepare an aqueous polymer flocculant solution, which is stored in the dissolution tank of the supply means 45.

そして、所望量(例えば脱水前の汚泥1L当たり5〜100mg)の高分子凝集剤を汚泥に添加、混合する。汚泥と高分子凝集剤を混合する手段は特に限定されないが、濃縮槽65の前段(上流側)に混合槽を設置した場合はその混合槽で、混合槽を設置しない場合は配管23の水流で混合することが好ましい。   Then, a desired amount (for example, 5 to 100 mg per liter of sludge before dehydration) of polymer flocculant is added to and mixed with the sludge. The means for mixing the sludge and the polymer flocculant is not particularly limited, but when the mixing tank is installed in the upstream (upstream side) of the concentration tank 65, the mixing tank is used. When the mixing tank is not installed, the water flow in the pipe 23 is used. It is preferable to mix.

高分子凝集剤を混合後の汚泥を重力濃縮又は機械濃縮する。重力濃縮の場合、濃縮槽65又はそれよりも下流の槽で汚泥を静置するか、沈降(例:圧接沈降)が生じる程度の緩速度で汚泥を撹拌若しくは送液し、所定時間濃縮を行う。   The sludge after mixing the polymer flocculant is concentrated by gravity or mechanically. In the case of gravity concentration, the sludge is allowed to stand still in the concentration tank 65 or a tank downstream from the concentration tank, or the sludge is stirred or sent at a slow speed that causes sedimentation (eg, pressure sedimentation), and concentrated for a predetermined time. .

沈降濃縮された汚泥は、上述したポリ(メタ)アクリル酸塩の添加で十分に濃縮された上、従来の凝集剤と比較して濃縮汚泥の粘性が低いので、続く脱水手段71で脱水が効率良く行われ、そのフィルタ汚れも防止される。   The sedimented and concentrated sludge is sufficiently concentrated by the addition of the poly (meth) acrylate described above and the viscosity of the concentrated sludge is lower than that of the conventional flocculant. It is done well and its filter contamination is also prevented.

なお、本発明は、汚泥の濃縮工程で上記ポリ(メタ)アクリル酸塩を添加する方法及び装置であれば特に限定されず、フロック生成工程と汚泥濃縮工程の間、或いは、汚泥濃縮工程と脱水工程の間に他の工程を挿入してもよいし、これらの工程の1以上を複数回繰り返してもよく、更に、使用する装置、薬剤(添加剤)並びにその添加のタイミングも特に限定されない。   The present invention is not particularly limited as long as it is a method and apparatus for adding the poly (meth) acrylate in the sludge concentration step, or between the floc generation step and the sludge concentration step, or between the sludge concentration step and the dehydration step. Other steps may be inserted between the steps, or one or more of these steps may be repeated a plurality of times, and the apparatus to be used, the drug (additive), and the timing of the addition are not particularly limited.

以下、実施例により本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

<実施例1>
図1の凝集混和手段30及び凝集フロック形成手段40に相当する浄水場から発生した引き抜き汚泥(DS:9.5g/L)に、高分子凝集剤としてポリアクリル酸ナトリウム(0.1%塩粘度が3.5mPa・s、アニオン当量が−9.4meq/g)を、引抜汚泥(含水)1L当たり20mg添加し、新東化学(株)社製の攪拌機「スリーワンモータ」で撹拌した後、24時間静置し、濃縮汚泥を作製した。なお、「DS」は、汚泥中の固形物乾燥質量を意味する(乾燥質量g/汚泥L)。
<Example 1>
To the extracted sludge (DS: 9.5 g / L) generated from the water purification plant corresponding to the flocculating and mixing means 30 and the flocculating floc forming means 40 in FIG. 1, sodium polyacrylate (0.1% salt viscosity) is used as a polymer flocculant. Is 3.5 mPa · s and anion equivalent is −9.4 meq / g), and 20 mg per liter of extracted sludge (water content) is added and stirred with a stirrer “Three-One Motor” manufactured by Shinto Chemical Co., Ltd. Allowed to stand for a while to produce concentrated sludge. “DS” means the dry mass of solids in the sludge (dry mass g / sludge L).

得られた濃縮汚泥(DS:32g/L)をフィルタプレス試験機で14kgf/cmで10分間圧搾し、脱水した。脱水終了後の脱水ケーキ含水率は73.2%でフィルタ表面の汚れは問題ないレベルで少なかった。 The obtained concentrated sludge (DS: 32 g / L) was squeezed with a filter press tester at 14 kgf / cm 2 for 10 minutes and dehydrated. The water content of the dehydrated cake after dehydration was 73.2%, and the filter surface was less dirty at a level where there was no problem.

<比較例1>
ポリアクリル酸ナトリウムを使用しない以外は、実施例1と同様の条件で濃縮汚泥を作製したところ、得られた濃縮汚泥濃度DSは12g/Lであった。この濃縮汚泥を、実施例1と同様の条件でフィルタプレス処理したところ、脱水ケーキ含水率は80.8%であった。汚泥濃度が低かったため汚泥が十分打ち込めず、ケーキ含水率が高くなったものと考えられる。
<Comparative Example 1>
When concentrated sludge was produced under the same conditions as in Example 1 except that sodium polyacrylate was not used, the obtained concentrated sludge concentration DS was 12 g / L. When this concentrated sludge was subjected to filter press treatment under the same conditions as in Example 1, the water content of the dehydrated cake was 80.8%. It is considered that the sludge concentration was low, so that sludge could not be driven in sufficiently and the moisture content of the cake was increased.

<比較例2>
高分子凝集剤として、中アニオン性のアクリルアミド・アクリル酸ナトリウム共重合体(0.1%塩粘度が6.0mPa・s、アニオン当量が−2.5meq/g)を使用した以外は、実施例1と同様の条件で濃縮汚泥を作製したところ、得られた濃縮汚泥濃度DSは34g/Lであった。この濃縮汚泥を、実施例1と同様の条件でフィルタプレス処理したところ、脱水ケーキ含水率は72.8%であり、比較例1と比較して含水率の改善は見られたが、フィルタ表面に脱水ケーキの一部が付着していた。この汚れは水道水をかけて水洗したが完全には除去できなかった。
<Comparative example 2>
Example except that a medium anionic acrylamide / sodium acrylate copolymer (0.1% salt viscosity 6.0 mPa · s, anion equivalent −2.5 meq / g) was used as the polymer flocculant. When concentrated sludge was produced under the same conditions as in No. 1, the obtained concentrated sludge concentration DS was 34 g / L. When this concentrated sludge was subjected to a filter press treatment under the same conditions as in Example 1, the moisture content of the dehydrated cake was 72.8%, and the moisture content was improved as compared with Comparative Example 1, but the filter surface A portion of the dehydrated cake adhered to the surface. Although this stain was washed with tap water, it could not be completely removed.

1 供給源
10 浄水汚泥処理装置
21、23 配管
30 凝集混和手段
31 凝集混和槽
35 無機凝集剤の供給手段
40 凝集フロック形成手段
41 フロック形成槽
45 高分子凝集剤の供給手段
51 沈澱池
55 ろ過手段
60 濃縮手段
61 排泥池
62 排泥ポンプ
65 濃縮槽
71 脱水手段(フィルタプレス型)
DESCRIPTION OF SYMBOLS 1 Supply source 10 Purified water sludge processing apparatus 21, 23 Piping 30 Coagulation mixing means 31 Coagulation mixing tank 35 Inorganic flocculant supply means 40 Aggregation floc formation means 41 Flock formation tank 45 Polymer flocculant supply means 51 Precipitation basin 55 Filtration means 60 Concentration means 61 Waste mud pond 62 Waste mud pump 65 Concentration tank 71 Dehydration means (filter press type)

Claims (5)

被処理水に無機凝集剤を添加して凝集フロックを生成するフロック生成工程と、
前記被処理水から分離した前記凝集フロックの汚泥に対し、0.1%塩粘度が2〜5mPa・sであり、かつ、アニオン当量が−9.0以下のポリ(メタ)アクリル酸塩を添加し、前記汚泥を濃縮する濃縮工程と、
濃縮した前記汚泥を脱水する脱水工程と、
を有することを特徴とする浄水汚泥の処理方法。
A flock generating step of generating an agglomerated floc by adding an inorganic flocculant to the water to be treated;
A poly (meth) acrylate having a 0.1% salt viscosity of 2 to 5 mPa · s and an anion equivalent of −9.0 or less is added to the sludge of the aggregated floc separated from the water to be treated. And a concentration step for concentrating the sludge,
A dehydration step of dewatering the concentrated sludge;
A method for treating purified water sludge.
前記ポリ(メタ)アクリル酸塩が、ポリアクリル酸ナトリウムである請求項1に記載の浄水汚泥の処理方法。   The method for treating purified water sludge according to claim 1, wherein the poly (meth) acrylate is sodium polyacrylate. 前記脱水工程は、フィルタプレスを用いた機械脱水である請求項1または請求項2に記載の浄水汚泥の処理方法。   The method for treating purified water sludge according to claim 1 or 2, wherein the dehydration step is mechanical dehydration using a filter press. 無機凝集剤を添加した被処理水を急速撹拌し、凝集フロックを生成する凝集混和手段と、
前記被処理水を緩速攪拌し、前記凝集フロックを増大させて当該凝集フロックの汚泥を得る凝集フロック形成手段と、
前記被処理水から分離した前記汚泥に、0.1%塩粘度が2〜5mPa・sであり、かつ、アニオン当量が−9.0以下のポリ(メタ)アクリル酸塩を混合して濃縮する濃縮手段と、
濃縮した前記汚泥を脱水し、脱水ケーキを得る脱水手段と、
を有することを特徴とする浄水汚泥処理装置。
Agglomeration and mixing means for rapidly stirring water to be treated with an inorganic flocculant to produce agglomerated floc;
Aggregated floc forming means for slowly stirring the water to be treated and increasing the aggregated floc to obtain sludge of the aggregated floc;
The sludge separated from the water to be treated is mixed with a poly (meth) acrylate having a 0.1% salt viscosity of 2 to 5 mPa · s and an anion equivalent of −9.0 or less and concentrated. A concentration means;
Dewatering means for dewatering the concentrated sludge to obtain a dehydrated cake;
A purified water sludge treatment apparatus characterized by comprising:
前記脱水手段は、フィルタプレス型脱水手段である請求項4に記載の浄水汚泥処理。   The purified water sludge treatment according to claim 4, wherein the dewatering means is a filter press type dewatering means.
JP2015249366A 2015-12-22 2015-12-22 Water purification method and water purification facility Active JP6197021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015249366A JP6197021B2 (en) 2015-12-22 2015-12-22 Water purification method and water purification facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015249366A JP6197021B2 (en) 2015-12-22 2015-12-22 Water purification method and water purification facility

Publications (2)

Publication Number Publication Date
JP2017113671A true JP2017113671A (en) 2017-06-29
JP6197021B2 JP6197021B2 (en) 2017-09-13

Family

ID=59232712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015249366A Active JP6197021B2 (en) 2015-12-22 2015-12-22 Water purification method and water purification facility

Country Status (1)

Country Link
JP (1) JP6197021B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113072285A (en) * 2021-04-22 2021-07-06 泉州市程远环保工程有限公司 Sludge concentration and dehydration integrated treatment process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180700A (en) * 1988-12-29 1990-07-13 Kurita Water Ind Ltd Dehydration of organic sludge
JP2003340208A (en) * 2002-05-24 2003-12-02 Ebara Corp Water cleaning method and apparatus therefor
JP2004224998A (en) * 2003-01-27 2004-08-12 Mitsui Cytec Kk Method for producing acrylamide water-soluble polymer
WO2014030588A1 (en) * 2012-08-22 2014-02-27 Mtアクアポリマー株式会社 Polymer-coagulating agent and method for producing same, and method for dehydrating sludge using same
JP2014128746A (en) * 2012-12-28 2014-07-10 Hitachi Ltd Seawater desalination apparatus, seawater desalination method, and flocculant setting for seawater desalination

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180700A (en) * 1988-12-29 1990-07-13 Kurita Water Ind Ltd Dehydration of organic sludge
JP2003340208A (en) * 2002-05-24 2003-12-02 Ebara Corp Water cleaning method and apparatus therefor
JP2004224998A (en) * 2003-01-27 2004-08-12 Mitsui Cytec Kk Method for producing acrylamide water-soluble polymer
WO2014030588A1 (en) * 2012-08-22 2014-02-27 Mtアクアポリマー株式会社 Polymer-coagulating agent and method for producing same, and method for dehydrating sludge using same
JP2014128746A (en) * 2012-12-28 2014-07-10 Hitachi Ltd Seawater desalination apparatus, seawater desalination method, and flocculant setting for seawater desalination

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113072285A (en) * 2021-04-22 2021-07-06 泉州市程远环保工程有限公司 Sludge concentration and dehydration integrated treatment process

Also Published As

Publication number Publication date
JP6197021B2 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
JP6688187B2 (en) Low acrylamide flocculant composition, method of using low acrylamide flocculant composition
JP6378865B2 (en) Sludge treatment method and apparatus
AU2012215865C1 (en) Method and apparatus for sludge flocculation
JP6209046B2 (en) Sludge treatment method and apparatus, and chemical fertilizer manufacturing method and apparatus
TWI715110B (en) Vorrichtung und verfahren zur reinigung von mit elektrolyten und farbstoffen verunreinigtem abwasser
JP2017121601A (en) Coagulation method and coagulation device
JP7068773B2 (en) Water treatment agent, water treatment method and water treatment equipment
JP6197021B2 (en) Water purification method and water purification facility
US20100102007A1 (en) Process for Treatment of Sewage Waste Water
JP6399303B2 (en) Sludge dewatering method and apparatus
JP6362305B2 (en) Sludge treatment method and apparatus
JP2019072675A (en) Coagulation sedimentation apparatus and coagulation sedimentation treatment method
WO2016006419A1 (en) Clumping method and clumping device
JP6362304B2 (en) Sludge treatment method and apparatus
JP7075718B2 (en) Purified water sludge treatment agent, purified water sludge treatment method and purified water sludge treatment equipment
JP7142540B2 (en) Water purification method and water purification device
KR20140081552A (en) Submerged membrane apparatus and method for purifying water
JP6454621B2 (en) Sludge aggregation method and apparatus
JP2005007246A (en) Treatment method for organic waste water
JP2023080648A (en) Liquid waste concentration method and apparatus
JP7269148B2 (en) Filtration treatment method and filtration device
CN220078835U (en) Concrete wastewater treatment device
JP5723916B2 (en) Method and apparatus for dewatering organic sludge
JP7441108B2 (en) Water treatment method and water treatment equipment
JP5993605B2 (en) Flocculant evaluation method and flocculant processing apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170821

R150 Certificate of patent or registration of utility model

Ref document number: 6197021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250