WO2016006419A1 - Clumping method and clumping device - Google Patents

Clumping method and clumping device Download PDF

Info

Publication number
WO2016006419A1
WO2016006419A1 PCT/JP2015/067772 JP2015067772W WO2016006419A1 WO 2016006419 A1 WO2016006419 A1 WO 2016006419A1 JP 2015067772 W JP2015067772 W JP 2015067772W WO 2016006419 A1 WO2016006419 A1 WO 2016006419A1
Authority
WO
WIPO (PCT)
Prior art keywords
flocculant
injection rate
numerical analysis
stock solution
value
Prior art date
Application number
PCT/JP2015/067772
Other languages
French (fr)
Japanese (ja)
Inventor
智之 森田
加藤 宏行
鈴木 浩介
Original Assignee
水ing株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 水ing株式会社 filed Critical 水ing株式会社
Priority to JP2016532850A priority Critical patent/JPWO2016006419A1/en
Publication of WO2016006419A1 publication Critical patent/WO2016006419A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/143Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/147Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances

Definitions

  • the present invention relates to a method for aggregating a stock solution containing a suspended substance, and more particularly to a method for determining an appropriate injection rate of a flocculant to be injected into a stock solution containing a suspended material.
  • the present invention also relates to an aggregating apparatus using the aggregating method.
  • the stock solution refers to the liquid to be treated.
  • the dehydration treatment of the stock solution containing suspended solids is composed of an aggregating step in which flocs are formed by aggregating the suspended solids using a flocculant and a dehydrating step in which the flocs are dehydrated by a dehydrator. Most of the running cost in this dehydration process is the cost of the flocculant.
  • agglomeration treatment such as agglomeration sedimentation, agglomeration pressure flotation, agglomeration sand filtration, agglomeration membrane filtration
  • agglomeration treatment aggregation sedimentation, In the case of agglomerated sand filtration, agglomerated membrane filtration, etc.
  • most of the running cost is the cost of a flocculant. Therefore, it is desired to properly control the injection rate of the flocculant and reduce the amount of the flocculant used.
  • a sludge concentration meter that detects the concentration of sludge flowing through a sludge flow path, and sludge in a sludge storage tank is sent to a sludge dewatering machine according to the concentration of sludge detected by this sludge concentration meter.
  • a concentration control device capable of controlling the concentration of sludge injected into the sludge dehydrator by operating at least one of the sludge injection pump and the coagulant injection pump that sends the coagulant in the coagulant storage tank to the sludge dewaterer;
  • a wastewater treatment apparatus comprising:
  • Patent Document 2 discloses a measuring unit that measures the amount of floc present in a dehydrated separation liquid supplied to a measurement tank, and a flocculant that minimizes the amount of floc based on measurement data of the amount of floc by the measuring unit.
  • a flocculant injection amount determination device including a control means for determining an injection amount.
  • Patent Document 3 discloses a flocculating means for injecting a flocculant into water or sludge in a reaction tank or in a flow path to flock suspended substances contained in the water or sludge in the reaction tank or in the flow path.
  • measuring means for measuring turbidity in the gap between flocs in the water or sludge using an agglomeration sensor provided in the reaction tank or in a flow path downstream of the agglomeration means, and this measurement
  • a control means for controlling the injection amount of the flocculant based on the change with time of the turbidity measured by the means.
  • the aggregation sensor includes a probe that emits laser light into water or sludge and detects scattered light of the laser light generated by particles contained in the water or sludge.
  • Patent Document 4 discloses a sludge treatment apparatus in which a flocculant is added to a stock solution in a flocculent mixing tank to form a floc of suspended solids and the stock solution is supplied to a dehydrator.
  • the size of the floc in the stock solution supply pipe for supplying the stock solution to the dehydrator is photographed, the luminance signal is converted into an electrical signal, and the magnitude of the floc is binarized from the electrical signal.
  • Calculate the average area per floc from the binary image of floc compare the average analysis area with the preset reference area of floc, calculate the appropriate value, and calculate the proportional set value based on the flock formation status
  • a flocculant injection control method for controlling the flocculant injection rate is disclosed.
  • the rotation speed of the stirring blade provided in the stirrer is 10 to 300 min ⁇ 1 , and the flocculant is dispersed in the stock solution under relatively gentle conditions.
  • a relatively good floc is formed with a wide range of flocculant injection rates. Therefore, even if the techniques disclosed in Patent Documents 1 to 4 are used, it is difficult to determine an appropriate injection rate of the flocculant with high accuracy.
  • JP 2004-167401 A Japanese Patent Laid-Open No. 11-347599 JP 2003-154206 A JP 2005-7338 A
  • the present invention has been made in view of the above-mentioned conventional problems, and efficiently aggregates the suspended substance in the stock solution containing the suspended substance, and automatically sets the appropriate injection rate of the flocculant with high accuracy.
  • the object is to provide an aggregation method which can be determined.
  • an object of this invention is to provide the aggregating apparatus which can implement such an aggregating method.
  • One aspect of the present invention for solving the above-described problems includes an injection step of injecting a flocculant into a stock solution containing a suspended substance, and the stock solution into which the flocculant has been injected is allowed to flow into a high-speed stirrer.
  • Aggregation method is
  • the injection rate determining step determines whether the injection rate of the flocculant is appropriate based on the numerical analysis value, and the appropriate injection rate of the flocculant is determined.
  • the injection step, the stirring step, the optical measurement step, and the numerical analysis step are repeated steps while changing the injection rate.
  • the change of the injection rate is to change one or both of a flow rate of the stock solution flowing into the high-speed stirrer and a flow rate of the flocculant injected into the stock solution. It is characterized by.
  • the optical measurement step is a step of measuring the transmitted light intensity by irradiating the stirred stock solution with light.
  • the optical measurement step is a step of measuring the scattered light intensity by irradiating the stirred stock solution with light. In a preferred aspect of the present invention, the optical measurement step is a step of measuring both transmitted light intensity and scattered light intensity by irradiating the stirred stock solution with light.
  • the dispersion of the optical measurement value is used as the numerical analysis value.
  • a peak area of the optical measurement value is used as the numerical analysis value.
  • a standard deviation of the optical measurement value is used as the numerical analysis value.
  • the numerical analysis value is a floc particle size of the suspended substance.
  • the injection rate determination step includes a plurality of numerical values by repeating the injection step, the stirring step, the optical measurement step, and the numerical analysis step a plurality of times while changing the injection rate. It is a step of obtaining an analysis value and determining an appropriate injection rate of the flocculant based on the plurality of numerical analysis values.
  • an injection rate at which a maximum value or a minimum value is obtained among the plurality of numerical analysis values is determined as the appropriate injection rate.
  • a preferred aspect of the present invention is an average value of an injection rate at which a maximum value is obtained among the plurality of numerical analysis values and an injection rate at which a second largest value is obtained, or a minimum value among the plurality of numerical analysis values.
  • An average value of an injection rate at which a value is obtained and an injection rate at which the second smallest value is obtained is determined as the appropriate injection rate.
  • a preferred aspect of the present invention is characterized by further comprising a correction injection rate determining step of determining a correction injection rate by multiplying the appropriate injection rate determined in the injection rate determination step by a correction coefficient.
  • a preferred embodiment of the present invention further includes a dilution step of diluting the stirred stock solution with a diluent, and the dilution step is performed between the stirring step and the optical measurement step.
  • the flocculant injecting apparatus for injecting the flocculant into the stock solution containing the suspended substance, and the stock solution into which the flocculant is injected by rotating a stirring blade at a rotation speed of 500 min ⁇ 1 or more.
  • a high-speed stirrer that stirs, a supply device that supplies the stock solution to the high-speed stirrer, an optical measurement device that irradiates the stirred stock solution with light to obtain an optical measurement value, and the optical measurement value
  • a flocculating apparatus comprising: a numerical analysis device that acquires a numerical analysis value by performing numerical analysis; and a control device that determines an appropriate injection rate of the flocculant based on the numerical analysis value. is there.
  • the control device determines whether or not an injection rate of the flocculant is appropriate based on the numerical analysis value, and until an appropriate injection rate of the flocculant is determined. , By operating any one or both of the flocculant injection device and the supply device, the high-speed stirrer, the optical measurement device, and the numerical analysis device to inject the flocculant into the stock solution, The agitation of the stock solution, the acquisition of the optical measurement value, and the acquisition of the numerical analysis value are repeated while changing the injection rate.
  • the optical measuring device measures the transmitted light intensity by irradiating the stirred stock solution with light.
  • the optical measuring device measures the scattered light intensity by irradiating the stirred stock solution with light.
  • the optical measuring device is both a measuring device for measuring transmitted light intensity and a measuring device for measuring scattered light intensity.
  • the numerical analysis device acquires a variance of the optical measurement value as the numerical analysis value. In a preferred aspect of the present invention, the numerical analysis device acquires a peak area of the optical measurement value as the numerical analysis value. In a preferred aspect of the present invention, the numerical analysis device acquires a standard deviation of the optical measurement value as the numerical analysis value. In a preferred aspect of the present invention, the numerical analysis device acquires the particle size of floc of the suspended substance as the numerical analysis value.
  • the control device operates one or both of the flocculant injection device and the supply device, the high-speed stirrer, the optical measurement device, and the numerical analysis device. Injecting the flocculant into the stock solution, stirring the stock solution, obtaining the optical measurement value, and obtaining the numerical analysis value are repeated a plurality of times while changing the injection rate to obtain a plurality of numerical analysis values. Obtaining and determining an appropriate injection rate of the flocculant based on the plurality of numerical analysis values. In a preferred aspect of the present invention, the control device determines an injection rate at which a maximum value or a minimum value is obtained among the plurality of numerical analysis values as the appropriate injection rate.
  • the control device is configured such that an average value of an injection rate at which a maximum value is obtained and an injection rate at which a second largest value is obtained among the plurality of numerical analysis values, or the plurality of numerical values. An average value of the injection rate at which the minimum value is obtained among the analysis values and the injection rate at which the second smallest value is obtained is determined as the appropriate injection rate.
  • the control device determines a correction injection rate by multiplying the determined appropriate injection rate by a correction coefficient.
  • the numerical analysis device is incorporated in the control device.
  • a preferred embodiment of the present invention is characterized by further comprising a diluent supply device for supplying a diluent to the stirred stock solution.
  • the stock solution containing suspended solids infused with the flocculant is stirred at a high speed rotation with a rotation speed of the stirring blade being 500 min ⁇ 1 or more.
  • a rotation speed of the stirring blade being 500 min ⁇ 1 or more.
  • the control device determines that the floc is growing properly from the numerical analysis value obtained by numerical analysis of the optical measurement value.
  • the appropriate injection rate of the flocculant can be determined with high accuracy.
  • the amount of the flocculant used can be reduced.
  • the injection rate of the flocculant can be appropriately controlled without the experience and intuition of the operator.
  • the properties of the stock solution containing the suspended material for example, the concentration of the suspended material in the stock solution
  • the injection rate of the flocculant can be controlled appropriately.
  • FIG. It is the schematic which shows one Embodiment of the aggregation apparatus of this invention. It is the schematic which shows another embodiment of the aggregation apparatus of this invention. It is the schematic which shows another embodiment of the aggregation apparatus of this invention. It is the schematic which shows another embodiment of the aggregation apparatus of this invention. It is the schematic which shows another embodiment of the aggregation apparatus of this invention.
  • the flocculation method includes an injection step of injecting a flocculant into a stock solution containing a suspended substance, and the stock solution into which the flocculant has been injected flows into a high-speed stirrer, Stirring the stock solution by rotating at a rotational speed of 500 min ⁇ 1 or more, an optical measurement step of irradiating the stirred stock solution with light to obtain an optical measurement value, and the optical measurement value
  • a numerical analysis step of performing a numerical analysis to obtain a numerical analysis value and an injection rate determination step of determining an appropriate injection rate of the flocculant based on the numerical analysis value.
  • the undiluted solution refers to the liquid to be treated.
  • the stock solution containing suspended solids include sludge discharged from a wastewater treatment facility or a water purification treatment facility, wastewater in a wastewater treatment facility, raw water in a water purification treatment facility, and the like.
  • the sludge may be either organic sludge or inorganic sludge.
  • organic sludge examples include organic sludge generated in sewage treatment, human waste treatment, and wastewater treatment in various industries. More specifically, there may be mentioned first sedimentation basin sludge, surplus sludge, anaerobic digested sludge, aerobic digested sludge, human waste sludge, septic tank sludge, digestion desorbed liquid, coagulated sediment sludge, and the like.
  • the organic sludge may contain an inorganic substance.
  • inorganic sludge examples include water purification treatment, wastewater treatment in construction work, and inorganic sludge generated in wastewater treatment in various industries.
  • the sludge generated in the water purification treatment is sludge discharged from a settling pond, a waste mud pond, a concentration tank, or the like in the water purification treatment facility.
  • the inorganic sludge may contain organic matter.
  • Wastewater in wastewater treatment facilities includes wastewater from various industries such as sewage, food industry, drinking water industry, chemical industry, and machinery industry.
  • Examples of raw water in water treatment facilities include river water, lake water, and groundwater.
  • the stock solution containing suspended solids may be water prepared in the course of treatment such as waste water treatment or water purification treatment.
  • wastewater adjusted pH, wastewater injected with an inorganic flocculant, wastewater injected with an organic coagulant, wastewater injected with a metal chelating agent, and the like can be mentioned.
  • the stock solution in the water purification treatment raw water with adjusted pH, raw water into which an inorganic flocculant has been injected, and the like can be given.
  • any of inorganic flocculants, organic flocculants, and polymer flocculants can be used.
  • the inorganic flocculant include ferric chloride, aluminum sulfate, aluminum chloride, polyaluminum chloride, iron sulfate, and polyiron sulfate.
  • organic coagulants examples include polyamine organic coagulants (such as polycondensates of dialkylamine and epichlorohydrin), diallyldimethylammonium chloride organic coagulants (such as polydiallyldimethylammonium chloride), and dicyandiamide organic coagulants (polydicyandiamide). Resin quaternary ammonium salt, etc.).
  • polyamine organic coagulants such as polycondensates of dialkylamine and epichlorohydrin
  • diallyldimethylammonium chloride organic coagulants such as polydiallyldimethylammonium chloride
  • dicyandiamide organic coagulants polydicyandiamide
  • any of an anionic polymer flocculant, a nonionic polymer flocculant, a cationic polymer flocculant, and an amphoteric polymer flocculant can be used.
  • anionic polymer flocculant examples include sodium polyacrylate, a copolymer of sodium acrylate and acrylamide, polysodium methacrylate, a copolymer of sodium methacrylate and acrylamide, and the like.
  • nonionic polymer flocculants examples include polyacrylamide and polyethylene oxide.
  • cationic polymer flocculants examples include acrylate polymer flocculants (also referred to as “DAA polymer flocculants”), methacrylate polymer flocculants (also referred to as “DAM polymer flocculants”), and amide groups. , Nitrile groups, amine hydrochlorides, formamide groups, and the like, and polyvinylamidines (also referred to as “amidine polymer flocculants”), polyacrylamide Mannich modified products, and the like.
  • DAA polymer flocculants also referred to as “DAA polymer flocculants”
  • methacrylate polymer flocculants also referred to as “DAM polymer flocculants”
  • amide groups examples include amide groups. , Nitrile groups, amine hydrochlorides, formamide groups, and the like, and polyvinylamidines (also referred to as “amidine polymer flocculants”), polyacrylamide Mannich modified products, and the like.
  • Examples of the DAA polymer flocculant include a polymer of a quaternized product of dimethylaminoethyl acrylate, a copolymer of a quaternized product of dimethylaminoethyl acrylate and acrylamide, and the like.
  • Examples of the DAM polymer flocculant include a polymer of a quaternized product of dimethylaminoethyl methacrylate and a copolymer of a quaternized product of dimethylaminoethyl methacrylate and acrylamide.
  • amphoteric polymer flocculant examples include a quaternized product of dimethylaminoethyl acrylate and a copolymer of acrylamide and acrylic acid, a quaternized product of dimethylaminoethyl methacrylate, and a copolymer of acrylamide and acrylic acid. Can do. However, the above is an example, and the present invention is not limited to these.
  • the aggregating agent as described above is injected into the stock solution containing suspended solids.
  • the flocculating agent is dispersed in the stock solution by stirring at a normal speed in which the rotation speed of the stirring blade of the stirrer is set to about 10 to 300 min ⁇ 1 . For this reason, it is difficult to uniformly disperse the flocculant in the stock solution.
  • the flocculant can be uniformly dispersed in the stock solution by high-speed stirring, the appropriate injection rate of the flocculant can be determined more accurately.
  • the flocculant is dispersed in the sludge under mild conditions.
  • the time required for floc formation is long and a large capacity agglomeration tank is required.
  • a relatively good agglutination reaction occurs at a wide range of aggregating agent injection rates.
  • the flocculant is dispersed in sludge under severe conditions by high-speed stirring, a good flocculation reaction occurs only when the injection rate is appropriate.
  • the flocculant can be instantaneously dispersed in the stock solution, and flocs can be formed in a short time. Therefore, the appropriate injection rate of the flocculant can be determined more quickly.
  • stirrer a high speed stirrer equipped with a stirring blade (stirring means) accommodated in a stirring tank, a rotating shaft to which the stirring blade is fixed, and a motor for rotating the rotating shaft can be used. Moreover, you may stir at high speed using a line mixer as a stirrer.
  • a line mixer is a mixer built into piping.
  • the advantage of the line mixer is that the mixer is hermetically sealed, so if there are two pumps, one for the stock solution upstream of the line mixer and the other for the flocculant pump, the liquid can be sent downstream of the line mixer. is there.
  • the upper part of the stirring tank is open, so in order to send the liquid downstream of the stirrer, the pump for the stock solution upstream of the stirrer and the coagulant
  • another pump or a device equivalent to a pump is required. For this reason, usually, a pump is not installed and the liquid is generally sent downstream with a height difference.
  • the stirring step it is important to stir the stock solution containing the suspended solids into which the flocculant is injected by rotating the stirring blade at a rotation speed of 500 min ⁇ 1 or more.
  • the rotation speed of the stirring blade is 1000 min ⁇ 1 or more. More preferably, the rotation speed of the stirring blade is 2000 min ⁇ 1 or more. More preferably, the rotation speed of the stirring blade is 3000 min ⁇ 1 or more.
  • the rotation speed of the stirring blades depends on the type of stock solution containing suspended solids (for example, drainage and sludge), the nature of the stock solution (for example, SS (Suspended Solids concentration, viscosity, etc.)), and the type of flocculant (for example, inorganic Based on a coagulant, an organic coagulant, a polymer coagulant, etc.), it is adjusted at 500 min ⁇ 1 or more.
  • the floc formation in the stirring step may be performed in a stirring tank or in a pipe.
  • the flocculant injected into the stock solution containing the suspended substance in the injection step may be injected into the stirring tank or may be injected into a pipe disposed upstream of the stirring tank.
  • the optical measurement step is performed to irradiate the stock solution containing floc formed in the stirring step with light to obtain an optical measurement value.
  • the optical measurement values to be acquired include transmitted light intensity, transmittance, scattered light intensity, diffracted light intensity, diffracted / scattered light intensity, absorbance, and reflected light intensity. Multiple types of optical measurements may be measured simultaneously. For example, the transmitted light intensity may be measured and the scattered light intensity may be measured. In this case, both an optical measurement device that measures the transmitted light intensity and an optical measurement device that measures the scattered light intensity are provided.
  • an optical measurement device including a light source that emits light and a photodetector that receives light emitted from the light source is used.
  • a light source used in the optical measurement method various lamps (mercury lamp, xenon lamp, krypton lamp, metal halide lamp, halogen lamp, etc.), various lasers (solid laser, semiconductor laser, liquid laser, gas laser, etc.), various An LED or the like can be used.
  • a CCD, photodiode, phototransistor, photomultiplier tube, photoconductive element, infrared sensor, CMOS, or the like can be used. In any case, a commercially available optical measuring device can be used as the optical measuring device.
  • FIG. 1 is a schematic view of an optical measuring apparatus for measuring transmitted light intensity.
  • a pair of transparent windows 40, 40 through which light can pass is provided in a pipe 28 through which a stock solution containing floc flows.
  • a light source 41 is disposed at a position where light can be emitted into the pipe 28 through one of the transparent windows 40, 40, and a light detector 42 is disposed at a position where light emitted from the pipe 28 can be received through the other transparent window 40. Place.
  • the light transmitted through the stock solution containing floc is detected by the photodetector 42.
  • the transmitted light intensity is measured for a predetermined time, and the measured transmitted light intensity is used as an optical measurement value.
  • the measurement of the transmitted light intensity is performed once or a plurality of times while changing the injection rate of the flocculant, thereby obtaining at least one optical measurement value.
  • the transmitted light intensity detected by the photodetector 42 is accumulated in the data logger 50 and then sent to the numerical analysis device 5 described later.
  • the numerical analysis value obtained by the numerical analysis device 5 is sent to the control device 6, and the control device 6 determines an appropriate injection rate of the flocculant based on the numerical analysis value.
  • the data logger 50, the numerical analysis device 5, and the control device 6 may be provided separately. Alternatively, the data logger 50 and the numerical analysis device 5 may be incorporated in a control device 6 configured as one computer or one programmable logic controller (for example, a sequencer).
  • FIG. 2A shows an example of measurement of transmitted light intensity when flocs are not formed because the flocculant injection rate is not appropriate
  • FIG. 2B shows flocs because the flocculant injection rate is appropriate.
  • the measurement example of the transmitted light intensity in the case where is formed is shown. 2A and 2B, the horizontal axis represents measurement time, and the vertical axis represents transmitted light intensity.
  • FIG. 3 is a schematic view of an optical measuring apparatus for measuring scattered light intensity.
  • 44A is spaced apart by a minute gap S.
  • the irradiator 43A and the light receiver 44A are arranged such that the central axis of the irradiator 43A and the central axis of the light receiver 44A intersect at an angle of 90 °.
  • the irradiator 43A is an optical fiber that guides light from the light source 43B such as a laser to the inside of the pipe 28, and the light receiver 44A is an optical fiber that guides scattered light to a photodetector 44B such as a phototransistor. Light scattered by colliding with suspended matter or floc is detected by the photodetector 44B through the light receiver 44A.
  • the photodetector 44B measures the scattered light intensity, and uses the measured scattered light intensity as an optical measurement value. The measurement of the scattered light intensity is performed once or a plurality of times while changing the injection rate of the flocculant, whereby at least one optical measurement value is obtained.
  • the scattered light intensity detected by the photodetector 44B is accumulated in the data logger 50 and then sent to the numerical analysis device 5 described later.
  • the numerical analysis value obtained by the numerical analysis device 5 is sent to the control device 6, and the control device 6 determines an appropriate injection rate of the flocculant based on the numerical analysis value.
  • the data logger 50, the numerical analysis device 5, and the control device 6 may be provided separately. Alternatively, the data logger 50 and the numerical analysis device 5 may be incorporated in a control device 6 configured as one computer or one programmable logic controller (for example, a sequencer).
  • FIG. 4A shows an example of measurement of scattered light intensity when no floc is formed because the injection rate of the flocculant is not appropriate.
  • the upper graph shows the measured scattered light intensity, and the lower graph shows the scattered light intensity. Indicates the average intensity of light.
  • FIG. 4B is a measurement example of the scattered light intensity when flocs are formed because the injection rate of the flocculant is appropriate.
  • the upper graph shows the measured scattered light intensity, and the lower graph shows the scattered light.
  • 4A and 4B the horizontal axis represents the measurement time, and the vertical axis represents the scattered light intensity or the average intensity of the scattered light.
  • the average intensity is an average intensity for a predetermined time.
  • the intensity of the scattered light measured by the photodetector 44B becomes high as shown in FIG. 4A.
  • the floc is formed, the suspended substance is collected as a floc. In this case, the amount of the suspended substance entering the minute gap S is reduced, and the light reflected from the suspended substance is reduced. Therefore, the intensity of the scattered light measured by the photodetector 44B becomes low as shown in FIG. 4B.
  • This scattered light intensity is used in a numerical analysis process described later. The average intensity of the scattered light may be used in the numerical analysis process.
  • the scattered light intensity is used as an optical measurement value, for example, the formation of flocs is determined by the decrease in the intensity of scattered light (or the average intensity of the scattered light) from the suspended substance. Therefore, the measurement of scattered light intensity is not suitable for a stock solution having a high concentration of suspended solids such as sludge and a relatively large suspended solid and a large floc formed.
  • the scattered light intensity measurement is a stock solution containing a fine suspended substance, and the formed floc is also suitable for the measurement of a fine stock solution.
  • a stock solution is, for example, raw water for water purification treatment.
  • numerical analysis values are obtained by numerical analysis of the optical measurement values obtained in the optical measurement process.
  • numerical analysis values include an average value of optical measurement values, dispersion, standard deviation, peak area, peak height, and the like.
  • the dispersion of the optical measurement values is a value obtained by statistically analyzing the optical measurement values, and is an amount indicating the degree of dispersion of the distribution of the optical measurement values obtained during a predetermined measurement time. Standard deviation is the positive value of the square root of the variance.
  • the peak area is a graph drawn by plotting optical measurement values obtained during a predetermined measurement time on a graph in which the vertical axis represents the optical measurement value and the horizontal axis represents the measurement time, and the reference This is the area of a region surrounded by a line (for example, a base line).
  • the peak area corresponds to the area of the hatched area in FIG. 2B, for example.
  • the peak height is the peak of a curve drawn by plotting the optical measurement values obtained during a given measurement time on a graph where the vertical axis represents the optical measurement value and the horizontal axis represents the measurement time. The height from the horizontal axis.
  • the number of optical measurement values above a certain threshold or the number of optical measurement values below a certain threshold may be used as a numerical analysis value.
  • SS concentration, turbidity, chromaticity, floc particle size, etc. may be calculated from the optical measurement values, and these may be used as numerical analysis values.
  • the floc particle diameter means the diameter of the floc when the floc is spherical.
  • the floc particle diameter means a Stokes diameter or a particle diameter measured by various measuring methods.
  • the floc particle size may be the average particle size of the floc. Examples of the average particle diameter include an arithmetic average diameter, a maximum diameter, and a median diameter.
  • the average particle diameter may be based on the number, may be based on mass, or may be based on volume.
  • a method for calculating the SS concentration and turbidity from the optical measurement values known methods such as a transmitted light measurement method, a scattered light measurement method, a transmitted light / scattered light comparison method, an integrating sphere measurement method, and the like can be used.
  • a method for calculating chromaticity from the optical measurement value a known method such as a transmitted light measurement method can be used.
  • a method for calculating the floc particle diameter from the optical measurement value a known method such as a laser diffraction / scattering method or a method of analyzing an image taken with a camera can be used.
  • the floc particle size may be an average floc particle size or a particle size distribution of floc particle size.
  • a commercially available measuring apparatus capable of calculating the SS concentration, turbidity, chromaticity, floc particle diameter and the like from the obtained optical measurement values can be used while performing optical measurement.
  • the injection rate determining step determines the appropriate injection rate of the flocculant from at least one numerical analysis value obtained by performing the flocculant injection step, the stirring step, the optical measurement step, and the numerical analysis step at least once. It is a step of determining. That is, in the present embodiment described so far, a flocculant is injected into a stock solution containing a suspended substance, the stock solution is stirred at a high speed in order to form a floc of the suspended material, and the stirred stock solution is optically mixed. The measurement is performed, and the obtained optical measurement value is numerically analyzed to obtain a numerical analysis value.
  • the injection rate of the flocculant is appropriate, and if the injection rate is not appropriate, the injection rate of the flocculant is changed, and the stirring step, the optical measurement step, Repeat the numerical analysis process to determine the proper injection rate. Depending on the injection rate of the flocculant, the suspended substance flocs may not be formed.
  • the injection rate of the flocculant injected into the stock solution containing suspended solids can be changed by changing the flow rate of the flocculant injected into the stock solution while the flow rate of the stock solution is controlled to be constant.
  • the injection rate of the flocculant may be changed by changing the flow rate of the stock solution while the flow rate of the flocculant is controlled to be constant.
  • both the flow rate of the stock solution and the flow rate of the flocculant may be changed in order to change the injection rate of the flocculant.
  • FIG. 5 shows a flow chart showing a process for determining an appropriate injection rate.
  • the injection rate a of the flocculant is set (step 1).
  • the flocculant is injected into the stock solution containing the suspended substance at this injection rate a, and the stock solution is stirred at high speed together with the flocculant to form a floc (step 2).
  • Optical measurements are performed on the stirred stock solution (step 3).
  • Numerical analysis is performed on the optical measurement value obtained by the optical measurement, and thereby the numerical analysis value X is obtained (step 4). Based on this numerical analysis value X, it is determined whether or not the injection rate of the flocculant is appropriate (step 5).
  • step 6 the injection rate a of the flocculant is changed (step 6).
  • step 6 when the appropriate injection rate is determined by gradually decreasing the injection rate from the high injection rate, the predetermined change width b is subtracted from the injection rate a.
  • a predetermined change width b is added to the injection rate a.
  • Step 2, Step 3, Step 4, and Step 5 are repeated to obtain a new numerical analysis value X, and the flocculant injection is performed based on the new numerical analysis value X. It is determined whether the rate is appropriate.
  • the determining step of the injection rate of the flocculant is completed.
  • Step 5 As a method of determining whether or not the injection rate of the flocculant is appropriate in Step 5, an absolute value of a difference between the numerical analysis value and a predetermined target value is obtained, and the absolute value of this difference is determined in advance. When the value is smaller than the value, there is a method of determining that the injection rate of the flocculant is appropriate. If the absolute value of the difference between the numerical analysis value and the target value is equal to or greater than the allowable value, the flocculant injection rate is changed and the flocculant injection process, stirring process, optical measurement process, and numerical analysis process are performed. Try again. Then, until the absolute value of the difference between the numerical analysis value and the target value obtained is smaller than the allowable value, the flocculant injection process, stirring process, optical measurement process, numerical analysis process, Change and repeat.
  • An absolute value of the difference between the numerical analysis value described above and a predetermined target value is obtained, and a process for determining an appropriate injection rate of the flocculant by comparing the absolute value of this difference with an allowable value is shown.
  • a flow chart is shown in FIG. As shown in FIG. 6, an injection rate a is set (step 1), and at this injection rate a, the flocculant is injected into the stock solution containing suspended solids, and the stock solution is fasted together with the flocculant to form a floc.
  • Stir step 2
  • Optical measurements are performed on the stirred stock solution (step 3).
  • Numerical analysis is performed on the optical measurement value obtained by the optical measurement, and a numerical analysis value X is obtained (step 4).
  • step 5 Based on the numerical analysis value X obtained by numerical analysis, it is determined whether or not the injection rate of the flocculant is appropriate (step 5).
  • step 5 the absolute value of the difference between the predetermined target value Xt and the numerical analysis value X is calculated, and the absolute value of this difference is compared with a preset allowable value m.
  • Step 6 When the absolute value of the difference between the predetermined target value Xt and the numerical analysis value X is greater than or equal to the allowable value m, it is determined that the flocculant injection rate is not appropriate, and the flocculant injection rate a is changed.
  • step 6 when the appropriate injection rate is determined by gradually decreasing the injection rate from the high injection rate, the predetermined change width b is subtracted from the injection rate a.
  • step 2 Step 3, Step 4 and Step 5 are repeated with this changed injection rate a to obtain a new numerical analysis value X.
  • the injection rate of the flocculant It is determined again whether or not is appropriate.
  • the absolute value of the difference between the predetermined target value Xt and the numerical analysis value X is smaller than the allowable value m, that is, when the injection rate of the flocculant is appropriate, the determination process of the flocculant injection rate ends. .
  • a plurality of injection rates are set in advance. At each of a plurality of preset injection rates, the flocculant is injected into the stock solution containing suspended solids, and the stock solution is stirred at a high speed together with the flocculant to form a floc. Then, the stock solution stirred at each of the plurality of injection rates is subjected to optical measurement, and a plurality of numerical analysis values at each of the plurality of injection rates are acquired. The obtained numerical analysis values are compared, and, for example, the injection rate at which the maximum value or the minimum value is obtained is determined as an appropriate injection rate.
  • the 7 is for setting a plurality of injection rates, acquiring a plurality of numerical analysis values for each of these injection rates, and determining the appropriate injection rate of the flocculant by comparing the acquired plurality of numerical analysis values. It is a flowchart showing a process.
  • the flocculant is injected into the stock solution containing the suspended substance at the injection rate a1, and the stock solution is stirred at a high speed together with the flocculant to form a floc (step 3).
  • i n (step 6). If i is not n, 1 is added to i (step 7). For example, when i is 1, i is changed to 2, and a2 is selected as the injection rate ai.
  • the average value of the injection rate at which the largest numerical analysis value was obtained and the injection rate at which the second largest numerical analysis value was obtained may be used as the appropriate injection rate. Or it is good also considering the average value of the injection rate from which the smallest numerical analysis value was obtained, and the injection rate from which the 2nd smallest numerical analysis value was obtained as an appropriate injection rate.
  • the following method may be employed as yet another method for determining the appropriate coagulant injection rate based on the obtained numerical analysis values X1, X2,... Xn.
  • the numerical analysis values X1, X2,... Xn at the injection rates a1, a2,... An are plotted on the graph in which the vertical axis represents the numerical analysis values and the horizontal axis represents the injection rate of the flocculant.
  • An approximate expression indicating the relationship between the injection rates a1, a2,... An and the numerical analysis values X1, X2,... Xn is calculated, and based on the obtained approximate expression, an appropriate injection rate of the flocculant Can be determined.
  • the injection rate at which the peak value of the numerical analysis value is obtained can be calculated from the approximate expression, and the obtained injection rate can be set as an appropriate injection rate of the flocculant.
  • the agglomeration method described above may include a diluting step of diluting the stock solution stirred at high speed in the stirring step with a diluting solution, if necessary.
  • the dilution step is performed between the stirring step and the optical measurement step.
  • the process is performed between Step 3 and Step 4.
  • the purpose of the dilution process is to reduce the concentration of suspended matter or floc by diluting the stirred stock solution with the diluent.
  • stock solutions with a high concentration of suspended solids there is no difference between the optical measurement when floc is formed and the optical measurement when no floc is formed, and as a result, it is difficult to determine the injection rate of the flocculant.
  • the transmitted light intensity may become substantially constant.
  • the gap between the flocks can be increased, so that light is transmitted through the gap between the flocks, and as shown in FIG. Multiple peaks are measured. As a result, there is a difference between the transmitted light intensity when the floc is formed and the transmitted light intensity when the floc is not formed, and an appropriate injection rate can be determined.
  • the diluent pure water, tap water, industrial water, ground water, treated water for various wastewater treatment, seawater, and the like can be used.
  • the corrected injection rate may be determined by multiplying the obtained appropriate injection rate by a correction coefficient.
  • this corrected injection rate is used as the injection rate of the flocculant injected into the stock solution containing suspended solids.
  • the step of determining the corrected injection rate is performed after an appropriate injection rate is determined in the injection rate determination step. For example, when it is desired to suppress the running cost of the flocculant, an appropriate injection rate obtained in the injection rate determination step may be multiplied by a correction coefficient of 0.9. When it is desired to increase the dewatering efficiency in the dewatering step performed after the aggregation step, the appropriate injection rate obtained in the injection rate determining step may be multiplied by a correction coefficient of 1.1.
  • the stock solution containing suspended solids, into which the flocculant is injected is stirred at a high speed rotation in which the rotation speed of the stirring blade is 500 min ⁇ 1 or more.
  • the flocculant is instantaneously dispersed in the stock solution, and the flocculant is efficiently and uniformly mixed with the stock solution.
  • the suspended substance contained in the stock solution is efficiently aggregated.
  • the control device to be described later determines that the floc is growing properly from the numerical analysis value obtained by numerical analysis of the optical measurement value.
  • the appropriate injection rate of the flocculant can be determined with high accuracy.
  • the amount of the flocculant used can be reduced.
  • the injection rate of the flocculant can be appropriately controlled without the experience and intuition of the operator.
  • the properties of the stock solution containing the suspended material for example, the concentration of the suspended material in the stock solution
  • the injection rate of the flocculant can be controlled appropriately.
  • the flocculant is dispersed in the stock solution by stirring at a normal speed in which the rotation speed of the stirrer of the stirrer is set to about 10 to 300 min ⁇ 1. Is difficult.
  • the flocculant can be uniformly dispersed in the stock solution by high-speed stirring in which the rotation speed of the stirring blade is 500 min ⁇ 1 or more. Can be determined.
  • the flocculant since the flocculant can be instantaneously dispersed in the stock solution and flocs can be formed in a short time, the appropriate injection rate of the flocculant can be determined more quickly.
  • FIG. 8 is a schematic view showing an embodiment of the aggregating apparatus of the present invention.
  • the aggregating apparatus shown in FIG. 8 has a configuration in which a stock solution storage tank 10, a high-speed stirrer 1, and an optical measuring device 3 are connected in series in this order.
  • the stock solution storage tank 10 stores a stock solution containing suspended solids.
  • the high-speed stirrer 1 includes a high-speed stirring tank 2 to which a stock solution containing suspended solids is supplied, a high-speed stirring blade 8 that stirs the stock solution containing suspended solids, and a high-speed motor 9 as a drive device that rotates the high-speed stirring blade 8. With.
  • a supply source pipe 18 extending from the stock solution storage tank 10 is connected to the high speed stirring tank 2 of the high speed stirrer 1, and the stock solution stored in the stock solution storage tank 10 is supplied to the high speed stirring tank 2 at a predetermined flow rate.
  • a supply device 7 is arranged.
  • the supply device 7 is, for example, a pump, a valve, or a combination of a pump and a valve.
  • a discharge pipe 28 through which the stock solution discharged from the high-speed stirring tank 2 flows is connected to the high-speed stirring tank 2, and the optical measuring device 3 is disposed in the discharge pipe 28.
  • the optical measuring device 3 is, for example, a measuring device that measures the above-described transmitted light intensity or a measuring device that measures scattered light intensity.
  • An optical measurement device that measures transmitted light intensity and an optical measurement device that measures scattered light intensity may be arranged in series.
  • the optical measuring device 3 may be a measuring device capable of measuring transmittance, intensity of diffracted light, intensity of diffracted / scattered light, absorbance, intensity of reflected light, and the like.
  • a flocculant storage tank 11 for storing the flocculant is provided, and a flocculant supply pipe 26 extending from the flocculant storage tank 11 is connected to the high-speed stirring tank 2.
  • the flocculant supply pipe 26 is provided with the flocculant injection device 4.
  • the flocculant injection device 4 is a device that injects the flocculant at a predetermined injection rate into the stock solution containing suspended solids.
  • the flocculant injection device 4 is, for example, a pump, a valve, or a combination of a pump and a valve.
  • the stock solution containing suspended solids is supplied from the stock solution storage tank 10 to the high-speed stirring tank 2 by the supply device 7.
  • the flocculant is supplied to the high-speed stirring tank 2 by the flocculant injection device 4.
  • the high-speed agitation tank 2 the stock solution and the flocculant are mixed at a high-speed rotation in which the rotation speed of the high-speed agitation blade 8 is 500 min ⁇ 1 or more, thereby forming suspended matter flocs.
  • the suspended substance flocs may not be formed. That is, in the high-speed stirrer 1, the high-speed stirring blade 8 is rotated at a high speed to form a suspended substance floc, but depending on the injection rate of the flocculant, the suspended substance floc may not be formed.
  • a numerical analysis device 5 is electrically connected to the optical measurement device 3, and a control device 6 is electrically connected to the numerical analysis device 5.
  • the numerical analysis device 5 may be incorporated in the control device 6.
  • the control device 6 is electrically connected to the flocculant injection device 4.
  • the optical measurement value obtained from the optical measurement device 3 is sent to the numerical analysis device 5 as described above.
  • the numerical analysis device 5 numerically analyzes the optical measurement value and acquires the numerical analysis value.
  • the obtained numerical analysis value is sent to the control device 6.
  • the control device 6 determines an appropriate injection rate of the flocculant based on the numerical analysis value by the method as described above.
  • FIG. 9 is a schematic view showing another embodiment of the aggregating apparatus of the present invention.
  • the coagulant supply pipe 26 that supplies the coagulant is connected to the supply source pipe 18 and is not connected to the high-speed stirring tank 2. Since the other configuration is the same as that of the embodiment shown in FIG. 8, the corresponding components are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the flocculant is injected into the supply source pipe 18 disposed on the upstream side of the high-speed stirring tank 2.
  • the flocculant injected into the stock solution containing the suspended solids may be injected into the high-speed stirring tank 2 as shown in FIG. 8, or more than the high-speed stirring tank 2 as shown in FIG. You may inject
  • FIG. 10 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention.
  • a line mixer is employed as the high-speed stirrer 1. Since the other configuration is the same as that of the embodiment shown in FIG. 9, the corresponding components are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the line mixer 1 is a mixer incorporated in a pipe.
  • the advantage of the line mixer 1 is that the line mixer 1 is hermetically sealed. Therefore, if there are two pumps, that is, a supply device 7 disposed upstream of the line mixer 1 and a flocculant injection device 4, the line mixer 1 It is a point which can send undiluted
  • FIG. 11 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention.
  • an aggregating tank agitator 12 different from the high-speed agitator 1 described so far is provided.
  • the agglomeration tank agitator 12 is a conventionally used agitator, and the rotation speed of the agitation blade of the agglomeration tank agitator 12 is set to a normal speed of about 10 to 300 min ⁇ 1 .
  • the supply source pipe 18 extending from the stock solution storage tank 10 branches into a first supply pipe 19 connected to the high-speed stirrer 1 and a second supply pipe 25 connected to the coagulation tank stirrer 12.
  • the high-speed stirrer 1, the supply device 7, the optical measurement device 3, the flocculant injection device 4, and the flocculant supply pipe 26 are the same as those in the embodiment shown in FIG. Thus, detailed description thereof is omitted.
  • the supply device 7 is referred to as a first supply device 7
  • the flocculant injection device 4 is referred to as a first flocculant injection device
  • the flocculant supply pipe 26 is referred to as a first flocculant supply pipe.
  • the agglomeration tank agitator 12 is a coagulation agitation tank 37 to which a stock solution containing a suspended substance is supplied, a coagulation tank agitation blade 38 for agitating the stock solution containing a suspended substance, and a drive device that rotates the agglomeration tank agitation blade 38.
  • a coagulation tank motor 39 is provided.
  • a second supply pipe 25 is connected to the coagulation agitation tank 37 of the coagulation tank agitator 12, and the second supply pipe 25 supplies a stock solution containing suspended solids to the aggregation agitation tank 37 at a predetermined flow rate.
  • Two supply devices 35 are arranged.
  • the second supply device 35 is, for example, a pump, a valve, or a combination of a pump and a valve.
  • the first supply pipe 19 branches from between the stock solution storage tank 10 and the second supply apparatus 35, but the second supply apparatus 35 and the agglomeration stirring tank 37. You may branch from between.
  • the first supply pipe 19 may be directly connected to the stock solution storage tank 10. In this case, the supply source pipe 18 is omitted.
  • a second flocculant supply pipe 36 extending from the flocculant storage tank 11 for storing the flocculant is connected to the flocculant stirring tank 37.
  • a second flocculant injection device 45 is disposed in the second flocculant supply pipe 36.
  • the second flocculant injection device 45 is a device that injects the flocculant into the stock solution containing the suspended substance at a predetermined injection rate.
  • the flocculant injection device 45 is, for example, a pump, a valve, or a combination of a pump and a valve.
  • the flocculant storage tank 11 is also connected to the high-speed stirring tank 2 via the first flocculant supply pipe 26. In the embodiment shown in FIG.
  • the first flocculant supply pipe 26 is directly connected to the flocculant storage tank 11, but from between the flocculant storage tank 11 and the second flocculant injection device 45. It may branch off. Alternatively, the first flocculant supply pipe 26 may be branched from between the second flocculant injection device 45 and the flocculant stirring tank 37.
  • a second discharge pipe 46 through which the stock solution discharged from the coagulation stirring tank 37 flows is connected to the coagulation stirring tank 37, and the dehydrator 14 is connected to the downstream side of the second discharge pipe 46.
  • the dehydrator 14 dehydrates the stock solution in which flocks are formed, and separates it into a filtrate and a cake. The cake is recovered from the dehydrator 14.
  • a numerical analysis device 5 is electrically connected to the optical measurement device 3 arranged on the downstream side of the high-speed stirrer 1, and a control device 6 is electrically connected to the numerical analysis device 5.
  • the numerical analysis device 5 may be incorporated in the control device 6.
  • the control device 6 is electrically connected to the first flocculant injection device 4 and the second flocculant injection device 45.
  • the first supply device 7 is operated to supply a stock solution containing suspended solids to the high-speed stirrer 1.
  • the stock solution stirred at high speed by the high-speed stirrer 1 is sent to the optical measuring device 3.
  • the optical measuring device 3 performs an optical measurement of the stock solution stirred at a high speed to obtain an optical measurement value.
  • the optical measurement value obtained from the optical measurement device 3 is sent to the numerical analysis device 5 as described above.
  • the numerical analysis device 5 numerically analyzes the optical measurement value and acquires the numerical analysis value.
  • the obtained numerical analysis value is sent to the control device 6.
  • the control device 6 determines an appropriate injection rate of the flocculant based on the numerical analysis value by the method as described above.
  • the determined injection rate is sent to the second flocculant injection device 45. Then, the first supply device 7 is stopped and the second supply device 35 is operated. Thereby, the stock solution stored in the stock solution storage tank 10 is supplied to the agglomeration tank agitator 12.
  • the injection rate of the flocculant injected into the coagulation tank agitator 12 is the injection rate determined previously. In this way, the flocculant is injected into the stock solution at an appropriate injection rate, and flocs are formed in the stock solution.
  • the stock solution containing the flock is sent to the dehydrator 14 and dehydrated by the dehydrator 14.
  • FIG. 12 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention.
  • a settling tank 20 is provided instead of the dehydrator 14. Since the other configuration is the same as that of the embodiment shown in FIG. 11, the corresponding components are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the floc in the undiluted solution supplied to the settling tank 20 settles toward the bottom of the settling tank 20 due to its own weight, so that the undiluted solution containing the floc is a concentrated undiluted solution in which the floc exists at a high concentration (for example, concentrated sludge) And the processed liquid without floc.
  • a high concentration for example, concentrated sludge
  • FIG. 13 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention.
  • a coagulation tank agitator 21 different from the coagulation tank agitator 12 is connected to the coagulation tank agitator 12 in series with the coagulation tank agitator 12.
  • the agglomeration tank agitator 12 is referred to as a first agglomeration tank agitator 12
  • the agglomeration tank agitator 21 is referred to as a second agglomeration tank agitator 21.
  • the second agglomeration tank stirrer 21 is a conventionally used agitator, and the rotation speed of the stirring blades of the agglomeration tank agitator 21 is set to a normal speed of about 10 to 300 min ⁇ 1 .
  • Other configurations that are not particularly described are the same as those of the embodiment shown in FIG. 12, and therefore, corresponding components are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the second agglomeration tank agitator 21 of the embodiment shown in FIG. 13 includes a second agglomeration agitation tank 47 to which the stock solution in which flocks are formed by the first agglomeration tank agitator 12 is supplied, and a second agitation tank agitation 2 agglomeration tank agitation blades 48 and a second agglomeration tank motor 49 as a driving device for rotating the second agglomeration tank agitation blades 48.
  • the second aggregation stirring tank 47 is adjacent to the first aggregation stirring tank 37, and the second aggregation stirring tank 47 is directly connected to the first aggregation stirring tank 37.
  • a second flocculant different from the first flocculant supplied to the high-speed agitation tank 2 and the first agglomeration agitation tank 37 is supplied to the second agglomeration agitation tank 47.
  • the second flocculant is stored in the second flocculant storage tank 23.
  • a third flocculant supply pipe 52 for supplying the second flocculant from the second flocculant reservoir 23 to the second flocculent agitation tank 47 is provided from the second flocculant reservoir 23 to the second flocculant agitation tank. 47.
  • the third flocculant supply pipe 52 is provided with a third flocculant injection device 53, and the second flocculant is injected into the second flocculant stirring tank at a predetermined injection rate by the third flocculant injection device 53. 47 is injected.
  • the third flocculant injection device 53 is, for example, a pump, a valve, or a combination of a pump and a valve.
  • an inorganic flocculant is used as the first flocculant.
  • a polymer flocculant is used as the second flocculant.
  • an inorganic flocculant the surface charge of the suspended material is neutralized, thereby forming fine flocs.
  • the polymer flocculant is used, the surface charge of the suspended substance is neutralized, and a larger floc is formed by the adsorption action and the crosslinking action of the polymer flocculant. Therefore, by using these two different flocculants, a strong floc with good filterability can be formed.
  • FIG. 14 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention.
  • Other configurations that are not particularly described are the same as those of the embodiment shown in FIG. 13, and therefore, the corresponding components are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a second coagulation tank agitator 21 is connected in series with the first coagulation tank agitator 12.
  • the first flocculating tank stirrer 12 and the second flocculating tank stirrer 21 are connected by a connection pipe 55, and a third supply pipe 57 extending to the high speed stirrer 1 is branched from the connection pipe 55.
  • the second flocculant is supplied from the second flocculant storage tank 23 to the high-speed stirrer 1. Therefore, the stock solution measured by the optical measuring device 3 is a stock solution in which the first flocculant and the second flocculant are injected and stirred at a high speed. The appropriate injection rate of the second flocculant is determined by the control device 6.
  • the first flocculating tank stirrer 12 and the second flocculating tank stirrer 21 are connected by a connection pipe 55.
  • a third supply pipe 57 extending to the high speed stirrer 1 is branched from the connection pipe 55.
  • a third supply device 56 is arranged on the downstream side of the connection pipe 55 where the third supply pipe 57 is branched.
  • the third supply device 56 is, for example, a pump, a valve, or a combination of a pump and a valve.
  • the third supply pipe 57 is branched from between the first agglomeration stirring tank 37 and the third supply device 56, but the third supply device 56 You may branch from between the 2nd aggregation stirring tank 47.
  • the third supply pipe 57 may be directly connected to the first aggregation stirring tank 37.
  • a fourth flocculant supply pipe 58 extends from the second flocculant storage tank 23 in which the second flocculant is stored, and the fourth flocculant supply pipe 58 is connected to the high-speed stirrer 1. .
  • the fourth flocculant supply pipe 58 is provided with the first flocculant injection device 4.
  • a third flocculant supply pipe 52 for supplying the second flocculant from the second flocculant storage tank 23 to the second flocculant stirring tank 47 is provided from the second flocculant storage tank 23 to the second flocculant. It extends to the stirring tank 47.
  • the third flocculant supply pipe 52 is provided with a third flocculant injection device 53, and the second flocculant is injected into the second flocculant stirring tank at a predetermined injection rate by the third flocculant injection device 53. 47 is injected.
  • the fourth flocculant supply pipe 58 is directly connected to the second flocculant reservoir 23, but the second flocculant reservoir 23 and the third flocculant injection You may branch from between the apparatuses 53.
  • FIG. Alternatively, the fourth flocculant supply pipe 58 may be branched from between the third flocculant injection device 53 and the second flocculent stirring tank 47.
  • a numerical analysis device 5 is electrically connected to the optical measurement device 3 arranged on the downstream side of the high-speed stirrer 1, and a control device 6 is electrically connected to the numerical analysis device 5.
  • the numerical analysis device 5 may be incorporated in the control device 6.
  • the control device 6 is electrically connected to the first flocculant injection device 4 and the third flocculant injection device 53.
  • the second supply device 35 and the first supply device 7 are operated to supply the stock solution containing suspended solids to the first flocculation tank agitator 12 and the high-speed agitator 1.
  • the stock solution stirred to form flocs in the first flocculating tank stirrer 12 is supplied to the high speed stirrer 1 and mixed with the second flocculant in the high speed stirrer 1.
  • the stock solution stirred at high speed by the high-speed stirrer 1 is sent to the optical measuring device 3.
  • the optical measuring device 3 performs an optical measurement of the stock solution stirred at a high speed to obtain an optical measurement value.
  • the optical measurement value obtained from the optical measurement device 3 is sent to the numerical analysis device 5 as described above.
  • the numerical analysis device 5 numerically analyzes the optical measurement value and acquires the numerical analysis value.
  • the obtained numerical analysis value is sent to the control device 6.
  • the control device 6 determines an appropriate injection rate of the second flocculant based on the numerical analysis value by the method as described above.
  • the determined injection rate of the second flocculant is sent to the third flocculant injection device 53.
  • the first supply device 7 is stopped and the third supply device 56 is operated. That is, the supply devices that operate are the second supply device 35 and the third supply device 56.
  • the stock solution stored in the stock solution storage tank 10 is supplied to the first flocculation tank stirrer 12 and the second flocculation tank stirrer 21.
  • the injection rate of the second flocculant injected from the second flocculant storage tank 23 into the second flocculant stirrer 21 is the injection rate determined previously. Thereby, the injection rate of the second flocculant injected into the stock solution containing the suspended substance is automatically controlled.
  • An appropriate floc is formed by injecting the second flocculant at an appropriate injection rate.
  • the stock solution containing floc is sent to the precipitation tank 20 and separated into a processed solution and a concentrated stock solution.
  • the third supply device 56 can be omitted.
  • a height difference is provided between the first flocculating tank stirrer 12 and the second flocculating tank stirrer 21.
  • the stock solution is supplied from the first agglomeration tank agitator 12 to the second agglomeration tank agitator 21 (natural flow method).
  • FIG. 15 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention.
  • the aggregating apparatus shown in FIG. 15 is an embodiment in which the aggregating apparatus shown in FIG. 13 is combined with the configuration of the aggregating apparatus shown in FIG. That is, the aggregating apparatus shown in FIG. 15 can determine an appropriate injection rate of the first flocculant and an appropriate injection rate of the second flocculant.
  • Other configurations that are not particularly described are the same as those in the embodiment shown in FIGS. 13 and 14, and thus the corresponding components are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the flocculant includes the high-speed stirrer 1 as described above. Further, in order to determine an appropriate injection rate of the second aggregating agent, the aggregating apparatus includes a high-speed agitator 60.
  • the high-speed stirrer 1 is referred to as the first high-speed stirrer 1
  • the high-speed stirrer 60 is referred to as the second high-speed stirrer 60.
  • the flocculant has the first high-speed stirrer 1, the first optical measuring device 3, the first numerical value as described above.
  • An analysis device 5 and a first control device 6 are provided.
  • a first supply pipe 19 for supplying the stock solution to the first high-speed stirrer 2 of the first high-speed stirrer 1 is branched from the supply source pipe 18 and extends to the first supply pipe 19.
  • the supply device 7 is arranged.
  • the stock solution containing suspended solids is supplied to the first high-speed stirring tank 2 by the first supply device 7.
  • a first discharge pipe 28 through which the stock solution discharged from the high-speed stirring tank 2 flows is connected to the high-speed stirring tank 2, and the first optical measuring device 3 is arranged in the first discharge pipe 28.
  • the first optical measurement device 3 is, for example, the above-described measurement device that measures the transmitted light intensity or the measurement device that measures the scattered light intensity.
  • An optical measurement device that measures transmitted light intensity and an optical measurement device that measures scattered light intensity may be arranged in series.
  • the optical measuring device 3 may be a measuring device capable of measuring transmittance, intensity of diffracted light, intensity of diffracted / scattered light, absorbance, intensity of reflected light, and the like.
  • a first flocculant storage tank 11 for storing the first flocculant is provided, and a first flocculant supply pipe 26 extending from the first flocculant storage tank 11 is connected to the first high-speed stirring tank 2.
  • a first flocculant injection device 4 is disposed in the first flocculant supply pipe 26.
  • the first flocculant injection device 4 is a device that injects the first flocculant at a predetermined injection rate into a stock solution containing suspended solids.
  • the first flocculant injection device 4 is, for example, a pump, a valve, or a combination of a pump and a valve.
  • the second flocculant supply pipe 36 extending from the first flocculant storage tank 11 is connected to the first flocculant agitation tank 37 of the first agglomeration tank agitator 12.
  • a second flocculant injection device 45 is disposed in the second flocculant supply pipe 36.
  • the second flocculant injection device 45 is a device for injecting the first flocculant at a predetermined injection rate into the stock solution containing suspended solids.
  • the second flocculant injection device 45 is, for example, a pump, a valve, or a combination of a pump and a valve. In the embodiment shown in FIG.
  • the first flocculant supply pipe 26 is directly connected to the first flocculant reservoir 11, but the first flocculant reservoir 11 and the second flocculant injection You may branch from between the apparatuses 45. Alternatively, the first flocculant supply pipe 26 may be branched from between the second flocculant injection device 45 and the first flocculant stirring tank 37.
  • a first numerical analysis device 5 is electrically connected to the first optical measurement device 3, and a first control device 6 is electrically connected to the first numerical analysis device 5.
  • the first numerical analysis device 5 may be incorporated in the first control device 6.
  • the first controller 6 is electrically connected to the first flocculant injection device 4 and the second flocculant injection device 45.
  • a second flocculating tank stirrer 21 is connected in series with the first flocculating tank stirrer 12.
  • the first agglomeration tank agitator 12 and the second agglomeration tank agitator 21 are connected by a connection pipe 55, and a third supply pipe 57 extending to the second high-speed agitator 60 is branched from the connection pipe 55.
  • the second high-speed stirrer 60 includes a second high-speed stirring tank 61 to which a stock solution containing suspended solids is supplied, a second high-speed stirring blade 62 that stirs the stock solution containing suspended solids, and a second high-speed stirring. And a second high-speed motor 63 as a driving device for rotating the blades 62.
  • a third supply pipe 57 is connected to the second high-speed stirring tank 61 of the second high-speed stirrer 60, and the third supply pipe 57 is supplied with a stock solution containing suspended solids at a predetermined flow rate.
  • a fourth supply device 65 that supplies the high-speed stirring tank 61 is disposed.
  • the fourth supply device 65 is, for example, a pump, a valve, or a combination of a pump and a valve.
  • the third supply pipe 57 is branched from between the first agglomeration stirring tank 37 and the third supply device 56. You may branch from between the 2nd aggregation stirring tank 47. Alternatively, the third supply pipe 57 may be directly connected to the first aggregation stirring tank 37.
  • the second flocculating agent 47 is supplied to the second flocculating and stirring tank 47, which is different from the first flocculating agent supplied to the first high-speed stirring tank 2 and the first flocculating and stirring tank 37.
  • the second flocculant is stored in the second flocculant storage tank 23.
  • a third flocculant supply pipe 52 for supplying the second flocculant from the second flocculant reservoir 23 to the second flocculent agitation tank 47 is provided from the second flocculant reservoir 23 to the third high-speed agitation tank. 47.
  • the third flocculant supply pipe 52 is provided with a third flocculant injection device 53, and the second flocculant is injected into the second flocculant stirring tank at a predetermined injection rate by the third flocculant injection device 53. 47 is injected.
  • the third flocculant injection device 53 is, for example, a pump, a valve, or a combination of a pump and a valve.
  • the fourth flocculant supply pipe 58 extends from the second flocculant storage tank 23 to the second high-speed agitation tank 61 of the second high-speed agitator 60.
  • a fourth flocculant injection device 66 is disposed in the fourth flocculant supply pipe 58.
  • the fourth flocculant injecting device 66 injects the second flocculant into the second high-speed stirring tank 61 at a predetermined injection rate.
  • the fourth flocculant injection device 66 is, for example, a pump, a valve, or a combination of a pump and a valve. In the embodiment shown in FIG.
  • the fourth flocculant supply pipe 58 is directly connected to the second flocculant reservoir 23, but the second flocculant reservoir 23 and the third flocculant injection You may branch from between the apparatuses 53.
  • a third discharge pipe 69 through which the stock solution discharged from the second high-speed stirring tank 61 flows is connected to the second high-speed stirring tank 61, and the third discharge pipe 69 has a second optical measurement.
  • a device 68 is arranged.
  • the second optical measuring device 68 disposed on the downstream side of the second high-speed stirrer 60 has the same configuration as the first optical measuring device 3, and for example, a measuring device that measures the above-described transmitted light intensity. Alternatively, a measuring device that measures scattered light intensity can be used.
  • a second numerical analysis device 70 is electrically connected to the second optical measurement device 68, and a second control device 71 is electrically connected to the second numerical analysis device 70.
  • the second numerical analysis device 70 may be incorporated in the second control device 71.
  • the second control device 71 is electrically connected to the third flocculant injection device 53 and the fourth flocculant injection device 66.
  • the first supply device 7 is operated to supply a stock solution containing suspended substances in the stock solution storage tank 10 to the first high-speed stirrer 1.
  • the first flocculant is supplied to the first high-speed stirring tank 2 of the first high-speed stirrer 1 by the first flocculant injection device 4.
  • the stock solution and the flocculant are mixed at a high-speed rotation in which the rotation speed of the first high-speed stirring blade 8 is 500 min ⁇ 1 or more.
  • the stock solution stirred at high speed by the first high-speed stirrer 1 is sent to the first optical measuring device 3.
  • the first optical measuring device 3 performs an optical measurement of the stock solution stirred at high speed, and acquires an optical measurement value.
  • the optical measurement value obtained from the first optical measurement device 3 is sent to the first numerical analysis device 5 as described above.
  • the first numerical analysis device 5 performs numerical analysis on the optical measurement value and acquires a numerical analysis value.
  • the obtained numerical analysis value is sent to the first control device 6.
  • the first control device 6 determines an appropriate injection rate of the first flocculant based on the numerical analysis value by the method as described above.
  • the determined injection rate of the first flocculant is sent from the first control device 6 to the second flocculant injection device 45. Then, the first supply device 7 is stopped, and the second supply device 35 and the fourth supply device 65 are operated.
  • the stock solution in the stock solution storage tank 10 is sent to the first agglomeration tank stirrer 12.
  • a first flocculant is injected into the first aggregating tank agitator 12 at the injection rate determined as described above, and the flocculant is mixed with the stock solution, whereby flocs are primarily formed.
  • the stock solution containing flocs primarily formed using the first flocculant is supplied to the second high-speed stirrer 60 by the fourth supply device 65.
  • the second flocculant is supplied to the second high-speed stirring tank 61 of the second high-speed stirrer 60 by the fourth flocculant injection device 66.
  • the stock solution and the second aggregating agent are mixed at a high-speed rotation in which the rotation speed of the second high-speed stirring blade 62 is 500 min ⁇ 1 or more.
  • the stock solution stirred at high speed by the second high speed stirrer 60 is sent to the second optical measuring device 68.
  • the second optical measuring device 68 performs an optical measurement of the stock solution stirred at a high speed by the second high-speed stirrer 60 and acquires an optical measurement value.
  • the optical measurement value obtained from the second optical measurement device 68 is sent to the second numerical analysis device 70 as described above.
  • the second numerical analysis device 70 performs numerical analysis on the optical measurement value and acquires a numerical analysis value.
  • the obtained numerical analysis value is sent to the second control device 71.
  • the second control device 71 determines an appropriate injection rate of the second flocculant based on the numerical analysis value by the method as described above.
  • the determined injection rate of the second flocculant is sent from the second control device 71 to the third flocculant injection device 53. Then, the fourth supply device 65 is stopped and the third supply device 56 is operated. In other words, the supply devices that operate are the second supply device 35 and the third supply device 56. Thereby, the stock solution stored in the stock solution storage tank 10 is supplied to the first flocculation tank stirrer 12 and the second flocculation tank stirrer 21.
  • the injection rate of the first coagulant injected into the first coagulation tank agitator 12 is the injection rate determined in advance.
  • the injection rate of the second flocculant injected into the second aggregating tank stirrer 21 is the previously determined injection rate.
  • the injection rates of the first flocculant and the second flocculant injected into the stock solution containing the suspended substance are automatically controlled.
  • an appropriate floc is formed in the stock solution.
  • the stock solution containing the flock is sent to the precipitation tank 20 and separated into a treated solution and a concentrated stock solution.
  • the third supply device 56 can be omitted.
  • a height difference is provided between the first flocculating tank stirrer 12 and the second flocculating tank stirrer 21.
  • the stock solution is supplied from the first agglomeration tank agitator 12 to the second agglomeration tank agitator 21 (natural flow method).
  • FIG. 16 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention.
  • the aggregating apparatus shown in FIG. 16 has a configuration in which a stock solution storage tank 10, a high-speed agitator 1, an optical measuring device 3, an aggregating tank agitator 12, and a dehydrator 14 are connected in this order.
  • the stock solution storage tank 10 stores a stock solution containing suspended solids.
  • a supply source pipe 18 extending from the stock solution storage tank 10 is connected to the high speed stirring tank 2 of the high speed stirrer 1, and the stock solution stored in the stock solution storage tank 10 is supplied to the high speed stirring tank 2 at a predetermined flow rate.
  • a supply device 7 is arranged.
  • a flocculant storage tank 11 for storing the flocculant is provided, and a first flocculant supply pipe 26 extending from the flocculant storage tank 11 is connected to the supply source pipe 18.
  • the flocculant injection device 4 is disposed in the first flocculant supply pipe 26.
  • the flocculant injection device 4 is a device that injects the flocculant at a predetermined injection rate into the stock solution containing suspended solids.
  • a second flocculant supply pipe 36 extending from the flocculant storage tank 11 is connected to the flocculant agitation tank 37.
  • a second flocculant injection device 45 is disposed in the second flocculant supply pipe 36.
  • the second flocculant injection device 45 is a device that injects the flocculant into the stock solution containing the suspended substance at a predetermined injection rate.
  • the second flocculant supply pipe 36 is directly connected to the flocculant storage tank 11, but from between the flocculant storage tank 11 and the first flocculant injection device 4. It may branch off. Alternatively, the second flocculant supply pipe 36 may be branched from between the first flocculant injection device 4 and the supply source pipe 18.
  • the high-speed stirrer 1 and the coagulation tank stirrer 12 are connected in series by a connection pipe 55, and the optical measuring device 3 is arranged in the connection pipe 55. Therefore, the stock solution measured by the optical measuring device 3 is a stock solution stirred at high speed by the high-speed stirrer 1.
  • the stock solution stirred at high speed by the high-speed stirrer 1 is supplied to the coagulation tank stirrer 12.
  • the stock solution supplied to the aggregation stirring tank 37 of the aggregation tank agitator 12 is mixed with the aggregation agent supplied from the aggregation agent storage tank 11 in the aggregation stirring tank 37.
  • a second discharge pipe 46 through which the stock solution discharged from the coagulation stirring tank 37 flows is connected to the coagulation stirring tank 37, and the dehydrator 14 is connected to the downstream side of the second discharge pipe 46.
  • the dehydrator 14 dehydrates the stock solution in which flocks are formed, and separates it into a filtrate and a cake. The cake is recovered from the dehydrator 14.
  • a numerical analysis device 5 is electrically connected to the optical measurement device 3, and a control device 6 is electrically connected to the numerical analysis device 5.
  • the numerical analysis device 5 may be incorporated in the control device 6.
  • the control device 6 is electrically connected to the first flocculant injection device 4 and the second flocculant injection device 45.
  • the optical measurement value obtained from the optical measurement device 3 is sent to the numerical analysis device 5 as described above.
  • the numerical analysis device 5 numerically analyzes the optical measurement value and acquires the numerical analysis value.
  • the obtained numerical analysis value is sent to the control device 6.
  • the control device 6 determines an appropriate injection rate of the flocculant based on the numerical analysis value by the method as described above.
  • the injection rate determined by the control device 6 is sent to the first coagulant injection device 4 and the second coagulant injection device 45.
  • the first flocculant injection device 4 and the second flocculant injection device 45 inject the flocculant into the stock solution containing the suspended substance at the determined injection rate.
  • the injection rate determined by the control device 6 may be the injection rate of the flocculant injected by the first flocculant injection device 4 or the flocculant injected by the second flocculant injection device 45. It is good also as an injection rate. Further, the injection rate determined by the control device 6 is the sum of the injection rate of the flocculant injected by the first flocculant injection device and the injection rate of the flocculant injected by the second flocculant injection device 45. It is good also as an injection rate.
  • FIG. 17 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention.
  • a settling tank 20 is provided instead of the dehydrator 14. Since the other configuration is the same as that of the embodiment shown in FIG. 16, the corresponding components are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the floc in the undiluted solution supplied to the settling tank 20 settles toward the bottom of the settling tank 20 due to its own weight, so that the undiluted solution containing the floc is a concentrated undiluted solution in which the floc exists at a high concentration (for example, concentrated sludge) And the processed liquid without floc.
  • a high concentration for example, concentrated sludge
  • FIG. 18 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention.
  • the fifth supply pipe 80 is branched from the connection pipe 55, and the optical measurement apparatus 3 and the first solution for supplying the stock solution to the optical measurement apparatus 3 are supplied to the fifth supply pipe 80.
  • 5 supply devices 81 are arranged.
  • the fifth supply device 81 is, for example, a pump, a valve, or a combination of a pump and a valve. Since the other configuration is the same as that of the embodiment shown in FIG. 16, the corresponding components are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the first supply device 7 and the fifth supply device 81 are operated, and the stock solution mixed with the flocculant by the high-speed stirrer 1 is supplied to the optical measurement device 3.
  • the optical measurement value obtained from the optical measurement device 3 is sent to the numerical analysis device 5 as described above.
  • the numerical analysis device 5 numerically analyzes the optical measurement value and acquires the numerical analysis value.
  • the obtained numerical analysis value is sent to the control device 6.
  • the control device 6 determines an appropriate injection rate of the flocculant based on the numerical analysis value by the method as described above.
  • the injection rate determined by the control device 6 is sent to the first coagulant injection device 4 and the second coagulant injection device 45.
  • the first flocculant injection device 4 and the second flocculant injection device 45 inject the flocculant into the stock solution containing the suspended substance at the determined injection rate. Thereby, the injection
  • the fifth supply device 81 is stopped, and the stock solution that has passed through the high-speed stirrer 1 is supplied to the coagulation tank stirrer 12.
  • the stock solution discharged from the coagulation tank stirrer 12 is supplied to the dehydrator 14 through the second discharge pipe 46, and is separated into the filtrate and the cake by the dehydrator 14.
  • FIG. 19 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention.
  • the flocculating agent supplied to the stock solution from the first flocculating agent injection device 4 is supplied to the high-speed stirring tank 2 of the high-speed stirrer 1 instead of being supplied to the supply source pipe 18.
  • the corresponding components are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 20 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention.
  • the flocculating apparatus shown in FIG. 20 instead of the flocculating agent supplied from the second flocculating agent injection device 45 to the stock solution being supplied to the flocculating stirrer tank 37 of the flocculating tank stirrer 12, the upstream side of the coagulating tank stirrer 12. Is supplied to a connecting pipe 55 arranged in Since the other configuration is the same as that of the embodiment shown in FIG. 18, the corresponding components are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 21 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention.
  • the flocculating tank stirrer 12 is omitted, and the connection pipe 55 extending from the high speed stirrer 1 is directly connected to the dehydrator 14. Further, the flocculant supplied from the second flocculant injection device 45 to the stock solution is supplied to the connection pipe 55.
  • the dehydrator 14 of this embodiment is a dehydrator having a coagulation tank function for forming a flock.
  • An example of the dehydrator 14 having a coagulation tank function is a centrifugal dehydrator.
  • FIG. 22 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention.
  • the aggregating apparatus shown in FIG. 22 has a diluent storage tank 85 that stores the diluent, and a diluent supply apparatus 86 that supplies the diluent stored in the diluent storage tank 85 to the stock solution stirred by the high-speed stirrer 1 at a predetermined flow rate. And comprising.
  • a diluent supply pipe 87 extends from the diluent storage tank 85, and this diluent supply pipe 87 is connected to the discharge pipe 28 between the high-speed stirrer 1 and the optical measuring device 3.
  • the diluent supply device 86 is disposed in the diluent supply pipe 87. Since the other configuration is the same as that of the embodiment shown in FIG. 8, the corresponding components are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the diluent supply device 86 is a device that supplies the diluent to the stock solution at a predetermined flow rate before the stock solution stirred by the high-speed stirrer 1 is supplied to the optical measuring device 3.
  • the diluent supply device 86 is, for example, a pump, a valve, or a combination of a pump and a valve.
  • the diluent is supplied from the diluent storage tank 85 to the stock solution stirred by the high-speed stirrer 1 by the diluent supply device 86.
  • the stock solution diluted with the diluent is supplied to the optical measurement device 3, and optical measurement is performed by the optical measurement device 3.
  • the concentration of suspended solids or floc can be reduced by diluting the stirred stock solution with the diluent.
  • stock solutions with a high concentration of suspended solids there is no difference between the optical measurement when floc is formed and the optical measurement when no floc is formed, and as a result, it is difficult to determine the injection rate of the flocculant.
  • the transmitted light intensity may become substantially constant.
  • the gap between the flocks can be increased, so that light is transmitted through the gap between the flocks, as shown in FIG. A plurality of transmitted light intensity peaks are measured. As a result, there is a difference between the transmitted light intensity when the floc is formed and the transmitted light intensity when the floc is not formed, and an appropriate injection rate can be determined.
  • the diluent pure water, tap water, industrial water, ground water, treated water for various wastewater treatment, seawater, and the like can be used.
  • the diluting liquid storage tank 85 and the diluting liquid supply device 86 shown in FIG. 22 may be arranged in the aggregating apparatus according to the embodiment described with reference to FIGS.
  • the diluent supply pipe 87 that extends from the diluent storage tank 85 and in which the diluent supply device 86 is disposed is the discharge pipe 28 between the high-speed stirrer 1 and the optical measuring device 3 and / or the high-speed stirrer 60.
  • the embodiment of the aggregating apparatus has been described with reference to FIGS.
  • the following method can be used to change the injection rate of the flocculant injected into the stock solution containing suspended solids supplied to the high-speed stirring tanks 2 and 61.
  • the flow rate of the flocculant injected into the stock solution from the flocculant injection devices 4 and 66 in a state where the flow rate of the stock solution supplied by the supply devices 7 and 65 is controlled to be constant, The injection rate of the flocculant injected into the stock solution containing the suspended solids to be supplied can be changed.
  • the flow rate of the stock solution supplied by the supply devices 7 and 65 is changed, so that You may change the injection
  • the flow rate of the flocculant injected into the stock solution containing suspended solids supplied to the high-speed stirring tanks 2, 61 may be changed.
  • the procedure of the first experiment is as follows. First, a flocculant is poured into a stock solution (sludge) containing suspended substances (injection step). The stock solution and the flocculant are mixed by rapidly stirring the stock solution into which the flocculant has been injected (stirring step). The transmitted light intensity of the stock solution stirred at high speed is measured to obtain an optical measurement value (optical measurement step). As a numerical analysis value of the obtained transmitted light intensity, an average value, dispersion, standard deviation, and peak area of the transmitted light intensity are calculated (numerical analysis step).
  • injection process, stirring process, optical measurement process, and numerical analysis process are repeated at different injection rates of the flocculant, and the relationship between the obtained numerical analysis values and the appropriate injection ratio is examined (injection rate determination process) .
  • injection rate determination process In order to determine an appropriate injection rate, a stock solution containing suspended solids aggregated with a flocculant was dehydrated with a dehydrator, and the moisture content of the obtained dehydrated cake was used as an index.
  • the stock solution containing suspended solids used in the first experiment is sludge A.
  • Sludge A is an anaerobic digested sludge from a sewage treatment plant.
  • the TS (Total Solids) of sludge A was 13.2 g / L.
  • TS is an evaporation residue and is a concentration of a substance remaining when the sludge A is evaporated to dryness at 105 to 110 ° C.
  • the measurement method conformed to the sewage test method.
  • the flocculant used in the first experiment is a cationic polymer flocculant a (DAA polymer flocculant).
  • the solution of the flocculant is an aqueous solution obtained by dissolving the flocculant in water, and the concentration of the flocculant means the concentration of the flocculant in the aqueous solution.
  • the average value of transmitted light intensity, dispersion, standard deviation, and peak area all take the maximum value when the injection rate of the flocculant is 1.1% (vs. TS).
  • the proper injection rate is 1.1% (vs. TS). From these results, it was found that the injection rate of the flocculant that can most reduce the moisture content of the cake can be determined based on the average value, the dispersion, the standard deviation, and the maximum peak area of the transmitted light intensity.
  • the injection rate of the flocculant that can reduce the moisture content of the cake can be determined based on the flocculant injection rate at which the average value, dispersion, standard deviation, and peak area values of the transmitted light intensity are maximized.
  • the procedure of the second experiment is as follows. First, a flocculant is poured into a stock solution (sludge) containing suspended substances (injection step). The stock solution and the flocculant are mixed by rapidly stirring the stock solution into which the flocculant has been injected (stirring step). The transmitted light intensity of the stock solution stirred at high speed is measured to obtain an optical measurement value (optical measurement step). As a numerical analysis value of the obtained transmitted light intensity, an average value, dispersion, standard deviation, and peak area of the transmitted light intensity are calculated (numerical analysis step).
  • injection process, stirring process, optical measurement process, and numerical analysis process are repeated at different injection rates of the flocculant, and the relationship between the obtained numerical analysis values and the appropriate injection ratio is examined (injection rate determination process) .
  • injection rate determination process In order to determine an appropriate injection rate, a stock solution containing suspended solids aggregated with a flocculant was dehydrated with a dehydrator, and the moisture content of the obtained dehydrated cake was used as an index.
  • the stock solution containing suspended solids used in the second experiment is sludge B, which is different from the sludge A used in the first embodiment.
  • Sludge B is mixed raw sludge (mixture of primary sludge and surplus sludge) in a sewage treatment plant.
  • the TS of sludge B is 14.2 g / L.
  • the measurement method conformed to the sewage test method.
  • the flocculant used in the second experiment is cationic polymer flocculant b (DAA polymer flocculant).
  • the solution of the flocculant is an aqueous solution obtained by dissolving the flocculant in water, and the concentration of the flocculant means the concentration of the flocculant in the aqueous solution.
  • a solution of the cationic polymer flocculant b was injected into sludge B (sludge flow rate 1.5 m 3 / h).
  • Sludge B into which the cationic polymer flocculant b was injected was mixed using a high-speed stirrer (stirring unit volume 0.8 L) in which the rotation speed of the stirring blade was set to 500 min- 1 .
  • the transmitted light intensity of the sludge B stirred at high speed was measured for a certain time.
  • the average value, dispersion, standard deviation, and peak area of the obtained transmitted light intensity data were calculated.
  • the average value of transmitted light intensity, dispersion, standard deviation, and peak area all take the maximum value when the injection rate of the flocculant is 0.70% (vs. TS).
  • the flocculant injection rate is 0.70% (vs. TS) or less, the moisture content of the cake is greatly reduced every time the injection rate is increased by about 0.1%.
  • the injection rate of the flocculant is 0.70% (vs. TS) or more, even if the injection rate increases by about 0.1%, the moisture content of the cake is reduced, but it is almost the same. I understand.
  • the coagulant injection rate enabling the most efficient dehydration can be determined based on the average value, the dispersion, the standard deviation, and the peak area of the transmitted light intensity. More specifically, it was found that the injection rate of the flocculant capable of performing the most efficient dehydration can be determined based on the average value, the dispersion, the standard deviation, and the maximum peak area of the transmitted light intensity.
  • the procedure of the third experiment is as follows. First, a flocculant is injected into a stock solution (raw water for water purification treatment) containing suspended solids (injection step). The stock solution and the flocculant are mixed by rapidly stirring the stock solution into which the flocculant has been injected (stirring step). Laser diffraction / scattered light of the stock solution stirred at high speed is measured to obtain optical measurement values (optical measurement step). The obtained laser diffraction / scattered light data is numerically analyzed to calculate the average floc particle diameter of the floc (numerical analysis step).
  • injection process, stirring process, optical measurement process, and numerical analysis process are repeated at different injection rates of the flocculant, and the relationship between the obtained numerical analysis values and the appropriate injection ratio is examined (injection rate determination process) .
  • injection rate determination process In order to determine an appropriate injection rate, a stock solution containing suspended solids aggregated with a coagulant was coagulated and precipitated, and the quality of the obtained treated water was used as an index.
  • the stock solution containing suspended solids used in the third experiment is raw water C for water purification.
  • the turbidity and chromaticity of the raw water C are 50 degrees and 80 degrees, respectively.
  • the measuring method was based on the water test method.
  • the flocculant used in the third experiment was polyaluminum chloride, and a 10 wt% polyaluminum chloride aqueous solution (in terms of aluminum oxide) was used as the flocculant solution.
  • the flocculant concentration means the concentration of the flocculant in the aqueous solution.
  • an aqueous solution of polyaluminum chloride was injected into raw water C (raw water flow rate 1.0 m 3 / h) for water purification treatment.
  • Raw water C into which an aqueous solution of polyaluminum chloride was poured was mixed using a high-speed stirrer (stirring unit volume 0.8 L) in which the rotation speed of the stirring blade was set to 500 min ⁇ 1 .
  • laser diffraction / scattered light of the raw water C stirred at high speed was measured for a certain period of time.
  • the average floc particle diameter was calculated from the obtained laser diffraction / scattered light data.
  • a jar test was performed to determine an appropriate injection rate of the flocculant.
  • an aqueous solution of polyaluminum chloride was poured into 500 mL of raw water C, the rotation speed during stirring was set to 130 min ⁇ 1 , and raw water C and an aqueous solution of polyaluminum chloride were mixed for 3 minutes. Further, the rotation speed at the time of stirring was set to 30 min ⁇ 1 , and raw water C and an aqueous solution of polyaluminum chloride were mixed for 10 minutes to form a floc. Finally, it was left to stand for 5 minutes, and a supernatant was collected as treated water, and turbidity and chromaticity were measured. The above operation was carried out at a plurality of flocculant injection rates.
  • FIG. 23 is a graph plotting the results of the third experiment.
  • the horizontal axis represents the injection rate of the flocculant, and the vertical axis represents the average floc particle size.
  • FIG. 23 shows an approximate curve (cubic curve) obtained from the experimental results.
  • the procedure of the fourth experiment is as follows. First, a flocculant is poured into a stock solution (sludge) containing suspended substances (injection step). The stock solution and the flocculant are mixed by rapidly stirring the stock solution into which the flocculant has been injected (stirring step). The sludge stirred at high speed is diluted with a diluent (dilution step). The transmitted light intensity of the diluted stock solution is measured to obtain an optical measurement value (optical measurement step). As a numerical analysis value of the obtained transmitted light intensity, dispersion, standard deviation, and peak area of the transmitted light intensity are calculated (numerical analysis step).
  • Sludge D is a mixed raw sludge (mixture of primary sludge and excess sludge) in a sewage treatment plant.
  • the sludge D TS is 25.4. g / L.
  • the measurement method conformed to the sewage test method.
  • the flocculant used in the fourth experiment is a cationic polymer flocculant d (DAA polymer flocculant).
  • the solution of the flocculant is an aqueous solution obtained by dissolving the flocculant in water, and the concentration of the flocculant means the concentration of the flocculant in the aqueous solution.
  • the coagulant injection rate enabling the most efficient dehydration can be determined based on the dispersion of the transmitted light intensity, the standard deviation, and the maximum value of the peak area. More specifically, it has been found that the injection rate of the flocculant capable of the most efficient dehydration can be determined based on the flocculant injection rate at which the values of transmitted light intensity dispersion, standard deviation, and peak area are maximized.
  • the present invention can be used in a method for determining an appropriate injection rate of a flocculant injected into a stock solution containing suspended solids.

Abstract

The present invention pertains to a method for determining the appropriate injection ratio of a coagulant injected into a starting liquid containing a suspended matter. The clumping method includes: an injection step for injecting the coagulant into the starting liquid containing suspended matter; a stirring step for flowing the starting liquid into which the coagulant has been injected into a high-speed stirrer (1), rotating the stirring vane (8) of the high-speed stirrer (1) at a rotational velocity of at least 500 min-1 to stir the starting liquid; an optical measurement step for obtaining an optical measurement value by radiating light at the stirred starting liquid; a numerical analysis step for obtaining a numerical analysis value by means of numerical analysis of the optical measurement value; and an injection ratio determination step for determining the appropriate injection ratio of the coagulant on the basis of the numerical analysis value.

Description

凝集方法および凝集装置Aggregation method and apparatus
 本発明は、懸濁物質を含む原液の凝集方法に関し、特に、懸濁物質を含む原液に注入される凝集剤の適正な注入率を決定する方法に関する。また、本発明は、当該凝集方法を使用する凝集装置に関する。本明細書において、原液とは、処理される液体をいう。 The present invention relates to a method for aggregating a stock solution containing a suspended substance, and more particularly to a method for determining an appropriate injection rate of a flocculant to be injected into a stock solution containing a suspended material. The present invention also relates to an aggregating apparatus using the aggregating method. In this specification, the stock solution refers to the liquid to be treated.
 廃棄物量を削減し、環境負荷を低減することが求められる中、排水処理施設や浄水処理施設などから排出される懸濁物質を含む原液(例えば、排水や汚泥など)を減容化するための脱水処理は極めて重要である。そのため、より効率的で低ランニングコストの脱水技術の開発が望まれている。 In order to reduce the volume of waste and reduce environmental impact, it is necessary to reduce the volume of undiluted liquids (such as wastewater and sludge) containing suspended solids discharged from wastewater treatment facilities and water purification facilities. Dehydration is extremely important. Therefore, development of more efficient and low running cost dehydration technology is desired.
 懸濁物質を含む原液の脱水処理は、凝集剤を用いて懸濁物質を凝集させることによりフロックを形成させる凝集工程と、脱水機によりフロックを脱水する脱水工程とから構成される。この脱水処理におけるランニングコストの大半は、凝集剤のコストである。 The dehydration treatment of the stock solution containing suspended solids is composed of an aggregating step in which flocs are formed by aggregating the suspended solids using a flocculant and a dehydrating step in which the flocs are dehydrated by a dehydrator. Most of the running cost in this dehydration process is the cost of the flocculant.
 また、排水処理施設における排水を浄化するための凝集処理(凝集沈殿、凝集加圧浮上、凝集砂ろ過、凝集膜ろ過など)や、浄水処理施設における原水を浄化するための凝集処理(凝集沈殿、凝集砂ろ過、凝集膜ろ過など)においても、ランニングコストの大半は、凝集剤のコストである。したがって、凝集剤の注入率を適正に制御し、凝集剤の使用量を削減することが望まれている。 In addition, agglomeration treatment (such as agglomeration sedimentation, agglomeration pressure flotation, agglomeration sand filtration, agglomeration membrane filtration) for purifying wastewater in a wastewater treatment facility, and agglomeration treatment (aggregation sedimentation, In the case of agglomerated sand filtration, agglomerated membrane filtration, etc.), most of the running cost is the cost of a flocculant. Therefore, it is desired to properly control the injection rate of the flocculant and reduce the amount of the flocculant used.
 凝集剤の注入率を適正に制御する方法に関連する技術として、下記のような先行技術が知られている。 The following prior arts are known as techniques related to a method for appropriately controlling the injection rate of the flocculant.
 特許文献1には、汚泥流路を流通する汚泥の濃度を検出する汚泥濃度計と、この汚泥濃度計で検出された汚泥の濃度に応じて、汚泥貯留槽内の汚泥を汚泥脱水機へ送る汚泥注入ポンプ、および凝集剤貯留槽内の凝集剤を汚泥脱水機へ送る凝集剤注入ポンプの少なくとも一方を作動させることにより、汚泥脱水機へ注入される汚泥の濃度を制御し得る濃度制御装置とを備えた排水処理装置が開示されている。 In Patent Document 1, a sludge concentration meter that detects the concentration of sludge flowing through a sludge flow path, and sludge in a sludge storage tank is sent to a sludge dewatering machine according to the concentration of sludge detected by this sludge concentration meter. A concentration control device capable of controlling the concentration of sludge injected into the sludge dehydrator by operating at least one of the sludge injection pump and the coagulant injection pump that sends the coagulant in the coagulant storage tank to the sludge dewaterer; There is disclosed a wastewater treatment apparatus comprising:
 特許文献2には、測定槽に供給された脱水分離液中に存在するフロックの量を測定する計測部と、この計測部によるフロックの量の測定データに基づきフロックの量が最小になる凝集剤注入量を決定する制御手段とを備えた凝集剤注入量決定装置が開示されている。 Patent Document 2 discloses a measuring unit that measures the amount of floc present in a dehydrated separation liquid supplied to a measurement tank, and a flocculant that minimizes the amount of floc based on measurement data of the amount of floc by the measuring unit. There is disclosed a flocculant injection amount determination device including a control means for determining an injection amount.
 特許文献3には、反応槽内または流路中の水または汚泥に凝集剤を注入して上記反応槽内または流路中にて上記水または汚泥に含まれる懸濁物質をフロック化させる凝集手段と、前記反応槽の内部、または前記凝集手段の下流側の流路中に設けた凝集センサを用いて、前記水または汚泥中のフロック間の空隙における濁度を測定する測定手段と、この測定手段で測定された濁度の経時的変化に基づき、前記凝集剤の注入量を制御する制御手段とを有する処理システムが開示されている。前記凝集センサは、水または汚泥中にレーザ光を放射し、水または汚泥中に含まれる粒子によって生じる上記レーザ光の散乱光を検出するプローブを備えている。 Patent Document 3 discloses a flocculating means for injecting a flocculant into water or sludge in a reaction tank or in a flow path to flock suspended substances contained in the water or sludge in the reaction tank or in the flow path. And measuring means for measuring turbidity in the gap between flocs in the water or sludge using an agglomeration sensor provided in the reaction tank or in a flow path downstream of the agglomeration means, and this measurement And a control means for controlling the injection amount of the flocculant based on the change with time of the turbidity measured by the means. The aggregation sensor includes a probe that emits laser light into water or sludge and detects scattered light of the laser light generated by particles contained in the water or sludge.
 特許文献4には、凝集混和槽の原液中に凝集剤を添加して懸濁物質のフロックを形成させ、その原液を脱水機に供給する汚泥処理装置が開示されている。この特許文献4には、脱水機に原液を供給する原液供給管中のフロックの大きさを撮影し、輝度信号を電気信号に変換し、電気信号からフロックの大きさを2値化させると共に、フロックの2値画像からのフロック1個当たりの平均面積を計算し、その平均解析面積とあらかじめ設定したフロックの基準面積を比較して適正値を計算し、フロックの形成状況に基づき比例設定値の凝集剤注入率を制御する凝集剤注入制御方法が開示されている。 Patent Document 4 discloses a sludge treatment apparatus in which a flocculant is added to a stock solution in a flocculent mixing tank to form a floc of suspended solids and the stock solution is supplied to a dehydrator. In this patent document 4, the size of the floc in the stock solution supply pipe for supplying the stock solution to the dehydrator is photographed, the luminance signal is converted into an electrical signal, and the magnitude of the floc is binarized from the electrical signal. Calculate the average area per floc from the binary image of floc, compare the average analysis area with the preset reference area of floc, calculate the appropriate value, and calculate the proportional set value based on the flock formation status A flocculant injection control method for controlling the flocculant injection rate is disclosed.
 しかしながら、一般的な凝集工程では、攪拌機に設けられた攪拌翼の回転速度は、10~300min-1であり、比較的緩やかな条件で凝集剤が原液内に分散される。この場合、広い範囲の凝集剤注入率で、比較的良好なフロックが形成される。そのため、特許文献1~4に開示される技術を用いても、高い精度で凝集剤の適正な注入率を決定することが難しかった。 However, in a general flocculation step, the rotation speed of the stirring blade provided in the stirrer is 10 to 300 min −1 , and the flocculant is dispersed in the stock solution under relatively gentle conditions. In this case, a relatively good floc is formed with a wide range of flocculant injection rates. Therefore, even if the techniques disclosed in Patent Documents 1 to 4 are used, it is difficult to determine an appropriate injection rate of the flocculant with high accuracy.
特開2004-167401号公報JP 2004-167401 A 特開平11-347599号公報Japanese Patent Laid-Open No. 11-347599 特開2003-154206号公報JP 2003-154206 A 特開2005-7338号公報JP 2005-7338 A
 本発明は、上述した従来の問題点に鑑みてなされたもので、懸濁物質を含む原液中の当該懸濁物質を効率的に凝集させると共に、高い精度で凝集剤の適正注入率を自動で決定することのできる凝集方法を提供することを目的とする。また、本発明は、このような凝集方法を実施することができる凝集装置を提供することを目的とする。 The present invention has been made in view of the above-mentioned conventional problems, and efficiently aggregates the suspended substance in the stock solution containing the suspended substance, and automatically sets the appropriate injection rate of the flocculant with high accuracy. The object is to provide an aggregation method which can be determined. Moreover, an object of this invention is to provide the aggregating apparatus which can implement such an aggregating method.
 上述した課題を解決するための本発明の一態様は、懸濁物質を含む原液に凝集剤を注入する注入工程と、前記凝集剤が注入された前記原液を高速攪拌機に流入させ、前記高速攪拌機の攪拌翼を500min-1以上の回転速度で回転させて前記原液を攪拌する攪拌工程と、前記攪拌された原液に光を照射して光学的測定値を得る光学的測定工程と、前記光学的測定値を数値解析して、数値解析値を得る数値解析工程と、前記数値解析値に基づいて、前記凝集剤の適正な注入率を決定する注入率決定工程と、を含むことを特徴とする凝集方法である。 One aspect of the present invention for solving the above-described problems includes an injection step of injecting a flocculant into a stock solution containing a suspended substance, and the stock solution into which the flocculant has been injected is allowed to flow into a high-speed stirrer. A stirring step of rotating the stirring blade at a rotation speed of 500 min −1 or more to stir the stock solution, an optical measurement step of obtaining an optical measurement value by irradiating the stirred stock solution with light, and the optical A numerical analysis step of numerically analyzing the measured value to obtain a numerical analysis value; and an injection rate determination step of determining an appropriate injection rate of the flocculant based on the numerical analysis value. Aggregation method.
 本発明の好ましい態様は、前記注入率決定工程は、前記数値解析値に基づいて、前記凝集剤の注入率が適正であるか否かを決定し、前記凝集剤の適正な注入率が決定されるまで、前記注入工程、前記攪拌工程、前記光学的測定工程、および前記数値解析工程を、前記注入率を変えながら繰り返す工程であることを特徴とする。
 本発明の好ましい態様は、前記注入率の変更は、前記高速攪拌機に流入する前記原液の流量および前記原液に注入される前記凝集剤の流量のうちのいずれか一方または両方を変えることであることを特徴とする。
 本発明の好ましい態様は、前記光学的測定工程は、前記攪拌された原液に光を照射して透過光強度を測定する工程であることを特徴とする。
 本発明の好ましい態様は、前記光学的測定工程は、前記攪拌された原液に光を照射して散乱光強度を測定する工程であることを特徴とする。
 本発明の好ましい態様は、前記光学的測定工程は、前記攪拌された原液に光を照射して透過光強度および散乱光強度の両方を測定する工程であることを特徴とする。
In a preferred aspect of the present invention, the injection rate determining step determines whether the injection rate of the flocculant is appropriate based on the numerical analysis value, and the appropriate injection rate of the flocculant is determined. The injection step, the stirring step, the optical measurement step, and the numerical analysis step are repeated steps while changing the injection rate.
In a preferred aspect of the present invention, the change of the injection rate is to change one or both of a flow rate of the stock solution flowing into the high-speed stirrer and a flow rate of the flocculant injected into the stock solution. It is characterized by.
In a preferred aspect of the present invention, the optical measurement step is a step of measuring the transmitted light intensity by irradiating the stirred stock solution with light.
In a preferred aspect of the present invention, the optical measurement step is a step of measuring the scattered light intensity by irradiating the stirred stock solution with light.
In a preferred aspect of the present invention, the optical measurement step is a step of measuring both transmitted light intensity and scattered light intensity by irradiating the stirred stock solution with light.
 本発明の好ましい態様は、前記光学的測定値の分散が、前記数値解析値として用いられることを特徴とする。
 本発明の好ましい態様は、前記光学的測定値のピーク面積が、前記数値解析値として用いられることを特徴とする。
 本発明の好ましい態様は、前記光学的測定値の標準偏差が、前記数値解析値として用いられることを特徴とする。
 本発明の好ましい態様は、前記数値解析値は、前記懸濁物質のフロックの粒径であることを特徴とする。
In a preferred aspect of the present invention, the dispersion of the optical measurement value is used as the numerical analysis value.
In a preferred aspect of the present invention, a peak area of the optical measurement value is used as the numerical analysis value.
In a preferred aspect of the present invention, a standard deviation of the optical measurement value is used as the numerical analysis value.
In a preferred aspect of the present invention, the numerical analysis value is a floc particle size of the suspended substance.
 本発明の好ましい態様は、前記注入率決定工程は、前記注入工程、前記攪拌工程、前記光学的測定工程、および前記数値解析工程を、前記注入率を変えながら、複数回繰り返すことにより複数の数値解析値を取得し、前記複数の数値解析値に基づいて、前記凝集剤の適正な注入率を決定する工程であることを特徴とする。
 本発明の好ましい態様は、前記複数の数値解析値のうち最大値または最小値が得られた注入率を、前記適正な注入率として決定することを特徴とする。
 本発明の好ましい態様は、前記複数の数値解析値のうち最大値が得られた注入率と2番目に大きな値が得られた注入率との平均値、または前記複数の数値解析値のうち最小値が得られた注入率と2番目に小さな値が得られた注入率との平均値を、前記適正な注入率として決定することを特徴とする。
 本発明の好ましい態様は、前記注入率決定工程で決定された適正な注入率に、補正係数を乗算して補正注入率を決定する補正注入率決定工程をさらに備えたことを特徴とする。
 本発明の好ましい態様は、前記攪拌された原液を希釈液で希釈する希釈工程をさらに含み、前記希釈工程は、前記攪拌工程と前記光学的測定工程の間で実施されることを特徴とする。
In a preferred aspect of the present invention, the injection rate determination step includes a plurality of numerical values by repeating the injection step, the stirring step, the optical measurement step, and the numerical analysis step a plurality of times while changing the injection rate. It is a step of obtaining an analysis value and determining an appropriate injection rate of the flocculant based on the plurality of numerical analysis values.
In a preferred aspect of the present invention, an injection rate at which a maximum value or a minimum value is obtained among the plurality of numerical analysis values is determined as the appropriate injection rate.
A preferred aspect of the present invention is an average value of an injection rate at which a maximum value is obtained among the plurality of numerical analysis values and an injection rate at which a second largest value is obtained, or a minimum value among the plurality of numerical analysis values. An average value of an injection rate at which a value is obtained and an injection rate at which the second smallest value is obtained is determined as the appropriate injection rate.
A preferred aspect of the present invention is characterized by further comprising a correction injection rate determining step of determining a correction injection rate by multiplying the appropriate injection rate determined in the injection rate determination step by a correction coefficient.
A preferred embodiment of the present invention further includes a dilution step of diluting the stirred stock solution with a diluent, and the dilution step is performed between the stirring step and the optical measurement step.
 本発明の他の態様は、懸濁物質を含む原液に凝集剤を注入する凝集剤注入装置と、攪拌翼を500min-1以上の回転速度で回転させて、前記凝集剤が注入された前記原液を攪拌する高速攪拌機と、前記高速攪拌機に前記原液を供給する供給装置と、前記攪拌された原液に光を照射して光学的測定値を取得する光学的測定装置と、前記光学的測定値を数値解析することにより、数値解析値を取得する数値解析装置と、前記数値解析値に基づいて、前記凝集剤の適正な注入率を決定する制御装置と、を備えることを特徴とする凝集装置である。 In another aspect of the present invention, the flocculant injecting apparatus for injecting the flocculant into the stock solution containing the suspended substance, and the stock solution into which the flocculant is injected by rotating a stirring blade at a rotation speed of 500 min −1 or more. A high-speed stirrer that stirs, a supply device that supplies the stock solution to the high-speed stirrer, an optical measurement device that irradiates the stirred stock solution with light to obtain an optical measurement value, and the optical measurement value A flocculating apparatus comprising: a numerical analysis device that acquires a numerical analysis value by performing numerical analysis; and a control device that determines an appropriate injection rate of the flocculant based on the numerical analysis value. is there.
 本発明の好ましい態様は、前記制御装置は、前記数値解析値に基づいて、前記凝集剤の注入率が適正であるか否かを決定し、前記凝集剤の適正な注入率が決定されるまで、前記凝集剤注入装置および前記供給装置のうちのいずれか一方または両方と、前記高速攪拌機、前記光学的測定装置、および前記数値解析装置を操作して、前記原液への凝集剤の注入、前記原液の攪拌、前記光学的測定値の取得、および前記数値解析値の取得を、前記注入率を変えながら繰り返すことを特徴とする。
 本発明の好ましい態様は、前記光学的測定装置は、前記攪拌された原液に光を照射して透過光強度を測定することを特徴とする。
 本発明の好ましい態様は、前記光学的測定装置は、前記攪拌された原液に光を照射して散乱光強度を測定することを特徴とする。
 本発明の好ましい態様は、前記光学的測定装置が、透過光強度を測定する測定装置と、散乱光強度を測定する測定装置の両方であることを特徴とする。
In a preferred aspect of the present invention, the control device determines whether or not an injection rate of the flocculant is appropriate based on the numerical analysis value, and until an appropriate injection rate of the flocculant is determined. , By operating any one or both of the flocculant injection device and the supply device, the high-speed stirrer, the optical measurement device, and the numerical analysis device to inject the flocculant into the stock solution, The agitation of the stock solution, the acquisition of the optical measurement value, and the acquisition of the numerical analysis value are repeated while changing the injection rate.
In a preferred aspect of the present invention, the optical measuring device measures the transmitted light intensity by irradiating the stirred stock solution with light.
In a preferred aspect of the present invention, the optical measuring device measures the scattered light intensity by irradiating the stirred stock solution with light.
In a preferred aspect of the present invention, the optical measuring device is both a measuring device for measuring transmitted light intensity and a measuring device for measuring scattered light intensity.
 本発明の好ましい態様は、前記数値解析装置は、前記光学的測定値の分散を前記数値解析値として取得することを特徴とする。
 本発明の好ましい態様は、前記数値解析装置は、前記光学的測定値のピーク面積を前記数値解析値として取得することを特徴とする。
 本発明の好ましい態様は、前記数値解析装置は、前記光学的測定値の標準偏差を前記数値解析値として取得することを特徴とする。
 本発明の好ましい態様は、前記数値解析装置は、前記懸濁物質のフロックの粒径を前記数値解析値として取得することを特徴とする。
In a preferred aspect of the present invention, the numerical analysis device acquires a variance of the optical measurement value as the numerical analysis value.
In a preferred aspect of the present invention, the numerical analysis device acquires a peak area of the optical measurement value as the numerical analysis value.
In a preferred aspect of the present invention, the numerical analysis device acquires a standard deviation of the optical measurement value as the numerical analysis value.
In a preferred aspect of the present invention, the numerical analysis device acquires the particle size of floc of the suspended substance as the numerical analysis value.
 本発明の好ましい態様は、前記制御装置は、前記凝集剤注入装置および前記供給装置のうちのいずれか一方または両方と、前記高速攪拌機、前記光学的測定装置、および前記数値解析装置を操作して、前記原液への凝集剤の注入、前記原液の攪拌、前記光学的測定値の取得、および前記数値解析値の取得を、前記注入率を変えながら、複数回繰り返すことにより複数の数値解析値を取得し、前記複数の数値解析値に基づいて、前記凝集剤の適正な注入率を決定することを特徴とする。
 本発明の好ましい態様は、前記制御装置は、前記複数の数値解析値のうち最大値または最小値が得られた注入率を、前記適正な注入率として決定することを特徴とする。
 本発明の好ましい態様は、前記制御装置は、前記複数の数値解析値のうち最大値が得られた注入率と2番目に大きな値が得られた注入率との平均値、または前記複数の数値解析値のうち最小値が得られた注入率と2番目に小さな値が得られた注入率との平均値を、前記適正な注入率として決定することを特徴とする。
 本発明の好ましい態様は、前記制御装置は、前記決定された適正な注入率に、補正係数を乗算して補正注入率を決定することを特徴とする。
 本発明の好ましい態様は、前記数値解析装置は、前記制御装置内に組み込まれていることを特徴とする。
 本発明の好ましい態様は、前記攪拌された原液に希釈液を供給する希釈液供給装置をさらに備えたことを特徴とする。
In a preferred aspect of the present invention, the control device operates one or both of the flocculant injection device and the supply device, the high-speed stirrer, the optical measurement device, and the numerical analysis device. Injecting the flocculant into the stock solution, stirring the stock solution, obtaining the optical measurement value, and obtaining the numerical analysis value are repeated a plurality of times while changing the injection rate to obtain a plurality of numerical analysis values. Obtaining and determining an appropriate injection rate of the flocculant based on the plurality of numerical analysis values.
In a preferred aspect of the present invention, the control device determines an injection rate at which a maximum value or a minimum value is obtained among the plurality of numerical analysis values as the appropriate injection rate.
In a preferred aspect of the present invention, the control device is configured such that an average value of an injection rate at which a maximum value is obtained and an injection rate at which a second largest value is obtained among the plurality of numerical analysis values, or the plurality of numerical values. An average value of the injection rate at which the minimum value is obtained among the analysis values and the injection rate at which the second smallest value is obtained is determined as the appropriate injection rate.
In a preferred aspect of the present invention, the control device determines a correction injection rate by multiplying the determined appropriate injection rate by a correction coefficient.
In a preferred aspect of the present invention, the numerical analysis device is incorporated in the control device.
A preferred embodiment of the present invention is characterized by further comprising a diluent supply device for supplying a diluent to the stirred stock solution.
 本発明によれば、凝集剤が注入された、懸濁物質を含む原液を、攪拌翼の回転速度が500min-1以上である高速回転で攪拌させる。この高速攪拌により、原液内に凝集剤が瞬時に分散させられ、凝集剤は原液と効率良く均一に混合される。その結果、原液に含まれる懸濁物質が効率良く凝集させられる。この高速攪拌を行う場合、凝集剤が注入された原液に高ストレスが負荷されるので、凝集剤が適正な注入率で注入されていないと、フロックが成長する前に破壊されてしまう。したがって、注入される凝集剤が適正注入率でなければ、フロックが適切に成長しない。本発明によれば、制御装置が、フロックが適切に成長していることを、光学的測定値を数値解析することで得られた数値解析値から判断する。これにより、凝集剤の適正な注入率を高い精度で決定することができる。その結果、凝集剤の使用量を削減することができる。また、運転員の経験や勘がなくとも、凝集剤の注入率を適正に制御することができる。さらに、懸濁物質を含む原液の性状(例えば、原液内における懸濁物質の濃度など)が変化しても、凝集剤の注入率を適正に制御することができる。 According to the present invention, the stock solution containing suspended solids infused with the flocculant is stirred at a high speed rotation with a rotation speed of the stirring blade being 500 min −1 or more. By this high-speed stirring, the flocculant is instantaneously dispersed in the stock solution, and the flocculant is efficiently and uniformly mixed with the stock solution. As a result, the suspended substance contained in the stock solution is efficiently aggregated. When this high-speed stirring is performed, a high stress is applied to the stock solution into which the flocculant is injected. Therefore, if the flocculant is not injected at an appropriate injection rate, the flocs are destroyed before growing. Therefore, if the flocculant to be injected is not at an appropriate injection rate, flocs will not grow properly. According to the present invention, the control device determines that the floc is growing properly from the numerical analysis value obtained by numerical analysis of the optical measurement value. Thereby, the appropriate injection rate of the flocculant can be determined with high accuracy. As a result, the amount of the flocculant used can be reduced. Moreover, the injection rate of the flocculant can be appropriately controlled without the experience and intuition of the operator. Furthermore, even if the properties of the stock solution containing the suspended material (for example, the concentration of the suspended material in the stock solution) change, the injection rate of the flocculant can be controlled appropriately.
透過光強度を測定する光学的測定装置の概略図である。It is the schematic of the optical measuring device which measures the transmitted light intensity. 凝集剤の注入率が適正ではないために、フロックが形成されていない場合の透過光強度の測定例である。This is an example of measuring transmitted light intensity when no floc is formed because the injection rate of the flocculant is not appropriate. 凝集剤の注入率が適正であるために、フロックが形成されている場合の透過光強度の測定例である。This is a measurement example of transmitted light intensity when flocs are formed because the injection rate of the flocculant is appropriate. 散乱光強度を測定する光学的測定装置の概略図である。It is the schematic of the optical measuring device which measures scattered light intensity. 凝集剤の注入率が適正ではないために、フロックが形成されていない場合の散乱光強度の測定例である。This is a measurement example of the scattered light intensity when no floc is formed because the injection rate of the flocculant is not appropriate. 凝集剤の注入率が適正であるために、フロックが形成されている場合の散乱光強度の測定例である。This is a measurement example of scattered light intensity when flocs are formed because the injection rate of the flocculant is appropriate. 適正な注入率を決定するための一連の工程のフロー図である。It is a flowchart of a series of processes for determining an appropriate injection rate. 数値解析値と所定の目標値との間の差の絶対値を求め、この差の絶対値と許容値とを比較することで凝集剤の適正な注入率を決定するための工程を表したフロー図である。A flow showing the process for determining the appropriate injection rate of the flocculant by calculating the absolute value of the difference between the numerical analysis value and the predetermined target value and comparing the absolute value of this difference with the allowable value FIG. 複数の注入率を設定し、これら注入率それぞれで複数の数値解析値を取得し、取得した複数の数値解析値を比較することで凝集剤の適正な注入率を決定するための工程を表したフロー図である。Multiple injection rates were set, multiple numerical analysis values were acquired for each of these injection rates, and the process for determining the appropriate injection rate of the flocculant by comparing the acquired multiple numerical analysis values was represented. FIG. 本発明の凝集装置の一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the aggregation apparatus of this invention. 本発明の凝集装置の別の実施形態を示す概略図である。It is the schematic which shows another embodiment of the aggregation apparatus of this invention. 本発明の凝集装置のさらに別の実施形態を示す概略図である。It is the schematic which shows another embodiment of the aggregation apparatus of this invention. 本発明の凝集装置のさらに別の実施形態を示す概略図である。It is the schematic which shows another embodiment of the aggregation apparatus of this invention. 本発明の凝集装置のさらに別の実施形態を示す概略図である。It is the schematic which shows another embodiment of the aggregation apparatus of this invention. 本発明の凝集装置のさらに別の実施形態を示す概略図である。It is the schematic which shows another embodiment of the aggregation apparatus of this invention. 本発明の凝集装置のさらに別の実施形態を示す概略図である。It is the schematic which shows another embodiment of the aggregation apparatus of this invention. 本発明の凝集装置のさらに別の実施形態を示す概略図である。It is the schematic which shows another embodiment of the aggregation apparatus of this invention. 本発明の凝集装置のさらに別の実施形態を示す概略図である。It is the schematic which shows another embodiment of the aggregation apparatus of this invention. 本発明の凝集装置のさらに別の実施形態を示す概略図である。It is the schematic which shows another embodiment of the aggregation apparatus of this invention. 本発明の凝集装置のさらに別の実施形態を示す概略図である。It is the schematic which shows another embodiment of the aggregation apparatus of this invention. 本発明の凝集装置のさらに別の実施形態を示す概略図である。It is the schematic which shows another embodiment of the aggregation apparatus of this invention. 本発明の凝集装置のさらに別の実施形態を示す概略図である。It is the schematic which shows another embodiment of the aggregation apparatus of this invention. 本発明の凝集装置のさらに別の実施形態を示す概略図である。It is the schematic which shows another embodiment of the aggregation apparatus of this invention. 本発明の凝集装置のさらに別の実施形態を示す概略図である。It is the schematic which shows another embodiment of the aggregation apparatus of this invention. 第3の実験の結果をプロットしたグラフである。It is the graph which plotted the result of the 3rd experiment.
 以下、本発明の実施形態が説明される。
 本発明の一実施形態に係る凝集方法は、懸濁物質を含む原液に凝集剤を注入する注入工程と、前記凝集剤が注入された前記原液を高速攪拌機に流入させ、前記高速攪拌機の攪拌翼を500min-1以上の回転速度で回転させて前記原液を攪拌する攪拌工程と、前記攪拌された原液に光を照射して光学的測定値を得る光学的測定工程と、前記光学的測定値を数値解析して、数値解析値を得る数値解析工程と、前記数値解析値に基づいて、前記凝集剤の適正な注入率を決定する注入率決定工程と、を備える。
Hereinafter, embodiments of the present invention will be described.
The flocculation method according to an embodiment of the present invention includes an injection step of injecting a flocculant into a stock solution containing a suspended substance, and the stock solution into which the flocculant has been injected flows into a high-speed stirrer, Stirring the stock solution by rotating at a rotational speed of 500 min −1 or more, an optical measurement step of irradiating the stirred stock solution with light to obtain an optical measurement value, and the optical measurement value A numerical analysis step of performing a numerical analysis to obtain a numerical analysis value; and an injection rate determination step of determining an appropriate injection rate of the flocculant based on the numerical analysis value.
 本明細書において、原液とは、処理される液体をいう。懸濁物質を含む原液の例には、排水処理施設や浄水処理施設などから排出される汚泥、排水処理施設における排水、浄水処理施設における原水などが含まれる。汚泥は、有機性汚泥、無機性汚泥のいずれでもよい。 In this specification, the undiluted solution refers to the liquid to be treated. Examples of the stock solution containing suspended solids include sludge discharged from a wastewater treatment facility or a water purification treatment facility, wastewater in a wastewater treatment facility, raw water in a water purification treatment facility, and the like. The sludge may be either organic sludge or inorganic sludge.
 有機性汚泥としては、例えば下水処理、し尿処理、各種産業の排水処理において発生する有機性汚泥などを挙げることができる。より具体的には、最初沈殿池汚泥、余剰汚泥、嫌気性消化汚泥、好気性消化汚泥、し尿汚泥、浄化槽汚泥、消化脱離液、凝集沈殿汚泥などを挙げることができる。有機性汚泥は無機物を含んでもよい。 Examples of organic sludge include organic sludge generated in sewage treatment, human waste treatment, and wastewater treatment in various industries. More specifically, there may be mentioned first sedimentation basin sludge, surplus sludge, anaerobic digested sludge, aerobic digested sludge, human waste sludge, septic tank sludge, digestion desorbed liquid, coagulated sediment sludge, and the like. The organic sludge may contain an inorganic substance.
 無機性汚泥としては、例えば浄水処理、建設工事の排水処理、各種産業の排水処理において発生する無機性汚泥などを挙げることができる。ここで、浄水処理で発生する汚泥とは、浄水処理施設における沈殿池、排泥池、濃縮槽などから排出される汚泥などである。無機性汚泥は有機物を含んでもよい。 Examples of inorganic sludge include water purification treatment, wastewater treatment in construction work, and inorganic sludge generated in wastewater treatment in various industries. Here, the sludge generated in the water purification treatment is sludge discharged from a settling pond, a waste mud pond, a concentration tank, or the like in the water purification treatment facility. The inorganic sludge may contain organic matter.
 排水処理施設における排水としては、下水、食品産業、飲料水産業、化学産業、機械産業など各種産業の排水などが挙げられる。浄水処理施設における原水としては、河川水、湖沼の水、地下水などが挙げられる。 Wastewater in wastewater treatment facilities includes wastewater from various industries such as sewage, food industry, drinking water industry, chemical industry, and machinery industry. Examples of raw water in water treatment facilities include river water, lake water, and groundwater.
 さらに、懸濁物質を含む原液は、排水処理や浄水処理などの処理の過程で調製される水であってもよい。例えば、排水処理での原液の例としては、pHを調整した排水、無機凝集剤を注入した排水、有機凝結剤を注入した排水、金属キレート剤を注入した排水などが挙げられる。また、例えば、浄水処理での原液の例としては、pHを調整した原水、無機凝集剤を注入した原水などが挙げられる。 Furthermore, the stock solution containing suspended solids may be water prepared in the course of treatment such as waste water treatment or water purification treatment. For example, as an example of the undiluted solution in the wastewater treatment, wastewater adjusted pH, wastewater injected with an inorganic flocculant, wastewater injected with an organic coagulant, wastewater injected with a metal chelating agent, and the like can be mentioned. For example, as an example of the stock solution in the water purification treatment, raw water with adjusted pH, raw water into which an inorganic flocculant has been injected, and the like can be given.
 凝集剤には、無機凝集剤、有機凝結剤、高分子凝集剤のいずれも用いることができる。無機凝集剤の例としては、塩化第二鉄、硫酸アルミニウム、塩化アルミニウム、ポリ塩化アルミニウム、硫酸鉄、ポリ硫酸鉄などが挙げられる。 As the flocculant, any of inorganic flocculants, organic flocculants, and polymer flocculants can be used. Examples of the inorganic flocculant include ferric chloride, aluminum sulfate, aluminum chloride, polyaluminum chloride, iron sulfate, and polyiron sulfate.
 有機凝結剤の例としては、ポリアミン系有機凝結剤(ジアルキルアミンとエピクロルヒドリンの重縮合物など)、ジアリルジメチルアンモニウムクロライド系有機凝結剤(ポリジアリルジメチルアンモニウムクロライドなど)、ジシアンジアミド系有機凝結剤(ポリジシアンジアミド樹脂の四級アンモニウム塩など)などが挙げられる。 Examples of organic coagulants include polyamine organic coagulants (such as polycondensates of dialkylamine and epichlorohydrin), diallyldimethylammonium chloride organic coagulants (such as polydiallyldimethylammonium chloride), and dicyandiamide organic coagulants (polydicyandiamide). Resin quaternary ammonium salt, etc.).
 高分子凝集剤には、アニオン性高分子凝集剤、ノニオン性高分子凝集剤、カチオン性高分子凝集剤および両性高分子凝集剤のいずれも用いることができる。有機性汚泥を処理する場合には、カチオン性高分子凝集剤又は両性高分子凝集剤を用いるのが特に好ましい。 As the polymer flocculant, any of an anionic polymer flocculant, a nonionic polymer flocculant, a cationic polymer flocculant, and an amphoteric polymer flocculant can be used. When treating organic sludge, it is particularly preferable to use a cationic polymer flocculant or an amphoteric polymer flocculant.
 アニオン性高分子凝集剤としては、例えばポリアクリル酸ナトリウム、アクリル酸ナトリウムとアクリルアミドとの共重合物、ポリメタクリル酸ナトリウム、メタクリル酸ナトリウムとアクリルアミドの共重合物などを挙げることができる。 Examples of the anionic polymer flocculant include sodium polyacrylate, a copolymer of sodium acrylate and acrylamide, polysodium methacrylate, a copolymer of sodium methacrylate and acrylamide, and the like.
 ノニオン性高分子凝集剤としては、例えばポリアクリルアミド、ポリエチレンオキサイドなどを挙げることができる。 Examples of nonionic polymer flocculants include polyacrylamide and polyethylene oxide.
 カチオン性高分子凝集剤としては、例えばアクリレート系高分子凝集剤(「DAA系高分子凝集剤」とも称する)、メタクリレート系高分子凝集剤(「DAM系高分子凝集剤」とも称する)、アミド基、ニトリル基、アミン塩酸塩、ホルムアミド基などを含むポリビニルアミジン(「アミジン系高分子凝集剤」とも称する)、ポリアクリルアミドのマンニッヒ変性物などが挙げられる。DAA系高分子凝集剤には、ジメチルアミノエチルアクリレートの四級化物の重合物、ジメチルアミノエチルアクリレートの四級化物とアクリルアミドとの共重合物などがある。DAM系高分子凝集剤には、ジメチルアミノエチルメタクリレートの四級化物の重合物、ジメチルアミノエチルメタクリレートの四級化物とアクリルアミドとの共重合物などがある。 Examples of cationic polymer flocculants include acrylate polymer flocculants (also referred to as “DAA polymer flocculants”), methacrylate polymer flocculants (also referred to as “DAM polymer flocculants”), and amide groups. , Nitrile groups, amine hydrochlorides, formamide groups, and the like, and polyvinylamidines (also referred to as “amidine polymer flocculants”), polyacrylamide Mannich modified products, and the like. Examples of the DAA polymer flocculant include a polymer of a quaternized product of dimethylaminoethyl acrylate, a copolymer of a quaternized product of dimethylaminoethyl acrylate and acrylamide, and the like. Examples of the DAM polymer flocculant include a polymer of a quaternized product of dimethylaminoethyl methacrylate and a copolymer of a quaternized product of dimethylaminoethyl methacrylate and acrylamide.
 両性高分子凝集剤としては、例えばジメチルアミノエチルアクリレートの四級化物とアクリルアミドとアクリル酸との共重合物、ジメチルアミノエチルメタクリレートの四級化物とアクリルアミドとアクリル酸との共重合物などを挙げることができる。
 但し、以上は例示であり、本発明は、これらに限定されるものではない。
Examples of the amphoteric polymer flocculant include a quaternized product of dimethylaminoethyl acrylate and a copolymer of acrylamide and acrylic acid, a quaternized product of dimethylaminoethyl methacrylate, and a copolymer of acrylamide and acrylic acid. Can do.
However, the above is an example, and the present invention is not limited to these.
 注入工程では、懸濁物質を含む原液に、上記したような凝集剤を注入する。 In the injection step, the aggregating agent as described above is injected into the stock solution containing suspended solids.
 攪拌工程では、高速攪拌機に設けられた攪拌翼の回転速度が500min-1以上に設定された高速攪拌により、凝集剤と共に、懸濁物質を含む原液を攪拌する。この高速攪拌により、原液内に凝集剤が瞬時に分散させられ、凝集剤は原液と効率良く均一に混合される。凝集剤に無機凝集剤または有機凝結剤を使用する場合には、懸濁物質の表面電荷を中和することにより、微細フロックを形成することが攪拌工程の主な目的である。凝集剤に高分子凝集剤を使用する場合には、懸濁物質の表面電荷を中和し、さらに高分子凝集剤の吸着作用、架橋作用により、より大きなフロックを形成することが攪拌工程の主な目的である。 In the stirring step, the stock solution containing the suspended solids is stirred together with the flocculant by high-speed stirring in which the rotation speed of the stirring blade provided in the high-speed stirrer is set to 500 min −1 or more. By this high-speed stirring, the flocculant is instantaneously dispersed in the stock solution, and the flocculant is efficiently and uniformly mixed with the stock solution. When an inorganic flocculant or an organic flocculant is used as the flocculant, the main purpose of the stirring step is to form fine flocs by neutralizing the surface charge of the suspended substance. When the polymer flocculant is used as the flocculant, the surface charge of the suspended substance is neutralized, and the larger flocs are formed by the adsorption and crosslinking action of the polymer flocculant. Purpose.
 従来の凝集方法では、攪拌機の攪拌翼の回転速度を10~300min-1程度に設定した通常速度の攪拌によって、凝集剤を原液に分散させる。このため、凝集剤を原液に均一に分散させることが難しい。これに対して、この実施形態では、高速攪拌により、凝集剤を原液に均一に分散させることができるため、より正確に凝集剤の適正注入率を決定することができる。 In the conventional flocculation method, the flocculating agent is dispersed in the stock solution by stirring at a normal speed in which the rotation speed of the stirring blade of the stirrer is set to about 10 to 300 min −1 . For this reason, it is difficult to uniformly disperse the flocculant in the stock solution. On the other hand, in this embodiment, since the flocculant can be uniformly dispersed in the stock solution by high-speed stirring, the appropriate injection rate of the flocculant can be determined more accurately.
 また、従来の凝集方法では、攪拌機の攪拌翼の回転速度が10~300min-1程度に設定されているため、緩やかな条件で凝集剤を汚泥に分散させている。この従来の凝集方法によれば、フロック形成に必要とされる時間が長く、容量の大きな凝集槽を必要とする。また、従来の凝集方法では、広い範囲の凝集剤注入率で比較的良好な凝集反応が起きてしまう。これに対して、本実施形態では、高速攪拌により、厳しい条件で凝集剤を汚泥に分散させるため、注入率が適正であるときにのみ良好な凝集反応が起こる。したがって、凝集反応の結果から、より高い精度で適正な注入率を決定できる。また、本実施形態では、瞬時に凝集剤を原液に分散させ、短時間でフロックを形成することができるため、より迅速に凝集剤の適正注入率を決定することができる。 Further, in the conventional flocculation method, since the rotation speed of the stirring blade of the stirrer is set to about 10 to 300 min −1 , the flocculant is dispersed in the sludge under mild conditions. According to this conventional agglomeration method, the time required for floc formation is long and a large capacity agglomeration tank is required. In the conventional agglomeration method, a relatively good agglutination reaction occurs at a wide range of aggregating agent injection rates. On the other hand, in this embodiment, since the flocculant is dispersed in sludge under severe conditions by high-speed stirring, a good flocculation reaction occurs only when the injection rate is appropriate. Therefore, an appropriate injection rate can be determined with higher accuracy from the result of the aggregation reaction. In the present embodiment, the flocculant can be instantaneously dispersed in the stock solution, and flocs can be formed in a short time. Therefore, the appropriate injection rate of the flocculant can be determined more quickly.
 攪拌機としては、攪拌槽内に収容される攪拌翼(攪拌手段)、当該攪拌翼が固定される回転軸、および当該回転軸を回転させるモーターを備える高速攪拌機を用いることができる。また、攪拌機としてラインミキサーを用いて、高速攪拌を行ってもよい。 As the stirrer, a high speed stirrer equipped with a stirring blade (stirring means) accommodated in a stirring tank, a rotating shaft to which the stirring blade is fixed, and a motor for rotating the rotating shaft can be used. Moreover, you may stir at high speed using a line mixer as a stirrer.
 ラインミキサーとは、配管に組み込まれたミキサーである。ラインミキサーの利点はミキサーが密封されているため、ラインミキサーの上流にある原液用ポンプ、および凝集剤用ポンプの2台のポンプがあれば、ラインミキサーの下流に液を送ることができる点である。一方、攪拌槽内に攪拌翼が設置された攪拌機の場合、攪拌槽上部が開放されているので、攪拌機の下流に液を送るためには、攪拌機の上流にある原液用ポンプ、および凝集剤用ポンプの他に、もう1台ポンプ或いはポンプ相当の機器が必要である。そのため、通常は、ポンプを設置せず、高低差で下流に液を送るのが一般的である。 A line mixer is a mixer built into piping. The advantage of the line mixer is that the mixer is hermetically sealed, so if there are two pumps, one for the stock solution upstream of the line mixer and the other for the flocculant pump, the liquid can be sent downstream of the line mixer. is there. On the other hand, in the case of a stirrer in which a stirring blade is installed in the stirring tank, the upper part of the stirring tank is open, so in order to send the liquid downstream of the stirrer, the pump for the stock solution upstream of the stirrer and the coagulant In addition to the pump, another pump or a device equivalent to a pump is required. For this reason, usually, a pump is not installed and the liquid is generally sent downstream with a height difference.
 攪拌工程では、攪拌翼を500min-1以上の回転速度で回転させることにより、凝集剤が注入された、懸濁物質を含む原液を高速攪拌することが重要である。好ましくは、攪拌翼の回転速度は1000min-1以上である。より好ましくは、攪拌翼の回転速度は2000min-1以上である。より好ましくは、攪拌翼の回転速度は3000min-1以上である。 In the stirring step, it is important to stir the stock solution containing the suspended solids into which the flocculant is injected by rotating the stirring blade at a rotation speed of 500 min −1 or more. Preferably, the rotation speed of the stirring blade is 1000 min −1 or more. More preferably, the rotation speed of the stirring blade is 2000 min −1 or more. More preferably, the rotation speed of the stirring blade is 3000 min −1 or more.
 攪拌翼の回転速度は、懸濁物質を含む原液の種類(例えば、排水や汚泥など)、原液の性状(例えば、SS(Suspended Solids)濃度、粘度など)、および凝集剤の種類(例えば、無機凝集剤、有機凝結剤、高分子凝集剤など)などに基づいて、500min-1以上で調整する。攪拌工程におけるフロックの形成は、攪拌槽内で行ってもよいし、配管内で行ってもよい。懸濁物質を含む原液に注入工程で注入される凝集剤は、攪拌槽内に注入されてもよいし、攪拌槽よりも上流側に配置される配管内に注入されてもよい。 The rotation speed of the stirring blades depends on the type of stock solution containing suspended solids (for example, drainage and sludge), the nature of the stock solution (for example, SS (Suspended Solids concentration, viscosity, etc.)), and the type of flocculant (for example, inorganic Based on a coagulant, an organic coagulant, a polymer coagulant, etc.), it is adjusted at 500 min −1 or more. The floc formation in the stirring step may be performed in a stirring tank or in a pipe. The flocculant injected into the stock solution containing the suspended substance in the injection step may be injected into the stirring tank or may be injected into a pipe disposed upstream of the stirring tank.
 光学的測定工程は、攪拌工程で形成したフロックを含む原液に光を照射し、光学的測定値を得るために行われる。取得されるべき光学的測定値の種類としては、透過光強度、透過率、散乱光強度、回折光の強度、回折・散乱光強度、吸光度、反射光の強度などが挙げられる。複数の種類の光学的測定値を同時に測定してもよい。例えば、透過光強度を測定すると共に、散乱光強度を測定してもよい。この場合は、透過光強度を測定する光学的測定装置と、散乱光強度を測定する光学的測定装置との両方が設けられる。 The optical measurement step is performed to irradiate the stock solution containing floc formed in the stirring step with light to obtain an optical measurement value. Examples of the optical measurement values to be acquired include transmitted light intensity, transmittance, scattered light intensity, diffracted light intensity, diffracted / scattered light intensity, absorbance, and reflected light intensity. Multiple types of optical measurements may be measured simultaneously. For example, the transmitted light intensity may be measured and the scattered light intensity may be measured. In this case, both an optical measurement device that measures the transmitted light intensity and an optical measurement device that measures the scattered light intensity are provided.
 光学的測定方法では、一般に、光を放射する光源と、当該光源から放射された光を受光する光検出器とを備えた光学的測定装置が用いられる。光学的測定方法で使用される光源としては、各種ランプ(水銀ランプ、キセノンランプ、クリプトンランプ、メタルハライドランプ、ハロゲンランプなど)、各種レーザ(固体レーザ、半導体レーザ、液体レーザ、気体レーザなど)、各種LEDなどを用いることができる。光検出器としては、CCD、フォトダイオード、フォトトランジスタ、光電子増倍管、光導電素子、赤外線センサ、CMOSなどを用いることができる。いずれにしても、光学的測定装置として、市販されている光学的測定装置を用いることができる。 In the optical measurement method, generally, an optical measurement device including a light source that emits light and a photodetector that receives light emitted from the light source is used. As a light source used in the optical measurement method, various lamps (mercury lamp, xenon lamp, krypton lamp, metal halide lamp, halogen lamp, etc.), various lasers (solid laser, semiconductor laser, liquid laser, gas laser, etc.), various An LED or the like can be used. As the photodetector, a CCD, photodiode, phototransistor, photomultiplier tube, photoconductive element, infrared sensor, CMOS, or the like can be used. In any case, a commercially available optical measuring device can be used as the optical measuring device.
 図1は、透過光強度を測定する光学的測定装置の概略図である。図1に示されるように、フロックを含む原液が流れる配管28に、光が透過できる一対の透明窓40,40を設ける。そして、透明窓40,40のうちの一方を通じて配管28内に光を放射できる位置に光源41を配置し、他方の透明窓40を通じて配管28から出てくる光を受光できる位置に光検出器42を配置する。フロックを含む原液を透過した光は、光検出器42によって検出される。この透過光強度を所定の時間の間測定し、測定された透過光強度を光学的測定値とする。透過光強度の測定は、1回、または凝集剤の注入率を変えながら複数回実行され、これにより、少なくとも1つの光学的測定値が得られる。なお、光検出器42で検出された透過光強度は、データロガー50に蓄積された後に、後述する数値解析装置5に送られる。数値解析装置5で得られた数値解析値は、制御装置6に送られて、制御装置6は、数値解析値に基づいて、凝集剤の適正な注入率を決定する。データロガー50、数値解析装置5、および制御装置6は、それぞれ別個に設けられていてもよい。あるいは、データロガー50および数値解析装置5は、1台のコンピューター、または1台のプログラマブルロジックコントローラ(例えば、シーケンサー)として構成される制御装置6に組み込まれていてもよい。 FIG. 1 is a schematic view of an optical measuring apparatus for measuring transmitted light intensity. As shown in FIG. 1, a pair of transparent windows 40, 40 through which light can pass is provided in a pipe 28 through which a stock solution containing floc flows. A light source 41 is disposed at a position where light can be emitted into the pipe 28 through one of the transparent windows 40, 40, and a light detector 42 is disposed at a position where light emitted from the pipe 28 can be received through the other transparent window 40. Place. The light transmitted through the stock solution containing floc is detected by the photodetector 42. The transmitted light intensity is measured for a predetermined time, and the measured transmitted light intensity is used as an optical measurement value. The measurement of the transmitted light intensity is performed once or a plurality of times while changing the injection rate of the flocculant, thereby obtaining at least one optical measurement value. The transmitted light intensity detected by the photodetector 42 is accumulated in the data logger 50 and then sent to the numerical analysis device 5 described later. The numerical analysis value obtained by the numerical analysis device 5 is sent to the control device 6, and the control device 6 determines an appropriate injection rate of the flocculant based on the numerical analysis value. The data logger 50, the numerical analysis device 5, and the control device 6 may be provided separately. Alternatively, the data logger 50 and the numerical analysis device 5 may be incorporated in a control device 6 configured as one computer or one programmable logic controller (for example, a sequencer).
 懸濁物質を含む原液(例えば、汚泥)の透過光強度を測定した測定例について図2Aおよび図2Bを用いて説明する。図2Aは、凝集剤の注入率が適正ではないために、フロックが形成されていない場合の透過光強度の測定例を示し、図2Bは、凝集剤の注入率が適正であるために、フロックが形成されている場合の透過光強度の測定例を示す。図2Aおよび図2Bにおいて、横軸は測定時間を表し、縦軸は透過光強度を表す。 A measurement example in which the transmitted light intensity of a stock solution containing suspended solids (for example, sludge) is measured will be described with reference to FIGS. 2A and 2B. FIG. 2A shows an example of measurement of transmitted light intensity when flocs are not formed because the flocculant injection rate is not appropriate, and FIG. 2B shows flocs because the flocculant injection rate is appropriate. The measurement example of the transmitted light intensity in the case where is formed is shown. 2A and 2B, the horizontal axis represents measurement time, and the vertical axis represents transmitted light intensity.
 図2Aに示すように、フロックが形成されていないと、光源41から放射された光は、懸濁物質に遮られて光検出器42までほとんど到達しない。その結果、測定される透過光強度は、測定時間の経過と共に低い値で推移する。一方で、フロックが形成されていると、懸濁物質はフロックとしてまとまっている。したがって、図2Bに示されるように、光源41から放射された光がフロックに遮られて光検出器42まで到達しない時間と、フロックの隙間から光検出器42まで到達する時間とが存在する。結果として、透過光強度のピークが複数個計測される。この複数個のピークは、後述する数値解析工程で利用される。 As shown in FIG. 2A, if no floc is formed, the light emitted from the light source 41 is blocked by the suspended matter and hardly reaches the photodetector 42. As a result, the measured transmitted light intensity changes at a low value as the measurement time elapses. On the other hand, when the floc is formed, the suspended substance is collected as a floc. Therefore, as shown in FIG. 2B, there is a time when the light emitted from the light source 41 is blocked by the floc and does not reach the photodetector 42, and a time when the light reaches the photodetector 42 through the gap of the floc. As a result, a plurality of transmitted light intensity peaks are measured. The plurality of peaks are used in a numerical analysis process described later.
 図3は、散乱光強度を測定する光学的測定装置の概略図である。図3に示されるように、フロックを含む原液が流れる配管28の内部に、照射器43Aと、照射器43Aから放射された光が懸濁物質に衝突することで生じる散乱光を受光する受光器44Aとが微小隙間Sだけ離間して配置される。例えば、照射器43Aと受光器44Aとは、照射器43Aの中心軸と受光器44Aの中心軸とが90°の角度で交差するように配置されている。照射器43Aは、レーザなどの光源43Bからの光を配管28内まで導く光ファイバであり、受光器44Aは、散乱光をフォトトランジスタなどの光検出器44Bに導く光ファイバである。懸濁物質やフロックに衝突して散乱した光は、受光器44Aを通じて光検出器44Bにより検出される。光検出器44Bは、この散乱光強度を測定し、測定された散乱光強度を光学的測定値とする。散乱光強度の測定は、1回、または凝集剤の注入率を変えながら複数回実行され、これにより、少なくとも1つの光学的測定値が得られる。なお、光検出器44Bで検出された散乱光強度は、データロガー50に蓄積された後に、後述する数値解析装置5に送られる。数値解析装置5で得られた数値解析値は、制御装置6に送られて、制御装置6は、数値解析値に基づいて、凝集剤の適正な注入率を決定する。データロガー50、数値解析装置5、および制御装置6は、それぞれ別個に設けられていてもよい。あるいは、データロガー50および数値解析装置5は、1台のコンピューター、または1台のプログラマブルロジックコントローラ(例えば、シーケンサー)として構成される制御装置6に組み込まれていてもよい。 FIG. 3 is a schematic view of an optical measuring apparatus for measuring scattered light intensity. As shown in FIG. 3, an irradiator 43 </ b> A and a light receiver that receives scattered light generated by collision of light emitted from the irradiator 43 </ b> A with a suspended substance inside a pipe 28 through which a stock solution containing floc flows. 44A is spaced apart by a minute gap S. For example, the irradiator 43A and the light receiver 44A are arranged such that the central axis of the irradiator 43A and the central axis of the light receiver 44A intersect at an angle of 90 °. The irradiator 43A is an optical fiber that guides light from the light source 43B such as a laser to the inside of the pipe 28, and the light receiver 44A is an optical fiber that guides scattered light to a photodetector 44B such as a phototransistor. Light scattered by colliding with suspended matter or floc is detected by the photodetector 44B through the light receiver 44A. The photodetector 44B measures the scattered light intensity, and uses the measured scattered light intensity as an optical measurement value. The measurement of the scattered light intensity is performed once or a plurality of times while changing the injection rate of the flocculant, whereby at least one optical measurement value is obtained. The scattered light intensity detected by the photodetector 44B is accumulated in the data logger 50 and then sent to the numerical analysis device 5 described later. The numerical analysis value obtained by the numerical analysis device 5 is sent to the control device 6, and the control device 6 determines an appropriate injection rate of the flocculant based on the numerical analysis value. The data logger 50, the numerical analysis device 5, and the control device 6 may be provided separately. Alternatively, the data logger 50 and the numerical analysis device 5 may be incorporated in a control device 6 configured as one computer or one programmable logic controller (for example, a sequencer).
 懸濁物質を含む原液の散乱光強度を測定した測定例について図4Aおよび図4Bを用いて説明する。図4Aは、凝集剤の注入率が適正ではないために、フロックが形成されていない場合の散乱光強度の測定例を示し、上段のグラフは測定された散乱光強度を、下段のグラフは散乱光の平均強度を示す。図4Bは、凝集剤の注入率が適正であるために、フロックが形成されている場合の散乱光強度の測定例であり、上段のグラフは測定された散乱光強度を、下段のグラフは散乱光の平均強度を示す。図4Aおよび図4Bにおいて、横軸は測定時間を表し、縦軸は散乱光強度または散乱光の平均強度を表す。ここで、平均強度とは、所定の時間の平均強度のことである。 A measurement example in which the scattered light intensity of a stock solution containing suspended solids is measured will be described with reference to FIGS. 4A and 4B. FIG. 4A shows an example of measurement of scattered light intensity when no floc is formed because the injection rate of the flocculant is not appropriate. The upper graph shows the measured scattered light intensity, and the lower graph shows the scattered light intensity. Indicates the average intensity of light. FIG. 4B is a measurement example of the scattered light intensity when flocs are formed because the injection rate of the flocculant is appropriate. The upper graph shows the measured scattered light intensity, and the lower graph shows the scattered light. Indicates the average intensity of light. 4A and 4B, the horizontal axis represents the measurement time, and the vertical axis represents the scattered light intensity or the average intensity of the scattered light. Here, the average intensity is an average intensity for a predetermined time.
 フロックが形成されていないと、微小隙間Sに多くの懸濁物質が入り込み、当該懸濁物質から反射する光が多くなる。したがって、光検出器44Bで測定される散乱光の強度は、図4Aに示すように高くなる。一方で、フロックが形成されていると、懸濁物質はフロックとしてまとまっている。この場合、微小隙間Sに入り込む懸濁物質の量は少なくなり、当該懸濁物質から反射する光が少なくなる。したがって、光検出器44Bで測定される散乱光の強度は、図4Bに示されるように低くなる。この散乱光強度は、後述する数値解析工程で利用される。散乱光の平均強度を、数値解析工程で利用してもよい。 If the floc is not formed, a lot of suspended matter enters the minute gap S, and more light is reflected from the suspended matter. Therefore, the intensity of the scattered light measured by the photodetector 44B becomes high as shown in FIG. 4A. On the other hand, when the floc is formed, the suspended substance is collected as a floc. In this case, the amount of the suspended substance entering the minute gap S is reduced, and the light reflected from the suspended substance is reduced. Therefore, the intensity of the scattered light measured by the photodetector 44B becomes low as shown in FIG. 4B. This scattered light intensity is used in a numerical analysis process described later. The average intensity of the scattered light may be used in the numerical analysis process.
 なお、散乱光強度を光学的測定値として使用する場合は、例えば、懸濁物質からの散乱光の強度(または散乱光の平均強度)が小さくなることでフロックの形成が判断される。したがって、汚泥のような懸濁物質の濃度が高く、かつ懸濁物質が比較的大きい原液であって、形成されるフロックも大きい原液には、散乱光強度測定は適していない。一方で、散乱光強度測定は、微細な懸濁物質が含まれる原液であって、形成されるフロックも微細な原液の測定に適している。このような原液は、例えば浄水処理の原水である。 Note that, when the scattered light intensity is used as an optical measurement value, for example, the formation of flocs is determined by the decrease in the intensity of scattered light (or the average intensity of the scattered light) from the suspended substance. Therefore, the measurement of scattered light intensity is not suitable for a stock solution having a high concentration of suspended solids such as sludge and a relatively large suspended solid and a large floc formed. On the other hand, the scattered light intensity measurement is a stock solution containing a fine suspended substance, and the formed floc is also suitable for the measurement of a fine stock solution. Such a stock solution is, for example, raw water for water purification treatment.
 数値解析工程では、光学的測定工程で得られた光学的測定値を数値解析することにより、数値解析値を取得する。数値解析値の例としては、光学的測定値の平均値、分散、標準偏差、ピーク面積、ピーク高さなどが挙げられる。光学的測定値の分散とは、光学的測定値を統計学的に解析した値であり、所定の測定時間の間に得られた光学的測定値の分布の散らばりの程度を示す量である。標準偏差は、分散の平方根の正の値である。ピーク面積は、縦軸が光学的測定値を表し、横軸が測定時間を表すグラフ上に、所定の測定時間の間に得られた光学的測定値をプロットして描かれた曲線と、基準線(例えばベースライン)とで囲まれた領域の面積である。ピーク面積は、例えば、図2Bでハッチングを付けられた領域の面積に相当する。ピーク高さは、縦軸が光学的測定値を表し、横軸が測定時間を表すグラフ上に、所定の測定時間の間に得られた光学的測定値をプロットして描かれた曲線のピークの横軸からの高さである。 In the numerical analysis process, numerical analysis values are obtained by numerical analysis of the optical measurement values obtained in the optical measurement process. Examples of numerical analysis values include an average value of optical measurement values, dispersion, standard deviation, peak area, peak height, and the like. The dispersion of the optical measurement values is a value obtained by statistically analyzing the optical measurement values, and is an amount indicating the degree of dispersion of the distribution of the optical measurement values obtained during a predetermined measurement time. Standard deviation is the positive value of the square root of the variance. The peak area is a graph drawn by plotting optical measurement values obtained during a predetermined measurement time on a graph in which the vertical axis represents the optical measurement value and the horizontal axis represents the measurement time, and the reference This is the area of a region surrounded by a line (for example, a base line). The peak area corresponds to the area of the hatched area in FIG. 2B, for example. The peak height is the peak of a curve drawn by plotting the optical measurement values obtained during a given measurement time on a graph where the vertical axis represents the optical measurement value and the horizontal axis represents the measurement time. The height from the horizontal axis.
 ある閾値以上の光学的測定値の個数、あるいは、ある閾値以下の光学的測定値の個数を、数値解析値としてもよい。数値解析工程で、光学的測定値から、SS濃度、濁度、色度、フロック粒径などを算出し、これらを数値解析値としてもよい。ここで、フロック粒径とは、フロックが球形である場合には、フロックの直径を意味する。フロックが球形でない場合には、フロック粒径は、ストークス径、または各種測定方法によって測定された粒径を意味する。フロック粒径は、フロックの平均粒径であってもよい。平均粒径としては、算術平均径、最多径、中央径などが例示される。また、平均粒径は、個数基準であってもよいし、質量基準であってもよいし、体積基準であってもよい。 The number of optical measurement values above a certain threshold or the number of optical measurement values below a certain threshold may be used as a numerical analysis value. In the numerical analysis step, SS concentration, turbidity, chromaticity, floc particle size, etc. may be calculated from the optical measurement values, and these may be used as numerical analysis values. Here, the floc particle diameter means the diameter of the floc when the floc is spherical. When the floc is not spherical, the floc particle diameter means a Stokes diameter or a particle diameter measured by various measuring methods. The floc particle size may be the average particle size of the floc. Examples of the average particle diameter include an arithmetic average diameter, a maximum diameter, and a median diameter. The average particle diameter may be based on the number, may be based on mass, or may be based on volume.
 光学的測定値からSS濃度、濁度を算出する方法として、透過光測定方法、散乱光測定方法、透過光・散乱光比較方法、積分球測定方法などの公知の方法を用いることができる。光学的測定値から色度を算出する方法として、透過光測定方法などの公知の方法を用いることができる。光学的測定値からフロック粒径を算出する方法として、レーザ回折・散乱法、カメラで撮影した画像を画像解析する方法などの公知の方法を用いることができる。フロック粒径は平均フロック粒径でもよいし、フロック粒径の粒径分布でもよい。光学的測定を行うと共に、得られた光学的測定値からSS濃度、濁度、色度、フロック粒径などを算出できる市販の測定装置を用いることができる。 As a method for calculating the SS concentration and turbidity from the optical measurement values, known methods such as a transmitted light measurement method, a scattered light measurement method, a transmitted light / scattered light comparison method, an integrating sphere measurement method, and the like can be used. As a method for calculating chromaticity from the optical measurement value, a known method such as a transmitted light measurement method can be used. As a method for calculating the floc particle diameter from the optical measurement value, a known method such as a laser diffraction / scattering method or a method of analyzing an image taken with a camera can be used. The floc particle size may be an average floc particle size or a particle size distribution of floc particle size. A commercially available measuring apparatus capable of calculating the SS concentration, turbidity, chromaticity, floc particle diameter and the like from the obtained optical measurement values can be used while performing optical measurement.
 注入率決定工程は、凝集剤の注入工程、攪拌工程、光学的測定工程、数値解析工程を少なくとも1回行うことによって得られた、少なくとも1つの数値解析値から、凝集剤の適正な注入率を決定する工程である。すなわち、これまで説明してきた本実施形態では、懸濁物質を含む原液に凝集剤を注入し、懸濁物質のフロック形成させるために当該原液を高速攪拌し、攪拌された原液に対して光学的測定を実施し、得られた光学的測定値を数値解析して数値解析値を取得する。得られた数値解析値に基づき、凝集剤の注入率が適正か否かが判断され、注入率が適正でなければ、凝集剤の注入率を変更して、再度攪拌工程、光学的測定工程、数値解析工程を繰り返し、適正な注入率を決定する。なお、凝集剤の注入率によっては、懸濁物質のフロックが形成されない場合がある。 The injection rate determining step determines the appropriate injection rate of the flocculant from at least one numerical analysis value obtained by performing the flocculant injection step, the stirring step, the optical measurement step, and the numerical analysis step at least once. It is a step of determining. That is, in the present embodiment described so far, a flocculant is injected into a stock solution containing a suspended substance, the stock solution is stirred at a high speed in order to form a floc of the suspended material, and the stirred stock solution is optically mixed. The measurement is performed, and the obtained optical measurement value is numerically analyzed to obtain a numerical analysis value. Based on the obtained numerical analysis value, it is determined whether or not the injection rate of the flocculant is appropriate, and if the injection rate is not appropriate, the injection rate of the flocculant is changed, and the stirring step, the optical measurement step, Repeat the numerical analysis process to determine the proper injection rate. Depending on the injection rate of the flocculant, the suspended substance flocs may not be formed.
 懸濁物質を含む原液に注入される凝集剤の注入率は、原液の流量を一定に制御した状態で、原液に注入される凝集剤の流量を変更することで変更することができる。あるいは、凝集剤の流量を一定に制御した状態で、原液の流量を変更することにより、凝集剤の注入率を変更してもよい。あるいは、凝集剤の注入率を変更するために、原液の流量と凝集剤の流量の両方が変更されてもよい。 The injection rate of the flocculant injected into the stock solution containing suspended solids can be changed by changing the flow rate of the flocculant injected into the stock solution while the flow rate of the stock solution is controlled to be constant. Alternatively, the injection rate of the flocculant may be changed by changing the flow rate of the stock solution while the flow rate of the flocculant is controlled to be constant. Alternatively, both the flow rate of the stock solution and the flow rate of the flocculant may be changed in order to change the injection rate of the flocculant.
 適正な注入率を決定するための工程を表したフロー図が図5に示される。図5に示されるように、本実施形態では、まず、凝集剤の注入率aが設定される(ステップ1)。この注入率aで凝集剤を懸濁物質を含む原液に注入し、フロックを形成させるために、凝集剤と共に原液を高速攪拌する(ステップ2)。攪拌された原液に対して光学的測定が実施される(ステップ3)。光学的測定により得られた光学的測定値に対して数値解析が実施され、これにより数値解析値Xが得られる(ステップ4)。この数値解析値Xに基づき、凝集剤の注入率が適正か否かが判断される(ステップ5)。 FIG. 5 shows a flow chart showing a process for determining an appropriate injection rate. As shown in FIG. 5, in this embodiment, first, the injection rate a of the flocculant is set (step 1). The flocculant is injected into the stock solution containing the suspended substance at this injection rate a, and the stock solution is stirred at high speed together with the flocculant to form a floc (step 2). Optical measurements are performed on the stirred stock solution (step 3). Numerical analysis is performed on the optical measurement value obtained by the optical measurement, and thereby the numerical analysis value X is obtained (step 4). Based on this numerical analysis value X, it is determined whether or not the injection rate of the flocculant is appropriate (step 5).
 凝集剤の注入率が適正でない場合は、凝集剤の注入率aを変更する(ステップ6)。ステップ6では、高い注入率から徐々に注入率を減少させることにより適正注入率を決定する場合には、所定の変更幅bが注入率aから減算される。低い注入率aから徐々に注入率を増加させて適正注入率を決定する場合には、所定の変更幅bが注入率aに加算される。この変更後の注入率aで、ステップ2、ステップ3、ステップ4、およびステップ5を繰り替えして新たな数値解析値Xを取得し、この新たな数値解析値Xに基づいて、凝集剤の注入率が適正であるか否かが判断される。凝集剤の注入率が適正である場合は、凝集剤の注入率の決定工程が終了する。 If the injection rate of the flocculant is not appropriate, the injection rate a of the flocculant is changed (step 6). In step 6, when the appropriate injection rate is determined by gradually decreasing the injection rate from the high injection rate, the predetermined change width b is subtracted from the injection rate a. When the appropriate injection rate is determined by gradually increasing the injection rate from the low injection rate a, a predetermined change width b is added to the injection rate a. At this changed injection rate a, Step 2, Step 3, Step 4, and Step 5 are repeated to obtain a new numerical analysis value X, and the flocculant injection is performed based on the new numerical analysis value X. It is determined whether the rate is appropriate. When the injection rate of the flocculant is appropriate, the determining step of the injection rate of the flocculant is completed.
 ステップ5で凝集剤の注入率が適正か否かを決定する方法としては、数値解析値と所定の目標値との間の差の絶対値を求め、この差の絶対値が予め定められた許容値よりも小さい場合は、凝集剤の注入率が適正であると決定する方法が挙げられる。数値解析値と目標値との差の絶対値が許容値よりも大きいか等しければ、凝集剤の注入率を変更して、凝集剤の注入工程、攪拌工程、光学的測定工程、数値解析工程を再度実施する。そして、得られる数値解析値と目標値との差の絶対値が許容値よりも小さくなるまで、凝集剤の注入工程、攪拌工程、光学的測定工程、数値解析工程を、凝集剤の注入率を変えて繰り返す。 As a method of determining whether or not the injection rate of the flocculant is appropriate in Step 5, an absolute value of a difference between the numerical analysis value and a predetermined target value is obtained, and the absolute value of this difference is determined in advance. When the value is smaller than the value, there is a method of determining that the injection rate of the flocculant is appropriate. If the absolute value of the difference between the numerical analysis value and the target value is equal to or greater than the allowable value, the flocculant injection rate is changed and the flocculant injection process, stirring process, optical measurement process, and numerical analysis process are performed. Try again. Then, until the absolute value of the difference between the numerical analysis value and the target value obtained is smaller than the allowable value, the flocculant injection process, stirring process, optical measurement process, numerical analysis process, Change and repeat.
 上記した数値解析値と所定の目標値との間の差の絶対値を求め、この差の絶対値と許容値とを比較することで凝集剤の適正な注入率を決定するための工程を表したフロー図が図6に示される。図6に示されるように、注入率aが設定され(ステップ1)、この注入率aで凝集剤を懸濁物質を含む原液に注入し、フロックを形成させるために、凝集剤と共に原液を高速攪拌する(ステップ2)。攪拌された原液に対して光学的測定が実施される(ステップ3)。光学的測定により得られた光学的測定値に対して数値解析が実施され、数値解析値Xが得られる(ステップ4)。数値解析により得られた数値解析値Xに基づき、凝集剤の注入率が適正か否かが判断される(ステップ5)。このステップ5では、所定の目標値Xtと数値解析値Xとの差の絶対値が計算され、この差の絶対値が予め設定された許容値mと比較される。 An absolute value of the difference between the numerical analysis value described above and a predetermined target value is obtained, and a process for determining an appropriate injection rate of the flocculant by comparing the absolute value of this difference with an allowable value is shown. A flow chart is shown in FIG. As shown in FIG. 6, an injection rate a is set (step 1), and at this injection rate a, the flocculant is injected into the stock solution containing suspended solids, and the stock solution is fasted together with the flocculant to form a floc. Stir (step 2). Optical measurements are performed on the stirred stock solution (step 3). Numerical analysis is performed on the optical measurement value obtained by the optical measurement, and a numerical analysis value X is obtained (step 4). Based on the numerical analysis value X obtained by numerical analysis, it is determined whether or not the injection rate of the flocculant is appropriate (step 5). In step 5, the absolute value of the difference between the predetermined target value Xt and the numerical analysis value X is calculated, and the absolute value of this difference is compared with a preset allowable value m.
 所定の目標値Xtと数値解析値Xとの差の絶対値が許容値mよりも大きいか等しい場合は、凝集剤の注入率が適正ではないと判断され、凝集剤の注入率aが変更される(ステップ6)。ステップ6では、高い注入率から徐々に注入率を減少させることにより適正注入率を決定する場合には、所定の変更幅bが注入率aから減算される。低い注入率aから徐々に注入率を増加させて適正注入率を決定する場合には、所定の変更幅bが注入率aに加算される。この変更後の注入率aでステップ2、ステップ3、ステップ4、およびステップ5を繰り替えして新たな数値解析値Xを取得し、この新たな数値解析値Xに基づいて、凝集剤の注入率が適正であるか否かが再度判断される。所定の目標値Xtと数値解析値Xとの差の絶対値が許容値mよりも小さい場合、すなわち、凝集剤の注入率が適正である場合は、凝集剤の注入率の決定工程が終了する。 When the absolute value of the difference between the predetermined target value Xt and the numerical analysis value X is greater than or equal to the allowable value m, it is determined that the flocculant injection rate is not appropriate, and the flocculant injection rate a is changed. (Step 6). In step 6, when the appropriate injection rate is determined by gradually decreasing the injection rate from the high injection rate, the predetermined change width b is subtracted from the injection rate a. When the appropriate injection rate is determined by gradually increasing the injection rate from the low injection rate a, a predetermined change width b is added to the injection rate a. Step 2, Step 3, Step 4 and Step 5 are repeated with this changed injection rate a to obtain a new numerical analysis value X. Based on this new numerical analysis value X, the injection rate of the flocculant It is determined again whether or not is appropriate. When the absolute value of the difference between the predetermined target value Xt and the numerical analysis value X is smaller than the allowable value m, that is, when the injection rate of the flocculant is appropriate, the determination process of the flocculant injection rate ends. .
 適正な凝集剤注入率を決定するための他の方法として、以下に説明する方法が挙げられる。この方法では、予め複数の注入率が設定される。予め設定された複数の注入率それぞれで、懸濁物質を含む原液に凝集剤を注入し、フロックを形成させるために、凝集剤と共に原液を高速攪拌する。そして、複数の注入率それぞれにおいて攪拌された原液がそれぞれ光学的測定を実施され、複数の注入率それぞれにおける複数の数値解析値が取得される。得られた複数の数値解析値が比較され、例えば、最大値または最小値が得られた注入率が適正な注入率として決定される。この一連の工程のフロー図が図7に示される。図7は、複数の注入率を設定し、これら注入率それぞれで複数の数値解析値を取得し、取得した複数の数値解析値を比較することで凝集剤の適正な注入率を決定するための工程を表したフロー図である。 Other methods for determining an appropriate flocculant injection rate include the methods described below. In this method, a plurality of injection rates are set in advance. At each of a plurality of preset injection rates, the flocculant is injected into the stock solution containing suspended solids, and the stock solution is stirred at a high speed together with the flocculant to form a floc. Then, the stock solution stirred at each of the plurality of injection rates is subjected to optical measurement, and a plurality of numerical analysis values at each of the plurality of injection rates are acquired. The obtained numerical analysis values are compared, and, for example, the injection rate at which the maximum value or the minimum value is obtained is determined as an appropriate injection rate. A flowchart of this series of steps is shown in FIG. FIG. 7 is for setting a plurality of injection rates, acquiring a plurality of numerical analysis values for each of these injection rates, and determining the appropriate injection rate of the flocculant by comparing the acquired plurality of numerical analysis values. It is a flowchart showing a process.
 図7に示されるように、この方法では、複数の(n個の)注入率ai=a1,a2,・・・anが設定される(ステップ1)。iが1に設定され、最初の注入率ai(=a1)が選択される(ステップ2)。注入率a1で凝集剤を懸濁物質を含む原液に注入し、フロックを形成させるために、凝集剤と共に原液を高速攪拌する(ステップ3)。攪拌された原液に対して光学的測定が実施される(ステップ4)。光学的測定により得られた光学的測定値に対して数値解析が実施され、これにより数値解析値Xi(=X1)が得られる(ステップ5)。その後、i=nであるか否かが判断される(ステップ6)。i=nでない場合は、iに1を加算する(ステップ7)。例えば、iが1である場合は、iは2に変更され、注入率aiとしてa2が選択される。 As shown in FIG. 7, in this method, a plurality (n) of injection rates ai = a1, a2,... An are set (step 1). i is set to 1 and the first injection rate ai (= a1) is selected (step 2). The flocculant is injected into the stock solution containing the suspended substance at the injection rate a1, and the stock solution is stirred at a high speed together with the flocculant to form a floc (step 3). An optical measurement is performed on the stirred stock solution (step 4). Numerical analysis is performed on the optical measurement value obtained by the optical measurement, thereby obtaining a numerical analysis value Xi (= X1) (step 5). Thereafter, it is determined whether i = n (step 6). If i is not n, 1 is added to i (step 7). For example, when i is 1, i is changed to 2, and a2 is selected as the injection rate ai.
 変更された注入率aiで、再度、ステップ3、ステップ4およびステップ5を繰り返して、数値解析値Xiを取得する。例えば、ai=a2である場合は、数値解析値X2が得られ、ai=a3である場合は、数値解析値X3が得られる。数値解析値Xiを取得するために、ステップ3、ステップ4、およびステップ5を、i=nになるまで繰り返す。したがって、数値解析値X1,X2,・・・Xnが得られる。得られた数値解析値X1,X2,・・・Xnに基づいて、凝集剤の適正な注入率が決定される(ステップ8)。例えば、数値解析値X1,X2,・・・Xnの最大値または最小値が得られた注入率が、適正な注入率として決定される。 The numerical analysis value Xi is acquired by repeating Step 3, Step 4 and Step 5 again with the changed injection rate ai. For example, when ai = a2, a numerical analysis value X2 is obtained, and when ai = a3, a numerical analysis value X3 is obtained. In order to obtain the numerical analysis value Xi, Step 3, Step 4, and Step 5 are repeated until i = n. Therefore, numerical analysis values X1, X2,... Xn are obtained. Based on the obtained numerical analysis values X1, X2,... Xn, an appropriate injection rate of the flocculant is determined (step 8). For example, the injection rate at which the maximum value or the minimum value of the numerical analysis values X1, X2,... Xn is obtained is determined as an appropriate injection rate.
 最も大きな数値解析値が得られた注入率と2番目に大きな数値解析値が得られた注入率の平均値を適正注入率としてもよい。あるいは、最も小さな数値解析値が得られた注入率と2番目に小さい数値解析値が得られた注入率の平均値を適正注入率としてもよい。 The average value of the injection rate at which the largest numerical analysis value was obtained and the injection rate at which the second largest numerical analysis value was obtained may be used as the appropriate injection rate. Or it is good also considering the average value of the injection rate from which the smallest numerical analysis value was obtained, and the injection rate from which the 2nd smallest numerical analysis value was obtained as an appropriate injection rate.
 また、得られた数値解析値X1,X2,・・・Xnに基づいて、適正な凝集剤の注入率を決定するさらに別の方法として、以下に記述する方法を採用してもよい。縦軸が数値解析値を表し、横軸が凝集剤の注入率を表すグラフ上に、注入率a1,a2,・・・anにおける数値解析値X1,X2,・・・Xnをそれぞれプロットする。注入率a1,a2,・・・anと、数値解析値X1,X2,・・・Xnとの関係を示す近似式を算出し、得られた近似式に基づいて、凝集剤の適正な注入率を決定することができる。例えば、数値解析値のピーク値が得られる注入率を近似式から計算し、得られた注入率を凝集剤の適正な注入率とすることができる。 Further, the following method may be employed as yet another method for determining the appropriate coagulant injection rate based on the obtained numerical analysis values X1, X2,... Xn. The numerical analysis values X1, X2,... Xn at the injection rates a1, a2,... An are plotted on the graph in which the vertical axis represents the numerical analysis values and the horizontal axis represents the injection rate of the flocculant. An approximate expression indicating the relationship between the injection rates a1, a2,... An and the numerical analysis values X1, X2,... Xn is calculated, and based on the obtained approximate expression, an appropriate injection rate of the flocculant Can be determined. For example, the injection rate at which the peak value of the numerical analysis value is obtained can be calculated from the approximate expression, and the obtained injection rate can be set as an appropriate injection rate of the flocculant.
 さらに、上述した凝集方法は、必要に応じて、攪拌工程で高速攪拌された原液を希釈液で希釈する希釈工程を含んでもよい。希釈工程は、攪拌工程と光学的測定工程の間で実施される。例えば、図5に示したフロー図では、ステップ2とステップ3の間で実施され、図6に示したフロー図では、ステップ2とステップ3の間で実施される。図7に示したフロー図では、ステップ3とステップ4の間で実施される。 Furthermore, the agglomeration method described above may include a diluting step of diluting the stock solution stirred at high speed in the stirring step with a diluting solution, if necessary. The dilution step is performed between the stirring step and the optical measurement step. For example, in the flowchart shown in FIG. 5, it is implemented between Step 2 and Step 3, and in the flowchart shown in FIG. 6, it is implemented between Step 2 and Step 3. In the flowchart shown in FIG. 7, the process is performed between Step 3 and Step 4.
 希釈工程の目的は、攪拌された原液を希釈液で希釈することによって、懸濁物質の濃度あるいはフロックの濃度を低減させることである。懸濁物質の濃度が高い原液では、フロックが形成されたときの光学的測定値とフロックが形成されないときの光学的測定値に差が生じず、その結果、凝集剤の注入率の決定が困難な場合がある。例えば、光学的測定工程で、懸濁物質の濃度が高い原液の透過光強度を測定する場合、凝集剤の注入率が適正でフロックが形成されても、フロック間の隙間がほとんど存在せず、図2Aに示したように、透過光強度がほぼ一定になってしまう場合がある。これに対して、攪拌された原液を希釈液で希釈する場合、フロック間の隙間を増大させることができるため、フロックの隙間から光が透過し、図2Bに示されるように、透過光強度のピークが複数個計測される。この結果、フロックが形成されたときの透過光強度とフロックが形成されないときの透過光強度に差が生じ、適正な注入率を決定できる。希釈液としては、純水、水道水、工業用水、地下水、各種排水処理の処理水、海水などを用いることができる。 The purpose of the dilution process is to reduce the concentration of suspended matter or floc by diluting the stirred stock solution with the diluent. In stock solutions with a high concentration of suspended solids, there is no difference between the optical measurement when floc is formed and the optical measurement when no floc is formed, and as a result, it is difficult to determine the injection rate of the flocculant. There are cases. For example, in the optical measurement process, when measuring the transmitted light intensity of a stock solution with a high concentration of suspended solids, there is almost no gap between the flocs even if flocs are formed with an appropriate injection rate of the flocculant, As shown in FIG. 2A, the transmitted light intensity may become substantially constant. On the other hand, when diluting the stirred stock solution with the diluent, the gap between the flocks can be increased, so that light is transmitted through the gap between the flocks, and as shown in FIG. Multiple peaks are measured. As a result, there is a difference between the transmitted light intensity when the floc is formed and the transmitted light intensity when the floc is not formed, and an appropriate injection rate can be determined. As the diluent, pure water, tap water, industrial water, ground water, treated water for various wastewater treatment, seawater, and the like can be used.
 得られた適正な注入率に補正係数を乗算して、補正注入率を決定してもよい。補正注入率が決定される場合は、この補正注入率が懸濁物質を含む原液に注入される凝集剤の注入率として用いられる。補正注入率を決定する工程は、注入率決定工程で適正な注入率が決定された後に行われる。例えば、凝集剤のランニングコストを抑えたい場合は、注入率決定工程で得られた適正な注入率に0.9の補正係数を乗算してもよい。凝集工程の後で行われる脱水工程での脱水効率を上げたい場合には、注入率決定工程で得られた適正な注入率に1.1の補正係数を乗算してもよい。 The corrected injection rate may be determined by multiplying the obtained appropriate injection rate by a correction coefficient. When the corrected injection rate is determined, this corrected injection rate is used as the injection rate of the flocculant injected into the stock solution containing suspended solids. The step of determining the corrected injection rate is performed after an appropriate injection rate is determined in the injection rate determination step. For example, when it is desired to suppress the running cost of the flocculant, an appropriate injection rate obtained in the injection rate determination step may be multiplied by a correction coefficient of 0.9. When it is desired to increase the dewatering efficiency in the dewatering step performed after the aggregation step, the appropriate injection rate obtained in the injection rate determining step may be multiplied by a correction coefficient of 1.1.
 これまで説明してきたように、上述した実施形態では、凝集剤が注入された、懸濁物質を含む原液を、攪拌翼の回転速度が500min-1以上である高速回転で攪拌させる。この高速攪拌により、原液内に凝集剤が瞬時に分散させられ、凝集剤は原液と効率良く均一に混合される。その結果、原液に含まれる懸濁物質が効率良く凝集させられる。この高速攪拌を行う場合、凝集剤が注入された原液に高ストレスが負荷されるので、凝集剤が適正な注入率で注入されていないと、フロックが成長する前に破壊されてしまう。したがって、注入される凝集剤が適正注入率でなければ、フロックが適切に成長しない。上述した本実施形態によれば、後述する制御装置が、フロックが適切に成長していることを、光学的測定値を数値解析することで得られた数値解析値から判断する。これにより、凝集剤の適正な注入率を高い精度で決定することができる。その結果、凝集剤の使用量を削減することができる。また、運転員の経験や勘がなくとも、凝集剤の注入率を適正に制御することができる。さらに、懸濁物質を含む原液の性状(例えば、原液内における懸濁物質の濃度など)が変化しても、凝集剤の注入率を適正に制御することができる。 As described so far, in the above-described embodiment, the stock solution containing suspended solids, into which the flocculant is injected, is stirred at a high speed rotation in which the rotation speed of the stirring blade is 500 min −1 or more. By this high-speed stirring, the flocculant is instantaneously dispersed in the stock solution, and the flocculant is efficiently and uniformly mixed with the stock solution. As a result, the suspended substance contained in the stock solution is efficiently aggregated. When this high-speed stirring is performed, a high stress is applied to the stock solution into which the flocculant is injected. Therefore, if the flocculant is not injected at an appropriate injection rate, the flocs are destroyed before growing. Therefore, if the flocculant to be injected is not at an appropriate injection rate, flocs will not grow properly. According to the above-described embodiment, the control device to be described later determines that the floc is growing properly from the numerical analysis value obtained by numerical analysis of the optical measurement value. Thereby, the appropriate injection rate of the flocculant can be determined with high accuracy. As a result, the amount of the flocculant used can be reduced. Moreover, the injection rate of the flocculant can be appropriately controlled without the experience and intuition of the operator. Furthermore, even if the properties of the stock solution containing the suspended material (for example, the concentration of the suspended material in the stock solution) change, the injection rate of the flocculant can be controlled appropriately.
 また、従来の凝集方法では、攪拌機の攪拌翼の回転速度を10~300min-1程度に設定した通常速度の攪拌によって、凝集剤を原液に分散させるので、凝集剤を原液に均一に分散させることが難しい。これに対して、上述の実施形態では、攪拌翼の回転速度が500min-1以上である高速攪拌により、凝集剤を原液に均一に分散させることができるため、より正確に凝集剤の適正注入率を決定することができる。さらに、上述の実施形態では、瞬時に凝集剤を原液に分散させ、短時間でフロックを形成することができるため、より迅速に凝集剤の適正注入率を決定することができる。 Further, in the conventional flocculation method, the flocculant is dispersed in the stock solution by stirring at a normal speed in which the rotation speed of the stirrer of the stirrer is set to about 10 to 300 min −1. Is difficult. On the other hand, in the above-described embodiment, the flocculant can be uniformly dispersed in the stock solution by high-speed stirring in which the rotation speed of the stirring blade is 500 min −1 or more. Can be determined. Furthermore, in the above-described embodiment, since the flocculant can be instantaneously dispersed in the stock solution and flocs can be formed in a short time, the appropriate injection rate of the flocculant can be determined more quickly.
 次に、上記した凝集方法を実施するための凝集装置について説明する。
 図8は、本発明の凝集装置の一実施形態を示す概略図である。図8に示した凝集装置は、原液貯槽10、高速攪拌機1、光学的測定装置3がこの順に直列に接続された構成を有している。原液貯槽10には、懸濁物質を含む原液が貯留される。高速攪拌機1は、懸濁物質を含む原液が供給される高速攪拌槽2と、懸濁物質を含む原液を攪拌する高速攪拌翼8と、高速攪拌翼8を回転させる駆動装置としての高速モーター9とを備える。高速攪拌機1の高速攪拌槽2には、原液貯槽10から延びる供給元管18が接続され、供給元管18には、原液貯槽10に貯留された原液を所定の流量で高速攪拌槽2に供給する供給装置7が配置される。供給装置7は、例えば、ポンプ、またはバルブ、またはポンプとバルブの組み合わせである。
Next, an aggregating apparatus for carrying out the above-described aggregating method will be described.
FIG. 8 is a schematic view showing an embodiment of the aggregating apparatus of the present invention. The aggregating apparatus shown in FIG. 8 has a configuration in which a stock solution storage tank 10, a high-speed stirrer 1, and an optical measuring device 3 are connected in series in this order. The stock solution storage tank 10 stores a stock solution containing suspended solids. The high-speed stirrer 1 includes a high-speed stirring tank 2 to which a stock solution containing suspended solids is supplied, a high-speed stirring blade 8 that stirs the stock solution containing suspended solids, and a high-speed motor 9 as a drive device that rotates the high-speed stirring blade 8. With. A supply source pipe 18 extending from the stock solution storage tank 10 is connected to the high speed stirring tank 2 of the high speed stirrer 1, and the stock solution stored in the stock solution storage tank 10 is supplied to the high speed stirring tank 2 at a predetermined flow rate. A supply device 7 is arranged. The supply device 7 is, for example, a pump, a valve, or a combination of a pump and a valve.
 高速攪拌槽2から排出される原液が流れる排出配管28が、高速攪拌槽2に接続されており、排出配管28には、光学的測定装置3が配置されている。光学的測定装置3は、例えば、上述した透過光強度を測定する測定装置、または散乱光強度を測定する測定装置である。透過光強度を測定する光学的測定装置と、散乱光強度を測定する光学的測定装置とを直列に並べて配置してもよい。光学的測定装置3は、透過率、回折光の強度、回折・散乱光強度、吸光度、反射光の強度などを測定することができる測定装置であってもよい。 A discharge pipe 28 through which the stock solution discharged from the high-speed stirring tank 2 flows is connected to the high-speed stirring tank 2, and the optical measuring device 3 is disposed in the discharge pipe 28. The optical measuring device 3 is, for example, a measuring device that measures the above-described transmitted light intensity or a measuring device that measures scattered light intensity. An optical measurement device that measures transmitted light intensity and an optical measurement device that measures scattered light intensity may be arranged in series. The optical measuring device 3 may be a measuring device capable of measuring transmittance, intensity of diffracted light, intensity of diffracted / scattered light, absorbance, intensity of reflected light, and the like.
 凝集剤を貯留する凝集剤貯槽11が設けられ、凝集剤貯槽11から延びる凝集剤供給配管26が高速攪拌槽2に接続される。凝集剤供給配管26には、凝集剤注入装置4が配置される。凝集剤注入装置4は、懸濁物質を含む原液に凝集剤を所定の注入率で注入する装置である。凝集剤注入装置4は、例えば、ポンプ、またはバルブ、またはポンプとバルブの組み合わせである。 A flocculant storage tank 11 for storing the flocculant is provided, and a flocculant supply pipe 26 extending from the flocculant storage tank 11 is connected to the high-speed stirring tank 2. The flocculant supply pipe 26 is provided with the flocculant injection device 4. The flocculant injection device 4 is a device that injects the flocculant at a predetermined injection rate into the stock solution containing suspended solids. The flocculant injection device 4 is, for example, a pump, a valve, or a combination of a pump and a valve.
 この凝集装置において、懸濁物質を含む原液は、供給装置7により原液貯槽10から高速攪拌槽2に供給される。凝集剤は、凝集剤注入装置4により高速攪拌槽2に供給される。高速攪拌槽2では、高速攪拌翼8の回転速度が500min-1以上である高速回転で、原液と凝集剤とを混合させて、これにより、懸濁物質のフロックが形成される。なお、凝集剤の注入率によっては、懸濁物質のフロックが形成されない場合がある。すなわち、高速攪拌機1では、懸濁物質のフロックを形成させるために高速攪拌翼8が高速で回転させられるが、凝集剤の注入率次第で、懸濁物質のフロックが形成されない場合がある。 In this aggregating apparatus, the stock solution containing suspended solids is supplied from the stock solution storage tank 10 to the high-speed stirring tank 2 by the supply device 7. The flocculant is supplied to the high-speed stirring tank 2 by the flocculant injection device 4. In the high-speed agitation tank 2, the stock solution and the flocculant are mixed at a high-speed rotation in which the rotation speed of the high-speed agitation blade 8 is 500 min −1 or more, thereby forming suspended matter flocs. Depending on the injection rate of the flocculant, the suspended substance flocs may not be formed. That is, in the high-speed stirrer 1, the high-speed stirring blade 8 is rotated at a high speed to form a suspended substance floc, but depending on the injection rate of the flocculant, the suspended substance floc may not be formed.
 光学的測定装置3には、数値解析装置5が電気的に接続され、数値解析装置5には、制御装置6が電気的に接続されている。数値解析装置5は、制御装置6内に組み込まれていてもよい。また、制御装置6は、凝集剤注入装置4に電気的に接続されている。 A numerical analysis device 5 is electrically connected to the optical measurement device 3, and a control device 6 is electrically connected to the numerical analysis device 5. The numerical analysis device 5 may be incorporated in the control device 6. The control device 6 is electrically connected to the flocculant injection device 4.
 このような構成で、光学的測定装置3から得られた光学的測定値は、上述したように、数値解析装置5に送られる。数値解析装置5は、光学的測定値を数値解析し、数値解析値を取得する。得られた数値解析値は、制御装置6に送られる。制御装置6は、上述したような方法で、数値解析値に基づいて凝集剤の適正な注入率を決定する。 In such a configuration, the optical measurement value obtained from the optical measurement device 3 is sent to the numerical analysis device 5 as described above. The numerical analysis device 5 numerically analyzes the optical measurement value and acquires the numerical analysis value. The obtained numerical analysis value is sent to the control device 6. The control device 6 determines an appropriate injection rate of the flocculant based on the numerical analysis value by the method as described above.
 図9は、本発明の凝集装置の別の実施形態を示す概略図である。図9に示す凝集装置では、凝集剤を供給する凝集剤供給配管26は、供給元管18に接続され、高速攪拌槽2には接続されない。それ以外の構成は、図8に示した実施形態と同様であるため、対応する構成要素には同じ符号を付すことで、その詳細な説明は省略する。この実施形態では、凝集剤は、高速攪拌槽2よりも上流側に配置される供給元管18内に注入される。このように、懸濁物質を含む原液に注入される凝集剤は、図8に示すように、高速攪拌槽2に注入されてもよいし、図9に示すように、高速攪拌槽2よりも上流側に配置される供給元管18に注入されてもよい。 FIG. 9 is a schematic view showing another embodiment of the aggregating apparatus of the present invention. In the coagulation apparatus shown in FIG. 9, the coagulant supply pipe 26 that supplies the coagulant is connected to the supply source pipe 18 and is not connected to the high-speed stirring tank 2. Since the other configuration is the same as that of the embodiment shown in FIG. 8, the corresponding components are denoted by the same reference numerals, and detailed description thereof is omitted. In this embodiment, the flocculant is injected into the supply source pipe 18 disposed on the upstream side of the high-speed stirring tank 2. Thus, the flocculant injected into the stock solution containing the suspended solids may be injected into the high-speed stirring tank 2 as shown in FIG. 8, or more than the high-speed stirring tank 2 as shown in FIG. You may inject | pour into the supply pipe | tube 18 arrange | positioned upstream.
 図10は、本発明の凝集装置のさらに別の実施形態を示す概略図である。図10に示す凝集装置では、高速攪拌機1としてラインミキサーが採用されている。それ以外の構成は、図9に示した実施形態と同様であるため、対応する構成要素には同じ符号を付すことで、その詳細な説明は省略する。ラインミキサー1は、配管に組み込まれたミキサーである。ラインミキサー1の利点は、ラインミキサー1が密封されているため、当該ラインミキサー1の上流側に配置される供給装置7と、凝集剤注入装置4の2台のポンプがあれば、ラインミキサー1の下流側に原液を送ることができる点である。 FIG. 10 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention. In the aggregating apparatus shown in FIG. 10, a line mixer is employed as the high-speed stirrer 1. Since the other configuration is the same as that of the embodiment shown in FIG. 9, the corresponding components are denoted by the same reference numerals, and detailed description thereof is omitted. The line mixer 1 is a mixer incorporated in a pipe. The advantage of the line mixer 1 is that the line mixer 1 is hermetically sealed. Therefore, if there are two pumps, that is, a supply device 7 disposed upstream of the line mixer 1 and a flocculant injection device 4, the line mixer 1 It is a point which can send undiluted | stock solution downstream.
 図11は、本発明の凝集装置のさらに別の実施形態を示す概略図である。図11に示す凝集装置では、これまで説明してきた高速攪拌機1とは別の凝集槽攪拌機12が設けられる。凝集槽攪拌機12は、従来から用いられてきた攪拌機であり、凝集槽攪拌機12の攪拌翼の回転速度は、10~300min-1程度の通常速度に設定される。原液貯槽10から延びる供給元管18は、高速攪拌機1へ接続される第1の供給配管19と、凝集槽攪拌機12へ接続される第2の供給配管25とに分岐する。高速攪拌機1、供給装置7、光学的測定装置3、凝集剤注入装置4、凝集剤供給配管26は、図8に示される実施形態と同じであるため、対応する構成要素には同じ符号を付すことで、その詳細な説明は省略する。以下、供給装置7を第1の供給装置7と称し、凝集剤注入装置4を第1の凝集剤注入装置と称し、凝集剤供給配管26を第1の凝集剤供給配管と称する。 FIG. 11 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention. In the aggregating apparatus shown in FIG. 11, an aggregating tank agitator 12 different from the high-speed agitator 1 described so far is provided. The agglomeration tank agitator 12 is a conventionally used agitator, and the rotation speed of the agitation blade of the agglomeration tank agitator 12 is set to a normal speed of about 10 to 300 min −1 . The supply source pipe 18 extending from the stock solution storage tank 10 branches into a first supply pipe 19 connected to the high-speed stirrer 1 and a second supply pipe 25 connected to the coagulation tank stirrer 12. The high-speed stirrer 1, the supply device 7, the optical measurement device 3, the flocculant injection device 4, and the flocculant supply pipe 26 are the same as those in the embodiment shown in FIG. Thus, detailed description thereof is omitted. Hereinafter, the supply device 7 is referred to as a first supply device 7, the flocculant injection device 4 is referred to as a first flocculant injection device, and the flocculant supply pipe 26 is referred to as a first flocculant supply pipe.
 凝集槽攪拌機12は、懸濁物質を含む原液が供給される凝集攪拌槽37と、懸濁物質を含む原液を攪拌する凝集槽攪拌翼38と、凝集槽攪拌翼38を回転させる駆動装置としての凝集槽モーター39とを備える。凝集槽攪拌機12の凝集攪拌槽37には、第2の供給配管25が接続され、第2の供給配管25には、懸濁物質を含む原液を所定の流量で凝集攪拌槽37に供給する第2の供給装置35が配置される。第2の供給装置35は、例えば、ポンプ、またはバルブ、またはポンプとバルブの組み合わせである。 The agglomeration tank agitator 12 is a coagulation agitation tank 37 to which a stock solution containing a suspended substance is supplied, a coagulation tank agitation blade 38 for agitating the stock solution containing a suspended substance, and a drive device that rotates the agglomeration tank agitation blade 38. A coagulation tank motor 39 is provided. A second supply pipe 25 is connected to the coagulation agitation tank 37 of the coagulation tank agitator 12, and the second supply pipe 25 supplies a stock solution containing suspended solids to the aggregation agitation tank 37 at a predetermined flow rate. Two supply devices 35 are arranged. The second supply device 35 is, for example, a pump, a valve, or a combination of a pump and a valve.
 なお、図11に示した実施形態では、第1の供給配管19は、原液貯槽10と第2の供給装置35との間から分岐しているが、第2の供給装置35と凝集攪拌槽37との間から分岐してもよい。あるいは、第1の供給配管19は、原液貯槽10に直接接続されてもよい。この場合、供給元管18は省略される。 In the embodiment shown in FIG. 11, the first supply pipe 19 branches from between the stock solution storage tank 10 and the second supply apparatus 35, but the second supply apparatus 35 and the agglomeration stirring tank 37. You may branch from between. Alternatively, the first supply pipe 19 may be directly connected to the stock solution storage tank 10. In this case, the supply source pipe 18 is omitted.
 凝集剤を貯留する凝集剤貯槽11から延びる第2の凝集剤供給配管36が凝集攪拌槽37に接続される。第2の凝集剤供給配管36には、第2の凝集剤注入装置45が配置される。第2の凝集剤注入装置45は、懸濁物質を含む原液に凝集剤を所定の注入率で注入する装置である。凝集剤注入装置45は、例えば、ポンプ、またはバルブ、またはポンプとバルブの組み合わせである。凝集剤貯槽11は、第1の凝集剤供給配管26を介して高速攪拌槽2にも接続されている。なお、図11に示した実施形態では、第1の凝集剤供給配管26は、凝集剤貯槽11に直接接続されているが、凝集剤貯槽11と第2の凝集剤注入装置45との間から分岐してもよい。あるいは、第1の凝集剤供給配管26は、第2の凝集剤注入装置45と凝集攪拌槽37との間から分岐してもよい。 A second flocculant supply pipe 36 extending from the flocculant storage tank 11 for storing the flocculant is connected to the flocculant stirring tank 37. A second flocculant injection device 45 is disposed in the second flocculant supply pipe 36. The second flocculant injection device 45 is a device that injects the flocculant into the stock solution containing the suspended substance at a predetermined injection rate. The flocculant injection device 45 is, for example, a pump, a valve, or a combination of a pump and a valve. The flocculant storage tank 11 is also connected to the high-speed stirring tank 2 via the first flocculant supply pipe 26. In the embodiment shown in FIG. 11, the first flocculant supply pipe 26 is directly connected to the flocculant storage tank 11, but from between the flocculant storage tank 11 and the second flocculant injection device 45. It may branch off. Alternatively, the first flocculant supply pipe 26 may be branched from between the second flocculant injection device 45 and the flocculant stirring tank 37.
 凝集攪拌槽37から排出される原液が流れる第2の排出配管46が、凝集攪拌槽37に接続されており、第2の排出配管46の下流側には、脱水機14が接続されている。脱水機14は、フロックが形成された原液を脱水し、ろ液とケーキとに分離する。ケーキは、脱水機14から回収される。 A second discharge pipe 46 through which the stock solution discharged from the coagulation stirring tank 37 flows is connected to the coagulation stirring tank 37, and the dehydrator 14 is connected to the downstream side of the second discharge pipe 46. The dehydrator 14 dehydrates the stock solution in which flocks are formed, and separates it into a filtrate and a cake. The cake is recovered from the dehydrator 14.
 高速攪拌機1の下流側に配置される光学的測定装置3には、数値解析装置5が電気的に接続され、数値解析装置5には、制御装置6が電気的に接続されている。数値解析装置5は、制御装置6内に組み込まれていてもよい。また、制御装置6は、第1の凝集剤注入装置4および第2の凝集剤注入装置45に電気的に接続されている。 A numerical analysis device 5 is electrically connected to the optical measurement device 3 arranged on the downstream side of the high-speed stirrer 1, and a control device 6 is electrically connected to the numerical analysis device 5. The numerical analysis device 5 may be incorporated in the control device 6. The control device 6 is electrically connected to the first flocculant injection device 4 and the second flocculant injection device 45.
 このような構成の凝集装置では、まず、第1の供給装置7を作動させて、懸濁物質を含む原液を高速攪拌機1に供給する。高速攪拌機1で、高速攪拌された原液は、光学的測定装置3に送られる。光学的測定装置3は、高速攪拌された原液の光学的測定を実施し、光学的測定値を取得する。光学的測定装置3から得られた光学的測定値は、上述したように、数値解析装置5に送られる。数値解析装置5は、光学的測定値を数値解析し、数値解析値を取得する。得られた数値解析値は、制御装置6に送られる。制御装置6は、上述したような方法で、数値解析値に基づいて凝集剤の適正な注入率を決定する。 In the aggregating device having such a configuration, first, the first supply device 7 is operated to supply a stock solution containing suspended solids to the high-speed stirrer 1. The stock solution stirred at high speed by the high-speed stirrer 1 is sent to the optical measuring device 3. The optical measuring device 3 performs an optical measurement of the stock solution stirred at a high speed to obtain an optical measurement value. The optical measurement value obtained from the optical measurement device 3 is sent to the numerical analysis device 5 as described above. The numerical analysis device 5 numerically analyzes the optical measurement value and acquires the numerical analysis value. The obtained numerical analysis value is sent to the control device 6. The control device 6 determines an appropriate injection rate of the flocculant based on the numerical analysis value by the method as described above.
 決定された注入率は、第2の凝集剤注入装置45に送られる。そして、第1の供給装置7を停止させ、第2の供給装置35を動作させる。これにより、原液貯槽10に貯留する原液は、凝集槽攪拌機12に供給される。凝集槽攪拌機12に注入される凝集剤の注入率は、先に決定された注入率である。このように、凝集剤は、適正な注入率で原液に注入され、原液中にフロックが形成される。フロックを含む原液は、脱水機14に送られ、脱水機14により脱水される。 The determined injection rate is sent to the second flocculant injection device 45. Then, the first supply device 7 is stopped and the second supply device 35 is operated. Thereby, the stock solution stored in the stock solution storage tank 10 is supplied to the agglomeration tank agitator 12. The injection rate of the flocculant injected into the coagulation tank agitator 12 is the injection rate determined previously. In this way, the flocculant is injected into the stock solution at an appropriate injection rate, and flocs are formed in the stock solution. The stock solution containing the flock is sent to the dehydrator 14 and dehydrated by the dehydrator 14.
 図12は、本発明の凝集装置のさらに別の実施形態を示す概略図である。図12に示す凝集装置では、脱水機14の代わりに、沈殿槽20が設けられる。それ以外の構成は、図11に示した実施形態と同様であるため、対応する構成要素には同じ符号を付すことで、その詳細な説明は省略する。沈殿槽20に供給される原液内のフロックは、自重により沈殿槽20の底に向かって沈降し、これにより、フロックを含む原液は、フロックが高濃度で存在する濃縮原液(例えば、濃縮汚泥)と、フロックが存在しない処理済液とに分離される。このように沈殿槽20を設けることで、フロックと処理済液とを分離することができる。 FIG. 12 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention. In the aggregating apparatus shown in FIG. 12, a settling tank 20 is provided instead of the dehydrator 14. Since the other configuration is the same as that of the embodiment shown in FIG. 11, the corresponding components are denoted by the same reference numerals, and detailed description thereof is omitted. The floc in the undiluted solution supplied to the settling tank 20 settles toward the bottom of the settling tank 20 due to its own weight, so that the undiluted solution containing the floc is a concentrated undiluted solution in which the floc exists at a high concentration (for example, concentrated sludge) And the processed liquid without floc. By providing the precipitation tank 20 in this way, it is possible to separate the floc and the processed liquid.
 図13は、本発明の凝集装置のさらに別の実施形態を示す概略図である。図13に示される凝集装置では、凝集槽攪拌機12と直列に、凝集槽攪拌機12とは別の凝集槽攪拌機21が凝集槽攪拌機12に接続されている。以下、凝集槽攪拌機12を第1の凝集槽攪拌機12と称し、凝集槽攪拌機21を第2の凝集槽攪拌機21と称する。第2の凝集槽攪拌機21は、従来から用いられてきた攪拌機であり、凝集槽攪拌機21の攪拌翼の回転速度は、10~300min-1程度の通常速度に設定される。特に説明しない他の構成は、図12に示した実施形態と同様であるため、対応する構成要素には同じ符号を付すことで、その詳細な説明は省略する。 FIG. 13 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention. In the coagulation apparatus shown in FIG. 13, a coagulation tank agitator 21 different from the coagulation tank agitator 12 is connected to the coagulation tank agitator 12 in series with the coagulation tank agitator 12. Hereinafter, the agglomeration tank agitator 12 is referred to as a first agglomeration tank agitator 12, and the agglomeration tank agitator 21 is referred to as a second agglomeration tank agitator 21. The second agglomeration tank stirrer 21 is a conventionally used agitator, and the rotation speed of the stirring blades of the agglomeration tank agitator 21 is set to a normal speed of about 10 to 300 min −1 . Other configurations that are not particularly described are the same as those of the embodiment shown in FIG. 12, and therefore, corresponding components are denoted by the same reference numerals, and detailed description thereof is omitted.
 図13に示される実施形態の第2の凝集槽攪拌機21は、第1の凝集槽攪拌機12でフロックが形成された原液が供給される第2の凝集攪拌槽47と、この原液を攪拌する第2の凝集槽攪拌翼48と、第2の凝集槽攪拌翼48を回転させる駆動装置としての第2の凝集槽モーター49とを備える。第2の凝集攪拌槽47は、第1の凝集攪拌槽37に隣接しており、第2の凝集攪拌槽47は、第1の凝集攪拌槽37と直接に接続されている。第2の凝集攪拌槽47には、高速攪拌槽2および第1の凝集攪拌槽37に供給される第1の凝集剤とは異なる第2の凝集剤が供給される。第2の凝集剤は、第2の凝集剤貯槽23に貯留されている。第2の凝集剤貯槽23から第2の凝集攪拌槽47に第2の凝集剤を供給するための第3の凝集剤供給配管52が、第2の凝集剤貯槽23から第2の凝集攪拌槽47に延びている。第3の凝集剤供給配管52には、第3の凝集剤注入装置53が配置され、第3の凝集剤注入装置53により、第2の凝集剤が所定の注入率で第2の凝集攪拌槽47に注入される。第3の凝集剤注入装置53は、例えば、ポンプ、またはバルブ、またはポンプとバルブの組み合わせである。 The second agglomeration tank agitator 21 of the embodiment shown in FIG. 13 includes a second agglomeration agitation tank 47 to which the stock solution in which flocks are formed by the first agglomeration tank agitator 12 is supplied, and a second agitation tank agitation 2 agglomeration tank agitation blades 48 and a second agglomeration tank motor 49 as a driving device for rotating the second agglomeration tank agitation blades 48. The second aggregation stirring tank 47 is adjacent to the first aggregation stirring tank 37, and the second aggregation stirring tank 47 is directly connected to the first aggregation stirring tank 37. A second flocculant different from the first flocculant supplied to the high-speed agitation tank 2 and the first agglomeration agitation tank 37 is supplied to the second agglomeration agitation tank 47. The second flocculant is stored in the second flocculant storage tank 23. A third flocculant supply pipe 52 for supplying the second flocculant from the second flocculant reservoir 23 to the second flocculent agitation tank 47 is provided from the second flocculant reservoir 23 to the second flocculant agitation tank. 47. The third flocculant supply pipe 52 is provided with a third flocculant injection device 53, and the second flocculant is injected into the second flocculant stirring tank at a predetermined injection rate by the third flocculant injection device 53. 47 is injected. The third flocculant injection device 53 is, for example, a pump, a valve, or a combination of a pump and a valve.
 第1の凝集剤として、例えば、無機凝集剤が用いられる。第2の凝集剤として、例えば、高分子凝集剤が用いられる。無機凝集剤を用いた場合、懸濁物質の表面電荷が中和され、これにより、微細なフロックが形成される。高分子凝集剤を用いた場合、懸濁物質の表面電荷が中和されると共に、さらに高分子凝集剤の吸着作用、架橋作用により、より大きなフロックが形成される。したがって、これら2つの異なる凝集剤を用いることにより、ろ過性のよい、強固なフロックを形成することができる。 For example, an inorganic flocculant is used as the first flocculant. For example, a polymer flocculant is used as the second flocculant. When an inorganic flocculant is used, the surface charge of the suspended material is neutralized, thereby forming fine flocs. When the polymer flocculant is used, the surface charge of the suspended substance is neutralized, and a larger floc is formed by the adsorption action and the crosslinking action of the polymer flocculant. Therefore, by using these two different flocculants, a strong floc with good filterability can be formed.
 図14は、本発明の凝集装置のさらに別の実施形態を示す概略図である。特に説明しない他の構成は、図13に示した実施形態と同様であるため、対応する構成要素には同じ符号を付すことで、その詳細な説明は省略する。図14に示される凝集装置では、第1の凝集槽攪拌機12と直列に第2の凝集槽攪拌機21が接続される。第1の凝集槽攪拌機12と第2の凝集槽攪拌機21とは、接続配管55により接続され、高速攪拌機1に延びる第3の供給配管57が接続配管55から分岐される。第2の凝集剤は、第2の凝集剤貯槽23から高速攪拌機1に供給される。したがって、光学的測定装置3で測定される原液は、第1の凝集剤および第2の凝集剤が注入されて、高速攪拌された原液である。第2の凝集剤の適正な注入率は、制御装置6により決定される。 FIG. 14 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention. Other configurations that are not particularly described are the same as those of the embodiment shown in FIG. 13, and therefore, the corresponding components are denoted by the same reference numerals, and detailed description thereof is omitted. In the coagulation apparatus shown in FIG. 14, a second coagulation tank agitator 21 is connected in series with the first coagulation tank agitator 12. The first flocculating tank stirrer 12 and the second flocculating tank stirrer 21 are connected by a connection pipe 55, and a third supply pipe 57 extending to the high speed stirrer 1 is branched from the connection pipe 55. The second flocculant is supplied from the second flocculant storage tank 23 to the high-speed stirrer 1. Therefore, the stock solution measured by the optical measuring device 3 is a stock solution in which the first flocculant and the second flocculant are injected and stirred at a high speed. The appropriate injection rate of the second flocculant is determined by the control device 6.
 第1の凝集槽攪拌機12と第2の凝集槽攪拌機21とは、接続配管55で接続されている。接続配管55からは、高速攪拌機1に延びる第3の供給配管57が分岐されている。接続配管55の、第3の供給配管57が分岐された位置の下流側には、第3の供給装置56が配置されている。第3の供給装置56は、例えば、ポンプ、またはバルブ、またはポンプとバルブの組み合わせである。なお、図14に示した実施形態では、第3の供給配管57は、第1の凝集攪拌槽37と第3の供給装置56との間から分岐しているが、第3の供給装置56と第2の凝集攪拌槽47との間から分岐してもよい。あるいは、第3の供給配管57は、第1の凝集攪拌槽37に直接接続されてもよい。 The first flocculating tank stirrer 12 and the second flocculating tank stirrer 21 are connected by a connection pipe 55. A third supply pipe 57 extending to the high speed stirrer 1 is branched from the connection pipe 55. A third supply device 56 is arranged on the downstream side of the connection pipe 55 where the third supply pipe 57 is branched. The third supply device 56 is, for example, a pump, a valve, or a combination of a pump and a valve. In the embodiment shown in FIG. 14, the third supply pipe 57 is branched from between the first agglomeration stirring tank 37 and the third supply device 56, but the third supply device 56 You may branch from between the 2nd aggregation stirring tank 47. Alternatively, the third supply pipe 57 may be directly connected to the first aggregation stirring tank 37.
 第2の凝集剤が貯留される第2の凝集剤貯槽23からは、第4の凝集剤供給配管58が延びており、第4の凝集剤供給配管58は、高速攪拌機1に接続されている。第4の凝集剤供給配管58には、第1の凝集剤注入装置4が配置されている。また、第2の凝集剤貯槽23から第2の凝集攪拌槽47に第2の凝集剤を供給するための第3の凝集剤供給配管52が、第2の凝集剤貯槽23から第2の凝集攪拌槽47に延びている。第3の凝集剤供給配管52には、第3の凝集剤注入装置53が配置され、第3の凝集剤注入装置53により、第2の凝集剤が所定の注入率で第2の凝集攪拌槽47に注入される。なお、図14に示した実施形態では、第4の凝集剤供給配管58は、第2の凝集剤貯槽23に直接接続されているが、第2の凝集剤貯槽23と第3の凝集剤注入装置53との間から分岐してもよい。あるいは、第4の凝集剤供給配管58は、第3の凝集剤注入装置53と第2の凝集攪拌槽47との間から分岐してもよい。 A fourth flocculant supply pipe 58 extends from the second flocculant storage tank 23 in which the second flocculant is stored, and the fourth flocculant supply pipe 58 is connected to the high-speed stirrer 1. . The fourth flocculant supply pipe 58 is provided with the first flocculant injection device 4. Further, a third flocculant supply pipe 52 for supplying the second flocculant from the second flocculant storage tank 23 to the second flocculant stirring tank 47 is provided from the second flocculant storage tank 23 to the second flocculant. It extends to the stirring tank 47. The third flocculant supply pipe 52 is provided with a third flocculant injection device 53, and the second flocculant is injected into the second flocculant stirring tank at a predetermined injection rate by the third flocculant injection device 53. 47 is injected. In the embodiment shown in FIG. 14, the fourth flocculant supply pipe 58 is directly connected to the second flocculant reservoir 23, but the second flocculant reservoir 23 and the third flocculant injection You may branch from between the apparatuses 53. FIG. Alternatively, the fourth flocculant supply pipe 58 may be branched from between the third flocculant injection device 53 and the second flocculent stirring tank 47.
 高速攪拌機1の下流側に配置される光学的測定装置3には、数値解析装置5が電気的に接続され、数値解析装置5には、制御装置6が電気的に接続されている。数値解析装置5は、制御装置6内に組み込まれていてもよい。また、制御装置6は、第1の凝集剤注入装置4および第3の凝集剤注入装置53に電気的に接続されている。 A numerical analysis device 5 is electrically connected to the optical measurement device 3 arranged on the downstream side of the high-speed stirrer 1, and a control device 6 is electrically connected to the numerical analysis device 5. The numerical analysis device 5 may be incorporated in the control device 6. The control device 6 is electrically connected to the first flocculant injection device 4 and the third flocculant injection device 53.
 このような構成の凝集装置では、まず、第2の供給装置35と第1の供給装置7を作動させて、懸濁物質を含む原液を第1の凝集槽攪拌機12と高速攪拌機1とに供給する。第1の凝集槽攪拌機12でフロックを形成するために攪拌された原液は、高速攪拌機1に供給され、高速攪拌機1で第2の凝集剤と混合される。高速攪拌機1で高速攪拌された原液は、光学的測定装置3に送られる。光学的測定装置3は、高速攪拌された原液の光学的測定を実施し、光学的測定値を取得する。光学的測定装置3から得られた光学的測定値は、上述したように、数値解析装置5に送られる。数値解析装置5は、光学的測定値を数値解析し、数値解析値を取得する。得られた数値解析値は、制御装置6に送られる。制御装置6は、上述したような方法で、数値解析値に基づいて第2の凝集剤の適正な注入率を決定する。 In the flocculation apparatus having such a configuration, first, the second supply device 35 and the first supply device 7 are operated to supply the stock solution containing suspended solids to the first flocculation tank agitator 12 and the high-speed agitator 1. To do. The stock solution stirred to form flocs in the first flocculating tank stirrer 12 is supplied to the high speed stirrer 1 and mixed with the second flocculant in the high speed stirrer 1. The stock solution stirred at high speed by the high-speed stirrer 1 is sent to the optical measuring device 3. The optical measuring device 3 performs an optical measurement of the stock solution stirred at a high speed to obtain an optical measurement value. The optical measurement value obtained from the optical measurement device 3 is sent to the numerical analysis device 5 as described above. The numerical analysis device 5 numerically analyzes the optical measurement value and acquires the numerical analysis value. The obtained numerical analysis value is sent to the control device 6. The control device 6 determines an appropriate injection rate of the second flocculant based on the numerical analysis value by the method as described above.
 決定された第2の凝集剤の注入率は、第3の凝集剤注入装置53に送られる。そして、第1の供給装置7を停止させ、第3の供給装置56を動作させる。すなわち、動作する供給装置は、第2の供給装置35と第3の供給装置56になる。これにより、原液貯槽10に貯留する原液は、第1の凝集槽攪拌機12と第2の凝集槽攪拌機21とに供給される。第2の凝集剤貯槽23から第2の凝集槽攪拌機21に注入される第2の凝集剤の注入率は、先に決定された注入率である。これにより、懸濁物質を含む原液に注入される第2の凝集剤の注入率は、自動で制御される。適正な注入率で第2の凝集剤が注入されたことにより適切なフロックが形成される。フロックを含む原液は、沈殿槽20に送られて、処理済液と濃縮原液に分離される。 The determined injection rate of the second flocculant is sent to the third flocculant injection device 53. Then, the first supply device 7 is stopped and the third supply device 56 is operated. That is, the supply devices that operate are the second supply device 35 and the third supply device 56. Thereby, the stock solution stored in the stock solution storage tank 10 is supplied to the first flocculation tank stirrer 12 and the second flocculation tank stirrer 21. The injection rate of the second flocculant injected from the second flocculant storage tank 23 into the second flocculant stirrer 21 is the injection rate determined previously. Thereby, the injection rate of the second flocculant injected into the stock solution containing the suspended substance is automatically controlled. An appropriate floc is formed by injecting the second flocculant at an appropriate injection rate. The stock solution containing floc is sent to the precipitation tank 20 and separated into a processed solution and a concentrated stock solution.
 なお、第3の供給装置56を省略することができる。この場合、第1の凝集槽攪拌機12と第2の凝集槽攪拌機21との間に高低差が設けられる。この高低差に起因する位置ヘッド差を利用して、第1の凝集槽攪拌機12から第2の凝集槽攪拌機21に原液が供給される(自然流下方式)。 Note that the third supply device 56 can be omitted. In this case, a height difference is provided between the first flocculating tank stirrer 12 and the second flocculating tank stirrer 21. By utilizing the position head difference resulting from this height difference, the stock solution is supplied from the first agglomeration tank agitator 12 to the second agglomeration tank agitator 21 (natural flow method).
 図15は、本発明の凝集装置のさらに別の実施形態を示す概略図である。図15に示される凝集装置は、図13に示される凝集装置と、図14に示される凝集装置の構成を組み合わせた実施形態である。すなわち、図15に示される凝集装置は、第1の凝集剤の適正な注入率と、第2の凝集剤の適正な注入率とをそれぞれ決定することができる。特に説明しない他の構成は、図13および図14に示した実施形態と同様であるため、対応する構成要素には同じ符号を付すことで、その詳細な説明は省略する。 FIG. 15 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention. The aggregating apparatus shown in FIG. 15 is an embodiment in which the aggregating apparatus shown in FIG. 13 is combined with the configuration of the aggregating apparatus shown in FIG. That is, the aggregating apparatus shown in FIG. 15 can determine an appropriate injection rate of the first flocculant and an appropriate injection rate of the second flocculant. Other configurations that are not particularly described are the same as those in the embodiment shown in FIGS. 13 and 14, and thus the corresponding components are denoted by the same reference numerals, and detailed description thereof is omitted.
 第1の凝集剤の適正な注入率を決定するために、凝集装置は、これまで説明してきたように、高速攪拌機1を備える。また、第2の凝集剤の適正な注入率を決定するために、凝集装置は、高速攪拌機60を備える。以下、高速攪拌機1を第1の高速攪拌機1と称し、高速攪拌機60を第2の高速攪拌機60と称する。 In order to determine an appropriate injection rate of the first flocculant, the flocculant includes the high-speed stirrer 1 as described above. Further, in order to determine an appropriate injection rate of the second aggregating agent, the aggregating apparatus includes a high-speed agitator 60. Hereinafter, the high-speed stirrer 1 is referred to as the first high-speed stirrer 1, and the high-speed stirrer 60 is referred to as the second high-speed stirrer 60.
 第1の凝集剤の適正な注入率を決定するために、凝集装置は、これまで説明してきたように、第1の高速攪拌機1と、第1の光学的測定装置3と、第1の数値解析装置5と、第1の制御装置6とを備える。第1の高速攪拌機1の第1の高速攪拌槽2に原液を供給するための第1の供給配管19が、供給元管18から分岐されて延びており、第1の供給配管19に第1の供給装置7が配置される。第1の供給装置7によって、懸濁物質を含む原液が第1の高速攪拌槽2に供給される。 In order to determine the appropriate injection rate of the first flocculant, the flocculant has the first high-speed stirrer 1, the first optical measuring device 3, the first numerical value as described above. An analysis device 5 and a first control device 6 are provided. A first supply pipe 19 for supplying the stock solution to the first high-speed stirrer 2 of the first high-speed stirrer 1 is branched from the supply source pipe 18 and extends to the first supply pipe 19. The supply device 7 is arranged. The stock solution containing suspended solids is supplied to the first high-speed stirring tank 2 by the first supply device 7.
 高速攪拌槽2から排出される原液が流れる第1の排出配管28が、高速攪拌槽2に接続されており、第1の排出配管28には、第1の光学的測定装置3が配置されている。第1の光学的測定装置3は、例えば、上述した透過光強度を測定する測定装置、または散乱光強度を測定する測定装置である。透過光強度を測定する光学的測定装置と、散乱光強度を測定する光学的測定装置とを直列に並べて配置してもよい。光学的測定装置3は、透過率、回折光の強度、回折・散乱光強度、吸光度、反射光の強度などを測定することができる測定装置であってもよい。 A first discharge pipe 28 through which the stock solution discharged from the high-speed stirring tank 2 flows is connected to the high-speed stirring tank 2, and the first optical measuring device 3 is arranged in the first discharge pipe 28. Yes. The first optical measurement device 3 is, for example, the above-described measurement device that measures the transmitted light intensity or the measurement device that measures the scattered light intensity. An optical measurement device that measures transmitted light intensity and an optical measurement device that measures scattered light intensity may be arranged in series. The optical measuring device 3 may be a measuring device capable of measuring transmittance, intensity of diffracted light, intensity of diffracted / scattered light, absorbance, intensity of reflected light, and the like.
 第1の凝集剤を貯留する第1の凝集剤貯槽11が設けられ、第1の凝集剤貯槽11から延びる第1の凝集剤供給配管26が第1の高速攪拌槽2に接続される。第1の凝集剤供給配管26には、第1の凝集剤注入装置4が配置される。第1の凝集剤注入装置4は、懸濁物質を含む原液に第1の凝集剤を所定の注入率で注入する装置である。第1の凝集剤注入装置4は、例えば、ポンプ、またはバルブ、またはポンプとバルブの組み合わせである。 A first flocculant storage tank 11 for storing the first flocculant is provided, and a first flocculant supply pipe 26 extending from the first flocculant storage tank 11 is connected to the first high-speed stirring tank 2. A first flocculant injection device 4 is disposed in the first flocculant supply pipe 26. The first flocculant injection device 4 is a device that injects the first flocculant at a predetermined injection rate into a stock solution containing suspended solids. The first flocculant injection device 4 is, for example, a pump, a valve, or a combination of a pump and a valve.
 第1の凝集剤貯槽11から延びる第2の凝集剤供給配管36が第1の凝集槽攪拌機12の第1の凝集攪拌槽37に接続される。第2の凝集剤供給配管36には、第2の凝集剤注入装置45が配置される。第2の凝集剤注入装置45は、懸濁物質を含む原液に第1の凝集剤を所定の注入率で注入する装置である。第2の凝集剤注入装置45は、例えば、ポンプ、またはバルブ、またはポンプとバルブの組み合わせである。なお、図15に示した実施形態では、第1の凝集剤供給配管26は、第1の凝集剤貯槽11に直接接続されているが、第1の凝集剤貯槽11と第2の凝集剤注入装置45との間から分岐してもよい。あるいは、第1の凝集剤供給配管26は、第2の凝集剤注入装置45と第1の凝集攪拌槽37との間から分岐してもよい。 The second flocculant supply pipe 36 extending from the first flocculant storage tank 11 is connected to the first flocculant agitation tank 37 of the first agglomeration tank agitator 12. A second flocculant injection device 45 is disposed in the second flocculant supply pipe 36. The second flocculant injection device 45 is a device for injecting the first flocculant at a predetermined injection rate into the stock solution containing suspended solids. The second flocculant injection device 45 is, for example, a pump, a valve, or a combination of a pump and a valve. In the embodiment shown in FIG. 15, the first flocculant supply pipe 26 is directly connected to the first flocculant reservoir 11, but the first flocculant reservoir 11 and the second flocculant injection You may branch from between the apparatuses 45. Alternatively, the first flocculant supply pipe 26 may be branched from between the second flocculant injection device 45 and the first flocculant stirring tank 37.
 第1の光学的測定装置3には、第1の数値解析装置5が電気的に接続され、第1の数値解析装置5には、第1の制御装置6が電気的に接続されている。第1の数値解析装置5は、第1の制御装置6内に組み込まれていてもよい。また、第1の制御装置6は、第1の凝集剤注入装置4および第2の凝集剤注入装置45に電気的に接続されている。 A first numerical analysis device 5 is electrically connected to the first optical measurement device 3, and a first control device 6 is electrically connected to the first numerical analysis device 5. The first numerical analysis device 5 may be incorporated in the first control device 6. The first controller 6 is electrically connected to the first flocculant injection device 4 and the second flocculant injection device 45.
 図15に示される凝集装置では、第1の凝集槽攪拌機12と直列に第2の凝集槽攪拌機21が接続される。第1の凝集槽攪拌機12と第2の凝集槽攪拌機21とは、接続配管55により接続され、第2の高速攪拌機60に延びる第3の供給配管57が接続配管55から分岐される。第2の高速攪拌機60は、懸濁物質を含む原液が供給される第2の高速攪拌槽61と、懸濁物質を含む原液を攪拌する第2の高速攪拌翼62と、第2の高速攪拌翼62を回転させる駆動装置としての第2の高速モーター63とを備える。第2の高速攪拌機60の第2の高速攪拌槽61には、第3の供給配管57が接続され、第3の供給配管57には、懸濁物質を含む原液を所定の流量で第2の高速攪拌槽61に供給する第4の供給装置65が配置される。第4の供給装置65は、例えば、ポンプ、またはバルブ、またはポンプとバルブの組み合わせである。なお、図15に示した実施形態では、第3の供給配管57は、第1の凝集攪拌槽37と第3の供給装置56との間から分岐しているが、第3の供給装置56と第2の凝集攪拌槽47との間から分岐してもよい。あるいは、第3の供給配管57は、第1の凝集攪拌槽37に直接接続されてもよい。 15, a second flocculating tank stirrer 21 is connected in series with the first flocculating tank stirrer 12. The first agglomeration tank agitator 12 and the second agglomeration tank agitator 21 are connected by a connection pipe 55, and a third supply pipe 57 extending to the second high-speed agitator 60 is branched from the connection pipe 55. The second high-speed stirrer 60 includes a second high-speed stirring tank 61 to which a stock solution containing suspended solids is supplied, a second high-speed stirring blade 62 that stirs the stock solution containing suspended solids, and a second high-speed stirring. And a second high-speed motor 63 as a driving device for rotating the blades 62. A third supply pipe 57 is connected to the second high-speed stirring tank 61 of the second high-speed stirrer 60, and the third supply pipe 57 is supplied with a stock solution containing suspended solids at a predetermined flow rate. A fourth supply device 65 that supplies the high-speed stirring tank 61 is disposed. The fourth supply device 65 is, for example, a pump, a valve, or a combination of a pump and a valve. In the embodiment shown in FIG. 15, the third supply pipe 57 is branched from between the first agglomeration stirring tank 37 and the third supply device 56. You may branch from between the 2nd aggregation stirring tank 47. Alternatively, the third supply pipe 57 may be directly connected to the first aggregation stirring tank 37.
 第2の凝集攪拌槽47には、第1の高速攪拌槽2および第1の凝集攪拌槽37に供給される第1の凝集剤とは異なる第2の凝集剤が供給される。第2の凝集剤は、第2の凝集剤貯槽23に貯留されている。第2の凝集剤貯槽23から第2の凝集攪拌槽47に第2の凝集剤を供給するための第3の凝集剤供給配管52が、第2の凝集剤貯槽23から第3の高速攪拌槽47に延びている。第3の凝集剤供給配管52には、第3の凝集剤注入装置53が配置され、第3の凝集剤注入装置53により、第2の凝集剤が所定の注入率で第2の凝集攪拌槽47に注入される。第3の凝集剤注入装置53は、例えば、ポンプ、またはバルブ、またはポンプとバルブの組み合わせである。 The second flocculating agent 47 is supplied to the second flocculating and stirring tank 47, which is different from the first flocculating agent supplied to the first high-speed stirring tank 2 and the first flocculating and stirring tank 37. The second flocculant is stored in the second flocculant storage tank 23. A third flocculant supply pipe 52 for supplying the second flocculant from the second flocculant reservoir 23 to the second flocculent agitation tank 47 is provided from the second flocculant reservoir 23 to the third high-speed agitation tank. 47. The third flocculant supply pipe 52 is provided with a third flocculant injection device 53, and the second flocculant is injected into the second flocculant stirring tank at a predetermined injection rate by the third flocculant injection device 53. 47 is injected. The third flocculant injection device 53 is, for example, a pump, a valve, or a combination of a pump and a valve.
 第2の凝集剤貯槽23からは、第4の凝集剤供給配管58が第2の高速攪拌機60の第2の高速攪拌槽61に延びている。第4の凝集剤供給配管58には、第4の凝集剤注入装置66が配置されている。第4の凝集剤注入装置66により、第2の凝集剤が所定の注入率で第2の高速攪拌槽61に注入される。第4の凝集剤注入装置66は、例えば、ポンプ、またはバルブ、またはポンプとバルブの組み合わせである。なお、図15に示した実施形態では、第4の凝集剤供給配管58は、第2の凝集剤貯槽23に直接接続されているが、第2の凝集剤貯槽23と第3の凝集剤注入装置53との間から分岐してもよい。あるいは、第4の凝集剤供給配管58は、第3の凝集剤注入装置53と第2の凝集攪拌槽47との間から分岐してもよい。 The fourth flocculant supply pipe 58 extends from the second flocculant storage tank 23 to the second high-speed agitation tank 61 of the second high-speed agitator 60. A fourth flocculant injection device 66 is disposed in the fourth flocculant supply pipe 58. The fourth flocculant injecting device 66 injects the second flocculant into the second high-speed stirring tank 61 at a predetermined injection rate. The fourth flocculant injection device 66 is, for example, a pump, a valve, or a combination of a pump and a valve. In the embodiment shown in FIG. 15, the fourth flocculant supply pipe 58 is directly connected to the second flocculant reservoir 23, but the second flocculant reservoir 23 and the third flocculant injection You may branch from between the apparatuses 53. FIG. Alternatively, the fourth flocculant supply pipe 58 may be branched from between the third flocculant injection device 53 and the second flocculent stirring tank 47.
 第2の高速攪拌槽61から排出される原液が流れる第3の排出配管69が、第2の高速攪拌槽61に接続されており、第3の排出配管69には、第2の光学的測定装置68が配置されている。第2の高速攪拌機60の下流側に配置される第2の光学的測定装置68は、第1の光学的測定装置3と同様の構成であり、例えば、上述した透過光強度を測定する測定装置、または散乱光強度を測定する測定装置を用いることができる。 A third discharge pipe 69 through which the stock solution discharged from the second high-speed stirring tank 61 flows is connected to the second high-speed stirring tank 61, and the third discharge pipe 69 has a second optical measurement. A device 68 is arranged. The second optical measuring device 68 disposed on the downstream side of the second high-speed stirrer 60 has the same configuration as the first optical measuring device 3, and for example, a measuring device that measures the above-described transmitted light intensity. Alternatively, a measuring device that measures scattered light intensity can be used.
 第2の光学的測定装置68には、第2の数値解析装置70が電気的に接続され、第2の数値解析装置70には、第2の制御装置71が電気的に接続されている。第2の数値解析装置70は、第2の制御装置71内に組み込まれていてもよい。また、第2の制御装置71は、第3の凝集剤注入装置53および第4の凝集剤注入装置66に電気的に接続されている。 A second numerical analysis device 70 is electrically connected to the second optical measurement device 68, and a second control device 71 is electrically connected to the second numerical analysis device 70. The second numerical analysis device 70 may be incorporated in the second control device 71. The second control device 71 is electrically connected to the third flocculant injection device 53 and the fourth flocculant injection device 66.
 このような構成の凝集装置では、まず、第1の供給装置7を動作させ、原液貯槽10内の懸濁物質を含む原液を第1の高速攪拌機1に供給する。第1の凝集剤は、第1の凝集剤注入装置4により第1の高速攪拌機1の第1の高速攪拌槽2に供給される。第1の高速攪拌槽2では、第1の高速攪拌翼8の回転速度が500min-1以上である高速回転で原液と凝集剤とを混合させる。 In the aggregating apparatus having such a configuration, first, the first supply device 7 is operated to supply a stock solution containing suspended substances in the stock solution storage tank 10 to the first high-speed stirrer 1. The first flocculant is supplied to the first high-speed stirring tank 2 of the first high-speed stirrer 1 by the first flocculant injection device 4. In the first high-speed stirring tank 2, the stock solution and the flocculant are mixed at a high-speed rotation in which the rotation speed of the first high-speed stirring blade 8 is 500 min −1 or more.
 第1の高速攪拌機1で高速攪拌された原液は、第1の光学的測定装置3に送られる。第1の光学的測定装置3は、高速攪拌された原液の光学的測定を実施し、光学的測定値を取得する。第1の光学的測定装置3から得られた光学的測定値は、上述したように、第1の数値解析装置5に送られる。第1の数値解析装置5は、光学的測定値を数値解析し、数値解析値を取得する。得られた数値解析値は、第1の制御装置6に送られる。第1の制御装置6は、上述したような方法で、数値解析値に基づいて第1の凝集剤の適正な注入率を決定する。 The stock solution stirred at high speed by the first high-speed stirrer 1 is sent to the first optical measuring device 3. The first optical measuring device 3 performs an optical measurement of the stock solution stirred at high speed, and acquires an optical measurement value. The optical measurement value obtained from the first optical measurement device 3 is sent to the first numerical analysis device 5 as described above. The first numerical analysis device 5 performs numerical analysis on the optical measurement value and acquires a numerical analysis value. The obtained numerical analysis value is sent to the first control device 6. The first control device 6 determines an appropriate injection rate of the first flocculant based on the numerical analysis value by the method as described above.
 決定された第1の凝集剤の注入率は、第1の制御装置6から第2の凝集剤注入装置45に送られる。そして、第1の供給装置7を停止させ、第2の供給装置35および第4の供給装置65を動作させる。原液貯槽10内の原液は、第1の凝集槽攪拌機12に送られる。第1の凝集槽攪拌機12には、第1の凝集剤が上記決定された注入率で注入され、この凝集剤が原液と混合されることにより、フロックが一次形成させられる。 The determined injection rate of the first flocculant is sent from the first control device 6 to the second flocculant injection device 45. Then, the first supply device 7 is stopped, and the second supply device 35 and the fourth supply device 65 are operated. The stock solution in the stock solution storage tank 10 is sent to the first agglomeration tank stirrer 12. A first flocculant is injected into the first aggregating tank agitator 12 at the injection rate determined as described above, and the flocculant is mixed with the stock solution, whereby flocs are primarily formed.
 第1の凝集剤を用いて一次形成させられたフロックを含む原液は、第4の供給装置65により第2の高速攪拌機60に供給される。第2の凝集剤が第4の凝集剤注入装置66により第2の高速攪拌機60の第2の高速攪拌槽61に供給される。第2の高速攪拌槽61では、第2の高速攪拌翼62の回転速度が500min-1以上である高速回転で、原液と第2の凝集剤とを混合させる。 The stock solution containing flocs primarily formed using the first flocculant is supplied to the second high-speed stirrer 60 by the fourth supply device 65. The second flocculant is supplied to the second high-speed stirring tank 61 of the second high-speed stirrer 60 by the fourth flocculant injection device 66. In the second high-speed stirring tank 61, the stock solution and the second aggregating agent are mixed at a high-speed rotation in which the rotation speed of the second high-speed stirring blade 62 is 500 min −1 or more.
 第2の高速攪拌機60で高速攪拌された原液は、第2の光学的測定装置68に送られる。第2の光学的測定装置68は、第2の高速攪拌機60で高速攪拌された原液の光学的測定を実施し、光学的測定値を取得する。第2の光学的測定装置68から得られた光学的測定値は、上述したように、第2の数値解析装置70に送られる。第2の数値解析装置70は、光学的測定値を数値解析し、数値解析値を取得する。得られた数値解析値は、第2の制御装置71に送られる。第2の制御装置71は、上述したような方法で、数値解析値に基づいて第2の凝集剤の適正な注入率を決定する。 The stock solution stirred at high speed by the second high speed stirrer 60 is sent to the second optical measuring device 68. The second optical measuring device 68 performs an optical measurement of the stock solution stirred at a high speed by the second high-speed stirrer 60 and acquires an optical measurement value. The optical measurement value obtained from the second optical measurement device 68 is sent to the second numerical analysis device 70 as described above. The second numerical analysis device 70 performs numerical analysis on the optical measurement value and acquires a numerical analysis value. The obtained numerical analysis value is sent to the second control device 71. The second control device 71 determines an appropriate injection rate of the second flocculant based on the numerical analysis value by the method as described above.
 決定された第2の凝集剤の注入率は、第2の制御装置71から第3の凝集剤注入装置53に送られる。そして、第4の供給装置65を停止させ、第3の供給装置56を動作させる。すなわち、動作する供給装置は、第2の供給装置35と、第3の供給装置56になる。これにより、原液貯槽10に貯留する原液は、第1の凝集槽攪拌機12と第2の凝集槽攪拌機21とに供給される。 The determined injection rate of the second flocculant is sent from the second control device 71 to the third flocculant injection device 53. Then, the fourth supply device 65 is stopped and the third supply device 56 is operated. In other words, the supply devices that operate are the second supply device 35 and the third supply device 56. Thereby, the stock solution stored in the stock solution storage tank 10 is supplied to the first flocculation tank stirrer 12 and the second flocculation tank stirrer 21.
 第1の凝集槽攪拌機12に注入される第1の凝集剤の注入率は、先に決定された注入率である。同様に、第2の凝集槽攪拌機21に注入される第2の凝集剤の注入率は、先に決定された注入率である。これにより、懸濁物質を含む原液に注入される第1の凝集剤と第2の凝集剤の注入率は、自動で制御される。適正な凝集剤注入率で第1の凝集剤と第2の凝集剤とが注入されることにより、適切なフロックが原液中に形成される。フロックを含んだ原液は、沈殿槽20に送られて、処理済液と濃縮原液に分離される。 The injection rate of the first coagulant injected into the first coagulation tank agitator 12 is the injection rate determined in advance. Similarly, the injection rate of the second flocculant injected into the second aggregating tank stirrer 21 is the previously determined injection rate. Thereby, the injection rates of the first flocculant and the second flocculant injected into the stock solution containing the suspended substance are automatically controlled. By injecting the first flocculant and the second flocculant at an appropriate flocculant injection rate, an appropriate floc is formed in the stock solution. The stock solution containing the flock is sent to the precipitation tank 20 and separated into a treated solution and a concentrated stock solution.
 なお、図15に示した実施形態でも、第3の供給装置56を省略することができる。この場合、第1の凝集槽攪拌機12と第2の凝集槽攪拌機21との間に高低差が設けられる。この高低差に起因する位置ヘッド差を利用して、第1の凝集槽攪拌機12から第2の凝集槽攪拌機21に原液が供給される(自然流下方式)。 In the embodiment shown in FIG. 15, the third supply device 56 can be omitted. In this case, a height difference is provided between the first flocculating tank stirrer 12 and the second flocculating tank stirrer 21. By utilizing the position head difference resulting from this height difference, the stock solution is supplied from the first agglomeration tank agitator 12 to the second agglomeration tank agitator 21 (natural flow method).
 図16は、本発明の凝集装置のさらに別の実施形態を示す概略図である。図16に示される凝集装置は、原液貯槽10、高速攪拌機1、光学的測定装置3、凝集槽攪拌機12、および脱水機14がこの順に接続された構成を有している。原液貯槽10には、懸濁物質を含む原液が貯留される。高速攪拌機1の高速攪拌槽2には、原液貯槽10から延びる供給元管18が接続され、供給元管18には、原液貯槽10に貯留された原液を所定の流量で高速攪拌槽2に供給する供給装置7が配置される。 FIG. 16 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention. The aggregating apparatus shown in FIG. 16 has a configuration in which a stock solution storage tank 10, a high-speed agitator 1, an optical measuring device 3, an aggregating tank agitator 12, and a dehydrator 14 are connected in this order. The stock solution storage tank 10 stores a stock solution containing suspended solids. A supply source pipe 18 extending from the stock solution storage tank 10 is connected to the high speed stirring tank 2 of the high speed stirrer 1, and the stock solution stored in the stock solution storage tank 10 is supplied to the high speed stirring tank 2 at a predetermined flow rate. A supply device 7 is arranged.
 凝集剤を貯留する凝集剤貯槽11が設けられ、凝集剤貯槽11から延びる第1の凝集剤供給配管26が供給元管18に接続される。第1の凝集剤供給配管26には、凝集剤注入装置4が配置される。凝集剤注入装置4は、懸濁物質を含む原液に凝集剤を所定の注入率で注入する装置である。 A flocculant storage tank 11 for storing the flocculant is provided, and a first flocculant supply pipe 26 extending from the flocculant storage tank 11 is connected to the supply source pipe 18. The flocculant injection device 4 is disposed in the first flocculant supply pipe 26. The flocculant injection device 4 is a device that injects the flocculant at a predetermined injection rate into the stock solution containing suspended solids.
 凝集剤貯槽11から延びる第2の凝集剤供給配管36が凝集槽攪拌槽37に接続される。第2の凝集剤供給配管36には、第2の凝集剤注入装置45が配置される。第2の凝集剤注入装置45は、懸濁物質を含む原液に凝集剤を所定の注入率で注入する装置である。なお、図16に示した実施形態では、第2の凝集剤供給配管36は、凝集剤貯槽11に直接接続されているが、凝集剤貯槽11と第1の凝集剤注入装置4との間から分岐してもよい。あるいは、第2の凝集剤供給配管36は、第1の凝集剤注入装置4と供給元管18との間から分岐してもよい。 A second flocculant supply pipe 36 extending from the flocculant storage tank 11 is connected to the flocculant agitation tank 37. A second flocculant injection device 45 is disposed in the second flocculant supply pipe 36. The second flocculant injection device 45 is a device that injects the flocculant into the stock solution containing the suspended substance at a predetermined injection rate. In the embodiment shown in FIG. 16, the second flocculant supply pipe 36 is directly connected to the flocculant storage tank 11, but from between the flocculant storage tank 11 and the first flocculant injection device 4. It may branch off. Alternatively, the second flocculant supply pipe 36 may be branched from between the first flocculant injection device 4 and the supply source pipe 18.
 高速攪拌機1と凝集槽攪拌機12とは、接続配管55により直列に接続され、この接続配管55に光学的測定装置3が配置される。したがって、光学的測定装置3で測定される原液は、高速攪拌機1により高速攪拌された原液である。高速攪拌機1で高速攪拌された原液は、凝集槽攪拌機12に供給される。凝集槽攪拌機12の凝集攪拌槽37に供給された原液は、当該凝集攪拌槽37で凝集剤貯槽11から供給される凝集剤と混合される。 The high-speed stirrer 1 and the coagulation tank stirrer 12 are connected in series by a connection pipe 55, and the optical measuring device 3 is arranged in the connection pipe 55. Therefore, the stock solution measured by the optical measuring device 3 is a stock solution stirred at high speed by the high-speed stirrer 1. The stock solution stirred at high speed by the high-speed stirrer 1 is supplied to the coagulation tank stirrer 12. The stock solution supplied to the aggregation stirring tank 37 of the aggregation tank agitator 12 is mixed with the aggregation agent supplied from the aggregation agent storage tank 11 in the aggregation stirring tank 37.
 凝集攪拌槽37から排出される原液が流れる第2の排出配管46が、凝集攪拌槽37に接続されており、第2の排出配管46の下流側には、脱水機14が接続されている。脱水機14は、フロックが形成された原液を脱水し、ろ液とケーキとに分離する。ケーキは、脱水機14から回収される。 A second discharge pipe 46 through which the stock solution discharged from the coagulation stirring tank 37 flows is connected to the coagulation stirring tank 37, and the dehydrator 14 is connected to the downstream side of the second discharge pipe 46. The dehydrator 14 dehydrates the stock solution in which flocks are formed, and separates it into a filtrate and a cake. The cake is recovered from the dehydrator 14.
 光学的測定装置3には、数値解析装置5が電気的に接続され、数値解析装置5には、制御装置6が電気的に接続されている。数値解析装置5は、制御装置6内に組み込まれていてもよい。また、制御装置6は、第1の凝集剤注入装置4および第2の凝集剤注入装置45に電気的に接続されている。 A numerical analysis device 5 is electrically connected to the optical measurement device 3, and a control device 6 is electrically connected to the numerical analysis device 5. The numerical analysis device 5 may be incorporated in the control device 6. The control device 6 is electrically connected to the first flocculant injection device 4 and the second flocculant injection device 45.
 このような構成で、光学的測定装置3から得られた光学的測定値は、上述したように、数値解析装置5に送られる。数値解析装置5は、光学的測定値を数値解析し、数値解析値を取得する。得られた数値解析値は、制御装置6に送られる。制御装置6は、上述したような方法で、数値解析値に基づいて凝集剤の適正な注入率を決定する。制御装置6により決定された注入率は、第1の凝集剤注入装置4と第2の凝集剤注入装置45に送られる。第1の凝集剤注入装置4と第2の凝集剤注入装置45は、決定された注入率で凝集剤を懸濁物質を含む原液に注入する。これにより、懸濁物質を含む原液に注入される凝集剤の注入率は、自動で制御される。なお、制御装置6により決定された注入率を、第1の凝集剤注入装置4で注入される凝集剤の注入率としてもよいし、第2の凝集剤注入装置45で注入される凝集剤の注入率としてもよい。また、制御装置6により決定された注入率を、第1の凝集剤注入装置で注入される凝集剤の注入率と第2の凝集剤注入装置45で注入される凝集剤の注入率との合計注入率としてもよい。 In such a configuration, the optical measurement value obtained from the optical measurement device 3 is sent to the numerical analysis device 5 as described above. The numerical analysis device 5 numerically analyzes the optical measurement value and acquires the numerical analysis value. The obtained numerical analysis value is sent to the control device 6. The control device 6 determines an appropriate injection rate of the flocculant based on the numerical analysis value by the method as described above. The injection rate determined by the control device 6 is sent to the first coagulant injection device 4 and the second coagulant injection device 45. The first flocculant injection device 4 and the second flocculant injection device 45 inject the flocculant into the stock solution containing the suspended substance at the determined injection rate. Thereby, the injection | pouring rate of the coagulant | flocculant inject | poured into the stock solution containing a suspended solid is controlled automatically. The injection rate determined by the control device 6 may be the injection rate of the flocculant injected by the first flocculant injection device 4 or the flocculant injected by the second flocculant injection device 45. It is good also as an injection rate. Further, the injection rate determined by the control device 6 is the sum of the injection rate of the flocculant injected by the first flocculant injection device and the injection rate of the flocculant injected by the second flocculant injection device 45. It is good also as an injection rate.
 図17は、本発明の凝集装置のさらに別の実施形態を示す概略図である。図17に示す凝集装置では、脱水機14の代わりに、沈殿槽20が設けられる。それ以外の構成は、図16に示した実施形態と同様であるため、対応する構成要素には同じ符号を付すことで、その詳細な説明は省略する。沈殿槽20に供給される原液内のフロックは、自重により沈殿槽20の底に向かって沈降し、これにより、フロックを含む原液は、フロックが高濃度で存在する濃縮原液(例えば、濃縮汚泥)と、フロックが存在しない処理済液とに分離される。このように沈殿槽20を設けることで、フロックと処理済液とを分離することができる。 FIG. 17 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention. In the aggregating apparatus shown in FIG. 17, a settling tank 20 is provided instead of the dehydrator 14. Since the other configuration is the same as that of the embodiment shown in FIG. 16, the corresponding components are denoted by the same reference numerals, and detailed description thereof is omitted. The floc in the undiluted solution supplied to the settling tank 20 settles toward the bottom of the settling tank 20 due to its own weight, so that the undiluted solution containing the floc is a concentrated undiluted solution in which the floc exists at a high concentration (for example, concentrated sludge) And the processed liquid without floc. By providing the precipitation tank 20 in this way, it is possible to separate the floc and the processed liquid.
 図18は、本発明の凝集装置のさらに別の実施形態を示す概略図である。図18に示される凝集装置では、接続配管55から第5の供給配管80が分岐され、第5の供給配管80に光学的測定装置3と、光学的測定装置3に原液を供給するための第5の供給装置81が配置される。第5の供給装置81は、例えば、ポンプ、またはバルブ、またはポンプとバルブの組み合わせである。それ以外の構成は、図16に示した実施形態と同様であるため、対応する構成要素には同じ符号を付すことで、その詳細な説明は省略する。 FIG. 18 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention. In the aggregating apparatus shown in FIG. 18, the fifth supply pipe 80 is branched from the connection pipe 55, and the optical measurement apparatus 3 and the first solution for supplying the stock solution to the optical measurement apparatus 3 are supplied to the fifth supply pipe 80. 5 supply devices 81 are arranged. The fifth supply device 81 is, for example, a pump, a valve, or a combination of a pump and a valve. Since the other configuration is the same as that of the embodiment shown in FIG. 16, the corresponding components are denoted by the same reference numerals, and detailed description thereof is omitted.
 この実施形態では、まず、第1の供給装置7と第5の供給装置81とを動作させ、高速攪拌機1で凝集剤と混合された原液を光学的測定装置3に供給する。光学的測定装置3から得られた光学的測定値は、上述したように、数値解析装置5に送られる。数値解析装置5は、光学的測定値を数値解析し、数値解析値を取得する。得られた数値解析値は、制御装置6に送られる。制御装置6は、上述したような方法で、数値解析値に基づいて凝集剤の適正な注入率を決定する。制御装置6により決定された注入率は、第1の凝集剤注入装置4と第2の凝集剤注入装置45に送られる。第1の凝集剤注入装置4と第2の凝集剤注入装置45は、決定された注入率で凝集剤を懸濁物質を含む原液に注入する。これにより、懸濁物質を含む原液に注入される凝集剤の注入率は、自動で制御される。 In this embodiment, first, the first supply device 7 and the fifth supply device 81 are operated, and the stock solution mixed with the flocculant by the high-speed stirrer 1 is supplied to the optical measurement device 3. The optical measurement value obtained from the optical measurement device 3 is sent to the numerical analysis device 5 as described above. The numerical analysis device 5 numerically analyzes the optical measurement value and acquires the numerical analysis value. The obtained numerical analysis value is sent to the control device 6. The control device 6 determines an appropriate injection rate of the flocculant based on the numerical analysis value by the method as described above. The injection rate determined by the control device 6 is sent to the first coagulant injection device 4 and the second coagulant injection device 45. The first flocculant injection device 4 and the second flocculant injection device 45 inject the flocculant into the stock solution containing the suspended substance at the determined injection rate. Thereby, the injection | pouring rate of the coagulant | flocculant inject | poured into the stock solution containing a suspended solid is controlled automatically.
 次いで、第5の供給装置81を停止させ、高速攪拌機1を通った原液を凝集槽攪拌機12に供給する。凝集槽攪拌機12から排出される原液は、第2の排出配管46を通って脱水機14に供給され、脱水機14で、ろ液とケーキとに分離される。 Next, the fifth supply device 81 is stopped, and the stock solution that has passed through the high-speed stirrer 1 is supplied to the coagulation tank stirrer 12. The stock solution discharged from the coagulation tank stirrer 12 is supplied to the dehydrator 14 through the second discharge pipe 46, and is separated into the filtrate and the cake by the dehydrator 14.
 図19は、本発明の凝集装置のさらに別の実施形態を示す概略図である。図19に示される凝集装置では、第1の凝集剤注入装置4から原液に供給される凝集剤が、供給元管18に供給される代わりに、高速攪拌機1の高速攪拌槽2に供給される。それ以外の構成は、図18に示した実施形態と同様であるため、対応する構成要素には同じ符号を付すことで、その詳細な説明は省略する。 FIG. 19 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention. In the flocculating device shown in FIG. 19, the flocculating agent supplied to the stock solution from the first flocculating agent injection device 4 is supplied to the high-speed stirring tank 2 of the high-speed stirrer 1 instead of being supplied to the supply source pipe 18. . Since the other configuration is the same as that of the embodiment shown in FIG. 18, the corresponding components are denoted by the same reference numerals, and detailed description thereof is omitted.
 図20は、本発明の凝集装置のさらに別の実施形態を示す概略図である。図20に示される凝集装置では、第2の凝集剤注入装置45から原液に供給される凝集剤が、凝集槽攪拌機12の凝集攪拌槽37に供給される代わりに、凝集槽攪拌機12の上流側に配置される接続配管55に供給される。それ以外の構成は、図18に示した実施形態と同様であるため、対応する構成要素には同じ符号を付すことで、その詳細な説明は省略する。 FIG. 20 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention. In the flocculating apparatus shown in FIG. 20, instead of the flocculating agent supplied from the second flocculating agent injection device 45 to the stock solution being supplied to the flocculating stirrer tank 37 of the flocculating tank stirrer 12, the upstream side of the coagulating tank stirrer 12. Is supplied to a connecting pipe 55 arranged in Since the other configuration is the same as that of the embodiment shown in FIG. 18, the corresponding components are denoted by the same reference numerals, and detailed description thereof is omitted.
 図21は、本発明の凝集装置のさらに別の実施形態を示す概略図である。図21に示される凝集装置では、凝集槽攪拌機12が省略され、高速攪拌機1から延びる接続配管55は、脱水機14に直接接続されている。また、第2の凝集剤注入装置45から原液に供給される凝集剤は、接続配管55に供給される。この実施形態の脱水機14は、フロックを形成するための凝集槽機能を有する脱水機である。凝集槽機能を有する脱水機14としては、遠心脱水機が挙げられる。 FIG. 21 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention. In the flocculating apparatus shown in FIG. 21, the flocculating tank stirrer 12 is omitted, and the connection pipe 55 extending from the high speed stirrer 1 is directly connected to the dehydrator 14. Further, the flocculant supplied from the second flocculant injection device 45 to the stock solution is supplied to the connection pipe 55. The dehydrator 14 of this embodiment is a dehydrator having a coagulation tank function for forming a flock. An example of the dehydrator 14 having a coagulation tank function is a centrifugal dehydrator.
 図22は、本発明の凝集装置のさらに別の実施形態を示す概略図である。図22に示す凝集装置は、希釈液を貯留する希釈液貯槽85と、希釈液貯槽85に貯留された希釈液を高速攪拌機1で攪拌された原液に所定の流量で供給する希釈液供給装置86と、を備える。希釈液貯槽85からは希釈液供給配管87が延びており、この希釈液供給配管87は、高速攪拌機1と光学測定装置3の間の排出配管28に接続される。希釈液供給装置86は、希釈液供給配管87に配置される。それ以外の構成は、図8に示した実施形態と同様であるため、対応する構成要素には同じ符号を付すことで、その詳細な説明は省略する。 FIG. 22 is a schematic view showing still another embodiment of the aggregating apparatus of the present invention. The aggregating apparatus shown in FIG. 22 has a diluent storage tank 85 that stores the diluent, and a diluent supply apparatus 86 that supplies the diluent stored in the diluent storage tank 85 to the stock solution stirred by the high-speed stirrer 1 at a predetermined flow rate. And comprising. A diluent supply pipe 87 extends from the diluent storage tank 85, and this diluent supply pipe 87 is connected to the discharge pipe 28 between the high-speed stirrer 1 and the optical measuring device 3. The diluent supply device 86 is disposed in the diluent supply pipe 87. Since the other configuration is the same as that of the embodiment shown in FIG. 8, the corresponding components are denoted by the same reference numerals, and detailed description thereof is omitted.
 希釈液供給装置86は、高速攪拌機1で攪拌された原液が光学測定装置3に供給される前に、該原液に希釈液を所定の流量で供給する装置である。希釈液供給装置86は、例えば、ポンプ、またはバルブ、またはポンプとバルブの組み合わせである。この凝集装置において、高速攪拌機1で攪拌された原液に、希釈液貯槽85から希釈液供給装置86によって希釈液が供給される。希釈液によって希釈された原液は、光学的測定装置3に供給され、光学的測定装置3で光学的測定が実施される。 The diluent supply device 86 is a device that supplies the diluent to the stock solution at a predetermined flow rate before the stock solution stirred by the high-speed stirrer 1 is supplied to the optical measuring device 3. The diluent supply device 86 is, for example, a pump, a valve, or a combination of a pump and a valve. In this aggregating apparatus, the diluent is supplied from the diluent storage tank 85 to the stock solution stirred by the high-speed stirrer 1 by the diluent supply device 86. The stock solution diluted with the diluent is supplied to the optical measurement device 3, and optical measurement is performed by the optical measurement device 3.
 攪拌された原液を希釈液で希釈することによって、懸濁物質の濃度あるいはフロックの濃度を低減させることができる。懸濁物質の濃度が高い原液では、フロックが形成されたときの光学的測定値とフロックが形成されないときの光学的測定値に差が生じず、その結果、凝集剤の注入率の決定が困難な場合がある。例えば、光学的測定装置3で、懸濁物質の濃度が高い原液の透過光強度を測定する場合、凝集剤の注入率が適正でフロックが形成されても、フロック間の隙間がほとんど存在せず、図2Aに示したように、透過光強度がほぼ一定になってしまう場合がある。これに対して、高速攪拌機1で攪拌された原液を希釈液で希釈する場合、フロック間の隙間を増大させることができるため、フロックの隙間から光が透過し、図2Bに示されるように、透過光強度のピークが複数個計測される。この結果、フロックが形成されたときの透過光強度とフロックが形成されないときの透過光強度に差が生じ、適正な注入率を決定できる。希釈液としては、純水、水道水、工業用水、地下水、各種排水処理の処理水、海水などを用いることができる。 The concentration of suspended solids or floc can be reduced by diluting the stirred stock solution with the diluent. In stock solutions with a high concentration of suspended solids, there is no difference between the optical measurement when floc is formed and the optical measurement when no floc is formed, and as a result, it is difficult to determine the injection rate of the flocculant. There are cases. For example, when measuring the transmitted light intensity of a stock solution having a high concentration of suspended solids with the optical measuring device 3, even if flocs are formed with an appropriate injection rate of the flocculant, there are almost no gaps between the flocs. As shown in FIG. 2A, the transmitted light intensity may become substantially constant. On the other hand, when diluting the stock solution stirred by the high-speed stirrer 1 with the diluent, the gap between the flocks can be increased, so that light is transmitted through the gap between the flocks, as shown in FIG. A plurality of transmitted light intensity peaks are measured. As a result, there is a difference between the transmitted light intensity when the floc is formed and the transmitted light intensity when the floc is not formed, and an appropriate injection rate can be determined. As the diluent, pure water, tap water, industrial water, ground water, treated water for various wastewater treatment, seawater, and the like can be used.
 図9乃至図21を参照して説明された実施形態の凝集装置に、図22に示される希釈液貯槽85と、希釈液供給装置86とを配置してもよい。この場合、希釈液貯槽85から延び、かつ希釈液供給装置86が配置される希釈液供給配管87は、高速攪拌機1と光学的測定装置3の間の排出配管28、および/または高速攪拌機60と光学的測定装置68の間の排出配管69に接続される。 The diluting liquid storage tank 85 and the diluting liquid supply device 86 shown in FIG. 22 may be arranged in the aggregating apparatus according to the embodiment described with reference to FIGS. In this case, the diluent supply pipe 87 that extends from the diluent storage tank 85 and in which the diluent supply device 86 is disposed is the discharge pipe 28 between the high-speed stirrer 1 and the optical measuring device 3 and / or the high-speed stirrer 60. Connected to a discharge pipe 69 between the optical measuring devices 68.
 図8から図22を用いて、凝集装置の実施形態を説明してきた。これらの実施形態において、高速攪拌槽2,61に供給される懸濁物質を含む原液に注入される凝集剤の注入率を変更するには、以下の方法が挙げられる。 The embodiment of the aggregating apparatus has been described with reference to FIGS. In these embodiments, the following method can be used to change the injection rate of the flocculant injected into the stock solution containing suspended solids supplied to the high- speed stirring tanks 2 and 61.
 供給装置7,65により供給される原液の流量を一定に制御した状態で、凝集剤注入装置4,66から原液に注入される凝集剤の流量を変更することで、高速攪拌槽2,61に供給される懸濁物質を含む原液に注入される凝集剤の注入率を変更することができる。あるいは、凝集剤注入装置4,66から注入される凝集剤の流量を一定に制御した状態で、供給装置7,65により供給される原液の流量を変更することにより、高速攪拌槽2,61に供給される懸濁物質を含む原液に注入される凝集剤の注入率を変更してもよい。あるいは、高速攪拌槽2,61に供給される懸濁物質を含む原液に注入される凝集剤の注入率を変更するために、供給装置7,65により供給される原液の流量と、凝集剤注入装置4,66から原液に注入される凝集剤の流量との両方を変更してもよい。 By changing the flow rate of the flocculant injected into the stock solution from the flocculant injection devices 4 and 66 in a state where the flow rate of the stock solution supplied by the supply devices 7 and 65 is controlled to be constant, The injection rate of the flocculant injected into the stock solution containing the suspended solids to be supplied can be changed. Alternatively, in the state where the flow rate of the flocculant injected from the flocculant injection devices 4 and 66 is controlled to be constant, the flow rate of the stock solution supplied by the supply devices 7 and 65 is changed, so that You may change the injection | pouring rate of the coagulant | flocculant inject | poured into the stock solution containing the suspended solids supplied. Alternatively, in order to change the injection rate of the flocculant injected into the stock solution containing suspended solids supplied to the high- speed stirring tanks 2, 61, the flow rate of the stock solution supplied by the supply devices 7, 65 and the flocculant injection Both the flow rate of the flocculant injected into the stock solution from the devices 4 and 66 may be changed.
 以下、本発明を下記実験結果に基づいてさらに詳述する。 Hereinafter, the present invention will be described in more detail based on the following experimental results.
 まず、第1の実験について説明する。第1の実験の手順は以下の通りである。まず、懸濁物質を含む原液(汚泥)に凝集剤を注入する(注入工程)。凝集剤が注入された原液を高速攪拌することにより、原液と凝集剤とを混合する(攪拌工程)。高速攪拌された原液の透過光強度を測定し、光学的測定値を得る(光学的測定工程)。得られた透過光強度の数値解析値として、透過光強度の平均値、分散、標準偏差、ピーク面積を算出する(数値解析工程)。凝集剤の異なる注入率で注入工程、攪拌工程、光学的測定工程、および数値解析工程を繰り返し、得られた複数の数値解析値と適正な注入率との関係を検討する(注入率決定工程)。適正な注入率の決定には、凝集剤で凝集させた懸濁物質を含む原液を、脱水機で脱水し、得られた脱水ケーキの含水率を指標として用いた。 First, the first experiment will be described. The procedure of the first experiment is as follows. First, a flocculant is poured into a stock solution (sludge) containing suspended substances (injection step). The stock solution and the flocculant are mixed by rapidly stirring the stock solution into which the flocculant has been injected (stirring step). The transmitted light intensity of the stock solution stirred at high speed is measured to obtain an optical measurement value (optical measurement step). As a numerical analysis value of the obtained transmitted light intensity, an average value, dispersion, standard deviation, and peak area of the transmitted light intensity are calculated (numerical analysis step). The injection process, stirring process, optical measurement process, and numerical analysis process are repeated at different injection rates of the flocculant, and the relationship between the obtained numerical analysis values and the appropriate injection ratio is examined (injection rate determination process) . In order to determine an appropriate injection rate, a stock solution containing suspended solids aggregated with a flocculant was dehydrated with a dehydrator, and the moisture content of the obtained dehydrated cake was used as an index.
 第1の実験で用いた、懸濁物質を含む原液は、汚泥Aである。汚泥Aは、下水処理場の嫌気性消化汚泥である。汚泥AのTS(Total Solids)は、13.2g/Lであった。TSとは、蒸発残留物のことであり、汚泥Aを105~110℃で蒸発乾固したときに残留する物質の濃度である。測定方法は下水試験方法に準拠した。 The stock solution containing suspended solids used in the first experiment is sludge A. Sludge A is an anaerobic digested sludge from a sewage treatment plant. The TS (Total Solids) of sludge A was 13.2 g / L. TS is an evaporation residue and is a concentration of a substance remaining when the sludge A is evaporated to dryness at 105 to 110 ° C. The measurement method conformed to the sewage test method.
 第1の実験で用いた凝集剤は、カチオン性高分子凝集剤a(DAA系高分子凝集剤)である。凝集剤の溶液は、凝集剤を水に溶解して得た水溶液であり、凝集剤濃度とは、水溶液中の凝集剤の濃度の意味である。 The flocculant used in the first experiment is a cationic polymer flocculant a (DAA polymer flocculant). The solution of the flocculant is an aqueous solution obtained by dissolving the flocculant in water, and the concentration of the flocculant means the concentration of the flocculant in the aqueous solution.
 第1の実験では、汚泥A(汚泥流量1.0m/h)にカチオン性高分子凝集剤aの溶液を注入した。カチオン性高分子凝集剤aが注入された汚泥Aを、攪拌翼の回転速度が1000min-1に設定された高速攪拌機(攪拌部容積0.8L)を用いて混合した。次いで、高速攪拌された汚泥Aの透過光強度を一定時間測定した。次に、得られた透過光強度のデータの平均値、分散、標準偏差、ピーク面積を算出した。これらの操作を凝集剤の複数の注入率で行った。 In the first experiment, a solution of the cationic polymer flocculant a was injected into the sludge A (sludge flow rate 1.0 m 3 / h). Sludge A into which the cationic polymer flocculant a was injected was mixed using a high-speed stirrer (stirring section volume 0.8 L) in which the rotation speed of the stirring blade was set to 1000 min −1 . Subsequently, the transmitted light intensity of the sludge A stirred at high speed was measured for a certain time. Next, the average value, dispersion, standard deviation, and peak area of the obtained transmitted light intensity data were calculated. These operations were performed at multiple injection rates of flocculant.
 一方、凝集剤の適正な注入率の決定のために、汚泥A(汚泥流量1.0m/h)にカチオン性高分子凝集剤aの溶液を注入した。カチオン性高分子凝集剤aが注入された汚泥Aを、攪拌翼の回転速度が33min-1に設定された攪拌機(攪拌槽容積300L)を用いて混合し、フロックを形成させた。最後に、スクリュープレス脱水機により、フロックを含む汚泥Aを脱水し、得られた脱水ケーキの含水率(%)を測定した。これらの操作を複数の注入率で行った。第1の実験の結果を表1に示す。 On the other hand, in order to determine an appropriate injection rate of the flocculant, a solution of the cationic polymer flocculant a was injected into the sludge A (sludge flow rate 1.0 m 3 / h). Sludge A into which the cationic polymer flocculant a was injected was mixed using a stirrer (stirring tank volume 300 L) in which the rotation speed of the stirring blade was set to 33 min −1 to form floc. Finally, the sludge A containing floc was dehydrated with a screw press dehydrator, and the water content (%) of the obtained dehydrated cake was measured. These operations were performed at multiple injection rates. The results of the first experiment are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 透過光強度の平均値、分散、標準偏差、ピーク面積のいずれも、凝集剤の注入率が1.1%(対TS)で最大値を取ることが分かる。一方、スクリュープレス脱水機の結果から、適正な注入率は、1.1%(対TS)であることが分かる。これらの結果から、透過光強度の平均値、分散、標準偏差、ピーク面積の最大値に基づいて、最もケーキ含水率を低減できる凝集剤の注入率を決定できることが分かった。より詳しくは、透過光強度の平均値、分散、標準偏差、ピーク面積の値が最大となる凝集剤注入率に基づいて、ケーキ含水率を低減できる凝集剤の注入率を決定できることが分かった。 It can be seen that the average value of transmitted light intensity, dispersion, standard deviation, and peak area all take the maximum value when the injection rate of the flocculant is 1.1% (vs. TS). On the other hand, from the results of the screw press dehydrator, it can be seen that the proper injection rate is 1.1% (vs. TS). From these results, it was found that the injection rate of the flocculant that can most reduce the moisture content of the cake can be determined based on the average value, the dispersion, the standard deviation, and the maximum peak area of the transmitted light intensity. More specifically, it has been found that the injection rate of the flocculant that can reduce the moisture content of the cake can be determined based on the flocculant injection rate at which the average value, dispersion, standard deviation, and peak area values of the transmitted light intensity are maximized.
 次に、第2の実験について説明する。第2の実験の手順は以下の通りである。まず、懸濁物質を含む原液(汚泥)に凝集剤を注入する(注入工程)。凝集剤が注入された原液を高速攪拌することにより、原液と凝集剤とを混合する(攪拌工程)。高速攪拌された原液の透過光強度を測定し、光学的測定値を得る(光学的測定工程)。得られた透過光強度の数値解析値として、透過光強度の平均値、分散、標準偏差、ピーク面積を算出する(数値解析工程)。凝集剤の異なる注入率で注入工程、攪拌工程、光学的測定工程、および数値解析工程を繰り返し、得られた複数の数値解析値と適正な注入率との関係を検討する(注入率決定工程)。適正な注入率の決定には、凝集剤で凝集させた懸濁物質を含む原液を、脱水機で脱水し、得られた脱水ケーキの含水率を指標として用いた。 Next, the second experiment will be described. The procedure of the second experiment is as follows. First, a flocculant is poured into a stock solution (sludge) containing suspended substances (injection step). The stock solution and the flocculant are mixed by rapidly stirring the stock solution into which the flocculant has been injected (stirring step). The transmitted light intensity of the stock solution stirred at high speed is measured to obtain an optical measurement value (optical measurement step). As a numerical analysis value of the obtained transmitted light intensity, an average value, dispersion, standard deviation, and peak area of the transmitted light intensity are calculated (numerical analysis step). The injection process, stirring process, optical measurement process, and numerical analysis process are repeated at different injection rates of the flocculant, and the relationship between the obtained numerical analysis values and the appropriate injection ratio is examined (injection rate determination process) . In order to determine an appropriate injection rate, a stock solution containing suspended solids aggregated with a flocculant was dehydrated with a dehydrator, and the moisture content of the obtained dehydrated cake was used as an index.
 第2の実験で用いた懸濁物質を含む原液は、汚泥Bであり、第1の実施例で用いた汚泥Aとは異なる。汚泥Bは、下水処理場の混合生汚泥(初沈汚泥と余剰汚泥の混合物)である。汚泥BのTSは、14.2g/Lである。測定方法は下水試験方法に準拠した。 The stock solution containing suspended solids used in the second experiment is sludge B, which is different from the sludge A used in the first embodiment. Sludge B is mixed raw sludge (mixture of primary sludge and surplus sludge) in a sewage treatment plant. The TS of sludge B is 14.2 g / L. The measurement method conformed to the sewage test method.
 第2の実験で用いた凝集剤は、カチオン性高分子凝集剤b(DAA系高分子凝集剤)である。凝集剤の溶液は、凝集剤を水に溶解して得た水溶液であり、凝集剤濃度とは、水溶液中の凝集剤の濃度の意味である。 The flocculant used in the second experiment is cationic polymer flocculant b (DAA polymer flocculant). The solution of the flocculant is an aqueous solution obtained by dissolving the flocculant in water, and the concentration of the flocculant means the concentration of the flocculant in the aqueous solution.
 第2の実験では、汚泥B(汚泥流量1.5m/h)にカチオン性高分子凝集剤bの溶液を注入した。カチオン性高分子凝集剤bが注入された汚泥Bを、攪拌翼の回転速度が500min-1に設定された高速攪拌機(攪拌部容積0.8L)を用いて混合した。次いで、高速攪拌された汚泥Bの透過光強度を一定時間測定した。次に、得られた透過光強度のデータの平均値、分散、標準偏差、ピーク面積を算出した。これらの操作を凝集剤の複数の注入率で行った。 In the second experiment, a solution of the cationic polymer flocculant b was injected into sludge B (sludge flow rate 1.5 m 3 / h). Sludge B into which the cationic polymer flocculant b was injected was mixed using a high-speed stirrer (stirring unit volume 0.8 L) in which the rotation speed of the stirring blade was set to 500 min- 1 . Subsequently, the transmitted light intensity of the sludge B stirred at high speed was measured for a certain time. Next, the average value, dispersion, standard deviation, and peak area of the obtained transmitted light intensity data were calculated. These operations were performed at multiple injection rates of flocculant.
 一方、凝集剤の適正な注入率の決定のために、汚泥B(汚泥流量1.5m/h)にカチオン性高分子凝集剤bの溶液を注入した。カチオン性高分子凝集剤bが注入された汚泥Bを、攪拌翼の回転速度が33min-1に設定された攪拌機(攪拌槽容積300L)を用いて混合し、フロックを形成させた。最後に、スクリュープレス脱水機により、フロックを含む汚泥Bを脱水し、得られた脱水ケーキの含水率(%)を測定した。上記操作を凝集剤の複数の注入率で行った。第2の実験の結果を表2に示す。 On the other hand, in order to determine an appropriate injection rate of the flocculant, a solution of the cationic polymer flocculant b was injected into the sludge B (sludge flow rate 1.5 m 3 / h). Sludge B into which the cationic polymer flocculant b was injected was mixed using a stirrer (stirring tank volume 300 L) in which the rotation speed of the stirring blade was set to 33 min −1 to form floc. Finally, the sludge B containing floc was dehydrated with a screw press dehydrator, and the moisture content (%) of the obtained dehydrated cake was measured. The above operation was carried out at a plurality of flocculant injection rates. The results of the second experiment are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 透過光強度の平均値、分散、標準偏差、ピーク面積のいずれも、凝集剤の注入率が0.70%(対TS)で最大値を取ることが分かる。一方、スクリュープレス脱水機の結果から、凝集剤注入率が0.70%(対TS)以下では、注入率が約0.1%増加するごとに、ケーキ含水率が大幅に低減することが分かる。これとは対照的に、凝集剤の注入率が0.70%(対TS)以上では、注入率が約0.1%増加しても、ケーキ含水率は低減するものの、ほとんど変わらないことが分かる。これらの結果から、透過光強度の平均値、分散、標準偏差、ピーク面積に基づいて、最も効率的な脱水が可能な凝集剤注入率を決定できることが分かった。より詳しくは、透過光強度の平均値、分散、標準偏差、ピーク面積の最大値に基づいて、最も効率的な脱水が可能な凝集剤の注入率を決定できることが分かった。 It can be seen that the average value of transmitted light intensity, dispersion, standard deviation, and peak area all take the maximum value when the injection rate of the flocculant is 0.70% (vs. TS). On the other hand, from the results of the screw press dehydrator, it can be seen that when the flocculant injection rate is 0.70% (vs. TS) or less, the moisture content of the cake is greatly reduced every time the injection rate is increased by about 0.1%. . In contrast, when the injection rate of the flocculant is 0.70% (vs. TS) or more, even if the injection rate increases by about 0.1%, the moisture content of the cake is reduced, but it is almost the same. I understand. From these results, it was found that the coagulant injection rate enabling the most efficient dehydration can be determined based on the average value, the dispersion, the standard deviation, and the peak area of the transmitted light intensity. More specifically, it was found that the injection rate of the flocculant capable of performing the most efficient dehydration can be determined based on the average value, the dispersion, the standard deviation, and the maximum peak area of the transmitted light intensity.
 次に、第3の実験について説明する。第3の実験の手順は以下の通りである。まず、懸濁物質を含む原液(浄水処理の原水)に凝集剤を注入する(注入工程)。凝集剤が注入された原液を高速攪拌することにより、原液と凝集剤とを混合する(攪拌工程)。高速攪拌された原液のレーザ回折・散乱光を測定し、光学的測定値を得る(光学的測定工程)。得られたレーザ回折・散乱光のデータを数値解析して、フロックの平均フロック粒径を算出する(数値解析工程)。凝集剤の異なる注入率で注入工程、攪拌工程、光学的測定工程、および数値解析工程を繰り返し、得られた複数の数値解析値と適正な注入率との関係を検討する(注入率決定工程)。適正な注入率の決定には、凝集剤で凝集させた懸濁物質を含む原液を、凝集沈殿処理し、得られた処理水の水質を指標として用いた。 Next, the third experiment will be described. The procedure of the third experiment is as follows. First, a flocculant is injected into a stock solution (raw water for water purification treatment) containing suspended solids (injection step). The stock solution and the flocculant are mixed by rapidly stirring the stock solution into which the flocculant has been injected (stirring step). Laser diffraction / scattered light of the stock solution stirred at high speed is measured to obtain optical measurement values (optical measurement step). The obtained laser diffraction / scattered light data is numerically analyzed to calculate the average floc particle diameter of the floc (numerical analysis step). The injection process, stirring process, optical measurement process, and numerical analysis process are repeated at different injection rates of the flocculant, and the relationship between the obtained numerical analysis values and the appropriate injection ratio is examined (injection rate determination process) . In order to determine an appropriate injection rate, a stock solution containing suspended solids aggregated with a coagulant was coagulated and precipitated, and the quality of the obtained treated water was used as an index.
 第3の実験で用いた、懸濁物質を含む原液は、浄水処理の原水Cである。原水Cの濁度と色度は、それぞれ、50度と80度である。測定方法は上水試験方法に準拠した。 The stock solution containing suspended solids used in the third experiment is raw water C for water purification. The turbidity and chromaticity of the raw water C are 50 degrees and 80 degrees, respectively. The measuring method was based on the water test method.
 第3の実験で用いた凝集剤は、ポリ塩化アルミニウムであり、凝集剤の溶液として、10wt%(酸化アルミニウム換算)のポリ塩化アルミニウム水溶液を使用した。凝集剤濃度とは、水溶液中の凝集剤の濃度の意味である。 The flocculant used in the third experiment was polyaluminum chloride, and a 10 wt% polyaluminum chloride aqueous solution (in terms of aluminum oxide) was used as the flocculant solution. The flocculant concentration means the concentration of the flocculant in the aqueous solution.
 第3の実験では、浄水処理の原水C(原水流量1.0m/h)にポリ塩化アルミニウムの水溶液を注入した。ポリ塩化アルミニウムの水溶液が注入された原水Cを、攪拌翼の回転速度が500min-1に設定された高速攪拌機(攪拌部容積0.8L)を用いて混合した。次いで、高速攪拌された原水Cのレーザ回折・散乱光を一定時間測定した。次に、得られたレーザ回折・散乱光のデータから平均フロック粒径を算出した。これらの操作を凝集剤の複数の注入率で行った。 In the third experiment, an aqueous solution of polyaluminum chloride was injected into raw water C (raw water flow rate 1.0 m 3 / h) for water purification treatment. Raw water C into which an aqueous solution of polyaluminum chloride was poured was mixed using a high-speed stirrer (stirring unit volume 0.8 L) in which the rotation speed of the stirring blade was set to 500 min −1 . Next, laser diffraction / scattered light of the raw water C stirred at high speed was measured for a certain period of time. Next, the average floc particle diameter was calculated from the obtained laser diffraction / scattered light data. These operations were performed at multiple injection rates of flocculant.
 一方、凝集剤の適正な注入率の決定のために、ジャーテストを行った。ジャーテストでは、500mLの原水Cにポリ塩化アルミニウムの水溶液を注入し、攪拌する際の回転速度を130min-1に設定して、原水Cとポリ塩化アルミニウムの水溶液とを3分間混合した。さらに、攪拌する際の回転速度を30min-1に設定して、原水Cとポリ塩化アルミニウムの水溶液とを10分間混合し、フロックを形成させた。最後に、5分間静置し、処理水として上澄み液を採取し、濁度と色度とを測定した。上記操作を凝集剤の複数の注入率で行った。 On the other hand, a jar test was performed to determine an appropriate injection rate of the flocculant. In the jar test, an aqueous solution of polyaluminum chloride was poured into 500 mL of raw water C, the rotation speed during stirring was set to 130 min −1 , and raw water C and an aqueous solution of polyaluminum chloride were mixed for 3 minutes. Further, the rotation speed at the time of stirring was set to 30 min −1 , and raw water C and an aqueous solution of polyaluminum chloride were mixed for 10 minutes to form a floc. Finally, it was left to stand for 5 minutes, and a supernatant was collected as treated water, and turbidity and chromaticity were measured. The above operation was carried out at a plurality of flocculant injection rates.
 第3の実験の結果を表3と図23に示す。図23は、第3の実験の結果をプロットしたグラフである。図23において、横軸は、凝集剤の注入率を表し、縦軸は、平均フロック粒径を表す。また、図23には、実験結果から求めた近似曲線(3次曲線)を示した。 The results of the third experiment are shown in Table 3 and FIG. FIG. 23 is a graph plotting the results of the third experiment. In FIG. 23, the horizontal axis represents the injection rate of the flocculant, and the vertical axis represents the average floc particle size. FIG. 23 shows an approximate curve (cubic curve) obtained from the experimental results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図23の近似曲線から、平均フロック粒径は、凝集剤の注入率が50~60mg/L(10wt%水溶液換算)で最大値を取ることが分かる。一方、ジャーテストの結果から、適正な注入率は、60mg/L(10wt%水溶液換算)であることが分かる。これらの結果から、平均フロック粒径に基づいて、最も良好な処理水を得られる凝集剤の注入率を決定できることが分かった。より詳しくは、平均フロック粒径が最大となる凝集剤の注入率に基づいて、最も良好な処理水質を得られる注入率を決定できることが分かった。 23. From the approximate curve in FIG. 23, it can be seen that the average floc particle diameter takes the maximum value when the injection rate of the flocculant is 50 to 60 mg / L (in terms of 10 wt% aqueous solution). On the other hand, it can be seen from the results of the jar test that the proper injection rate is 60 mg / L (in terms of 10 wt% aqueous solution). From these results, it was found that the injection rate of the flocculant that can obtain the best treated water can be determined based on the average floc particle size. More specifically, it has been found that the injection rate at which the best treated water quality can be obtained can be determined based on the injection rate of the flocculant having the maximum average floc particle size.
 次に、第4の実験について説明する。第4の実験の手順は以下の通りである。まず、懸濁物質を含む原液(汚泥)に凝集剤を注入する(注入工程)。凝集剤が注入された原液を高速攪拌することにより、原液と凝集剤とを混合する(攪拌工程)。高速撹拌された汚泥を希釈液で希釈する(希釈工程)。希釈された原液の透過光強度を測定し、光学的測定値を得る(光学的測定工程)。得られた透過光強度の数値解析値として、透過光強度の分散、標準偏差、ピーク面積を算出する(数値解析工程)。凝集剤の異なる注入率で注入工程、攪拌工程、希釈工程、光学的測定工程、および数値解析工程を繰り返し、得られた複数の数値解析値と適正な注入率との関係を検討する(注入率決定工程)。適正な注入率の決定には、凝集剤で凝集させた懸濁物質を含む原液を、脱水機で脱水し、得られた脱水ケーキの含水率を指標として用いた。 Next, the fourth experiment will be described. The procedure of the fourth experiment is as follows. First, a flocculant is poured into a stock solution (sludge) containing suspended substances (injection step). The stock solution and the flocculant are mixed by rapidly stirring the stock solution into which the flocculant has been injected (stirring step). The sludge stirred at high speed is diluted with a diluent (dilution step). The transmitted light intensity of the diluted stock solution is measured to obtain an optical measurement value (optical measurement step). As a numerical analysis value of the obtained transmitted light intensity, dispersion, standard deviation, and peak area of the transmitted light intensity are calculated (numerical analysis step). Repeat the injection process, the agitation process, the dilution process, the optical measurement process, and the numerical analysis process at different injection rates of the flocculant, and examine the relationship between the obtained numerical analysis values and the appropriate injection rate (injection rate) Decision process). In order to determine an appropriate injection rate, a stock solution containing suspended solids aggregated with a flocculant was dehydrated with a dehydrator, and the moisture content of the obtained dehydrated cake was used as an index.
 第4の実験で用いた、懸濁物質を含む原液は、汚泥Dである。汚泥Dは、下水処理場の混合生汚泥(初沈汚泥と余剰汚泥の混合物)である。汚泥DのTSは、25.4.g/Lであった。測定方法は下水試験方法に準拠した。 The stock solution containing suspended solids used in the fourth experiment is sludge D. Sludge D is a mixed raw sludge (mixture of primary sludge and excess sludge) in a sewage treatment plant. The sludge D TS is 25.4. g / L. The measurement method conformed to the sewage test method.
 第4の実験で用いた凝集剤は、カチオン性高分子凝集剤d(DAA系高分子凝集剤)である。凝集剤の溶液は、凝集剤を水に溶解して得た水溶液であり、凝集剤濃度とは、水溶液中の凝集剤の濃度の意味である。 The flocculant used in the fourth experiment is a cationic polymer flocculant d (DAA polymer flocculant). The solution of the flocculant is an aqueous solution obtained by dissolving the flocculant in water, and the concentration of the flocculant means the concentration of the flocculant in the aqueous solution.
 第4の実験では、汚泥D(汚泥流量1.8L/min)にカチオン性高分子凝集剤dの溶液を注入した。カチオン性高分子凝集剤dが注入された汚泥Dを、攪拌翼の回転速度が600min-1に設定された高速攪拌機(攪拌部容積0.5L)を用いて混合した。次に、高速撹拌された汚泥Dを希釈液(希釈液流量2.6L/min)で希釈した。希釈液には、下水処理水の砂ろ過水を使用した。次に、希釈された汚泥Dの透過光強度を一定時間測定した。次に、得られた透過光強度のデータの分散、標準偏差、ピーク面積を算出した。これらの操作を凝集剤の複数の注入率で行った。 In the fourth experiment, a solution of the cationic polymer flocculant d was injected into the sludge D (sludge flow rate 1.8 L / min). Sludge D into which the cationic polymer flocculant d was injected was mixed using a high-speed stirrer (stirring unit volume 0.5 L) in which the rotation speed of the stirring blade was set to 600 min −1 . Next, the sludge D stirred at high speed was diluted with a diluent (diluent flow rate 2.6 L / min). As the diluting liquid, sand filtered water of sewage treated water was used. Next, the transmitted light intensity of the diluted sludge D was measured for a certain time. Next, the dispersion, standard deviation, and peak area of the obtained transmitted light intensity data were calculated. These operations were performed at multiple injection rates of flocculant.
 一方、凝集剤の適正な注入率の決定のために、250mLの汚泥Dにカチオン性高分子凝集剤dの溶液を注入した。カチオン性高分子凝集剤dが注入された汚泥Dを、攪拌翼の回転速度が33min-1 に設定された攪拌機(攪拌槽容積300L)を用いて混合し、フロックを形成させた。最後に、ベルトプレス脱水機により、フロックを含む汚泥Dを脱水し、得られた脱水ケーキの含水率(%)を測定した。これらの操作を凝集剤の複数の注入率で行った。第4の実験の結果を表4に示す。 On the other hand, in order to determine an appropriate injection rate of the flocculant, a solution of the cationic polymer flocculant d was injected into 250 mL of sludge D. Sludge D into which the cationic polymer flocculant d was injected was mixed using a stirrer (stirring tank volume 300 L) in which the rotation speed of the stirring blade was set to 33 min-1 to form floc. Finally, the sludge D containing floc was dehydrated with a belt press dehydrator, and the water content (%) of the dehydrated cake obtained was measured. These operations were performed at multiple injection rates of flocculant. The results of the fourth experiment are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 透過光強度の分散、標準偏差、ピーク面積のいずれも、凝集剤の注入率が0.58%(対TS)で最大値を取ることが分かる。一方、ベルトプレス脱水機の結果から、凝集剤注入率が0.58%(対TS)以下では、注入率が増加するとケーキ含水率が大幅に低減することが分かる。これとは対照的に、凝集剤注入率が0.58%(対TS)以上では、注入率が増加してもケーキ含水率がほとんど変わらないことが分かる。これらの結果から、透過光強度の分散、標準偏差、ピーク面積の最大値に基づいて、最も効率的な脱水が可能な凝集剤注入率を決定できることが分かった。より詳しくは、透過光強度の分散、標準偏差、ピーク面積の値が最大となる凝集剤注入率に基づいて、最も効率的な脱水が可能な凝集剤の注入率を決定できることが分かった。 It can be seen that all of the dispersion, standard deviation, and peak area of transmitted light intensity take a maximum value when the injection rate of the flocculant is 0.58% (vs. TS). On the other hand, from the results of the belt press dehydrator, it is understood that when the flocculant injection rate is 0.58% (vs. TS) or less, the moisture content of the cake is greatly reduced as the injection rate is increased. In contrast, it can be seen that when the flocculant injection rate is 0.58% (vs. TS) or more, the moisture content of the cake hardly changes even if the injection rate increases. From these results, it was found that the coagulant injection rate enabling the most efficient dehydration can be determined based on the dispersion of the transmitted light intensity, the standard deviation, and the maximum value of the peak area. More specifically, it has been found that the injection rate of the flocculant capable of the most efficient dehydration can be determined based on the flocculant injection rate at which the values of transmitted light intensity dispersion, standard deviation, and peak area are maximized.
 以上本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible.
 本発明は、懸濁物質を含む原液に注入される凝集剤の適正な注入率を決定する方法に利用可能である。 The present invention can be used in a method for determining an appropriate injection rate of a flocculant injected into a stock solution containing suspended solids.
   1  第1の高速攪拌機
   2  第1の高速攪拌槽
   3  第1の光学的測定装置
   4  第1の凝集剤注入装置
   5  第1の数値解析装置
   6  第1の制御装置
   7  第1の供給装置
   8  第1の高速攪拌翼
   9  第1の高速モーター
  10  原液貯槽
  11  第1の凝集剤貯槽
  12  第1の凝集槽攪拌機
  14  脱水機
  18  供給元管
  19  第1の供給配管
  20  沈殿槽
  21  第2の凝集槽攪拌機
  23  第2の凝集剤貯槽
  25  第2の供給配管
  26  第1の凝集剤供給配管
  28  第1の排出配管
  35  第2の供給装置
  36  第2の凝集剤供給配管
  37  第1の凝集攪拌槽
  38  第1の凝集槽攪拌翼
  39  第1の凝集槽モーター
  40  透明窓
  41  光源
  42  光検出器
  43  光源
  44  光検出器
  45  第2の凝集剤注入装置
  46  第2の排出配管
  47  第2の凝集攪拌槽
  48  第2の凝集槽攪拌翼
  49  第2の凝集槽モーター
  50  データロガー
  52  第3の凝集剤供給配管
  53  第3の凝集剤注入装置
  55  接続配管
  56  第3の供給装置
  57  第3の供給配管
  58  第4の凝集剤供給配管
  60  第2の高速攪拌機
  61  第2の高速攪拌槽
  62  第2の高速攪拌翼
  63  第2の高速モーター
  65  第4の供給装置
  66  第4の凝集剤注入装置
  68  第2の光学的測定装置
  69  第3の排出配管
  70  第2の数値解析装置
  71  第2の制御装置
  80  第5の供給配管
  81  第5の供給装置
  85  希釈液貯槽
  86  希釈液供給装置
  87  希釈液供給配管
DESCRIPTION OF SYMBOLS 1 1st high-speed stirrer 2 1st high-speed stirring tank 3 1st optical measurement apparatus 4 1st flocculant injection apparatus 5 1st numerical analysis apparatus 6 1st control apparatus 7 1st supply apparatus 8 1st 1 high-speed stirring blade 9 first high-speed motor 10 stock solution storage tank 11 first flocculant storage tank 12 first flocculant tank stirrer 14 dehydrator 18 source pipe 19 first supply pipe 20 sedimentation tank 21 second flocculant tank Stirrer 23 Second flocculant storage tank 25 Second supply pipe 26 First flocculant supply pipe 28 First discharge pipe 35 Second supply device 36 Second flocculant supply pipe 37 First flocculant stirring tank 38 First aggregating tank agitating blade 39 First aggregating tank motor 40 Transparent window 41 Light source 42 Photo detector 43 Light source 44 Photo detector 45 Second coagulant injection device 46 Second discharge distribution 47 second agglomeration agitation tank 48 second agglomeration tank agitation blade 49 second agglomeration tank motor 50 data logger 52 third aggregating agent supply piping 53 third aggregating agent injection device 55 connection piping 56 third supply device 57 3rd supply piping 58 4th flocculant supply piping 60 2nd high speed stirrer 61 2nd high speed stirring tank 62 2nd high speed stirring blade 63 2nd high speed motor 65 4th supply apparatus 66 4th Flocculant injection device 68 Second optical measurement device 69 Third discharge piping 70 Second numerical analysis device 71 Second control device 80 Fifth supply piping 81 Fifth supply device 85 Diluent storage tank 86 Diluent Supply device 87 Diluent supply piping

Claims (30)

  1.  懸濁物質を含む原液に凝集剤を注入する注入工程と、
     前記凝集剤が注入された前記原液を高速攪拌機に流入させ、前記高速攪拌機の攪拌翼を500min-1以上の回転速度で回転させて前記原液を攪拌する攪拌工程と、
     前記攪拌された原液に光を照射して光学的測定値を得る光学的測定工程と、
     前記光学的測定値を数値解析して、数値解析値を得る数値解析工程と、
     前記数値解析値に基づいて、前記凝集剤の適正な注入率を決定する注入率決定工程と、を含むことを特徴とする凝集方法。
    An injection step of injecting a flocculant into a stock solution containing suspended solids;
    A step of stirring the stock solution by flowing the stock solution into which the flocculant is injected into a high-speed stirrer and rotating the stirring blade of the high-speed stirrer at a rotation speed of 500 min −1 or more;
    An optical measurement step of irradiating the stirred stock solution with light to obtain optical measurement values;
    Numerical analysis of the optical measurement value to obtain a numerical analysis value; and
    And an injection rate determining step for determining an appropriate injection rate of the flocculant based on the numerical analysis value.
  2.  前記注入率決定工程は、
      前記数値解析値に基づいて、前記凝集剤の注入率が適正であるか否かを決定し、
      前記凝集剤の適正な注入率が決定されるまで、前記注入工程、前記攪拌工程、前記光学的測定工程、および前記数値解析工程を、前記注入率を変えながら繰り返す工程であることを特徴とする請求項1に記載の凝集方法。
    The injection rate determination step includes
    Based on the numerical analysis value, determine whether the injection rate of the flocculant is appropriate,
    The injection step, the stirring step, the optical measurement step, and the numerical analysis step are repeated while changing the injection rate until an appropriate injection rate of the flocculant is determined. The aggregation method according to claim 1.
  3.  前記注入率の変更は、前記高速攪拌機に流入する前記原液の流量および前記原液に注入される前記凝集剤の流量のうちのいずれか一方または両方を変えることであることを特徴とする請求項2に記載に凝集方法。 The change in the injection rate is to change either or both of a flow rate of the stock solution flowing into the high-speed stirrer and a flow rate of the flocculant injected into the stock solution. Aggregating method as described in
  4.  前記光学的測定工程は、前記攪拌された原液に光を照射して透過光強度を測定する工程であることを特徴とする請求項1乃至3のいずれか一項に記載の凝集方法。 The aggregation method according to any one of claims 1 to 3, wherein the optical measurement step is a step of measuring the transmitted light intensity by irradiating the stirred stock solution with light.
  5.  前記光学的測定工程は、前記攪拌された原液に光を照射して散乱光強度を測定する工程であることを特徴とする請求項1乃至3のいずれか一項に記載の凝集方法。 The aggregation method according to any one of claims 1 to 3, wherein the optical measurement step is a step of measuring the scattered light intensity by irradiating the stirred stock solution with light.
  6.  前記光学的測定工程は、前記攪拌された原液に光を照射して透過光強度および散乱光強度の両方を測定する工程であることを特徴とする請求項1乃至3のいずれか一項に記載の凝集方法。 The optical measurement step is a step of irradiating the stirred stock solution with light to measure both transmitted light intensity and scattered light intensity. Aggregation method.
  7.  前記光学的測定値の分散が、前記数値解析値として用いられることを特徴とする請求項1乃至6のいずれか一項に記載の凝集方法。 The aggregation method according to any one of claims 1 to 6, wherein the dispersion of the optical measurement value is used as the numerical analysis value.
  8.  前記光学的測定値のピーク面積が、前記数値解析値として用いられることを特徴とする請求項1乃至6のいずれか一項に記載の凝集方法。 The aggregation method according to any one of claims 1 to 6, wherein a peak area of the optical measurement value is used as the numerical analysis value.
  9.  前記光学的測定値の標準偏差が、前記数値解析値として用いられることを特徴とする請求項1乃至6のいずれか一項に記載の凝集方法。 The aggregation method according to any one of claims 1 to 6, wherein a standard deviation of the optical measurement value is used as the numerical analysis value.
  10.  前記数値解析値は、前記懸濁物質のフロックの粒径であることを特徴とする請求項1に記載の凝集方法。 The aggregation method according to claim 1, wherein the numerical analysis value is a particle size of floc of the suspended substance.
  11.  前記注入率決定工程は、
      前記注入工程、前記攪拌工程、前記光学的測定工程、および前記数値解析工程を、前記注入率を変えながら、複数回繰り返すことにより複数の数値解析値を取得し、
      前記複数の数値解析値に基づいて、前記凝集剤の適正な注入率を決定する工程であることを特徴とする請求項1に記載の凝集方法。
    The injection rate determination step includes
    Obtaining a plurality of numerical analysis values by repeating the injection step, the stirring step, the optical measurement step, and the numerical analysis step a plurality of times while changing the injection rate,
    The aggregation method according to claim 1, wherein the aggregation method is a step of determining an appropriate injection rate of the flocculant based on the plurality of numerical analysis values.
  12.  前記複数の数値解析値のうち最大値または最小値が得られた注入率を、前記適正な注入率として決定することを特徴とする請求項11に記載の凝集方法。 The aggregation method according to claim 11, wherein an injection rate at which a maximum value or a minimum value is obtained among the plurality of numerical analysis values is determined as the appropriate injection rate.
  13.  前記複数の数値解析値のうち最大値が得られた注入率と2番目に大きな値が得られた注入率との平均値、または前記複数の数値解析値のうち最小値が得られた注入率と2番目に小さな値が得られた注入率との平均値を、前記適正な注入率として決定することを特徴とする請求項11に記載の凝集方法。 The average value of the injection rate at which the maximum value is obtained among the plurality of numerical analysis values and the injection rate at which the second largest value is obtained, or the injection rate at which the minimum value is obtained among the plurality of numerical analysis values The aggregation method according to claim 11, wherein an average value of the injection rate at which the second smallest value is obtained is determined as the appropriate injection rate.
  14.  前記注入率決定工程で決定された適正な注入率に、補正係数を乗算して補正注入率を決定する補正注入率決定工程をさらに備えたことを特徴とする請求項1に記載の凝集方法。 The aggregation method according to claim 1, further comprising a correction injection rate determination step of determining a correction injection rate by multiplying an appropriate injection rate determined in the injection rate determination step by a correction coefficient.
  15.  前記攪拌された原液を希釈液で希釈する希釈工程をさらに含み、
     前記希釈工程は、前記攪拌工程と前記光学的測定工程の間で実施されることを特徴とする請求項1に記載の凝集方法。
    A dilution step of diluting the stirred stock solution with a diluent;
    The aggregation method according to claim 1, wherein the dilution step is performed between the stirring step and the optical measurement step.
  16.  懸濁物質を含む原液に凝集剤を注入する凝集剤注入装置と、
     攪拌翼を500min-1以上の回転速度で回転させて、前記凝集剤が注入された前記原液を攪拌する高速攪拌機と、
     前記高速攪拌機に前記原液を供給する供給装置と、
     前記攪拌された原液に光を照射して光学的測定値を取得する光学的測定装置と、
     前記光学的測定値を数値解析することにより、数値解析値を取得する数値解析装置と、
     前記数値解析値に基づいて、前記凝集剤の適正な注入率を決定する制御装置と、を備えることを特徴とする凝集装置。
    A flocculant injection device for injecting the flocculant into a stock solution containing suspended solids;
    A high-speed stirrer that stirs the stock solution into which the flocculant is injected by rotating a stirring blade at a rotation speed of 500 min −1 or more;
    A supply device for supplying the stock solution to the high-speed stirrer;
    An optical measurement device that irradiates the stirred stock solution with light to obtain optical measurement values;
    A numerical analysis device for acquiring a numerical analysis value by numerically analyzing the optical measurement value;
    And a control device for determining an appropriate injection rate of the flocculant based on the numerical analysis value.
  17.  前記制御装置は、
      前記数値解析値に基づいて、前記凝集剤の注入率が適正であるか否かを決定し、
      前記凝集剤の適正な注入率が決定されるまで、前記凝集剤注入装置および前記供給装置のうちのいずれか一方または両方と、前記高速攪拌機、前記光学的測定装置、および前記数値解析装置を操作して、前記原液への凝集剤の注入、前記原液の攪拌、前記光学的測定値の取得、および前記数値解析値の取得を、前記注入率を変えながら繰り返すことを特徴とする請求項16に記載の凝集装置。
    The controller is
    Based on the numerical analysis value, determine whether the injection rate of the flocculant is appropriate,
    Operate one or both of the flocculant injection device and the supply device, the high-speed stirrer, the optical measurement device, and the numerical analysis device until an appropriate injection rate of the flocculant is determined. The injection of the flocculant into the stock solution, the stirring of the stock solution, the acquisition of the optical measurement value, and the acquisition of the numerical analysis value are repeated while changing the injection rate. The aggregating apparatus described.
  18.  前記光学的測定装置は、前記攪拌された原液に光を照射して透過光強度を測定することを特徴とする請求項16または17に記載の凝集装置。 The aggregating apparatus according to claim 16 or 17, wherein the optical measuring device measures the transmitted light intensity by irradiating the stirred stock solution with light.
  19.  前記光学的測定装置は、前記攪拌された原液に光を照射して散乱光強度を測定することを特徴とする請求項16または17に記載の凝集装置。 The aggregating apparatus according to claim 16 or 17, wherein the optical measuring device measures the scattered light intensity by irradiating the stirred stock solution with light.
  20.  前記光学的測定装置が、透過光強度を測定する測定装置と、散乱光強度を測定する測定装置の両方であることを特徴とする請求項16または17に記載の凝集装置。 The aggregating apparatus according to claim 16 or 17, wherein the optical measuring device is both a measuring device for measuring transmitted light intensity and a measuring device for measuring scattered light intensity.
  21.  前記数値解析装置は、前記光学的測定値の分散を前記数値解析値として取得することを特徴とする請求項16乃至20のいずれか一項に記載の凝集装置。 The aggregating apparatus according to any one of claims 16 to 20, wherein the numerical analysis device acquires a dispersion of the optical measurement value as the numerical analysis value.
  22.  前記数値解析装置は、前記光学的測定値のピーク面積を前記数値解析値として取得することを特徴とする請求項16乃至20のいずれか一項に記載の凝集装置。 The aggregating apparatus according to any one of claims 16 to 20, wherein the numerical analysis device acquires a peak area of the optical measurement value as the numerical analysis value.
  23.  前記数値解析装置は、前記光学的測定値の標準偏差を前記数値解析値として取得することを特徴とする請求項16乃至20のいずれか一項に記載の凝集装置。 The aggregating apparatus according to any one of claims 16 to 20, wherein the numerical analysis device acquires a standard deviation of the optical measurement value as the numerical analysis value.
  24.  前記数値解析装置は、前記懸濁物質のフロックの粒径を前記数値解析値として取得することを特徴とする請求項16に記載の凝集装置。 The aggregating apparatus according to claim 16, wherein the numerical analysis device acquires a floc particle size of the suspended solid as the numerical analysis value.
  25.  前記制御装置は、
      前記凝集剤注入装置および前記供給装置のうちのいずれか一方または両方と、前記高速攪拌機、前記光学的測定装置、および前記数値解析装置を操作して、前記原液への凝集剤の注入、前記原液の攪拌、前記光学的測定値の取得、および前記数値解析値の取得を、前記注入率を変えながら、複数回繰り返すことにより複数の数値解析値を取得し、
      前記複数の数値解析値に基づいて、前記凝集剤の適正な注入率を決定することを特徴とする請求項16に記載の凝集装置。
    The controller is
    Either one or both of the flocculant injection device and the supply device, the high-speed stirrer, the optical measurement device, and the numerical analysis device are operated to inject the flocculant into the stock solution, the stock solution A plurality of numerical analysis values are obtained by repeating the agitation, acquisition of the optical measurement values, and acquisition of the numerical analysis values a plurality of times while changing the injection rate,
    The aggregating apparatus according to claim 16, wherein an appropriate injection rate of the aggregating agent is determined based on the plurality of numerical analysis values.
  26.  前記制御装置は、前記複数の数値解析値のうち最大値または最小値が得られた注入率を、前記適正な注入率として決定することを特徴とする請求項25に記載の凝集装置。 26. The aggregating apparatus according to claim 25, wherein the control device determines an injection rate at which a maximum value or a minimum value is obtained among the plurality of numerical analysis values as the appropriate injection rate.
  27.  前記制御装置は、前記複数の数値解析値のうち最大値が得られた注入率と2番目に大きな値が得られた注入率との平均値、または前記複数の数値解析値のうち最小値が得られた注入率と2番目に小さな値が得られた注入率との平均値を、前記適正な注入率として決定することを特徴とする請求項25に記載の凝集装置。 The control device has an average value of an injection rate at which a maximum value is obtained among the plurality of numerical analysis values and an injection rate at which a second largest value is obtained, or a minimum value among the plurality of numerical analysis values is 26. The aggregating apparatus according to claim 25, wherein an average value of the obtained injection rate and the injection rate at which the second smallest value is obtained is determined as the appropriate injection rate.
  28.  前記制御装置は、前記決定された適正な注入率に、補正係数を乗算して補正注入率を決定することを特徴とする請求項16に記載の凝集装置。 The aggregating apparatus according to claim 16, wherein the control device determines a correction injection rate by multiplying the determined appropriate injection rate by a correction coefficient.
  29.  前記数値解析装置は、前記制御装置内に組み込まれていることを特徴とする請求項16に記載の凝集装置。 The aggregation device according to claim 16, wherein the numerical analysis device is incorporated in the control device.
  30.  前記攪拌された原液に希釈液を供給する希釈液供給装置をさらに備えたことを特徴とする請求項16に記載の凝集装置。 The aggregating apparatus according to claim 16, further comprising a diluent supply device for supplying a diluent to the stirred stock solution.
PCT/JP2015/067772 2014-07-07 2015-06-19 Clumping method and clumping device WO2016006419A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016532850A JPWO2016006419A1 (en) 2014-07-07 2015-06-19 Aggregation method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014139839 2014-07-07
JP2014-139839 2014-07-07

Publications (1)

Publication Number Publication Date
WO2016006419A1 true WO2016006419A1 (en) 2016-01-14

Family

ID=55064058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067772 WO2016006419A1 (en) 2014-07-07 2015-06-19 Clumping method and clumping device

Country Status (2)

Country Link
JP (1) JPWO2016006419A1 (en)
WO (1) WO2016006419A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106198462A (en) * 2016-10-06 2016-12-07 温州统利机械科技有限公司 A kind of printing opacity detector for detecting clarifying contaminated liquids degree
WO2020007978A1 (en) * 2018-07-04 2020-01-09 Bma Braunschweigische Maschinenbauanstalt Ag Method and arrangement for separating solids and liquids in suspensions, in particular sewage sludge, by adding flocculants
JP2023088157A (en) * 2021-12-14 2023-06-26 横河電機株式会社 Turbidimeter and method for measuring turbidity

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311784A (en) * 1997-03-10 1998-11-24 Fuji Electric Co Ltd Method and device for measuring turbidity
JPH11347599A (en) * 1998-06-04 1999-12-21 Fuji Electric Co Ltd Flocculant injection amount determining apparatus
JP2003154206A (en) * 2001-11-22 2003-05-27 Kurita Water Ind Ltd Treatment system of water or sludge
WO2012108312A1 (en) * 2011-02-10 2012-08-16 水ing株式会社 Method and device for sludge flocculation
JP2012196628A (en) * 2011-03-22 2012-10-18 Swing Corp Water purifying method and water purifying device
WO2014021228A1 (en) * 2012-07-30 2014-02-06 水ing株式会社 Sludge treatment method and treatment device
JP2014050830A (en) * 2012-08-08 2014-03-20 Swing Corp Sludge treatment method and apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005814A (en) * 2000-06-16 2002-01-09 Hitachi Ltd Method for evaluating state of clean water floc formation, and system for controlling injection of flocculant
JP2006317324A (en) * 2005-05-13 2006-11-24 Toshiba Corp Aggregation state detection system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10311784A (en) * 1997-03-10 1998-11-24 Fuji Electric Co Ltd Method and device for measuring turbidity
JPH11347599A (en) * 1998-06-04 1999-12-21 Fuji Electric Co Ltd Flocculant injection amount determining apparatus
JP2003154206A (en) * 2001-11-22 2003-05-27 Kurita Water Ind Ltd Treatment system of water or sludge
WO2012108312A1 (en) * 2011-02-10 2012-08-16 水ing株式会社 Method and device for sludge flocculation
JP2012196628A (en) * 2011-03-22 2012-10-18 Swing Corp Water purifying method and water purifying device
WO2014021228A1 (en) * 2012-07-30 2014-02-06 水ing株式会社 Sludge treatment method and treatment device
JP2014050830A (en) * 2012-08-08 2014-03-20 Swing Corp Sludge treatment method and apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106198462A (en) * 2016-10-06 2016-12-07 温州统利机械科技有限公司 A kind of printing opacity detector for detecting clarifying contaminated liquids degree
CN106198462B (en) * 2016-10-06 2018-11-02 温州统利机械科技有限公司 A kind of light transmission detector for detecting clarifying contaminated liquids degree
WO2020007978A1 (en) * 2018-07-04 2020-01-09 Bma Braunschweigische Maschinenbauanstalt Ag Method and arrangement for separating solids and liquids in suspensions, in particular sewage sludge, by adding flocculants
JP2023088157A (en) * 2021-12-14 2023-06-26 横河電機株式会社 Turbidimeter and method for measuring turbidity

Also Published As

Publication number Publication date
JPWO2016006419A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6674260B2 (en) Method for determining coagulant injection rate and apparatus for determining coagulant injection rate
JP5364298B2 (en) Dispersant-containing water treatment method
Li et al. The characteristics of sludge from enhanced coagulation processes using PAC/PDMDAAC composite coagulants in treatment of micro-polluted raw water
Moussas et al. Advances in coagulation/flocculation field: Al-and Fe-based composite coagulation reagents
WO2016006419A1 (en) Clumping method and clumping device
JP4672531B2 (en) Green liquid processing method
JP2019055406A (en) Coagulating sedimentation control device, coagulating sedimentation control method and computer program
JP2012045441A (en) Method and apparatus for dewatering organic sludge
JP2008055299A (en) Flocculating sedimentation treating equipment
JP2016191679A (en) Flocculation state detection method, chemical injection control method and chemical injection control device
JP6139349B2 (en) Water treatment system
JP6139314B2 (en) Aggregation control apparatus and aggregation control method
KR20040067702A (en) Automatic control method of investing amount of flocculant for treatment room of purity water to detect real time image of floc
JP4244769B2 (en) Aggregation apparatus and aggregation method
JP7074406B2 (en) Drug addition amount control device and drug addition amount control method
JP7083274B2 (en) Water treatment method and water treatment equipment
JP2017051906A (en) Agglomeration and precipitation controller, agglomeration and precipitation controlling method, and computer program
JP6797718B2 (en) Aggregation control device, aggregation control method and aggregation control system
JP5210948B2 (en) Chemical injection control method for water purification plant
Kan et al. Coagulation monitoring in surface water treatment facilities
KR100814011B1 (en) Device and methode for water purification
JP2020078797A (en) Flocculation treatment system, flocculation treatment method, computer program and flocculation treatment control device
JP2015016415A (en) Method of setting coagulant injection rate
JP6385860B2 (en) Aggregation state determination method and aggregation state determination device
JP5723916B2 (en) Method and apparatus for dewatering organic sludge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818506

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016532850

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818506

Country of ref document: EP

Kind code of ref document: A1