JPH11347599A - Flocculant injection amount determining apparatus - Google Patents

Flocculant injection amount determining apparatus

Info

Publication number
JPH11347599A
JPH11347599A JP15610998A JP15610998A JPH11347599A JP H11347599 A JPH11347599 A JP H11347599A JP 15610998 A JP15610998 A JP 15610998A JP 15610998 A JP15610998 A JP 15610998A JP H11347599 A JPH11347599 A JP H11347599A
Authority
JP
Japan
Prior art keywords
sludge
amount
floc
measuring
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15610998A
Other languages
Japanese (ja)
Other versions
JP3967462B2 (en
Inventor
Kohei Inoue
公平 井上
Tokio Oto
時喜雄 大戸
Toru Yoake
徹 夜明
Kenzo Sugaya
謙三 菅谷
Takafumi Omae
隆文 大前
Masayoshi Katayama
雅義 片山
Yoshio Sawada
芳夫 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Ishigaki Co Ltd
Original Assignee
Fuji Electric Co Ltd
Ishigaki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Ishigaki Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP15610998A priority Critical patent/JP3967462B2/en
Publication of JPH11347599A publication Critical patent/JPH11347599A/en
Application granted granted Critical
Publication of JP3967462B2 publication Critical patent/JP3967462B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the subject apparatus rapidly corresponding to the alteration of properties of supplied sludge to automatically determine the optimum injection amt. of a flocculant. SOLUTION: A flocculant injection amt. determining apparatus is an apparatus for determining the injection amt. of a flocculant to a flocculating and mixing tank for flocculating sludge and equipped with a measuring tank 1, a separated soln. supply part 2 for supplying a dehydrated and separated soln. obtained by dehydrating flocculated sludge to the measuring tank in a constant flow rate, a drainage part 5 keeping the liquid amt. in the measuring tank constant, a measuring part 4 measuring the amt. of floc present in the dehydrated and separated soln. supplied to the measuring tank and a control means determining the injection amt. of the flocculant minimizing the amt. of floc based on the measured data of the amt. of flock by the measuring part.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、下水汚泥の脱水工
程における凝集剤注入量を適正かつ自動的に決定する凝
集剤注入量決定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coagulant injection amount determining apparatus for properly and automatically determining a coagulant injection amount in a sewage sludge dewatering step.

【0002】[0002]

【従来の技術】従来から下水処理に際して、水中の汚濁
物質が沈殿してできた泥状の物質(以下、汚泥とする)
を回収し、天日乾燥あるいは機械乾燥による汚泥乾燥が
行われている。天日乾燥は多くの時間と土地面積とを必
要とし、また臭気が周辺地域にまで広がるため、現在は
汚泥乾燥機による機械乾燥法が一般的である。
2. Description of the Related Art Conventionally, in the case of sewage treatment, a muddy substance formed by precipitation of pollutants in water (hereinafter referred to as sludge).
And sludge drying is performed by solar drying or mechanical drying. Solar drying requires a lot of time and land area, and the odor spreads to the surrounding area. Therefore, at present, a mechanical drying method using a sludge dryer is generally used.

【0003】ところで、下水汚泥は、コロイド状の微粒
子を主体とし、汚泥粒子表面は負に帯電して互いに反発
しあっているので、そのままの状態では機械的に脱水す
ることは困難である。そこで、図5に示すように、水処
理施設における汚泥の機械脱水の前段工程として汚泥調
質(汚泥凝集)を行うための工程が設けられている。
By the way, sewage sludge is mainly composed of colloidal fine particles, and the surface of the sludge particles is negatively charged and repels each other. Therefore, it is difficult to mechanically dewater the sludge as it is. Therefore, as shown in FIG. 5, a process for performing sludge conditioning (sludge aggregation) is provided as a pre-process of mechanical dewatering of sludge in a water treatment facility.

【0004】図5は、下水処理場の汚泥脱水工程におけ
る汚泥調質(汚泥凝集)を行うための装置の概略的構成
を説明するための模式図である。この装置を用いた汚泥
調質プロセスは以下の工程からなる。すなわち、水処理
施設50で排泥された汚泥を汚泥投入ポンプ51および
汚泥流量調節弁52を介して凝集混和槽55に投入する
工程と、凝集混和槽55内で攪拌混合し、汚泥粒子の粘
質物に包含する水分を脱水しやすい状態にして、汚泥粒
子による凝集体(以下、単にフロックと呼ぶ)を形成し
成長させる工程と、凝集混和槽55で凝集した汚泥を、
いわゆるフロックの懸濁液として凝集汚泥弁53を介し
て連接された汚泥脱水設備(不図示)に送る工程とを有
する。ここで上記フロックとは、上記凝集剤によって凝
集した水中の微粒子の大きな塊をいう。したがって、図
5に示す装置を用いた汚泥調質プロセスの目的は、凝集
混和槽55内で凝集剤存在下によるフロックの形成・成
長を行うことで、後段の機械脱水プロセスでの固液分離
性を向上させることである。したがって、上記凝集混和
槽55における適正な凝集剤の注入が、機械脱水後の汚
泥脱水性を良好に維持するための重要な因子となる。
FIG. 5 is a schematic diagram for explaining a schematic configuration of an apparatus for performing sludge conditioning (sludge aggregation) in a sludge dewatering step of a sewage treatment plant. The sludge refining process using this apparatus includes the following steps. That is, a step of putting sludge discharged in the water treatment facility 50 into the coagulation mixing tank 55 via the sludge input pump 51 and the sludge flow rate control valve 52, and a stirring and mixing in the coagulation mixing tank 55 to form a mixture of the sludge particles. A step of forming and growing an aggregate (hereinafter simply referred to as a floc) of sludge particles by making the water contained in the sediment easily dehydrated;
Sending a so-called floc suspension to a sludge dewatering facility (not shown) connected via a flocculated sludge valve 53. Here, the floc refers to a large lump of fine particles in water agglomerated by the aggregating agent. Therefore, the purpose of the sludge conditioning process using the apparatus shown in FIG. 5 is to form and grow flocs in the presence of a flocculant in the flocculation and mixing tank 55, so that solid-liquid separation in the subsequent mechanical dewatering process is performed. It is to improve. Therefore, the proper injection of the coagulant in the coagulation mixing tank 55 is an important factor for maintaining good sludge dewatering properties after mechanical dewatering.

【0005】ところで、上記汚泥調質プロセスに適用可
能な凝集状態測定方法や装置は現在のところ知られてい
ない。そのため、当業者と言えども汚泥凝集状態の定量
的な把握は非常に困難である。よって、従来は実際の凝
集状態がほとんど反映されない状態で上記凝集剤の注入
率を決定する方法が採用されている。以下、従来の汚泥
乾燥固形物一定比率式による凝集剤注入率の決定方法に
ついて説明する。
[0005] By the way, a method and an apparatus for measuring the coagulation state applicable to the above-mentioned sludge conditioning process are not known at present. Therefore, it is very difficult for a person skilled in the art to quantitatively grasp the state of sludge aggregation. Therefore, conventionally, a method of determining the injection rate of the coagulant in a state where the actual coagulation state is hardly reflected is adopted. Hereinafter, a conventional method of determining the coagulant injection rate by the sludge dry solid constant ratio formula will be described.

【0006】(1)ジャーテストによる最適凝集点の確
認法 供給される汚泥の一定量をいくつかのビーカーに採取す
る。つぎに、採取された汚泥に凝集剤を投入する。この
際、ビーカーごとに凝集剤注入率を段階的に変化させる
とともに、攪拌速度を急速攪拌から緩速攪拌まで変化さ
せる。それぞれのビーカーで凝集反応を起こさせて、フ
ロック沈降性が最も良い、または上澄み液の濁度が最も
低い注入率をもって最適な凝集点と判断する。さらに、
このとき各条件で生成したフロックの水切れ性を測定
し、最適凝集点の最終的な判断をする場合もある(例え
ば、生成フロックをろ過したときの分離水ろ過速度最大
のものが最適)。
(1) Method for confirming optimum coagulation point by jar test A certain amount of supplied sludge is collected in several beakers. Next, a coagulant is added to the collected sludge. At this time, the coagulant injection rate is changed stepwise for each beaker, and the stirring speed is changed from rapid stirring to slow stirring. An agglutination reaction is caused in each beaker, and the flocculation property is determined to be the best, or the turbidity of the supernatant liquid is determined to be the optimum aggregation point with the lowest injection rate. further,
At this time, the drainage of the floc generated under each condition is measured, and the final determination of the optimal aggregation point may be made (for example, the one having the maximum separation water filtration speed when the generated floc is filtered is optimal).

【0007】図6は、ジャーテストを行う装置の主要部
の概略的構成を説明するための模式的側面図である。ま
ず、汚泥61の適量を採取した複数個のビーカー62
(図では3個)にそれぞれ攪拌機63を挿入する。この
攪拌機63は、攪拌翼が取り付けられた一端と滑車64
が同軸的に取り付けられた他端とを有する軸棒から構成
される。各滑車64に掛けた共通のベルト65を、回転
数調節器66によって駆動制御されるモーター67を駆
動することによって回転させる。この際、回転数調節器
66を用いてモーター67の回転数を制御することによ
って各ビーカー62中の汚泥61の攪拌速度を変化させ
ることができる。
FIG. 6 is a schematic side view for explaining a schematic configuration of a main part of an apparatus for performing a jar test. First, a plurality of beakers 62 from which an appropriate amount of sludge 61 was collected.
The stirrer 63 is inserted into each (three in the figure). The stirrer 63 has one end to which a stirring blade is attached and a pulley 64.
Are coaxially mounted and the other end is coaxially mounted. A common belt 65 applied to each pulley 64 is rotated by driving a motor 67 that is driven and controlled by a rotation speed controller 66. At this time, the stirring speed of the sludge 61 in each beaker 62 can be changed by controlling the rotation speed of the motor 67 using the rotation speed controller 66.

【0008】(2)流動電流測定による最適凝集点の確
認法 汚泥の脱水分離液の流動電流値を測定し、その値が0近
傍(電気的に中和)、または凝集剤注入率に対する流動
電流値履歴が変極点となる凝集剤注入率のときを最適凝
集点と判断する。
(2) Method for confirming the optimum coagulation point by measuring the flow current The flow current value of the sludge dewatered and separated liquid is measured and the value is close to 0 (electrically neutralized) or the flow current with respect to the coagulant injection rate. When the value history is the coagulant injection rate at which the inflection point is reached, it is determined as the optimum coagulation point.

【0009】(3)経験的な一定比率式による最適凝集
剤注入率の決定法 予め(1)のジャーテストで最適凝集点を確認して最適
な凝集剤注入率を求め、テストに用いた汚泥の汚泥乾燥
固形物量と最適注入率との比を最適比率とする。そこ
で、実際のプロセスでは、供給される汚泥の供給量とイ
ンライン型汚泥濃度計の測定値とに基づく固形物濃度か
ら汚泥乾燥固形物量を概算し、この汚泥乾燥固形物量と
凝集剤注入率との比が、常に、先に求めた最適比率を維
持するようにして、凝集剤注入率を決定する。
(3) Method for Determining Optimal Coagulant Injection Rate by Empirical Constant Ratio Formula The optimum coagulant injection rate is determined by previously confirming the optimal coagulation point in the jar test of (1), and the sludge used in the test is determined. The ratio between the sludge dry solid content and the optimal injection rate is defined as the optimal ratio. Therefore, in the actual process, the sludge dry solid amount is estimated from the solid amount based on the supplied sludge supply amount and the measured value of the in-line type sludge densitometer, and the sludge dry solid amount and the coagulant injection rate are calculated. The coagulant injection rate is determined such that the ratio always maintains the previously determined optimum ratio.

【0010】[0010]

【発明が解決しようとする課題】しかし、上記の従来の
最適凝集点の確認方法と凝集剤の注入率決定法は、以下
のような問題点を有する。
However, the above-mentioned conventional methods for confirming the optimum aggregation point and the method for determining the injection rate of the flocculant have the following problems.

【0011】上記(1)の方法は、テストに手間がかか
るため、汚泥性状の経時変化に追従することができな
い。また、凝集剤注入率を細かく設定することが比較的
困難なために、最適凝集点の詳細確認には不十分であ
る。
In the method (1), since the test is troublesome, it is impossible to follow the change with time of the sludge property. Further, since it is relatively difficult to finely set the coagulant injection rate, it is not sufficient to confirm the optimum coagulation point in detail.

【0012】上記(2)の方法は、汚泥粒子表面の電気
的な中和点までは確認できる。しかし、それ以降の凝集
機構は基本的には粒子の衝突(電気的結合・吸着)によ
るものであるから、この方法ではフロックの最終的な凝
集状態を測定することは困難である。また、汚泥に含有
する有機物や凝集剤の種類によって、最適凝集点と電気
的中和点が一致しない場合がある。
In the method (2), it is possible to confirm up to the electrical neutralization point on the sludge particle surface. However, since the subsequent aggregation mechanism is basically based on the collision (electrical coupling / adsorption) of the particles, it is difficult to measure the final aggregation state of the flocs by this method. In addition, depending on the type of organic substance or flocculant contained in the sludge, the optimum flocculation point and the electrical neutralization point may not match.

【0013】上記(3)の方法は、基本的には(1)の
方法により予め目標値(汚泥乾燥固形物量と凝集剤注入
率の比)を決定する。したがって、前述した(1)と同
様な問題を有する。また、実プロセスでのインライン型
汚泥濃度計の信頼性にも問題がある。さらに、水温の相
違や季節や天候による汚泥性状の変動による目標値の補
正が必要であり、目標値に普遍性がないという問題も有
する。
In the above method (3), a target value (ratio between the amount of dried sludge solids and the coagulant injection rate) is basically determined in advance by the method (1). Therefore, it has the same problem as the above (1). There is also a problem in the reliability of the in-line sludge concentration meter in the actual process. Further, it is necessary to correct a target value due to a change in sludge properties due to a difference in water temperature or a season or weather, and there is a problem that the target value is not universal.

【0014】このように、従来の方法では実際の凝集状
態がほとんど反映されない。したがって、現在のとこ
ろ、下水処理に適用できるインラインの凝集状態測定方
法や装置は知られていない。
As described above, the conventional method hardly reflects the actual state of aggregation. Therefore, at present, there is no known in-line coagulation state measuring method or apparatus applicable to sewage treatment.

【0015】したがって、本発明は上記課題を解決し、
供給汚泥の性状変更に迅速に対応し、凝集剤の最適注入
量を自動的に決定する装置を提供することを目的とす
る。
Therefore, the present invention solves the above problems,
It is an object of the present invention to provide a device which can promptly respond to a change in the property of supplied sludge and automatically determines an optimal injection amount of a flocculant.

【0016】[0016]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明にもとづく凝集剤注入量決定装置は、汚泥
を凝集させる凝集混和槽への凝集剤注入量を決定する装
置であって、測定槽と、凝集汚泥を脱水することによっ
て得られる脱水分離液を前記測定槽へ一定の流量で供給
する分離液供給部と、前記測定槽内の液量を一定に保持
する排液部と、前記測定槽に供給された脱水分離液中に
存在するフロックの体積率を測定する計測部と、該計測
部によるフロックの量の測定データに基づきフロックの
量が最小になる凝集剤注入量を決定する制御手段とを備
えたことを特徴とする。制御部は、フロックの量の測定
データに基づきフロック大敵率が最小となるように自動
的に凝集剤注入量を調整するプログラムを内蔵する制御
用コンピュータであってもよい。測定槽は上記の他に、
回転速度の変更が可能な攪拌装置を備えたことを特徴と
する。
In order to solve the above-mentioned problems, a coagulant injection amount determining apparatus according to the present invention is an apparatus for determining a coagulant injection amount into a coagulation mixing tank for coagulating sludge. A measurement tank, a separation liquid supply unit for supplying a dehydration separation liquid obtained by dehydrating the coagulated sludge to the measurement tank at a constant flow rate, and a drain unit for maintaining a constant liquid amount in the measurement tank. A measuring unit for measuring the volume ratio of floc present in the dehydrated separated liquid supplied to the measuring tank, and the coagulant injection amount at which the amount of floc is minimized based on the measurement data of the amount of floc by the measuring unit. Control means for determining. The control unit may be a control computer having a program for automatically adjusting the coagulant injection amount based on the measured data of the floc amount so as to minimize the floe enemy rate. The measuring tank is in addition to the above,
A stirring device capable of changing the rotation speed is provided.

【0017】本発明の凝集剤注入量決定装置は、上記の
ように構成したため、脱水分離液の残渣フロックの量を
制御量とし、良好な汚泥脱水性が得られる最適薬注量
を、フロックの量が最小となるようにして自動的に決定
することができる。
Since the coagulant injection amount determining apparatus of the present invention is configured as described above, the amount of the residual floc of the dewatered separation liquid is set as the control amount, and the optimum chemical injection amount at which a good sludge dewatering property is obtained is determined by the floc The amount can be determined automatically with a minimum.

【0018】[0018]

【発明の実施の形態】以下、本発明を実施例に基づき説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described based on embodiments.

【0019】図1は、本発明にもとづく凝集剤注入量決
定装置の主要部の概略的構成を示す模式図である。図
中、点線で示す部分は該装置の主要構成要素である。
FIG. 1 is a schematic diagram showing a schematic configuration of a main part of a coagulant injection amount determining apparatus according to the present invention. In the figure, the parts shown by dotted lines are the main components of the device.

【0020】凝集剤注入量決定装置は、測定槽1と、該
測定槽に所定量の脱水分離液を供給する分離液供給部2
と、測定槽1に供給された脱水分離液を攪拌する攪拌装
置3と、脱水分離液中に存在する残渣フロックの量を測
定する計測部4と、測定槽1内の脱水分離液量を常に一
定にするための排水部5とを主要構成要素として備え
る。
The coagulant injection amount determining apparatus comprises a measuring tank 1 and a separating liquid supply unit 2 for supplying a predetermined amount of dehydrated separating liquid to the measuring tank.
And a stirrer 3 for stirring the dehydrated separated liquid supplied to the measuring tank 1, a measuring unit 4 for measuring the amount of residual floc present in the dehydrated separated liquid, and constantly measuring the amount of the dehydrated separated liquid in the measuring tank 1. A drain section 5 for keeping the temperature constant is provided as a main component.

【0021】脱水分離液10は、図5に示す装置を用い
た汚泥調質プロセス(凝集混和槽内で凝集剤存在下によ
るフロックの形成・成長)の後段にあたる汚泥脱水設備
(不図示)における機械的脱水プロセスでの固液分離の
際に生ずる。
The dewatering / separation liquid 10 is supplied to a machine in a sludge dewatering facility (not shown) which is a latter stage of a sludge conditioning process (formation and growth of flocs in the presence of a flocculant in a flocculation mixing tank) using the apparatus shown in FIG. Occurs during solid-liquid separation in the mechanical dehydration process.

【0022】分離液供給部2は、汚泥脱水設備から送ら
れる脱水分離液10を送液管6を介して測定槽1に送
る。この際、分離液供給部2に設けられた手動バルブ7
によって脱水分離液10の供給量を調節する。
The separated liquid supply unit 2 sends the dehydrated separated liquid 10 sent from the sludge dewatering equipment to the measuring tank 1 via the liquid sending pipe 6. At this time, the manual valve 7 provided in the separation liquid supply unit 2
The supply amount of the dehydrated separation liquid 10 is adjusted by the method.

【0023】測定槽1に挿入される攪拌装置3は、モー
ター8と、該モーター8の駆動によって回転する攪拌翼
9とを有する。この攪拌翼9の回転数は、測定槽1にお
いて脱水分離液10中の残渣フロックが脱水分離液10
中の残留凝集剤によって再凝集しないようなG値(攪拌
翼形状と回転数により決定される)になるように定めれ
ばよい。
The stirring device 3 inserted into the measuring tank 1 has a motor 8 and a stirring blade 9 rotated by driving the motor 8. The number of rotations of the stirring blade 9 is such that the residual floc in the dehydrated separation liquid 10
The G value (determined by the shape of the stirring blade and the number of rotations) may be set so as not to be re-agglomerated by the residual coagulant therein.

【0024】排水部5は、測定槽1に貯えられた脱水分
離液10が所定の量以上にならないように、測定槽1の
底部から所定の高さに位置した越流口11と、該越流口
11から流出してくる脱水分離液10を受ける排水堰1
2とからなる。また、この排水堰12の底部には排水管
13が連通している。排水管13は、該越流口11から
流出してくる脱水分離液10の単位時間あたりの量が排
水堰12から排水管13を経由して排水される脱水分離
液10の単位時間あたりの量よりも十分少なくなるほど
の、十分に大きな径を持つ。
The drain section 5 includes an overflow port 11 located at a predetermined height from the bottom of the measuring tank 1 so that the dehydrated separated liquid 10 stored in the measuring tank 1 does not exceed a predetermined amount. Drainage weir 1 that receives dewatered separated liquid 10 flowing out of outlet 11
Consists of two. A drain pipe 13 communicates with the bottom of the drain weir 12. The drain pipe 13 is configured such that the amount per unit time of the dewatered separation liquid 10 flowing out from the overflow port 11 is the amount per unit time of the dewatered separation liquid 10 discharged from the drain weir 12 through the drain pipe 13. It has a sufficiently large diameter that it is much less than.

【0025】計測部4は、測定槽1内の脱水分離液10
に含まれる残渣フロックの量を計測するセンサ14を備
える。このセンサ14は、測定槽1内において排水部5
の越流口11の近傍に浸漬されている。計測部4の計測
値の出力を、信号線15によってコンピュータ16に入
力することができる。このコンピュータ16は、残渣フ
ロック体積率の測定データに基づきフロックの量が最小
となるように自動的に凝集剤注入量を調整するプログラ
ムを内蔵する制御用コンピュータである。
The measuring section 4 includes a dehydrated separated liquid 10 in the measuring tank 1.
Is provided with a sensor 14 for measuring the amount of the residue flocs contained in the. The sensor 14 is connected to the drainage section 5 in the measuring tank 1.
Is immersed in the vicinity of the overflow port 11. The output of the measurement value of the measurement unit 4 can be input to the computer 16 via the signal line 15. The computer 16 is a control computer having a program for automatically adjusting the coagulant injection amount so as to minimize the amount of floc based on the measurement data of the residual floc volume ratio.

【0026】ここで、計測部4のセンサ14は、例え
ば、特開平4−366750号公報に記載されている吸
光度変動解析法を適用して、平均吸光度と吸光度標準偏
差の測定結果からフロック粒径と個数濃度を演算できる
センサを用いればよく、フロックの量は上記粒径と個数
濃度から算出するフロック体積率(フロックの量に比例
する指標)で代替可能である。また、コンピュータ16
からの凝集剤注入量出力は、信号線17により既設の凝
集剤注入ポンプ制御装置へ送られる。このとき、コンピ
ュータ16では、計測部4で計測されるフロックの量が
最小となるように凝集剤注入量を決定する。この決定に
もとづいて、コンピュータ16は、既設の凝集剤注入ポ
ンプ制御装置を介して図5に示すような凝集剤注入ポン
プ54の駆動を制御し、凝集混和槽55に投入される凝
集剤の量を最適なものとする。
Here, the sensor 14 of the measuring section 4 applies the absorbance fluctuation analysis method described in Japanese Patent Application Laid-Open No. 4-366750, for example, to determine the floc particle size from the measurement results of the average absorbance and the absorbance standard deviation. It is sufficient to use a sensor capable of calculating the concentration and the number concentration, and the amount of floc can be replaced with a floc volume ratio (an index proportional to the amount of floc) calculated from the particle diameter and the number concentration. The computer 16
The coagulant injection amount output from is supplied to the existing coagulant injection pump control device via a signal line 17. At this time, the computer 16 determines the coagulant injection amount such that the amount of floc measured by the measuring unit 4 is minimized. Based on this determination, the computer 16 controls the driving of the coagulant injection pump 54 as shown in FIG. Is optimized.

【0027】ところで、本発明にもとづく凝集剤注入量
決定装置は、以下のような理論にもとづいて構成されて
いる。
The coagulant injection amount determining apparatus according to the present invention is configured based on the following theory.

【0028】本来、凝集状態を直接的に反映しているの
は、凝集混和槽(図5、参照符号55)内のフロックで
ある。しかし、下水汚泥の場合には、凝集混和槽内の凝
集状態インライン計測は非常に困難である。そこで、本
発明者らは、汚泥凝集後の脱水分離液の残渣フロックの
量(例えば、残渣フロックの体積率)を測定することに
着目した。
Originally, the floc in the flocculation mixing tank (FIG. 5, reference numeral 55) directly reflects the flocculation state. However, in the case of sewage sludge, in-line measurement of the coagulation state in the coagulation mixing tank is very difficult. Then, the present inventors paid attention to measuring the amount of residual floc (for example, the volume ratio of residual floc) of the dewatered separated liquid after sludge aggregation.

【0029】図2は、薬注量の違いによる凝集混和槽の
フロック状態とその時の凝集汚泥の脱水分離液のフロッ
ク状態を推定して模式化したものである。上段の薬注量
過少の場合、荷電中和不足でフロック化が進行せず、機
械脱水により供給汚泥の多くが分離液側へ漏れ、この場
合のケーキ脱水性は著しく悪い。中段の適正量の場合、
フロックは成長し、かつフロックの機械的強度が強いの
で機械脱水後も分離液中に漏れる残渣フロックの量が少
なく、ケーキ脱水性が良好となる。また、逆に下段の薬
注量過剰の場合、成長ブロックと共に正電荷反発による
フロック分散で生じた小さなフロックが増え、かつフロ
ックの機械的強度が弱く分離液へフロックが漏れやすい
状態となり、再びケーキ脱水性は不良となる。つまり、
残渣フロックの量(例えば、残渣フロックの体積率)
は、凝集剤注入量に対して、適正薬注点を最小としたU
字カーブを描くことが推定される。
FIG. 2 is a schematic diagram in which the floc state of the flocculation mixing tank and the floc state of the dewatered and separated liquid of the flocculated sludge at that time are estimated by the difference in the chemical injection amount. In the case of an insufficient chemical injection amount in the upper stage, floccification does not proceed due to insufficient charge neutralization, and much of the supplied sludge leaks to the separated liquid side due to mechanical dehydration, and the cake dewatering property in this case is extremely poor. In the case of the middle amount,
Since the floc grows and the mechanical strength of the floc is strong, the amount of the residual floc leaking into the separated liquid even after mechanical dehydration is small, and the cake dewatering property is improved. On the other hand, if the amount of chemicals in the lower stage is excessive, small flocs generated by flocculation due to positive charge repulsion along with the growth block increase, and the mechanical strength of the flocs is weak, so that flocs easily leak into the separated solution, and the cake again Dehydration becomes poor. That is,
Amount of residual floc (eg, volume fraction of residual floc)
Is the U that minimizes the appropriate drug pour point for the coagulant injection amount.
It is presumed to draw a character curve.

【0030】本発明者らによって着想された上述の理論
は、以下の実施例によってその妥当性が検証された。
The above theory invented by the present inventors has been verified by the following examples.

【0031】はじめに、ここでは、フロックの量を代表
する指標としてフロック体積率を用いた。脱水分離液の
フロック体積率と脱水性との関係を、種々の汚泥と凝集
剤との組み合わせ条件において薬注率(汚泥に注入した
凝集剤溶液の固形物量を注入対象汚泥の固形物量で除し
たものを百分率で表したもの)を変化させ本発明の装置
にて実測した場合の一例を図3および図4に示す。な
お、何れの汚泥も水処理方式が標準活性汚泥法であるも
のを用い、凝集剤はカチオン性高分子凝集剤(以下、単
にポリマーと呼ぶ)を使用した。具体的には、使用した
ポリマーは強カチオン性ポリメタクリレート系凝集剤
(以下、単にポリマーIとする)および強カチオン性ポ
リアクリレート系凝集剤(以下、単にポリマーII)で
ある。これらのポリマーは当業者によく知られたもので
ある。また、脱水機はベルトプレス脱水機を想定したリ
ーフテスト機を使用し、ケーキ含水率は脱水ケーキの乾
燥処理(105℃、12時間)前後でのケーキ重量を計
測することによって算出した。
First, the floc volume ratio was used as an index representing the amount of floc. The relationship between the floc volume fraction of the dewatered separation liquid and the dewatering property was calculated by dividing the amount of solids of the flocculant solution injected into the sludge by the solids amount of the sludge to be injected under the combined conditions of various sludges and the flocculant. FIG. 3 and FIG. 4 show an example of a case where the measurement was performed with the apparatus of the present invention while changing the ratio of the measured values by percentage. The sludge used was a standard activated sludge method for water treatment, and a cationic polymer flocculant (hereinafter simply referred to as polymer) was used as a flocculant. Specifically, the polymers used are a strong cationic polymethacrylate coagulant (hereinafter simply referred to as polymer I) and a strong cationic polyacrylate coagulant (hereinafter simply polymer II). These polymers are well known to those skilled in the art. The dehydrator used was a leaf tester assuming a belt press dehydrator, and the water content of the cake was calculated by measuring the cake weight before and after the drying treatment (105 ° C., 12 hours) of the dehydrated cake.

【0032】図3は、A処理場生汚泥をポリマーIで凝
集させた場合について、ポリマー薬注率に対するフロッ
ク体積率とケーキ含水率との関係をプロットしたグラフ
である。薬注率0.5〜1.6%の範囲において、フロ
ック体積率は一旦減少してから急激に増加する傾向を示
した。この時、フロック体積率は、薬注率0.8%での
最小の0.03%となった。一方、ケーキ含水率は、フ
ロック体積率と同様な挙動を示し、体積率と同じ薬注率
0.8%で最小値89.4%となった。
FIG. 3 is a graph plotting the relationship between the floc volume ratio and the water content of the cake with respect to the polymer injection rate when the raw sludge from the A treatment plant is agglomerated with the polymer I. In the range of the drug injection rate of 0.5 to 1.6%, the floc volume ratio showed a tendency to temporarily decrease and then rapidly increase. At this time, the floc volume ratio was a minimum of 0.03% at a chemical injection rate of 0.8%. On the other hand, the cake moisture content showed the same behavior as the floc volume ratio, and reached the minimum value of 89.4% at the same chemical injection rate of 0.8% as the volume ratio.

【0033】また、図4はB処理場消化汚泥をポリマー
IIで凝集させた場合について、ポリマー薬注率に対す
るフロック体積率とケーキ含水率の関係をプロットした
グラフである。薬注率1.0〜2.2%の範囲におい
て、フロック体積率は薬注率1.6%までに急激に減少
し、ここで最小値0.01%となった。また、ケーキ含
水率も同様に、薬注率1.6%で最小値87.4%とな
った。
FIG. 4 is a graph plotting the relationship between the floc volume ratio and the cake moisture content with respect to the polymer injection rate in the case where the sludge digested from the B treatment plant is agglomerated with the polymer II. In the range of the chemical injection rate of 1.0 to 2.2%, the floc volume ratio sharply decreased to the chemical injection rate of 1.6%, where the minimum value was 0.01%. Similarly, the cake moisture content also reached a minimum value of 87.4% at a chemical injection rate of 1.6%.

【0034】以上のように、脱水分離液中の残渣フロッ
ク体積率とケーキ含水率との関係をポリマー薬注率を変
化させて検証した結果、ポリマー薬注率に対するフロッ
ク体積率の最小値と含水率の最小値とが良く一致し、上
述の仮定の妥当性が実証された(上述以外の種々の汚
泥、凝集剤についても普遍性を検証済み)。
As described above, the relationship between the residual floc volume fraction in the dehydrated separated liquid and the cake water content was verified by changing the polymer chemical pouring rate. As a result, the minimum value of the floc volume rate relative to the polymer chemical pouring rate and the water content were confirmed. The agreement with the minimum value of the rate was in good agreement, and the validity of the above assumption was verified (universality of various sludges and flocculants other than the above was verified).

【0035】これらの事実から、汚泥の性状や種類に関
らず、機械脱水後の分離液中の残渣フロックの量を計測
し、このときのフロックの量が最小となるように薬注量
を自動的に決定することで、汚泥脱水性を良好に保つた
めの薬注制御が可能である。本発明では、以上の原理に
基づいて実施するので、 (1)インラインで自動制御ができるために手間がかか
らず、細かく最適薬注点を決定することができる。
From these facts, regardless of the properties and types of sludge, the amount of residual floc in the separated liquid after mechanical dehydration was measured, and the chemical injection amount was adjusted so that the amount of floc at this time was minimized. By automatically determining, it is possible to perform chemical injection control for maintaining good sludge dewatering properties. The present invention is implemented based on the above principle. (1) Since the automatic control can be performed in-line, no trouble is required, and the optimal medicine injection point can be determined finely.

【0036】(2)脱水分離液中の残渣フロック体積率
の最小点と脱水汚泥含水率の最小点が一致する。
(2) The minimum point of the residual floc volume fraction in the dewatered separation liquid coincides with the minimum point of the moisture content of the dewatered sludge.

【0037】(3)フィードバック制御であるために注
入汚泥性状の変動に追従した薬注量の設定が実現でき
る。などの従来にない特長が得られ、上述した従来法で
の解決すべき課題は全て解決される。
(3) Because of the feedback control, the setting of the chemical injection amount following the fluctuation of the property of the injected sludge can be realized. Unprecedented features such as are obtained, and all the problems to be solved by the above-described conventional method are solved.

【0038】以上のことから明らかなように、従来、汚
泥脱水工程に適用可能な凝集状態測定装置がなく、実際
の凝集状態の定量的な把握が困難であったが、本実施形
態例の凝集剤注入量決定装置は、脱水分離液を一定の流
量で測定槽に注入させる分離液供給部と、測定槽内の液
量を一定に保持する排液部と、測定槽内の分離液中のフ
ロックの量を測定する計測部と、フロックの量の測定デ
ータに基づきフロックの量が最小となるように自動的に
凝集剤注入量を調整するプログラムを内蔵する制御用コ
ンピュータとを備え、また必要に応じて上記測定槽内に
回転速度の変更が可能な攪拌装置を備えるものなので、
供給汚泥の性状変化に迅速に対応して最適な薬注量が決
定でき、その結果、汚泥脱水性を良好に安定な状態で維
持することができるようになった。また、本実施形態例
の装置は、機械的・物理的圧搾過程を経て固液分離され
た液体中の残渣フロックを測定対象としており、圧搾過
程の方法に依らないことは自明である。すなわち、例え
ば、ベルトプレス脱水以外にも遠心脱水、スクリュープ
レス脱水などに適用可能であり、一部実証済みである。
As is apparent from the above, conventionally, there was no coagulation state measuring apparatus applicable to the sludge dewatering step, and it was difficult to quantitatively grasp the actual coagulation state. The agent injection amount determination device includes a separation liquid supply unit for injecting the dehydrated separation liquid into the measurement tank at a constant flow rate, a drainage unit for keeping the amount of liquid in the measurement tank constant, and a separation liquid in the measurement tank. A measuring unit that measures the amount of floc, and a control computer that has a built-in program that automatically adjusts the coagulant injection amount so that the amount of floc is minimized based on the measured data of the floc amount, and It is equipped with a stirrer that can change the rotation speed in the measurement tank according to
The optimum chemical injection amount can be determined promptly in response to the change in the properties of the supplied sludge, and as a result, the sludge dewatering property can be maintained in a favorable and stable state. In addition, it is obvious that the apparatus of the present embodiment measures the residual floc in the liquid which has been subjected to the mechanical / physical squeezing process and which is subjected to solid-liquid separation, and does not depend on the method of the squeezing process. That is, for example, the present invention can be applied to centrifugal dehydration, screw press dehydration and the like in addition to belt press dehydration, and has been partially proven.

【0039】[0039]

【発明の効果】以上の説明から明らかなように、本発明
にもとづく凝集剤注入量決定装置は、供給汚泥の性状変
更に迅速に対応し、凝集剤の最適注入量を自動的に決定
することを可能とする。
As is apparent from the above description, the coagulant injection amount determining apparatus according to the present invention can quickly respond to a change in the properties of supplied sludge and automatically determine the optimum coagulant injection amount. Is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にもとづく凝集剤注入量決定装置の一構
成例を説明するための模式図である。
FIG. 1 is a schematic diagram for explaining an example of the configuration of a coagulant injection amount determining device according to the present invention.

【図2】薬注量による凝集混和槽と脱水分離液のフロッ
ク状態との違いを説明するための模式図である。
FIG. 2 is a schematic diagram for explaining a difference between a flocculation mixing tank and a floc state of a dewatering / separation liquid according to a chemical injection amount.

【図3】A処理場生汚泥をポリマーIで凝集させた場合
について、ポリマー薬注率に対するフロック体積率とケ
ーキ含水率との関係をプロットしたグラフである。
FIG. 3 is a graph plotting a relationship between a floc volume ratio and a cake water content with respect to a polymer injection rate in a case where raw sludge from the A treatment plant is agglomerated with a polymer I.

【図4】B処理場消化汚泥をポリマーIIで凝集させた
場合について、ポリマー薬注率に対するフロック体積率
とケーキ含水率との関係をプロットしたグラフである。
FIG. 4 is a graph plotting the relationship between the floc volume ratio and the cake water content with respect to the polymer injection rate when the digestion sludge of the B treatment plant is agglomerated with the polymer II.

【図5】一般的な汚泥調質を行うための装置構成を説明
するための模式図である。
FIG. 5 is a schematic diagram for explaining an apparatus configuration for performing general sludge conditioning.

【図6】ジャーテストを行う装置の主要部の構成を説明
するため模式図である。
FIG. 6 is a schematic diagram for explaining a configuration of a main part of an apparatus for performing a jar test.

【符号の説明】[Explanation of symbols]

1 測定槽 2 分離液供給部 3 攪拌装置 4 計測部 5 排水部 6 送液管 7 手動バルブ 8 モーター 9 攪拌翼 10 脱水分離液 11 越流口 12 排水堰 13 排水管 14 センサ 15 信号線 16 コンピュータ 17 信号線 DESCRIPTION OF SYMBOLS 1 Measurement tank 2 Separation liquid supply part 3 Stirrer 4 Measuring part 5 Drainage part 6 Liquid sending pipe 7 Manual valve 8 Motor 9 Stirrer blade 10 Dehydration separation liquid 11 Overflow port 12 Drain weir 13 Drain pipe 14 Sensor 15 Signal line 16 Computer 17 signal line

───────────────────────────────────────────────────── フロントページの続き (72)発明者 夜明 徹 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 菅谷 謙三 東京都中央区京橋1丁目1番1号 株式会 社石垣内 (72)発明者 大前 隆文 香川県坂出市江尻町483−16 株式会社石 垣坂出工場内 (72)発明者 片山 雅義 香川県坂出市江尻町483−16 株式会社石 垣坂出工場内 (72)発明者 沢田 芳夫 香川県坂出市江尻町483−16 株式会社石 垣坂出工場内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toru Yame 1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (72) Inventor Kenzo Sugaya 1-1-1, Kyobashi, Chuo-ku, Tokyo (72) Inventor Takafumi Omae 483-16 Ejiri-cho, Sakaide-shi, Kagawa Prefecture Inside Ishigaki-Sakaide Plant (72) Inventor Masayoshi Katayama 483-16, Ejiri-cho, Sakaide-shi, Kagawa Prefecture Ishigaki-Sakaide Co., Ltd. Inside the factory (72) Inventor Yoshio Sawada 483-16 Ejiri-cho, Sakaide-shi, Kagawa Inside the Ishigaki-Sakaide factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 汚泥を凝集させる凝集混和槽への凝集剤
注入量を決定する装置であって、 測定槽と、 凝集汚泥を脱水することによって得られる脱水分離液を
前記測定槽へ一定の流量で供給する分離液供給部と、 前記測定槽内の液量を一定に保持する排液部と、 前記測定槽に供給された脱水分離液中に存在するフロッ
クの量を測定する計測部と、 該計測部によるフロックの量の測定データに基づきフロ
ックの量が最小になる凝集剤注入量を決定する制御手段
と、 を備えたことを特徴とする凝集剤注入量決定装置。
An apparatus for determining the amount of coagulant injected into a coagulation mixing tank for coagulating sludge, comprising: a measuring tank; and a dehydration / separation liquid obtained by dehydrating the coagulated sludge, into the measuring tank at a constant flow rate. A separation liquid supply unit supplied at, a drainage unit that keeps the liquid amount in the measurement tank constant, and a measurement unit that measures the amount of floc present in the dehydrated separation liquid supplied to the measurement tank. Control means for determining the flocculant injection amount at which the floc amount is minimized based on the measurement data of the floc amount by the measuring unit.
【請求項2】 前記測定槽に回転速度変更が可能な攪拌
装置を備えたことを特徴とする請求項1に記載の凝集剤
注入量決定装置。
2. The coagulant injection amount determining device according to claim 1, wherein a stirrer capable of changing a rotation speed is provided in the measuring tank.
JP15610998A 1998-06-04 1998-06-04 Flocculant injection amount determination device Expired - Lifetime JP3967462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15610998A JP3967462B2 (en) 1998-06-04 1998-06-04 Flocculant injection amount determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15610998A JP3967462B2 (en) 1998-06-04 1998-06-04 Flocculant injection amount determination device

Publications (2)

Publication Number Publication Date
JPH11347599A true JPH11347599A (en) 1999-12-21
JP3967462B2 JP3967462B2 (en) 2007-08-29

Family

ID=15620517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15610998A Expired - Lifetime JP3967462B2 (en) 1998-06-04 1998-06-04 Flocculant injection amount determination device

Country Status (1)

Country Link
JP (1) JP3967462B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002035791A (en) * 2000-07-24 2002-02-05 Mitsui Eng & Shipbuild Co Ltd Sludge monitor system, sludge control system, water treatment system, and sludge treatment system
JP2006272228A (en) * 2005-03-30 2006-10-12 Kurita Water Ind Ltd Dewatering method and apparatus for sludge
WO2016006419A1 (en) * 2014-07-07 2016-01-14 水ing株式会社 Clumping method and clumping device
JP2022060093A (en) * 2020-10-02 2022-04-14 菅機械工業株式会社 Automatic jar test device and turbid water treatment method using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5088667A (en) * 1974-12-09 1975-07-16
JPS6022999A (en) * 1983-07-18 1985-02-05 Ebara Infilco Co Ltd Process for controlling amount of organic high molecular flocculant to be added
JPS60197300A (en) * 1984-03-21 1985-10-05 Nippon Kokan Kk <Nkk> Method and apparatus for dehydrating sludge
JPH03130547U (en) * 1990-04-13 1991-12-27
JPH07204412A (en) * 1994-01-17 1995-08-08 Fuji Electric Co Ltd Apparatus for automatic determination of chemical injection ratio and method for automatic determination
JPH0910510A (en) * 1995-06-28 1997-01-14 Kurita Water Ind Ltd Cohesion treatment device
JPH09141300A (en) * 1995-11-21 1997-06-03 Kubota Corp Dehydrating method of liquid-containing solid material and dehydrating device
JPH10128012A (en) * 1996-11-01 1998-05-19 Fuji Electric Co Ltd Detection of flocculating degree of sewerage sludge and flocculating degree detector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5088667A (en) * 1974-12-09 1975-07-16
JPS6022999A (en) * 1983-07-18 1985-02-05 Ebara Infilco Co Ltd Process for controlling amount of organic high molecular flocculant to be added
JPS60197300A (en) * 1984-03-21 1985-10-05 Nippon Kokan Kk <Nkk> Method and apparatus for dehydrating sludge
JPH03130547U (en) * 1990-04-13 1991-12-27
JPH07204412A (en) * 1994-01-17 1995-08-08 Fuji Electric Co Ltd Apparatus for automatic determination of chemical injection ratio and method for automatic determination
JPH0910510A (en) * 1995-06-28 1997-01-14 Kurita Water Ind Ltd Cohesion treatment device
JPH09141300A (en) * 1995-11-21 1997-06-03 Kubota Corp Dehydrating method of liquid-containing solid material and dehydrating device
JPH10128012A (en) * 1996-11-01 1998-05-19 Fuji Electric Co Ltd Detection of flocculating degree of sewerage sludge and flocculating degree detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002035791A (en) * 2000-07-24 2002-02-05 Mitsui Eng & Shipbuild Co Ltd Sludge monitor system, sludge control system, water treatment system, and sludge treatment system
JP2006272228A (en) * 2005-03-30 2006-10-12 Kurita Water Ind Ltd Dewatering method and apparatus for sludge
WO2016006419A1 (en) * 2014-07-07 2016-01-14 水ing株式会社 Clumping method and clumping device
JP2022060093A (en) * 2020-10-02 2022-04-14 菅機械工業株式会社 Automatic jar test device and turbid water treatment method using the same

Also Published As

Publication number Publication date
JP3967462B2 (en) 2007-08-29

Similar Documents

Publication Publication Date Title
JP6674260B2 (en) Method for determining coagulant injection rate and apparatus for determining coagulant injection rate
US5328599A (en) System using sulfide ion-selective electrodes for control of chemical feed of organic sulfide products for metal ion precipitation from waste water
JP5176625B2 (en) Constant moisture content control method and moisture content constant control device in screw press
JP5256261B2 (en) Method and apparatus for dewatering organic sludge
JPH11347599A (en) Flocculant injection amount determining apparatus
JP6139349B2 (en) Water treatment system
CA2960053C (en) Measurement and treatment of fluid streams
KR20040067702A (en) Automatic control method of investing amount of flocculant for treatment room of purity water to detect real time image of floc
WO2016006419A1 (en) Clumping method and clumping device
JP4785454B2 (en) Method and apparatus for adjusting sludge solids supply in sludge dewatering machine
JP4485392B2 (en) Method and apparatus for adjusting sludge solids supply in sludge dewatering machine
JP2000350992A (en) Continuous flocculation of sludge
JP7335160B2 (en) Sludge coagulation dewatering device and its control method
JP5210948B2 (en) Chemical injection control method for water purification plant
KR100814011B1 (en) Device and methode for water purification
JPH11254000A (en) Method and apparatus for concentrating dehydration
JP3204888B2 (en) Method and apparatus for dehydrating liquid-containing solids
JP4166624B2 (en) Method and apparatus for supplying flocculant in sludge dewatering machine
JP3194848B2 (en) Sludge dewatering method
JPS60197300A (en) Method and apparatus for dehydrating sludge
JPH09141300A (en) Dehydrating method of liquid-containing solid material and dehydrating device
JP4651458B2 (en) Method and apparatus for adjusting sludge solids supply in sludge dewatering machine
JPS61268399A (en) Method for conditioning organic sludge
Ødegaard et al. CHEMICAL WATER AND WASTEWATER TREATMENT V
JP2022530950A (en) A method for aggregating solid particles contained in a suspension and a system for carrying out the method.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050601

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070531

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term