JP2000300912A - Solid-liquid separation apparatus and flocculation condition determining method - Google Patents

Solid-liquid separation apparatus and flocculation condition determining method

Info

Publication number
JP2000300912A
JP2000300912A JP11111780A JP11178099A JP2000300912A JP 2000300912 A JP2000300912 A JP 2000300912A JP 11111780 A JP11111780 A JP 11111780A JP 11178099 A JP11178099 A JP 11178099A JP 2000300912 A JP2000300912 A JP 2000300912A
Authority
JP
Japan
Prior art keywords
filtration
zeta potential
water
coagulant
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11111780A
Other languages
Japanese (ja)
Other versions
JP3905663B2 (en
JP2000300912A5 (en
Inventor
Kunio Ebie
邦雄 海老江
Tomoaki Miyanoshita
友明 宮ノ下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP11178099A priority Critical patent/JP3905663B2/en
Publication of JP2000300912A publication Critical patent/JP2000300912A/en
Publication of JP2000300912A5 publication Critical patent/JP2000300912A5/ja
Application granted granted Critical
Publication of JP3905663B2 publication Critical patent/JP3905663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make properly controllable the flocculation condition. SOLUTION: Flocculant-mixed water after the addition of a flocculant is filtered by a measuring filter 24 and the mesh size of the measuring filter 24 is larger than that of a quick sand filter 22 for obtaining treated water. The zeta potential of particles in the filtrate from the measuring filter 24 is measured by a zeta meter 26 and, on the basis of the measured result, a control part 30 controls the addition amt. of the flocculant or the addition amt. of a pH control agent. It is also pref. that the stirring state of the flocculant and raw water is controlled from the difference between zeta potentials before and after the filtering by the measuring filter 24.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、被処理水に対し凝
集剤を混和して凝集処理を行った後ろ過処理を行う固液
分離装置及び凝集処理における凝集条件を決定する凝集
条件決定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-liquid separation apparatus for mixing a coagulant with water to be treated, performing a coagulation treatment and then performing a filtration treatment, and a method for determining coagulation conditions in the coagulation treatment. .

【0002】[0002]

【従来の技術】従来より、河川水などを原水として浄水
や工業用水を製造する場合、あるいは排水処理等におい
て、懸濁物質を分離する固液分離処理に凝集沈殿処理や
ろ過処理が利用されている。また、凝集剤が混和された
凝集剤混和水をそのままろ過処理する凝集ろ過処理も知
られている。
2. Description of the Related Art Conventionally, in the case of producing purified water or industrial water using river water as raw water, or in wastewater treatment, coagulation sedimentation or filtration has been used for solid-liquid separation for separating suspended substances. I have. Further, a coagulation filtration process in which a coagulant-mixed water mixed with a coagulant is filtered as it is is also known.

【0003】このような、凝集処理を伴う固液分離処理
においては、適切な凝集処理を行うことが非常に重要で
ある。すなわち、凝集段階で凝集が不十分であると、フ
ロックが微細なためにその後の沈殿処理やろ過処理にお
いてフロックを十分分離することができず、処理水中の
固形物濃度が上昇してしまうという問題があった。
In such a solid-liquid separation process involving an aggregation process, it is very important to perform an appropriate aggregation process. That is, if the coagulation is insufficient at the coagulation stage, the floc is too fine to separate the floc sufficiently in the subsequent precipitation treatment or filtration treatment, and the solid concentration in the treated water increases. was there.

【0004】そこで、凝集処理における凝集剤の注入
率、pH、攪拌条件などの凝集条件を適切なものに制御
することが求められる。
Therefore, it is required to control the coagulation conditions such as the coagulant injection rate, the pH, and the stirring conditions in the coagulation treatment to be appropriate.

【0005】ここで、凝集処理においては、凝集フロッ
クのゼータ電位が凝集の適否を表すことが知られてお
り、これを測定し凝集条件を制御することが行われてい
る。また、ろ過処理を行うろ過器からの懸濁固形物が流
出する場合に、ろ過器の洗浄工程の最後に凝集剤を添加
したり、ろ過器の前段またはろ層内で追加凝集を行い、
ろ過処理水を改善することも行われている。
[0005] In the coagulation treatment, it is known that the zeta potential of the coagulated floc indicates the suitability of the coagulation, and this is measured to control the coagulation conditions. In addition, when the suspended solids from the filter performing the filtration process flow out, add a flocculant at the end of the washing step of the filter, perform additional flocculation in the previous stage of the filter or in the filter layer,
Improvements in filtered water have also been made.

【0006】[0006]

【発明が解決しようとする課題】しかし、ゼータ電位を
測定して凝集沈殿の制御に用いる場合、フロックの大き
さが広い範囲に分布していると、凝集が不十分な微小フ
ロックのゼータ電位は無視されてしまう。これは、十分
に凝集したフロックに比べ相対的な電位が小さすぎるた
めである。
However, when the zeta potential is measured and used for controlling the coagulation sedimentation, if the size of the flocs is distributed over a wide range, the zeta potential of the micro flocs which are insufficiently coagulated will be reduced. I will be ignored. This is because the relative potential is too small compared to the flocculated floc.

【0007】従って、凝集フロックのゼータ電位を単純
に測定し、凝集剤の注入率やpHの調整を行うと、凝集
が不十分な微小フロックが残留し、沈殿池及びろ過器で
除去されず、処理水中に流出してしまう可能性がある。
また、追加の凝集剤注入などを行う場合にもこの凝集処
理を適切に制御したいという要望がある。
Therefore, if the zeta potential of the flocculated floc is simply measured and the injection rate and pH of the flocculant are adjusted, minute flocs insufficiently flocculated remain and are not removed by the sedimentation tank and the filter. There is a possibility of spilling into treated water.
In addition, there is a demand for appropriately controlling the coagulation treatment even when an additional coagulant is injected.

【0008】特に、最近では、クリプトスポリジウム等
病原性原虫を確実に除去したいという要望があり、この
ために厳密なろ過処理が必要となっている。
In particular, recently, there is a demand for reliably removing pathogenic protozoa such as Cryptosporidium, which requires a strict filtration treatment.

【0009】本発明は、上記課題に鑑みなされたもので
あり、より適切な凝集ろ過処理を行うことができる固液
分離装置及び適切な凝集条件を決定できる凝集条件決定
方法を提供することを目的とする。
The present invention has been made in view of the above problems, and an object of the present invention is to provide a solid-liquid separation device capable of performing more appropriate coagulation filtration treatment and a method of determining coagulation conditions capable of determining appropriate coagulation conditions. And

【0010】[0010]

【課題を解決するための手段】本発明は、被処理水に対
し凝集剤を混和して凝集処理を行った後、ろ過処理を行
って処理水を得る固液分離装置において、上記凝集処理
における凝集剤を被処理水に混和した後であって、上記
ろ過処理を行う前の凝集剤混和水の一部に対し、上記ろ
過処理よりも粗いろ過処理を行う測定用ろ過手段と、こ
の測定用ろ過手段により得られたろ液中の粒子のゼータ
電位を測定するろ過後ゼータ電位測定手段と、このゼー
タ電位測定手段によって測定したゼータ電位に基づい
て、上記凝集処理の凝集条件を制御する凝集制御手段
と、を有することを特徴とする。
SUMMARY OF THE INVENTION The present invention provides a solid-liquid separation apparatus for mixing treated water with a coagulant and subjecting the treated water to a coagulation treatment and then performing a filtration treatment to obtain treated water. After the coagulant is mixed with the water to be treated, and for a part of the coagulant-mixed water before performing the filtration treatment, a filtration unit for measurement that performs a filtration treatment coarser than the filtration treatment, A post-filtration zeta potential measurement means for measuring the zeta potential of the particles in the filtrate obtained by the filtration means, and an aggregation control means for controlling the aggregation conditions of the aggregating treatment based on the zeta potential measured by the zeta potential measurement means And the following.

【0011】このように、本発明によれば、測定用ろ過
手段によって得られたろ液中の粒子のゼータ電位を計測
することで、ろ液中に含まれる微細フロックのゼータ電
位を測定することができる。そして、この測定結果に基
づき、凝集剤添加量、pH調整剤添加量、攪拌強度など
の凝集条件を制御することで、微細フロックを確実に凝
集処理する凝集条件の制御を行うことができる。そこ
で、微細フロックを減少して、ろ過処理における微細フ
ロックの流出を効果的に防止することができる。特に、
測定用ろ過手段の処理水を得るろ過処理に比べ粗いろ過
としたため、そのろ液に微細フロックを確実に得ること
ができ、このゼータ電位を測定することができる。
As described above, according to the present invention, it is possible to measure the zeta potential of fine floc contained in the filtrate by measuring the zeta potential of the particles in the filtrate obtained by the measuring filtration means. it can. Then, by controlling the aggregating conditions such as the added amount of the aggregating agent, the added amount of the pH adjuster, and the stirring strength based on the measurement result, it is possible to control the aggregating conditions for surely performing the aggregating treatment on the fine flocs. Therefore, the fine flocs can be reduced, and the outflow of the fine flocs in the filtration treatment can be effectively prevented. In particular,
Since the filtration is coarser than the filtration treatment for obtaining the treated water by the filtration means for measurement, fine flocs can be reliably obtained in the filtrate, and the zeta potential can be measured.

【0012】ここで、凝集処理は、1段ではなく、複数
段で行ってもよく、さらにろ層内に追加の凝集処理を行
ったりしてもよく、これら凝集処理を測定したゼータ電
位に応じて適宜制御することが好適である。また、凝集
剤としては、ポリ塩化アルミニウム(PAC)などの無
機凝集剤や、凝集助剤としての活性ケイ酸等の無機高分
子凝集剤や有機高分子凝集剤を利用することができる。
Here, the coagulation treatment may be performed not in one stage but in a plurality of stages, and additional coagulation treatment may be performed in the filter layer. These coagulation treatments may be performed according to the measured zeta potential. It is preferable that the temperature be controlled appropriately. In addition, as the coagulant, an inorganic coagulant such as polyaluminum chloride (PAC), an inorganic polymer coagulant such as active silicic acid, or an organic polymer coagulant as a coagulation aid can be used.

【0013】また、被処理水に対し凝集剤を混和した
後、凝集フロックを沈殿または浮上により分離する分離
手段をさらに有し、この分離手段で凝集フロックが一次
的に分離された一次処理水を上記ろ過処理し、処理水を
得ることが好適である。
[0013] Further, the method further comprises a separating means for separating the flocculated floc by sedimentation or floating after mixing the flocculant with the water to be treated. It is preferable to perform the above-mentioned filtration treatment to obtain treated water.

【0014】このように、ろ過処理に先立って沈殿また
は浮上処理を行うことで、ろ過処理に対する負荷を減少
することができる。そこで、被処理水中の固形物濃度が
高い場合に有効な処理が行える。
As described above, by performing the precipitation or floating treatment prior to the filtration treatment, the load on the filtration treatment can be reduced. Therefore, effective treatment can be performed when the concentration of solids in the water to be treated is high.

【0015】また、上記制御手段により制御する凝集条
件は、凝集剤添加量、pH調整剤添加量及び攪拌強度の
中の少なくとも1つであることが好適である。
The coagulation conditions controlled by the control means are preferably at least one of the added amount of the coagulant, the added amount of the pH adjuster, and the stirring strength.

【0016】また、上記測定用ろ過手段に供給される凝
集混和水中の粒子のゼータ電位を測定するろ過前ゼータ
電位検出手段を有し、上記凝集制御手段は、ろ過前ゼー
タ電位検出手段と、ろ過後ゼータ電位検出手段とで検出
したゼータ電位の差に基づいて上記凝集処理における攪
拌強度を制御することが好適である。
Further, the apparatus further comprises a pre-filtration zeta potential detecting means for measuring the zeta potential of the particles in the coagulated mixed water supplied to the measuring filtration means, wherein the coagulation controlling means comprises a pre-filtration zeta potential detecting means, It is preferable to control the stirring intensity in the aggregating process based on the difference in the zeta potential detected by the post-zeta potential detecting means.

【0017】測定用ろ過処理の前後におけるゼータ電位
の差が大きい場合には、凝集剤が十分攪拌混合されてい
ないと推定される。そこで、差が大きい場合に、攪拌強
度を大きくすることが好適である。また、この制御と凝
集剤添加量制御などを組み合わせることも好適である。
When the difference in zeta potential before and after the filtration treatment for measurement is large, it is estimated that the flocculant is not sufficiently stirred and mixed. Therefore, when the difference is large, it is preferable to increase the stirring intensity. It is also preferable to combine this control with the control of the amount of coagulant added.

【0018】また、本発明は、被処理水に凝集剤を添加
混合して凝集処理を行う凝集処理における凝集条件決定
方法において、被処理水に凝集剤を添加して得た凝集剤
混和水についてろ過処理を行い、得られたろ液中の粒子
のゼータ電位を検出することによって凝集条件を決定す
ることを特徴とする。
The present invention also relates to a method for determining flocculation conditions in a flocculation treatment in which a flocculant is added to and mixed with water to be treated, wherein the flocculant-mixed water obtained by adding the flocculant to the water to be treated is provided. It is characterized by performing a filtration treatment and determining the aggregation conditions by detecting the zeta potential of the particles in the obtained filtrate.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態(以下
実施形態という)について、図面に基づいて説明する。
Embodiments of the present invention (hereinafter referred to as embodiments) will be described below with reference to the drawings.

【0020】「ゼータ電位の説明」まず、ゼータ電位に
ついて説明する。ゼータ電位は、固体と液体の界面を横
切って存在する電気的ポテンシャルを示すものであり、
水中の懸濁物質(粒子)についての表面荷電を示す。通
常、河川水等に含まれる懸濁物質(粘度成分や藻類等)
は負に帯電しており、懸濁物質が各々負に帯電している
ことから電気的に反発し、凝集しにくい状態になってい
る。凝集剤は、この電位の中和をまず行い反発力を弱
め、その後に集塊化つまり凝集を行う。従って、凝集フ
ロックのゼータ電位は中和点つまりゼロに近い方が望ま
しい。通常、原水中の懸濁物質のゼータ電位は−20m
V以下で、凝集フロックのゼータ電位は−10mV以上
となっている。
"Explanation of Zeta Potential" First, the zeta potential will be described. The zeta potential indicates the electrical potential that exists across the solid-liquid interface,
2 shows the surface charge for suspended matter (particles) in water. Suspended substances (viscosity components, algae, etc.) usually contained in river water, etc.
Are negatively charged, and are electrically repelled because the suspended substances are each negatively charged, so that they are hardly aggregated. The coagulant neutralizes this potential first to weaken the repulsion, and then agglomerates, that is, agglomerates. Therefore, it is desirable that the zeta potential of the aggregated floc be close to the neutralization point, that is, zero. Normally, the zeta potential of suspended matter in raw water is -20 m
V or less, the zeta potential of the aggregated floc is -10 mV or more.

【0021】また、ゼータ電位は、pHによっても変化
する。このため、凝集のpHを酸やアルカリによって制
御することも、凝集処理には有効となる。
Further, the zeta potential changes depending on the pH. Therefore, controlling the pH of aggregation with an acid or alkali is also effective for the aggregation treatment.

【0022】ここで、浄水処理で一般に用いられる凝集
沈殿・急速ろ過法において、急速ろ過器より、特にろ過
開始直後に微小なフロックが流出することが知られてい
る。この微小なフロックのゼータ電位は、−15mV以
下と低く、凝集が十分に行われていないことが知られて
いる。
Here, in the coagulation sedimentation / rapid filtration method generally used in the water purification treatment, it is known that a minute floc flows out of the rapid filter, particularly immediately after the start of filtration. It is known that the zeta potential of these minute flocs is as low as −15 mV or less, and aggregation is not sufficiently performed.

【0023】「第1実施形態」第1実施形態の装置の構
成について、図1に基づいて説明する。まず、河川水な
どの原水にpH調整剤及び凝集剤が添加される。pH調
整剤は、pH調整剤貯槽10からポンプ14によって原
水に供給される。また、凝集剤は、凝集剤貯槽12から
ポンプ16により原水に供給される。pH調整剤として
は、硫酸、塩酸などの酸や、水酸化ナトリウムや水酸化
カルシウムなどのアルカリが適宜使用される。また、凝
集剤としてはポリ塩化アルミニウム(PAC)、硫酸バ
ンド、鉄系の無機凝集剤が利用され、またこれら無機凝
集剤とともに、弱アニオン系やノニオン系などの有機高
分子凝集剤を凝集補助剤として供給することも好適であ
る。
"First Embodiment" The configuration of the device of the first embodiment will be described with reference to FIG. First, a pH adjuster and a flocculant are added to raw water such as river water. The pH adjusting agent is supplied from a pH adjusting agent storage tank 10 to raw water by a pump 14. The flocculant is supplied to raw water from the flocculant storage tank 12 by the pump 16. As the pH adjuster, an acid such as sulfuric acid or hydrochloric acid, or an alkali such as sodium hydroxide or calcium hydroxide is appropriately used. As the coagulant, polyaluminum chloride (PAC), a sulfate band, or an iron-based inorganic coagulant is used. In addition to these inorganic coagulants, a weak anionic or nonionic organic polymer coagulant is used as a coagulant. It is also preferable to supply as.

【0024】凝集剤及びpH調整剤を添加した原水は、
ラインミキサ20に供給される。このラインミキサ20
は、内部に静止した羽根などが配置され、液体の流れに
よって攪拌を行うスタティックミキサであり、各種の形
式のものが採用できる。なお、必ずしもラインミキサで
ある必要はなく、攪拌機を設けた攪拌槽を採用してもよ
い。このようにして、原水に凝集剤が混合され、原水中
の懸濁物質が凝集された凝集フロックを含む凝集剤混和
水が得られる。
The raw water to which the coagulant and the pH adjuster are added,
It is supplied to the line mixer 20. This line mixer 20
Is a static mixer in which stationary vanes and the like are arranged and agitated by the flow of liquid, and various types can be adopted. In addition, it is not always necessary to use a line mixer, and a stirring tank provided with a stirrer may be employed. In this way, the flocculant is mixed with the raw water, and the flocculant-mixed water containing the flocculated floc in which the suspended matter in the raw water is flocculated is obtained.

【0025】この凝集剤混和水は、急速砂ろ過器22に
供給され、ここでろ過処理される。この急速砂ろ過器2
2は、内部にろ過砂のろ材層を備え、このろ材層によっ
て水中の凝集フロックなどの懸濁物質を捕捉除去し、清
澄な処理水を得る。なお、急速砂ろ過器22は、処理の
継続によって、ろ材層の目詰まりを生じる。そこで、図
示は省略したが定期的に逆洗を行い、ろ材層に捕捉され
た懸濁物質を除去してろ過能力を回復する。
The coagulant-mixed water is supplied to the quick sand filter 22, where it is filtered. This quick sand filter 2
No. 2 has a filter medium layer of filter sand inside, and captures and removes suspended substances such as flocculated flocs in water by the filter medium layer to obtain clear treated water. In the rapid sand filter 22, clogging of the filter medium layer occurs due to continuation of the processing. Therefore, though not shown, backwashing is periodically performed to remove suspended substances trapped in the filter medium layer and recover the filtration ability.

【0026】そして、本実施形態においては、ラインミ
キサ20により得られた凝集剤混和水の一部は、測定用
ろ過器24に供給される。この測定用ろ過器24は、急
速砂ろ過器22に比べ粗い(ろ過能力の劣る)ろ過を行
うものである。すなわち、この測定用ろ過器24のろ材
には、急速砂ろ過器22のろ材よりも粒径の大きなもの
が用いられ、ろ層高も低くなっている。なお、測定に使
用する一部の凝集剤混和水のろ過を行うものであり、処
理量も小さいものである。
In the present embodiment, a part of the coagulant-mixed water obtained by the line mixer 20 is supplied to the measuring filter 24. The filter for measurement 24 performs a coarser (lower filtration) filtration than the rapid sand filter 22. That is, as the filter medium of the filter 24 for measurement, a filter medium having a larger particle size than the filter medium of the rapid sand filter 22 is used, and the height of the filter layer is low. It should be noted that a part of the coagulant-mixed water used for the measurement is filtered, and the throughput is small.

【0027】そして、この測定用ろ過器24によりろ過
処理して得たろ液はゼータメータ26に供給され、ここ
でろ液中の粒子のゼータ電位が測定される。このゼータ
メータ26は、凝集フロックなどの電気泳動による移動
速度を測定することによってゼータ電位を測定するもの
である。
Then, the filtrate obtained by the filtration treatment by the measuring filter 24 is supplied to a zetameter 26, where the zeta potential of the particles in the filtrate is measured. The zetameter 26 measures the zeta potential by measuring the moving speed of electrophoresis such as flocculation flocs.

【0028】ゼータメータ26により測定したゼータ電
位は、制御部30に供給される。この制御部30は、供
給されるゼータ電位に基づいて、ポンプ14,16を制
御してpH調整剤及び凝集剤の添加量を制御する。すな
わち、ゼータ電位が負の大きな値を示していれば、凝集
剤の添加量を増加したり、酸の添加量を増加する。な
お、凝集剤、pH調整剤の一方のみの調整でもよい。さ
らに、ラインミキサ20に代えて攪拌槽を採用し、ここ
における攪拌強度を制御することも好適である。
The zeta potential measured by the zetameter 26 is supplied to the control unit 30. The control unit 30 controls the pumps 14 and 16 based on the supplied zeta potential to control the amounts of the pH adjuster and the flocculant. That is, if the zeta potential shows a large negative value, the amount of the coagulant added or the amount of the acid added is increased. Note that only one of the coagulant and the pH adjuster may be adjusted. Furthermore, it is also preferable to employ a stirring tank instead of the line mixer 20 and control the stirring intensity here.

【0029】ここで、このゼータメータ26により測定
されるのは、測定用ろ過器24のろ液中の粒子であり、
大きな凝集フロックは除去されている。そこで、急速砂
ろ過器22において流出してしまうような微細フロック
についてのゼータ電位を検出することができ、これに応
じて凝集条件を制御することができる。従って、急速砂
ろ過器22からの微細フロックの流出を防止するための
凝集制御を行うことができ、処理水の水質向上を図るこ
とができる。
Here, what is measured by the zetameter 26 is particles in the filtrate of the measurement filter 24,
Large flocs have been removed. Therefore, it is possible to detect the zeta potential of the fine floc that flows out of the rapid sand filter 22, and to control the coagulation conditions accordingly. Therefore, coagulation control for preventing the outflow of the fine floc from the rapid sand filter 22 can be performed, and the quality of the treated water can be improved.

【0030】すなわち、微細フロックのゼータ電位が−
10mV〜0mVになるように、凝集剤などの添加量を
制御することで、凝集処理を適切なものに制御できる。
また、凝集剤添加量に応じて、攪拌強度を制御すること
も好適である。
That is, the zeta potential of the fine floc is-
By controlling the amount of the coagulant or the like added so as to be 10 mV to 0 mV, the coagulation treatment can be controlled appropriately.
It is also preferable to control the stirring intensity according to the amount of the coagulant added.

【0031】「第2実施形態」第2実施形態の装置の構
成について、図2に基づいて説明する。この第2実施形
態の装置では、ラインミキサ20に替えて、凝集沈殿槽
を採用している。さらに、凝集沈殿槽から沈殿処理水に
対し追加の凝集剤及びpH調整剤を添加混合する手段を
有している。
[Second Embodiment] The configuration of the device of the second embodiment will be described with reference to FIG. In the apparatus of the second embodiment, a coagulation sedimentation tank is employed instead of the line mixer 20. Further, a means for adding and mixing an additional coagulant and a pH adjuster from the coagulation sedimentation tank to the settling water is provided.

【0032】すなわち、凝集剤貯槽12及びpH調整剤
貯槽10から凝集剤及びpH調整剤が添加された原水
は、混和槽40に流入される。この混和槽40には、急
速攪拌機42が設けられており、この急速攪拌機42に
よって凝集剤及びpH調整剤が添加された原水について
急速攪拌を行い凝集剤と原水を確実に混合する。次に、
急速攪拌された凝集剤混和水は、凝集槽44に流入され
る。この凝集槽44には、緩速攪拌機46が設けられて
おり、凝集剤混和水について、緩い攪拌を行い、小さな
凝集フロックを合体し、大きな凝集フロックに成長させ
る。
That is, the raw water to which the coagulant and the pH adjuster are added flows from the coagulant storage tank 12 and the pH adjuster storage tank 10 into the mixing tank 40. The mixing tank 40 is provided with a rapid stirrer 42, which rapidly stirs the raw water to which the coagulant and the pH adjuster are added, and thereby reliably mixes the coagulant and the raw water. next,
The coagulant-mixed water that has been rapidly stirred is flowed into the coagulation tank 44. The flocculation tank 44 is provided with a slow agitator 46, which performs gentle stirring on the flocculant-mixed water to combine small flocculated flocs to grow into large flocculated flocs.

【0033】そして、この緩速攪拌を経た凝集剤混和水
が沈殿槽48に流入される。この沈殿槽48は、入り口
側に排出側と仕切られた槽深の深い沈殿部があり、この
沈殿部の下部がスラッジブランケット部分となってい
る。また、排出側には多数の傾斜板が配置されて傾斜板
沈殿部50が形成されている。凝集剤混和水は沈殿部に
流入され、ここで沈殿処理された後、仕切り板の下を通
過して、傾斜板沈殿部50を上向流で通過する。そし
て、この傾斜板沈殿部50を通過する際にさらに沈殿処
理がなされ、スラッジが槽底へ向けて沈殿する。傾斜板
沈殿部50の槽底は、スラッジブランケット部分側に向
けて深くなるように傾斜しているため、沈殿スラッジは
重力によりスラッジブランケット部分に移動し、ここか
ら適宜タイミングで排出される。そして、傾斜板沈殿部
を通過した上澄みが沈殿槽48から排出される。
Then, the coagulant-mixed water that has undergone the slow stirring is flowed into the sedimentation tank 48. The sedimentation tank 48 has a deep sedimentation part at the entrance side, which is separated from the discharge side, and the lower part of the sedimentation part is a sludge blanket part. Further, a large number of inclined plates are arranged on the discharge side to form inclined plate settling portions 50. The coagulant-mixed water flows into the sedimentation section, where it is subjected to sedimentation treatment, passes under the partition plate, and passes through the inclined plate sedimentation section 50 in an upward flow. Then, when passing through the inclined plate sedimentation section 50, further sedimentation processing is performed, and sludge sediments toward the tank bottom. Since the tank bottom of the inclined plate sedimentation section 50 is inclined so as to become deeper toward the sludge blanket portion side, the sedimentation sludge moves to the sludge blanket portion by gravity and is discharged therefrom at an appropriate timing. Then, the supernatant passing through the inclined plate settling section is discharged from the settling tank 48.

【0034】このような凝集沈殿処理により、原水中の
懸濁固形物のかなりの部分は除去されるが、これに対し
さらに追加の凝集剤が添加される。すなわち、凝集剤貯
槽52には、上述と同様の無機凝集剤であるポリ塩化ア
ルミニウムが貯留されており、凝集補助剤貯槽54に
は、ノニオン系の高分子凝集剤が貯留されている。そし
て、これらがポンプ56,58によって、沈殿槽48か
らの上澄み水である一次処理水に添加される。これら凝
集剤及び凝集補助剤が添加されることで、残留する懸濁
物質についての凝集が行われ、これがラインミキサ60
を介し急速砂ろ過装置22に供給される。これによっ
て、非常に微細な懸濁固形物まで凝集し大径化されて、
急速砂ろ過装置22に流入される。従って、原水におけ
る懸濁固形物濃度が比較的高い場合においても、凝集沈
殿により、大部分の懸濁固形物が除去され、残留する懸
濁固形物について、凝集ろ過が行われ、非常に精密なろ
過を達成できる。
[0034] Such coagulation settling removes a significant portion of the suspended solids in the raw water, to which additional coagulant is added. That is, polyaluminum chloride, which is the same inorganic coagulant as described above, is stored in the coagulant storage tank 52, and a nonionic polymer coagulant is stored in the coagulation aid storage tank 54. These are added to the primary treated water, which is the supernatant water from the sedimentation tank 48, by the pumps 56 and 58. By adding these flocculants and flocculants, flocculation of the remaining suspended substance is performed, and this is performed by the line mixer 60.
Is supplied to the quick sand filtration device 22 through the filter. As a result, very fine suspended solids are aggregated and increased in diameter,
It flows into the rapid sand filter 22. Therefore, even when the concentration of the suspended solids in the raw water is relatively high, most of the suspended solids are removed by flocculation and sedimentation, and the remaining suspended solids are subjected to flocculation and filtration, which is extremely precise. Filtration can be achieved.

【0035】この第2実施形態においては、沈殿槽48
から排出される沈殿上澄み水(一次処理水)について、
測定用ろ過器24によりろ過を行い、そのろ液中の粒子
のゼータ電位をゼータメータ26で測定する。そして、
この測定結果が制御部30に供給され、この制御部30
は、ポンプ56,58を制御して、凝集剤貯槽52,凝
集補助剤貯槽54からの凝集剤及び凝集補助剤の添加量
を制御する。すなわち、測定用ろ過器24により得られ
たろ液に含まれる微細な凝集フロックについてのゼータ
電位を測定し、その測定結果に基づいて、これら微細凝
集フロックの凝集を効果的に行えるように凝集条件を変
更する。
In the second embodiment, the sedimentation tank 48
About the sedimentation supernatant water (primary treated water)
Filtration is performed by the filter for measurement 24, and the zeta potential of the particles in the filtrate is measured by the zetameter 26. And
The measurement result is supplied to the control unit 30, and the control unit 30
Controls the pumps 56 and 58 to control the amount of the coagulant and the coagulant aid from the coagulant storage tank 52 and the coagulation aid storage tank 54. That is, the zeta potential of the fine aggregated flocs contained in the filtrate obtained by the measurement filter 24 is measured, and based on the measurement result, the aggregation conditions are set so that these fine aggregated flocs can be effectively aggregated. change.

【0036】さらに、本実施形態においては、測定用ろ
過器24においてろ過する前の沈殿槽48からの上澄み
水中の粒子のゼータ電位をゼータメータ62により測定
し、測定結果を制御部30に供給する。
Further, in the present embodiment, the zeta potential of the particles in the supernatant water from the sedimentation tank 48 before being filtered by the measurement filter 24 is measured by the zetameter 62, and the measurement result is supplied to the control unit 30.

【0037】そこで、制御部30においては、測定用ろ
過器24におけるろ過の前後におけるゼータ電位の差を
検出することができる。このゼータ電位の差が大きい場
合、混和槽40における凝集剤と原水の混合がうまくい
っていないと考えられる。そこで、制御部30は、この
場合に急速攪拌機42による攪拌強度を大きく制御す
る。なお、凝集槽44における緩速攪拌機46の攪拌強
度を大きくすることも好適である。このように、測定用
ろ過器24のろ過の前後におけるゼータ電位により、凝
集処理における凝集剤と原水の混合度合いを推定するこ
とができ、この推定結果に基づき攪拌強度を制御するこ
とで、効果的な凝集処理を達成することができる。
Therefore, the control unit 30 can detect a difference in zeta potential before and after filtration in the measurement filter 24. When the difference between the zeta potentials is large, it is considered that the mixing of the flocculant and the raw water in the mixing tank 40 is not successful. Therefore, in this case, the control unit 30 controls the stirring intensity of the rapid stirrer 42 to be large. It is also preferable to increase the stirring intensity of the slow stirrer 46 in the coagulation tank 44. As described above, the degree of mixing of the flocculant and raw water in the flocculation treatment can be estimated based on the zeta potential before and after the filtration of the measurement filter 24. By controlling the stirring intensity based on the estimation result, it is effective. Agglomeration treatment can be achieved.

【0038】なお、最初から急速攪拌機の撹拌速度を大
きくしておけばよいが、急速攪拌機42の撹拌速度を大
きくしすぎるとエネルギーがかかるため効率的ではな
い。
It should be noted that the stirring speed of the rapid stirrer may be increased from the beginning, but if the stirring speed of the rapid stirrer 42 is excessively increased, energy is applied and the efficiency is not efficient.

【0039】「その他の構成」上述の実施形態では、測
定用ろ過器24を1つだけ設けた。しかし、これを2つ
以上設け、これを切り換えて利用できるようにすること
で、1つを逆洗しているときにも、測定を継続できるよ
うに構成することが好適である。さらに、ろ過の程度の
異なる測定用ろ過器24を複数設け、ろ過の程度の異な
る場合におけるゼータ電位を別々に計測し、これに基づ
いて凝集条件を制御することも好適である。
[Other Configurations] In the above-described embodiment, only one filter 24 for measurement is provided. However, it is preferable to provide two or more of them so that they can be used by switching between them so that the measurement can be continued even when one of them is backwashed. Further, it is also preferable to provide a plurality of measurement filters 24 having different degrees of filtration, separately measure the zeta potential in the case of different degrees of filtration, and control the aggregation conditions based on the measured values.

【0040】さらに、凝集処理としては、急速砂ろ過器
22のろ層内に凝集剤を供給することも可能であり、こ
の凝集剤の添加量を測定用ろ過器24におけるろ過後の
粒子のゼータ電位によって制御することも好適である。
また、ろ過手段としては、急速砂ろ過装置以外のろ過手
段も採用が可能である。
Further, as the coagulation treatment, a coagulant can be supplied into the filter layer of the rapid sand filter 22, and the amount of the coagulant added is determined by the zeta of the particles after filtration in the measurement filter 24. It is also preferable to control with an electric potential.
Further, as a filtering means, a filtering means other than the rapid sand filtration device can be adopted.

【0041】[0041]

【実施例】「実施例1」図1の装置を用いて実験を行っ
た。実験条件を以下に示す。
Example 1 An experiment was conducted using the apparatus shown in FIG. The experimental conditions are shown below.

【0042】[実験条件] ・原水流量:23.6m/h ・ろ過器仕様:φ500mm×H4000mm(ろ過面積0.196
m)、ろ層高700mm ・ろ過速度(LV):5m/h(120m/d) ・通水時間:48時間(タイマーにより洗浄開始) ・ろ材:ケイ砂 比重2.5、有効径0.6mm、均等係数1.2 ・測定用ろ過器仕様:φ50mm×H200mm、ろ層高200mm、
ろ過面積0.002m、ろ過速度5m/h、ろ材:ケイ砂 比重
2.5、有効径0.8mm、均等係数1.4 ・原水濁度:3度前後 ・原水pH:7.0前後 ・凝集剤:PAC5〜10mg/l ・目標処理水濁度:0.1度未満 [処理結果]PACを5mg/L添加した状態で、測定
用ろ過器24にてろ過後に測定される微小なフロックの
ゼータ電位の値が−20.1mVで、明らかに荷電中和
の点で凝集条件が十分ではなかった。この状態で急速砂
ろ過器22によるろ過を継続すると、十分に凝集されて
いない微小なフロックが、急速砂ろ過器22より流出す
ることになる。従って、pHを最適なものに制御する
か、凝集剤の注入率を増やす必要があり、このケースで
は、PACを5mg/Lから8mg/Lに増やすことに
よって、測定用ろ過器24にてろ過後に測定される微小
なフロックゼータ電位の値は、−8.5mVとなった。
これにより急速砂ろ過器22から流出するフロックは、
ほとんど存在しなくなった。
[Experiment conditions]-Raw water flow rate: 23.6m 3 / h-Filter specifications: φ500mm x H4000mm (filtration area 0.196
m 2 ), filter layer height 700mm ・ Filtration speed (LV): 5m / h (120m / d) ・ Water flow time: 48 hours (washing started by timer) ・ Filter material: silica sand Specific gravity 2.5, effective diameter 0.6mm, uniform Coefficient 1.2 ・ Filter specifications for measurement: φ50mm × H200mm, filter layer height 200mm,
Filtration area 0.002m 2 , Filtration speed 5m / h, Filter material: Silica sand Specific gravity
2.5, effective diameter 0.8mm, uniformity coefficient 1.4-Raw water turbidity: around 3 degrees-Raw water pH: around 7.0-Coagulant: PAC5-10mg / l-Target treated water turbidity: less than 0.1 degrees [Treatment result] PAC 5mg In the state where / L was added, the value of the zeta potential of the fine floc measured after filtration with the filter for measurement 24 was -20.1 mV, and the aggregation conditions were clearly insufficient in terms of charge neutralization. If filtration is continued by the quick sand filter 22 in this state, minute flocs that are not sufficiently aggregated will flow out of the quick sand filter 22. Therefore, it is necessary to control the pH to an optimum value or increase the injection rate of the flocculant. In this case, by increasing the PAC from 5 mg / L to 8 mg / L, the PAC is filtered after being filtered by the measurement filter 24. The value of the minute floc zeta potential measured was -8.5 mV.
As a result, the flocs flowing out of the quick sand filter 22 are
Almost no longer exists.

【0043】また、ここでは行わなかったが、凝集剤を
急速砂ろ過器22のろ材内部に注入したり、凝集剤を急
速砂ろ過器22の直前で追加注入するように制御するこ
とも、凝集が不十分な微小フロックの流出を防止するの
に有効である。
Although not performed here, it is also possible to control the coagulant to be injected into the filter medium of the quick sand filter 22 or to control the coagulant to be additionally injected immediately before the quick sand filter 22. Is effective for preventing insufficient outflow of minute flocs.

【0044】上記と同じろ過条件で、測定用ろ過器を用
いずにゼータ電位を測定した場合、ラインミキサ20に
て混和後のフロックのゼータ電位の値は−10.3mV
となっており、電位的な問題はないと判断されてしま
う。従って、PAC注入率やpHの調整も行うことな
く、急速ろ過器22からは微小なフロックの流出が起こ
ってしまうことになる。
When the zeta potential was measured under the same filtration conditions as above without using a filter for measurement, the value of the zeta potential of the floc after mixing with the line mixer 20 was -10.3 mV.
Therefore, it is determined that there is no potential problem. Therefore, fine flocs flow out of the quick filter 22 without adjusting the PAC injection rate or the pH.

【0045】「実施例2」図2の装置を用いて実験を行
った。実験条件を以下に示す。
Example 2 An experiment was performed using the apparatus shown in FIG. The experimental conditions are shown below.

【0046】[実験条件] ・原水流量:23.6m/h ・混和槽:滞留時間4分、G値250〜400s 1 ・沈殿池:上向流式傾斜板付き沈殿池、滞留時間40分、
上昇速度5cm/min ・ろ過器仕様:φ500mm×H4000mm(ろ過面積0.196
m)、ろ層高700mm ・ろ過速度(LV):5m/h(120m/d) ・ろ材:ケイ砂 比重2.5、有効径0.7mm、均等係数1.2 ・通水時間:48時間(タイマーにより洗浄開始) ・測定用ろ過器仕様:φ50mm×H200mm、ろ層高200mm、
ろ過面積0.002m、ろ過速度5m/h、ろ材:ケイ砂、比重
2.5、有効径1.0mm、均等係数1.4 ・原水濁度:8〜30度 ・原水pH:7.5〜8.2 ・凝集剤:PAC10〜30mg/l ・目標処理水濁度:0.1度未満 ・pH調整:硫酸にてpH7.0に調整 [処理結果]原水濁度18度の時、PACを20mg/
L添加した状態で、沈殿槽48出口にて測定されるゼー
タ電位は−14.3mV、測定用ろ過器24にてろ過後
に測定される微小なフロックのゼータ電位は−23.5
mVで、明らかに荷電中和の点で凝集条件が十分ではな
かった。この状態で急速砂ろ過器22のろ過を継続する
と、十分に凝集されていない微小なフロックが、急速砂
ろ過器22より流出することになる。従って、pHを最
適なものに制御するか、凝集剤の注入率を増やす必要が
あり、このケースでは、急速砂ろ過器22の前段でPA
Cを3mg/L追加し、急速砂ろ過器22からの微小フ
ロックの流出防止を図った。なお、pHは7.0程度に
なるようにした。
[Experimental conditions] Raw water flow rate: 23.6 m 3 / h Mixing tank: residence time 4 minutes, G value 250-400 s 1 Sedimentation basin: sedimentation basin with upflow type inclined plate, residence time 40 minutes,
Ascent rate 5cm / min ・ Filter specifications: φ500mm × H4000mm (filtration area 0.196
m 2 ), filter layer height 700mm ・ Filtration speed (LV): 5m / h (120m / d) ・ Filter material: silica sand Specific gravity 2.5, effective diameter 0.7mm, uniformity coefficient 1.2 ・ Water flow time: 48 hours (washed by timer Start) ・ Measurement filter specifications: φ50mm × H200mm, filter layer height 200mm,
Filtration area 0.002m 2 , filtration speed 5m / h, filter material: silica sand, specific gravity
2.5, effective diameter 1.0mm, uniformity coefficient 1.4-Raw water turbidity: 8 to 30 degrees-Raw water pH: 7.5 to 8.2-Coagulant: PAC10 to 30mg / l-Target treated water turbidity: less than 0.1 degrees-pH adjustment: sulfuric acid [Processing result] When raw water turbidity is 18 degrees, PAC is adjusted to 20 mg /
With L added, the zeta potential measured at the outlet of the sedimentation tank 48 is -14.3 mV, and the zeta potential of the fine floc measured after filtration with the measurement filter 24 is -23.5.
At mV, the aggregation conditions were clearly not sufficient in terms of charge neutralization. If the quick sand filter 22 continues to be filtered in this state, minute flocs that are not sufficiently aggregated will flow out of the quick sand filter 22. Therefore, it is necessary to control the pH to an optimum value or to increase the injection rate of the flocculant. In this case, the PA is provided upstream of the rapid sand filter 22.
C was added at 3 mg / L to prevent outflow of minute flocs from the rapid sand filter 22. The pH was adjusted to about 7.0.

【0047】また、別なケースとして、原水濁度10度
の時、PACを10mg/L添加した状態で、沈殿槽4
8出口にて測定されるゼータ電位は−9.8mV、測定
用ろ過器24にてろ過後に測定される微小なフロックの
ゼータ電位は−19.8mVで、荷電中和の点で凝集条
件が十分ではなかった。しかし、測定用ろ過器24でろ
過しない沈殿槽48の処理水中のフロックのゼータ電位
は高かったことから、PACの不足ではなく、撹拌が不
十分と判断できた。この状態で急速砂ろ過器22でのろ
過を継続すると、十分に凝集されていない微小なフロッ
クが、急速砂ろ過器22より流出することになる。
As another case, when the turbidity of the raw water is 10 ° C., and PAC is added at 10 mg / L, the sedimentation tank 4 is removed.
The zeta potential measured at the outlet 8 is -9.8 mV, the zeta potential of the fine floc measured after filtration with the measurement filter 24 is -19.8 mV, and the aggregation conditions are sufficient in terms of charge neutralization. Was not. However, since the zeta potential of the floc in the treated water in the precipitation tank 48 that was not filtered by the measurement filter 24 was high, it could be determined that the stirring was not insufficient, but not PAC shortage. In this state, if the filtration in the quick sand filter 22 is continued, minute flocs that are not sufficiently aggregated will flow out of the quick sand filter 22.

【0048】そこで、急速攪拌機42の回転数を上げ混
和槽40のG値を250s−1から400s−1へと上
げた。さらに、pHを最適なものに制御したり、凝集剤
の注入率を増やすという制御を同時に行うことも好適で
あり、このケースでは、急速砂ろ過器22のろ過の前段
でPACを3mg/L追加し、急速砂ろ過器22からの
微小フロックの流出防止を図った。
[0048] Therefore, the G value of the mixing tank 40 to increase the rotational speed of the rapid agitator 42 was increased from 250 s -1 to 400 s -1. Furthermore, it is also preferable to simultaneously control the pH to an optimum value or to increase the coagulant injection rate. In this case, 3 mg / L of PAC is added before the filtration by the rapid sand filter 22. Then, the outflow of minute flocs from the rapid sand filter 22 was prevented.

【0049】これによって、測定用ろ過器24にてろ過
後に測定される微小なフロックゼータ電位の値は、−
8.5mVとなり、測定用ろ過器24にてろ過後に測定
される微小なフロックのゼータ電位は−11.4mVと
なった。これにより急速砂ろ過器22から流出するフロ
ックは、ほとんど存在しなくなった。
Thus, the value of the minute floc zeta potential measured after filtration by the measurement filter 24 is −
It became 8.5 mV, and the zeta potential of the minute floc measured after filtration with the filter for measurement 24 became -11.4 mV. As a result, flocs flowing out of the rapid sand filter 22 were almost nonexistent.

【0050】上記実施例2では、前段のPAC注入率の
みを増やすため、凝集剤を過剰注入してしまう場合もあ
る。例えば、PACを増やした場合、測定用ろ過器24
におけるろ過無しのゼータ電位は−3.0mVにまで上
がってしまう。ゼータ電位は−10mV程度で良いので
明らかに過剰になってしまう。本ケースでは、測定用ろ
過器24でのろ過無しのゼータ電位測定も行っており、
撹拌が十分かどうかの判断も行え、急速攪拌機42の撹
拌速度を制御して十分な混和を行っているので、ろ過無
しのゼータ電位は−8.5mVに収まっている。
In the second embodiment, the coagulant may be excessively injected in order to increase only the PAC injection rate in the preceding stage. For example, when the PAC is increased, the measuring filter 24
, The zeta potential without filtration rises to -3.0 mV. Since the zeta potential may be about -10 mV, it is clearly excessive. In this case, zeta potential measurement without filtration in the measurement filter 24 is also performed.
It is possible to judge whether the stirring is sufficient or not, and the mixing speed is controlled by controlling the stirring speed of the rapid stirrer 42, so that the zeta potential without filtration is within -8.5 mV.

【0051】[0051]

【発明の効果】以上説明したように、本発明によれば、
測定用ろ過手段によって得られたろ液についてゼータ電
位を計測する。そこで、ろ液中に含まれる微細フロック
のゼータ電位を測定することができる。そして、この測
定結果に基づき、凝集剤添加量、pH調整剤添加量、攪
拌強度などの凝集条件を制御することで、微細フロック
を確実に凝集処理する凝集条件の制御を行うことができ
る。そこで、微細フロックを減少して、ろ過処理におけ
る微細フロックの流出を効果的に防止することができ
る。特に、測定用ろ過手段の処理水を得るろ過処理に比
べ粗いろ過としたため、そのろ液に微細フロックを確実
に得ることができ、このゼータ電位を測定することがで
きる。そこで、適切な凝集条件の制御が行え、凝集不良
による微小なフロックのろ過器からの流出を低減するこ
とが可能となる。
As described above, according to the present invention,
The zeta potential of the filtrate obtained by the filtration means for measurement is measured. Thus, the zeta potential of the fine floc contained in the filtrate can be measured. Then, by controlling the aggregating conditions such as the added amount of the aggregating agent, the added amount of the pH adjuster, and the stirring strength based on the measurement result, it is possible to control the aggregating conditions for surely performing the aggregating treatment of the fine flocs. Therefore, the fine flocs can be reduced, and the outflow of the fine flocks in the filtration treatment can be effectively prevented. In particular, since the filtration is rougher than the filtration treatment for obtaining the treated water by the filtration means for measurement, fine flocs can be reliably obtained in the filtrate, and the zeta potential can be measured. Thus, appropriate coagulation conditions can be controlled, and it is possible to reduce the outflow of minute flocs from the filter due to poor coagulation.

【0052】また、測定用ろ過処理の前後におけるゼー
タ電位の差が大きい場合には、凝集剤が十分攪拌混合さ
れていないと推定される。そこで、差が大きい場合に、
攪拌強度を大きくすることで好適な攪拌制御を行うこと
ができる。
When the difference in zeta potential before and after the filtration treatment for measurement is large, it is estimated that the aggregating agent is not sufficiently stirred and mixed. So, if the difference is large,
Suitable stirring control can be performed by increasing the stirring intensity.

【0053】このように、本発明により、最適な凝集条
件(撹拌強度、凝集剤や凝集助剤注入率)で、凝集処理
が可能となる。
As described above, according to the present invention, the coagulation treatment can be performed under the optimum coagulation conditions (stirring strength, coagulant and coagulation aid injection rate).

【図面の簡単な説明】[Brief description of the drawings]

【図1】 第1実施形態の装置の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of an apparatus according to a first embodiment.

【図2】 第2実施形態の装置の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of an apparatus according to a second embodiment.

【符号の説明】[Explanation of symbols]

10 pH調整剤貯槽、12,52 凝集剤貯槽、1
4,16,56,58ポンプ、20,60 ラインミキ
サ、22 急速砂ろ過器、24 測定用ろ過器、26,
62 ゼータメータ、30 制御部、40 混和槽、4
2 急速攪拌機、44 凝集槽、46 緩速攪拌機、4
8 沈殿槽。
10 pH adjuster storage tank, 12,52 Coagulant storage tank, 1
4, 16, 56, 58 pump, 20, 60 line mixer, 22 rapid sand filter, 24 filter for measurement, 26,
62 zetameter, 30 control unit, 40 mixing tank, 4
2 Rapid stirrer, 44 Coagulation tank, 46 Slow stirrer, 4
8 Settling tank.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 被処理水に対し凝集剤を混和して凝集処
理を行った後、ろ過処理を行って処理水を得る固液分離
装置において、 上記凝集処理における凝集剤を被処理水に混和した後で
あって、上記ろ過処理を行う前の凝集剤混和水の一部に
対し、上記ろ過処理よりも粗いろ過処理を行う測定用ろ
過手段と、 この測定用ろ過手段により得られたろ液中の粒子のゼー
タ電位を測定するろ過後ゼータ電位測定手段と、 このゼータ電位測定手段によって測定したゼータ電位に
基づいて、上記凝集処理の凝集条件を制御する凝集制御
手段と、 を有することを特徴とする固液分離装置。
1. A solid-liquid separation device for mixing a water to be treated with a coagulant and performing a coagulation treatment and then performing a filtration treatment to obtain a treated water, wherein the coagulant in the coagulation treatment is mixed with the water to be treated. After performing the filtration process for the coagulant-mixed water before performing the filtration process, a filtration unit for measurement that performs a filtration process coarser than the filtration process, and a filtrate obtained by the filtration device for measurement. After filtration zeta potential measuring means for measuring the zeta potential of the particles of, based on the zeta potential measured by the zeta potential measuring means, aggregation control means for controlling the aggregation conditions of the aggregation treatment, characterized by having Solid-liquid separator.
【請求項2】 請求項1に記載の装置において、 さらに、 被処理水に対し凝集剤を混和した後、凝集フロックを沈
殿または浮上により分離する分離手段をさらに有し、 この分離手段で凝集フロックが一次的に分離された一次
処理水を上記ろ過処理し、処理水を得ることを特徴とす
る固液分離装置。
2. The apparatus according to claim 1, further comprising a separating means for separating the flocculated floc by sedimentation or floating after mixing the flocculant with the water to be treated. A solid-liquid separation device characterized by subjecting the primary treated water primarily separated to the above-mentioned filtration treatment to obtain treated water.
【請求項3】 請求項1または2に記載の装置におい
て、 上記制御手段により制御する凝集条件は、凝集剤添加
量、pH調整剤添加量及び攪拌強度の中の少なくとも1
つであることを特徴とする固液分離装置。
3. The apparatus according to claim 1, wherein the coagulation conditions controlled by the control means are at least one of an addition amount of a coagulant, an addition amount of a pH adjuster, and a stirring intensity.
A solid-liquid separator.
【請求項4】 請求項1〜3のいずれか1つに記載の装
置において、 さらに、 上記測定用ろ過手段に供給される凝集混和水中の粒子の
ゼータ電位を測定するろ過前ゼータ電位検出手段を有
し、 上記凝集制御手段は、ろ過前ゼータ電位検出手段と、ろ
過後ゼータ電位検出手段とで検出したゼータ電位の差に
基づいて上記凝集処理における攪拌強度を制御すること
を特徴とする固液分離装置。
4. The apparatus according to claim 1, further comprising: a pre-filtration zeta potential detecting means for measuring a zeta potential of particles in the coagulated mixed water supplied to the measuring filtration means. Wherein the aggregation control means controls the stirring intensity in the aggregation treatment based on the difference in the zeta potential detected by the zeta potential detection means before filtration and the zeta potential detection means after filtration. Separation device.
【請求項5】 被処理水に凝集剤を添加混合して凝集処
理を行う凝集処理における凝集条件決定方法において、 被処理水に凝集剤を添加して得た凝集剤混和水について
ろ過処理を行い、得られたろ液中の粒子のゼータ電位を
検出することによって凝集条件を決定することを特徴と
する凝集条件決定方法。
5. A method for determining flocculation conditions in a flocculation treatment in which a flocculant is added to and mixed with water to be treated, wherein a coagulant-mixed water obtained by adding a flocculant to the water to be treated is subjected to a filtration treatment. A method for determining agglutination conditions, wherein the agglutination conditions are determined by detecting the zeta potential of particles in the obtained filtrate.
JP11178099A 1999-04-20 1999-04-20 Solid-liquid separator and flocculation condition determination method Expired - Fee Related JP3905663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11178099A JP3905663B2 (en) 1999-04-20 1999-04-20 Solid-liquid separator and flocculation condition determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11178099A JP3905663B2 (en) 1999-04-20 1999-04-20 Solid-liquid separator and flocculation condition determination method

Publications (3)

Publication Number Publication Date
JP2000300912A true JP2000300912A (en) 2000-10-31
JP2000300912A5 JP2000300912A5 (en) 2005-03-17
JP3905663B2 JP3905663B2 (en) 2007-04-18

Family

ID=14569987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11178099A Expired - Fee Related JP3905663B2 (en) 1999-04-20 1999-04-20 Solid-liquid separator and flocculation condition determination method

Country Status (1)

Country Link
JP (1) JP3905663B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003093806A (en) * 2001-09-27 2003-04-02 Kurita Water Ind Ltd Flocculant injection apparatus
JP2004195304A (en) * 2002-12-17 2004-07-15 Toshiba Corp Coagulant injection control method and apparatus
JP2014054603A (en) * 2012-09-13 2014-03-27 Toshiba Corp Flocculant injection control method and flocculant injection control system
JP2017029868A (en) * 2015-07-28 2017-02-09 株式会社東芝 Water treatment method, water treatment facility, flocculant injection quantity evaluation system, and residual flocculant quantity estimation apparatus
JP2019089022A (en) * 2017-11-14 2019-06-13 株式会社東芝 Flocculant injection controller, flocculant injection control method and flocculant injection control system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003093806A (en) * 2001-09-27 2003-04-02 Kurita Water Ind Ltd Flocculant injection apparatus
JP2004195304A (en) * 2002-12-17 2004-07-15 Toshiba Corp Coagulant injection control method and apparatus
JP2014054603A (en) * 2012-09-13 2014-03-27 Toshiba Corp Flocculant injection control method and flocculant injection control system
JP2017029868A (en) * 2015-07-28 2017-02-09 株式会社東芝 Water treatment method, water treatment facility, flocculant injection quantity evaluation system, and residual flocculant quantity estimation apparatus
JP2019089022A (en) * 2017-11-14 2019-06-13 株式会社東芝 Flocculant injection controller, flocculant injection control method and flocculant injection control system

Also Published As

Publication number Publication date
JP3905663B2 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
EP2165980B1 (en) Method and system for seeding with mature floc to accelerate aggregation in a water treatment process
JPWO2008120704A1 (en) Fluorine-containing wastewater treatment apparatus and treatment method
JP4505772B2 (en) Coagulant injection control method for water purification plant
JP4004854B2 (en) Water purification method and apparatus
JP4176915B2 (en) Solid-liquid separator
JP4523731B2 (en) Water treatment equipment
WO2011030485A1 (en) Flocculation precipitation treatment method
JP3905663B2 (en) Solid-liquid separator and flocculation condition determination method
JP3640285B2 (en) Coagulation sedimentation equipment
JP2000317220A (en) Flocculating and settling device
JP2002066568A (en) Water treating method and apparatus
JP2019198806A (en) Water treatment method, and water treatment device
JP2000300912A5 (en)
KR101852005B1 (en) An apparatus for water treatment using precipitation and dehydration of sludge and a method for water treatment using thereof
JPH06226011A (en) Flocculant injection control method in water treating flocculation process and flocculant injection control device
KR20140059557A (en) Water treating apparatus with means for adjusting injection amount of coagulant and method for adjusting injection amount of coagulant
JP7142540B2 (en) Water purification method and water purification device
JP3854471B2 (en) Water purification equipment
JP2003145168A (en) Flocculation and solid-liquid separation method for aqueous suspension and apparatus adapted thereto
JP4800462B2 (en) Filtration method
JP4800463B2 (en) Filtration device
JP4800461B2 (en) Backwashing method in filtration equipment
JP2005007246A (en) Treatment method for organic waste water
JP2001038109A (en) Back washing method in filter device
JP2861370B2 (en) Wastewater treatment method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070112

R150 Certificate of patent or registration of utility model

Ref document number: 3905663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140119

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees