JP4800461B2 - Backwashing method in filtration equipment - Google Patents

Backwashing method in filtration equipment Download PDF

Info

Publication number
JP4800461B2
JP4800461B2 JP2000073301A JP2000073301A JP4800461B2 JP 4800461 B2 JP4800461 B2 JP 4800461B2 JP 2000073301 A JP2000073301 A JP 2000073301A JP 2000073301 A JP2000073301 A JP 2000073301A JP 4800461 B2 JP4800461 B2 JP 4800461B2
Authority
JP
Japan
Prior art keywords
water
backwashing
filter medium
flocculant
backwash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000073301A
Other languages
Japanese (ja)
Other versions
JP2001259313A (en
Inventor
邦雄 海老江
友明 宮ノ下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2000073301A priority Critical patent/JP4800461B2/en
Publication of JP2001259313A publication Critical patent/JP2001259313A/en
Application granted granted Critical
Publication of JP4800461B2 publication Critical patent/JP4800461B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Filtration Of Liquid (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、凝集剤を添加した凝集処理を行った後、ろ過処理を行うろ過装置における逆洗方法に関する。
【0002】
【従来の技術】
河川水などを原水として浄水や工業用水を製造する場合や、排水処理等において、懸濁物質の分離のために凝集沈殿処理およびろ過処理が広く採用されている。すなわち、凝集沈殿処理では、まず原水に対しアルミ系の凝集剤等を添加混合して、原水中の懸濁物質を粗大フロック化する。そして、この粗大フロックを沈殿池に導入して沈殿処理することで、懸濁質の大部分を除去する。次に、この沈殿池で得られた上澄み水(凝集沈殿処理水)をろ過装置でさらに処理し、残留する微細懸濁物をさらに除去する。このようにして、清澄な処理水を得ている。
【0003】
ここで、ろ過装置においては、ろ材が所定量の懸濁質を捕捉すると、ろ過抵抗が上昇し、またフロックの流出が大きくなるため、ろ材を再生するための逆洗を行う。この逆洗は、逆洗水(通常は処理水)をろ過装置に逆流させ、捕捉した懸濁質を除去することによって行う。
【0004】
ところが、この逆洗を行った直後において、処理水中の懸濁物質(微細フロック)が増加し、十分なろ過が行えない場合が多い。
【0005】
これは、通常のろ過処理においてアルミ系の凝集剤を用いた場合は、ろ材の表面に薄く水酸化アルミニウムが付着し、これが微細な凝集フロックの除去に貢献しているが、逆洗によってこの付着物が除去されるため、逆洗直後の処理水が悪化するものと考えられる。
【0006】
そこで、逆洗水に凝集剤を添加して逆洗を行うことが提案されている。このような逆洗により、逆洗の際に凝集剤がろ材中に供給され、ろ材表面のたとえば、水酸化アルミニウムの付着が助長される。従って、逆洗直後においても、微細フロックの除去を十分なものにできると考えられる。
【0007】
【発明が解決しようとする課題】
ところが、この逆洗水に凝集剤を添加した場合においても、逆洗終了直後の処理水中の懸濁物質量はそれほど改善できないことがわかった。これは、凝集剤をろ材全体に付着させるための条件が十分考慮されていないからである。
【0008】
本発明は、上記課題に鑑みなされたものであり、逆洗直後から良好なろ過処理が行えるろ過装置の逆洗方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、集剤を添加した凝集処理を行った後、ろ過処理を行うろ過装置における逆洗方法において、その逆洗工程において、ポリ塩化アルミニウム40〜80mg/lとなるように添加され、そのpHが5.0±0.5の範囲内に制御された逆洗水を用いて逆洗を行い、水酸化アルミニウムの被膜をろ材表面に形成してろ材表面のゼータ電位を調整することを特徴とする。
【0010】
このように、本発明によれば、ポリ塩化アルミニウム(PACという)を40〜80mg/lとなるように逆洗水に添加し、逆洗水のpHを5.0±0.5の範囲内に制御し、逆洗を行う。これによって、ろ層全体のろ材の表面に凝集剤が付着して、ろ材の表面状態をろ過に好適なもの、例えばろ材表面の酸化還元電位を0〜−10mV程度にできる。そこで、逆洗後のろ過において、当初より微細フロックの流出を防止して、良好な水質の処理水を得ることができる。なおPACは、通常Alとして10%を含むものが市販されているが、本発明における40〜80mg/lというのは、上述した濃度のPACを逆洗水1リットルあたり40〜80mgの割合で添加する意味であり、この場合Alとしては2.12〜4.24mg/lの添加量となる。
【0011】
また、前記逆洗水の通水量をろ過装置におけるろ材の空隙体積の1.5〜2.5倍量とすることが好適である。このような水量により、好適なろ材への凝集剤のコーティングが行え、かつ凝集剤および酸の消費量を適切なものに維持することができる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態(以下実施形態という)について、図面に基づいて説明する。
【0013】
図1は、本実施形態に係る凝集分離装置の全体構成を示す図である。河川水、湖沼水などの原水は、まず混和槽10に流入される。この混和槽10には、凝集剤貯槽12からの凝集剤が凝集剤ポンプ14によって供給される。凝集剤は、無機アルミニウム系の凝集剤が好ましく、特にPAC(ポリ塩化アルミニウム)が好ましい。そして、混和槽10には、攪拌機16が設けられており、原水と凝集剤が急速攪拌される。この混和槽10において、凝集剤が混和された凝集剤混和水は、凝集槽18に流入する。この凝集槽18には、緩速攪拌機20が配置されており、凝集剤混和水が緩速攪拌され、凝集フロックの合体、粗大化が図られる。
【0014】
次に、凝集槽18からの緩速攪拌後の凝集剤混和水は、傾斜板沈殿槽22に流入する。この傾斜板沈殿槽22は、仕切板22aにより入口側と出口側に仕切られており、入口側に槽深の深い沈殿部22bが形成されている。そして、この沈殿部22bの下部は、沈殿汚泥を貯留する汚泥貯留部22cになっている。また、出口側には多数の傾斜板22dが配置されて傾斜板沈殿部22eが形成されている。凝集剤混和水は沈殿部22bに流入され、ここで沈殿処理された後、仕切板22aの下を通過して、傾斜板沈殿部22eを上向流で通過する。そして、この傾斜板沈殿部22eの傾斜板22dを通過する際にさらに沈殿処理がなされ、スラッジが槽底へ向けて沈殿する。傾斜板沈殿部22eの槽底は、汚泥貯留部22cに向けて深くなるように傾斜しているため、沈殿スラッジは重力により汚泥貯留部22cに移動する。そして、傾斜板沈殿部22eを通過した上澄みが傾斜板沈殿槽22から排出される。なお、傾斜板沈殿槽22の汚泥貯留部22cに沈殿した汚泥は、適宜引き抜かれ別途処分される。
【0015】
このような凝集沈殿処理により、傾斜板沈殿槽22からの沈殿処理水は、懸濁固形物のかなりの部分は除去されたものになっている。この沈殿処理水は、ろ過器24に流入される。このろ過器24は、アンスラサイトのろ過層24bと、砂のろ過層24aの二層のろ過層を有する重力式の急速ろ過器である。なお、場合によっては、沈殿処理水に追加の凝集剤注入あるいは凝集助剤注入を行いラインミキサーにて撹拌し、ろ過器24に供給してもよく、またろ過器は圧力式ろ過器であってもよい。
【0016】
ろ過層24bのろ材としてアンスラサイト以外のろ材を使用してもよいし、またこのろ過層24b自体を省略してもよい。また、ろ過層24aについて、砂に代えガーネットなどを利用したり、砂及びガーネットを多層とすることも好適である。
【0017】
そして、このろ過器24のろ過処理水は、処理水タンク26に貯留された後、配水される。
【0018】
また、この処理水タンク26内の処理水は、逆洗ポンプ28によりろ過器24の底部に供給できるようになっている。そこで、ろ過器24に処理水を上向流で供給し、ろ過器24内のろ過層を逆洗できるようになっている。
【0019】
すなわち、通水を継続していくと、次第にろ過層に捕捉される懸濁物質が増加しろ材が飽和して、ろ過器24はそれ以上懸濁物質を捕捉できなくなる。これは、ろ過抵抗の上昇や、処理水濁度の上昇等によって検出できる。そこで、ろ材が完全に飽和する前に、洗浄によりろ材の再生を行う。
【0020】
この洗浄のタイミングは、経験的に得られる時間に基づくタイマー設定や、差圧計によるろ過抵抗の設定により行われる。さらに、逆洗は、ろ過水を用いた逆流水洗浄や、逆流水洗浄に表面洗浄あるいは空気洗浄を組み合わせて行われる。
【0021】
ここで、本実施形態においては、この逆洗ポンプ28からろ過器24に至る逆洗水のラインに、凝集剤貯槽30からの凝集剤が凝集剤ポンプ32により添加される。この凝集剤としては、上述の凝集剤貯槽12と同様にPACが利用され、凝集剤貯槽12からの凝集剤を添加するように構成してもよい。さらに、酸貯槽34からの酸(酸性溶液、例えば硫酸)が酸ポンプ36によって添加されるように構成されている。
【0022】
このようにして、本実施形態においては、通常の逆洗に加え、凝集剤を含む逆洗水による逆洗が行われ、これによってろ材表面に凝集剤の被膜が構成される。すなわち、所定pHに調整され、所定量の凝集剤が添加された逆洗水を所定量だけろ過器24に通水し、これによってろ材表面に水酸化アルミニウムの被膜が形成される。
【0023】
特に、本実施形態においては、逆洗ラインにpHメータ38および流量計40が設けられており、その検出結果がコントローラ42に供給されるようになっている。そして、コントローラ42は、これら検出結果に基づいて、凝集剤ポンプ32および酸ポンプ36の駆動を制御し、逆洗水のpH、凝集剤の添加量が所定量となるように制御するとともに、凝集剤および酸を添加する逆洗水の水量を制御する。
【0024】
このような所定pHに調整され、所定量の凝集剤が添加された逆洗水を所定量だけろ過器24に通水することによってろ材表面に適切な凝集剤の被膜が形成され、ろ過器24におけるろ過層24aのろ材のゼータ電位が0〜−10mVになるように制御される。すなわち、水酸化アルミニウムがろ材表面上に付着することで、ろ材のゼータ電位が上昇する。また、酸の添加によってもゼータ電位が変化するため酸の添加量も調整する。これによって、ろ材表面のゼータ電位が0〜−10mVに制御される。
【0025】
ここで、ろ材のゼータ電位は、ろ材表面への水酸化アルミニウムの付着状態を示している。そこで、このろ材のゼータ電位を所定値(0〜−10mV)とすることによって、ろ材の表面状態を微細フロックを捕捉しやすい状態に調整することができる。そして、上述のようにして調整した逆洗水によりろ材の表面に水酸化アルミニウムを確実に付着させることで、逆洗後のろ過において、当初より微細フロックの流出を防止して、良好な水質の処理水を得ることができる。
【0026】
また、本実施形態では、次のような手順で逆洗を行う。(i)まずろ過処理水をそのままで逆流させる逆洗を行う。例えば、LV(空塔線速度)=40m/h×8分。なお、上述したように、空気逆洗を組み合わせてもよい。(ii)次に凝集剤(PAC)および酸を添加した逆洗水による逆洗を行う。LV=40m/h×1分。(iii)次に、30秒静置状態で休止する。
【0027】
このようにして、ゼータ電位調整剤としての凝集剤および酸を添加した逆洗水による逆洗を短時間行い、その後休止時間をおくという逆洗を行う。これによって、凝集剤とろ材が十分混合するとともに、接触のための時間が得られ、ろ材表面に水酸化アルミニウムが十分に付着される。
【0028】
特に、本実施形態の凝集剤および酸を添加した逆洗水は、凝集剤としてPAC(有効成分Alを10%含む液体)を利用し、その添加量を40〜80mg/Lとする。そして、その逆洗水のpHは5.0±0.5とし、これをトータルの水量として、ろ過器24におけるろ材の空隙体積の1.5〜2.5倍量とする。このような逆洗水のろ材への流通によって、上述したようなろ材のゼータ電位を0〜−10mVに調整する処理を行うことができる。すなわち、この程度のPACの濃度することによって、ろ材表面への適切な水酸化アルミニウムの被膜形成が行える。濃度の高い凝集剤を通水しても、凝集剤の拡散効率が悪くなり、効果的な被膜形成が行えず、また濃度が低いと通水量が多くなるとともに十分な被膜形成ができない。なお、逆洗水をさらに多くしてもろ材のゼータ電位制御に悪影響はない。しかし、意味のない逆洗を行うことになり、エネルギーおよび凝集剤などの浪費となるため上述のような範囲に制御することが好ましい。
【0029】
上述のように、本実施形態では、ろ材のゼータ電位が0〜−10mVになるように逆洗水への凝集剤添加量を調整する。このゼータ電位は、固体と液体の界面を横切って存在する電気的ポテンシャルを示すものであり、水中の懸濁物質についての表面荷電を示す。通常、河川水等に含まれる懸濁物質(粘度成分や藻類等)は負に帯電しており、懸濁物質が各々負に帯電していることから電気的に反発し、凝集しにくい状態になっている。凝集剤は、この電位の中和をまず行い反発力を弱め、その後に集塊化つまり凝集を行う。従って、凝集フロックのゼータ電位は中和点つまりゼロに近い方が望ましい。通常、原水中の懸濁物質のゼータ電位は−20mV以下で、凝集フロックのゼータ電位は−10mV以上となっている。
【0030】
ここで、浄水処理で一般に用いられる凝集沈殿・急速ろ過法において、急速ろ過器より、特にろ過開始直後に微小なフロックが流出することが知られている。
この微小なフロックのゼータ電位は、−15mV以下と低く、凝集が十分に行われていないことが知られている。
【0031】
ろ材も水中の懸濁物質と同様にそのままでは負に帯電しており、ろ材のゼータ電位を−10mV以上にすることによって、ろ材表面への凝集剤水酸化物の付着を十分なものにできる。そして、この付着物を形成することで、フロックの捕捉能力を改善し、処理水中の懸濁物質濃度の上昇を防止することができる。なお、ゼータ電位を0mV以上にするのは、経済的ではなく、また洗浄排水中のアルミニウム濃度が高くなるので、好ましくない。
【0032】
本実施形態においては、凝集剤としてPAC(有効成分Alを10%含む液体)を利用し、その添加量を40〜80mg/Lとする。そして、その逆洗水のpHは5.0±0.5とし、これをトータルの水量として、ろ過器24におけるろ材の空隙体積の1.5〜2.5倍量とする。このような逆洗水のろ材への流通によって、ろ材のゼータ電位を0〜−10mVに調整する処理を行っている。
【0033】
【実施例】
図1の装置を用いて実験を行った。
【0034】
「実験条件」
・原水流量:3000m/D
・混和槽:滞留時間4分、G値250〜400s−1
・沈殿池:上向流式傾斜板付き沈殿池、滞留時間40分、上昇速度5cm/min
・ろ過池仕様:φ5000mm×5000mm×H4000mm(ろ過面積25m
・ろ過速度(LV):5m/h(120m/d)
・ろ材:ケイ砂 比重2.5m、空隙率45%、有効径0.6mm、均等係数1.4、ろ層高600mm
・通水時間:48時間(タイマーにより洗浄開始)
・原水濁度:8〜30度
・原水pH:7.2〜7.5
・凝集剤:PAC10〜30mg/l
・目標処理水濁度:0.1度未満
・洗浄条件:水逆洗 LV=40m/h×8分
水量=25m×40m/h×(8÷60)=133.3m/回
PAC+硫酸水逆洗 LV=40m/h×1分
水量=25m×40m/h×(1÷60)=16.7m/回
ろ材空隙容量=25m×0.6m×0.45=6.75m
2.5倍量通水として、6.75m×2.5=16.9m/回
逆洗水:ろ過水を用いる。pHは、5.0±0.5に調整。
PAC:40〜80mg/Lとなるように調整。
【0035】
「実験結果」
濁度8度の原水に凝集剤としてPACを10mg/L添加し、pHを7.0に調整するために酸として硫酸を加え、混和槽10にて攪拌機16を用いて混和を行い、凝集槽18にて緩速撹拌を行い、傾斜板沈殿槽(傾斜板無しでもよい)22にて沈殿処理を行った後、ろ過器24に供給して処理水を得た。
【0036】
ところで、ろ過器24は、ある程度通水を行っていくと、濁質によりろ材の間隙が飽和し、通水を継続できなくなる。このろ過が継続できなくなるまでの時間は、ろ過器流入水中の濁質濃度や通水速度などによって異なり、通常は24〜72時間程度であるが、本実験では48時間毎に逆洗を行った。
【0037】
この逆洗条件は、水逆洗をLV=40m/h×8分、(i)PAC60mg/Lと75%硫酸を20mL/m注入したpH5±0.5の凝集剤添加水による水逆洗をLV=40m/h×1分(ろ材空隙容量6.75mに対し2.5倍)として行った。なお、この凝集剤を添加した水逆洗の後、30秒程度静止時間をおき、凝集剤のろ材表面への付着を促進した。
【0038】
このような処理により、逆洗直後においても、処理水の悪化はなく、目標濁度を継続して維持できることが確認できた。
【0039】
【発明の効果】
以上説明したように、本発明によれば、逆洗水への凝集剤およびpH調整剤の添加量を予め設定した値に制御する。これによって、ろ材の表面に凝集剤が付着して、ろ材の表面状態をろ過に好適なものにできる。そこで、逆洗後のろ過において、当初より微細フロックの流出を防止して、良好な水質の処理水を得ることができる。
【0040】
特に、凝集剤は、ポリ塩化アルミニウム(PACという)とし、このPAC(10%Al)を40〜80mg/lとなるように逆洗水に添加し、逆洗水のpHを5.0±0.5の範囲内に制御し、かつこの調整した逆洗水の通水量はろ過装置におけるろ材の空隙体積の1.5〜2.5倍量とすることによって、好適なろ材への凝集剤のコーティングが行える。
【図面の簡単な説明】
【図1】 実施形態の装置の構成を示す図である。
【符号の説明】
10 混和槽、18 凝集槽、22 傾斜板沈殿槽、24 ろ過器、30 凝集剤貯槽、32 凝集剤ポンプ、38 pHメータ、40 流量計、42 コントローラ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a backwashing method in a filtration apparatus that performs a filtration treatment after performing a coagulation treatment with a flocculant added.
[0002]
[Prior art]
In the case of producing purified water or industrial water using river water or the like as raw water, or in wastewater treatment or the like, coagulation sedimentation treatment and filtration treatment are widely used for separation of suspended substances. That is, in the coagulation sedimentation treatment, first, an aluminum-based coagulant or the like is added to and mixed with the raw water to make the suspended substances in the raw water coarse. And this coarse floc is introduce | transduced into a sedimentation basin, and most of suspended solids are removed by carrying out a sedimentation process. Next, the supernatant water (coagulation precipitation treated water) obtained in this sedimentation basin is further treated with a filtration device to further remove the remaining fine suspension. In this way, clear treated water is obtained.
[0003]
Here, in the filtration device, when the filter medium captures a predetermined amount of suspended solids, the filtration resistance increases and the outflow of flocs increases, so backwashing for regenerating the filter medium is performed. This backwashing is performed by backflowing backwashing water (usually treated water) through a filtration device and removing the trapped suspended matter.
[0004]
However, immediately after the backwashing, suspended substances (fine flocs) in the treated water increase, and sufficient filtration cannot be performed in many cases.
[0005]
This is because when aluminum flocculant is used in normal filtration treatment, aluminum hydroxide is thinly adhered to the surface of the filter medium, which contributes to the removal of fine flocculent flocs. Since the kimono is removed, the treated water immediately after backwashing is considered to deteriorate.
[0006]
Therefore, it has been proposed to perform a backwash by adding a flocculant to the backwash water. By such backwashing, a flocculant is supplied into the filter medium during backwashing, and adhesion of, for example, aluminum hydroxide on the filter medium surface is promoted. Accordingly, it is considered that fine floc can be sufficiently removed even immediately after back washing.
[0007]
[Problems to be solved by the invention]
However, even when a flocculant is added to the backwash water, it has been found that the amount of suspended solids in the treated water immediately after the end of backwash cannot be improved so much. This is because the conditions for attaching the flocculant to the entire filter medium are not sufficiently considered.
[0008]
This invention is made | formed in view of the said subject, and it aims at providing the backwashing method of the filtration apparatus which can perform a favorable filtration process immediately after backwashing.
[0009]
[Means for Solving the Problems]
The present invention, after the aggregation treatment with added Atsumarizai, in backwashing method in the filtration apparatus for performing a filtration treatment, at its backwashing process, poly aluminum chloride is added to a 40-80 mg / l, that the pH had rows backwash with the backwash water is controlled within a range of 5.0 ± 0.5, a film of aluminum hydroxide formed in filter material surface to adjust the zeta potential of the filter medium surface It is characterized by.
[0010]
Thus, according to the present invention, polyaluminum chloride (referred to as PAC) is added to the backwash water so as to be 40 to 80 mg / l, and the pH of the backwash water is within the range of 5.0 ± 0.5. And backwash. Thereby, the flocculant adheres to the surface of the filter medium of the entire filter layer, and the surface state of the filter medium can be made suitable for filtration, for example, the redox potential of the filter medium surface can be about 0 to −10 mV. Therefore, in the filtration after backwashing, the outflow of fine floc can be prevented from the beginning, and treated water with good water quality can be obtained. In addition, although what contains 10% of PAC as Al 2 O 3 is usually marketed, 40-80 mg / l in the present invention means that 40-80 mg of PAC having the above-mentioned concentration per liter of backwash water. In this case, the added amount of Al is 2.12 to 4.24 mg / l.
[0011]
In addition, it is preferable that the amount of the backwash water to be passed is 1.5 to 2.5 times the void volume of the filter medium in the filtration device. With such an amount of water, a suitable filter medium can be coated with the flocculant, and consumption of the flocculant and the acid can be maintained appropriately.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.
[0013]
FIG. 1 is a diagram showing the overall configuration of the coagulation / separation apparatus according to the present embodiment. Raw water such as river water and lake water is first introduced into the mixing tank 10. The mixing tank 10 is supplied with the flocculant from the flocculant storage tank 12 by the flocculant pump 14. The flocculant is preferably an inorganic aluminum flocculant, and particularly preferably PAC (polyaluminum chloride). The mixing tank 10 is provided with a stirrer 16 so that the raw water and the flocculant are rapidly stirred. In this mixing tank 10, the coagulant-mixed water in which the coagulant is mixed flows into the coagulation tank 18. A slow stirrer 20 is disposed in the coagulation tank 18, and the coagulant admixture water is slowly stirred to coalesce and coarsen the coagulation flocs.
[0014]
Next, the coagulant-mixed water after slow stirring from the coagulation tank 18 flows into the inclined plate settling tank 22. The inclined plate settling tank 22 is divided into an inlet side and an outlet side by a partition plate 22a, and a settling portion 22b having a deep tank depth is formed on the inlet side. And the lower part of this sedimentation part 22b is the sludge storage part 22c which stores sedimentation sludge. A large number of inclined plates 22d are arranged on the outlet side to form inclined plate precipitation portions 22e. The flocculant-mixed water flows into the precipitation portion 22b, where it is precipitated, and then passes under the partition plate 22a and passes upward through the inclined plate precipitation portion 22e. Then, when passing through the inclined plate 22d of the inclined plate settling portion 22e, further precipitation processing is performed, and sludge is precipitated toward the tank bottom. Since the tank bottom of the inclined plate sedimentation part 22e is inclined deeper toward the sludge storage part 22c, the sediment sludge moves to the sludge storage part 22c by gravity. Then, the supernatant that has passed through the inclined plate settling portion 22e is discharged from the inclined plate settling tank 22. In addition, the sludge settled in the sludge storage part 22c of the inclined plate sedimentation tank 22 is suitably extracted and disposed of separately.
[0015]
By such a coagulation sedimentation process, a considerable part of the suspended solids is removed from the sedimentation water from the inclined plate sedimentation tank 22. This precipitated treated water is introduced into the filter 24. The filter 24 is a gravitational rapid filter having two filtration layers of an anthracite filtration layer 24b and a sand filtration layer 24a. In some cases, additional flocculant or coagulant aid may be injected into the precipitation-treated water, stirred with a line mixer, and supplied to the filter 24. The filter is a pressure filter. Also good.
[0016]
A filter medium other than anthracite may be used as the filter medium for the filter layer 24b, or the filter layer 24b itself may be omitted. Moreover, it is also suitable for the filtration layer 24a to use garnet or the like instead of sand, or to make the sand and garnet multilayer.
[0017]
Then, the filtered water of the filter 24 is distributed in the treated water tank 26 and then distributed.
[0018]
The treated water in the treated water tank 26 can be supplied to the bottom of the filter 24 by the backwash pump 28. Therefore, the treated water is supplied to the filter 24 in an upward flow so that the filtration layer in the filter 24 can be backwashed.
[0019]
That is, as the water flow continues, the suspended substance trapped in the filtration layer gradually increases, the filter medium is saturated, and the filter 24 cannot capture the suspended substance any more. This can be detected by an increase in filtration resistance, an increase in treated water turbidity, or the like. Therefore, the filter medium is regenerated by washing before the filter medium is completely saturated.
[0020]
The timing of this cleaning is performed by setting a timer based on empirically obtained time or setting a filtration resistance by a differential pressure gauge. Further, the backwashing is performed by combining backwashing using filtered water or backwashing with surface washing or air washing.
[0021]
Here, in this embodiment, the flocculant from the flocculant storage tank 30 is added by the flocculant pump 32 to the backwash water line from the backwash pump 28 to the filter 24. As this flocculant, PAC may be used similarly to the flocculant storage tank 12 described above, and the flocculant from the flocculant storage tank 12 may be added. Further, an acid (acid solution such as sulfuric acid) from the acid storage tank 34 is added by the acid pump 36.
[0022]
Thus, in this embodiment, in addition to normal backwashing, backwashing with backwashing water containing a flocculant is performed, thereby forming a flocculant coating on the filter medium surface. That is, a predetermined amount of backwash water adjusted to a predetermined pH and added with a predetermined amount of flocculant is passed through the filter 24, thereby forming a film of aluminum hydroxide on the surface of the filter medium.
[0023]
In particular, in this embodiment, a pH meter 38 and a flow meter 40 are provided in the backwash line, and the detection result is supplied to the controller 42. Then, the controller 42 controls the driving of the flocculant pump 32 and the acid pump 36 based on these detection results, and controls the pH of the backwash water and the addition amount of the flocculant to be a predetermined amount. Control the amount of backwash water to which the agent and acid are added.
[0024]
By passing a predetermined amount of backwash water adjusted to such a predetermined pH and added with a predetermined amount of flocculant through the filter 24, an appropriate flocculant film is formed on the surface of the filter medium. Is controlled so that the zeta potential of the filter medium of the filtration layer 24a is 0 to -10 mV. That is, when the aluminum hydroxide adheres to the surface of the filter medium, the zeta potential of the filter medium increases. Further, since the zeta potential is changed by the addition of acid, the amount of acid added is also adjusted. Thereby, the zeta potential on the surface of the filter medium is controlled to 0 to -10 mV.
[0025]
Here, the zeta potential of the filter medium indicates an adhesion state of aluminum hydroxide to the filter medium surface. Therefore, by setting the zeta potential of the filter medium to a predetermined value (0 to -10 mV), the surface state of the filter medium can be adjusted to a state in which fine flocs can be easily captured. And by attaching the aluminum hydroxide to the surface of the filter medium with the backwash water adjusted as described above, in the filtration after the backwash, the fine floc is prevented from flowing out from the beginning, and the water quality is good. Treated water can be obtained.
[0026]
Moreover, in this embodiment, backwashing is performed in the following procedure. (I) First, backwashing is performed by allowing the filtered water to flow back as it is. For example, LV (empty linear velocity) = 40 m / h × 8 minutes. As described above, air backwashing may be combined. (Ii) Next, backwashing with backwashing water to which a flocculant (PAC) and an acid are added is performed. LV = 40 m / h × 1 minute. (Iii) Next, it rests in a stationary state for 30 seconds.
[0027]
In this way, backwashing is performed in which backwashing with backwashing water to which an aggregating agent and an acid as a zeta potential adjusting agent are added is performed for a short period of time, followed by a rest period. As a result, the flocculant and the filter medium are sufficiently mixed, a time for contact is obtained, and the aluminum hydroxide is sufficiently adhered to the surface of the filter medium.
[0028]
In particular, the backwash water to which the flocculant and acid are added according to the present embodiment uses PAC (a liquid containing 10% of the active ingredient Al 2 O 3 ) as the flocculant, and the addition amount is 40 to 80 mg / L. . The pH of the backwash water is 5.0 ± 0.5, and this is the total amount of water, which is 1.5 to 2.5 times the void volume of the filter medium in the filter 24. Through such circulation of the backwash water to the filter medium, a process for adjusting the zeta potential of the filter medium as described above to 0 to -10 mV can be performed. That is, by adjusting the concentration of PAC to this extent, an appropriate aluminum hydroxide film can be formed on the filter medium surface. Even if a high-concentration flocculant is passed through, the diffusion efficiency of the flocculant is deteriorated and an effective film formation cannot be performed. If the concentration is low, the amount of water passing is increased and a sufficient film formation cannot be performed. Further, even if the backwash water is increased, there is no adverse effect on the zeta potential control of the filter medium. However, meaningless backwashing is performed, and energy and coagulant are wasted. Therefore, it is preferable to control within the above range.
[0029]
As described above, in this embodiment, the amount of flocculant added to the backwash water is adjusted so that the zeta potential of the filter medium is 0 to −10 mV. This zeta potential indicates the electrical potential that exists across the solid-liquid interface and indicates the surface charge for suspended matter in water. Normally, suspended substances (viscosity components, algae, etc.) contained in river water are negatively charged, and each suspended substance is negatively charged. It has become. The aggregating agent first neutralizes this potential to weaken the repulsive force, and then agglomerates or aggregates. Therefore, it is desirable that the zeta potential of the aggregate floc is closer to the neutral point, that is, zero. Usually, the zeta potential of suspended substances in raw water is −20 mV or less, and the zeta potential of aggregated floc is −10 mV or more.
[0030]
Here, in the coagulation sedimentation / rapid filtration method generally used in water purification treatment, it is known that minute floc flows out from the rapid filter, particularly immediately after the start of filtration.
It is known that the zeta potential of this minute floc is as low as −15 mV or less and aggregation is not sufficiently performed.
[0031]
The filter medium is negatively charged as it is in the suspended substance in water. By setting the zeta potential of the filter medium to −10 mV or more, the adhesion of the flocculant hydroxide to the filter medium surface can be made sufficient. And by forming this deposit | attachment, the capture | acquisition ability of a floc can be improved and the raise of the suspended solid concentration in a treated water can be prevented. It is not preferable to set the zeta potential to 0 mV or more because it is not economical and the aluminum concentration in the cleaning wastewater becomes high.
[0032]
In this embodiment, PAC (a liquid containing 10% of the active ingredient Al 2 O 3 ) is used as the flocculant, and the amount added is 40 to 80 mg / L. The pH of the backwash water is 5.0 ± 0.5, and this is the total amount of water, which is 1.5 to 2.5 times the void volume of the filter medium in the filter 24. By such circulation of the backwash water to the filter medium, the zeta potential of the filter medium is adjusted to 0 to -10 mV.
[0033]
【Example】
Experiments were performed using the apparatus of FIG.
[0034]
"Experimental conditions"
・ Raw water flow rate: 3000m 3 / D
Mixing tank: residence time 4 minutes, G value 250 to 400 s −1
・ Sedimentation basin: Sedimentation basin with upward flow type inclined plate, residence time 40 minutes, rising speed 5 cm / min
・ Filtration pond specifications: φ5000mm × 5000mm × H4000mm (filtration area 25m 2 )
-Filtration rate (LV): 5 m / h (120 m / d)
Filter medium: Silica sand Specific gravity 2.5m, porosity 45%, effective diameter 0.6mm, uniformity coefficient 1.4, filter layer height 600mm
・ Water flow time: 48 hours (Washing starts with a timer)
-Raw water turbidity: 8-30 degrees-Raw water pH: 7.2-7.5
-Flocculant: PAC 10-30 mg / l
・ Target treatment water turbidity: less than 0.1 degree ・ Washing condition: water backwash LV = 40 m / h × 8 minutes Water volume = 25 m 2 × 40 m / h × (8 ÷ 60) = 133.3 m 3 / times PAC + sulfuric acid Water backwash LV = 40 m / h × 1 minute water amount = 25 m 2 × 40 m / h × (1 ÷ 60) = 16.7 m 3 / filter medium void volume = 25 m 2 × 0.6 m × 0.45 = 6.75 m 3
As 2.5 times the amount of water, 6.75 m 3 × 2.5 = 16.9 m 3 / times backwash water: filtered water is used. Adjust the pH to 5.0 ± 0.5.
PAC: Adjusted to be 40-80 mg / L.
[0035]
"Experimental result"
Add 10 mg / L of PAC as a flocculant to raw water with a turbidity of 8 degrees, add sulfuric acid as an acid in order to adjust the pH to 7.0, and mix using the stirrer 16 in the mixing tank 10. The mixture was gently stirred at 18 and subjected to precipitation treatment in an inclined plate settling tank (may be without an inclined plate) 22 and then supplied to a filter 24 to obtain treated water.
[0036]
By the way, if the filter 24 passes water to some extent, the gap between the filter media is saturated due to turbidity, and the water cannot be continued. The time until the filtration cannot be continued depends on the turbidity concentration in the inflow water of the filter, the water flow rate, and the like, and is usually about 24 to 72 hours. In this experiment, backwashing was performed every 48 hours. .
[0037]
The backwash condition, Mizugyakuarai the LV = 40m / h × 8 minutes, Mizugyakuarai by (i) PAC60mg / L and 75% pH 5 to ± 0.5 flocculant added water was 20 mL / m 3 inject sulfate Was performed at LV = 40 m / h × 1 min (2.5 times the pore volume of the filter medium 6.75 m 3 ). In addition, after the water backwashing which added this flocculant, the stationary time was set to about 30 second, and adhesion to the filter medium surface of the flocculant was accelerated | stimulated.
[0038]
By such treatment, it was confirmed that the treated water was not deteriorated immediately after backwashing and the target turbidity could be maintained continuously.
[0039]
【The invention's effect】
As described above, according to the present invention, the addition amount of the flocculant and the pH adjuster to the backwash water is controlled to a preset value. Thereby, the flocculant adheres to the surface of the filter medium, and the surface state of the filter medium can be made suitable for filtration. Therefore, in the filtration after backwashing, the outflow of fine floc can be prevented from the beginning, and treated water with good water quality can be obtained.
[0040]
In particular, the coagulant is polyaluminum chloride (referred to as PAC), and this PAC (10% Al 2 O 3 ) is added to the backwash water so as to be 40 to 80 mg / l. Control within the range of 0 ± 0.5, and the adjusted backwash water flow rate is 1.5 to 2.5 times the void volume of the filter medium in the filter device. Coagulant coating can be performed.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration of an apparatus according to an embodiment.
[Explanation of symbols]
10 Mixing tank, 18 Coagulation tank, 22 Inclined plate sedimentation tank, 24 Filter, 30 Coagulant storage tank, 32 Coagulant pump, 38 pH meter, 40 Flow meter, 42 Controller.

Claims (4)

凝集剤を添加した凝集処理を行った後、ろ過処理を行うろ過装置における逆洗方法において、
その逆洗工程において、ポリ塩化アルミニウムが40〜80mg/lとなるように添加され、そのpHが5.0±0.5の範囲内に制御された逆洗水を用いて逆洗を行い、水酸化アルミニウムの被膜をろ材表面に形成してろ材表面のゼータ電位を調整することを特徴とするろ過装置における逆洗方法。
In the backwashing method in the filtration apparatus that performs the filtration treatment after the aggregation treatment with the addition of the flocculant,
In the backwashing step, polyaluminum chloride is added so as to be 40-80 mg / l, and backwashing is performed using backwashing water whose pH is controlled within the range of 5.0 ± 0.5, A backwashing method in a filtration device, wherein a film of aluminum hydroxide is formed on the surface of a filter medium to adjust a zeta potential on the surface of the filter medium.
請求項1に記載の方法において、
前記逆洗水の通水量をろ過装置におけるろ材の空隙体積の1.5〜2.5倍量とすることを特徴とするろ過装置における逆洗方法。
The method of claim 1, wherein
A backwashing method in a filtration device, wherein the amount of water flow of the backwashing water is 1.5 to 2.5 times the void volume of the filter medium in the filtration device.
請求項1または2に記載の方法において、
前記ゼータ電位は、0〜−10mVの範囲内とする逆洗方法。
The method according to claim 1 or 2, wherein
The zeta potential is a backwash method in which the zeta potential is in the range of 0 to -10 mV.
請求項1〜3に記載の方法において、
前記逆洗水による逆洗の終了後、静置状態で休止し、逆洗水中の凝集剤とろ材を接触させることを特徴とするろ過装置における逆洗方法。
In the method of Claims 1-3,
After completion of the backwash by the backwash water, suspended in a stationary state, backwash method in the filtration apparatus characterized by contacting the backwash water of the coagulant and filter media.
JP2000073301A 2000-03-16 2000-03-16 Backwashing method in filtration equipment Expired - Lifetime JP4800461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000073301A JP4800461B2 (en) 2000-03-16 2000-03-16 Backwashing method in filtration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000073301A JP4800461B2 (en) 2000-03-16 2000-03-16 Backwashing method in filtration equipment

Publications (2)

Publication Number Publication Date
JP2001259313A JP2001259313A (en) 2001-09-25
JP4800461B2 true JP4800461B2 (en) 2011-10-26

Family

ID=18591561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000073301A Expired - Lifetime JP4800461B2 (en) 2000-03-16 2000-03-16 Backwashing method in filtration equipment

Country Status (1)

Country Link
JP (1) JP4800461B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4763670B2 (en) * 2007-10-11 2011-08-31 オルガノ株式会社 Filtration device
JP5343655B2 (en) * 2009-03-27 2013-11-13 東レ株式会社 Operation method of membrane module

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07161B2 (en) * 1988-12-19 1995-01-11 株式会社メルス技研 Pretreatment method for diatomaceous earth filter aid
JP3824034B2 (en) * 1997-07-07 2006-09-20 栗田工業株式会社 Filtration device backwash method

Also Published As

Publication number Publication date
JP2001259313A (en) 2001-09-25

Similar Documents

Publication Publication Date Title
JP4223870B2 (en) Water purification method
JP5489982B2 (en) Pretreatment method for separation by reverse osmosis membrane of treated water
JP4176915B2 (en) Solid-liquid separator
JP4004854B2 (en) Water purification method and apparatus
JP3640285B2 (en) Coagulation sedimentation equipment
JP4800461B2 (en) Backwashing method in filtration equipment
JP4800462B2 (en) Filtration method
JP3409322B2 (en) Pure water production method
JP4800463B2 (en) Filtration device
JP3891739B2 (en) Operation method of membrane filtration device
JP3905663B2 (en) Solid-liquid separator and flocculation condition determination method
JPH06304411A (en) Cohesive sedimentation and treatment apparatus therefor
JP2002066568A (en) Water treating method and apparatus
JP7142540B2 (en) Water purification method and water purification device
JP2004025011A (en) Method of treating muddy water
JP2001038109A (en) Back washing method in filter device
WO2016020957A1 (en) Filtration method and filtration device
JP3854471B2 (en) Water purification equipment
JP5068279B2 (en) Softening device and operation method thereof
JP2001224907A (en) Advanced treatment-correspondent flocculating, settling and rapid filtering device
JP3883358B2 (en) Filtration separation method and apparatus for sewage treatment
JPH10202010A (en) Water treatment device
JP2000317466A (en) Flocculating and separating device
JP3766880B2 (en) Water purification apparatus and operation method
JP2000300912A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4800461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term