JP4763670B2 - Filtration device - Google Patents

Filtration device Download PDF

Info

Publication number
JP4763670B2
JP4763670B2 JP2007265438A JP2007265438A JP4763670B2 JP 4763670 B2 JP4763670 B2 JP 4763670B2 JP 2007265438 A JP2007265438 A JP 2007265438A JP 2007265438 A JP2007265438 A JP 2007265438A JP 4763670 B2 JP4763670 B2 JP 4763670B2
Authority
JP
Japan
Prior art keywords
filter medium
filtration
water
medium layer
flocculant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007265438A
Other languages
Japanese (ja)
Other versions
JP2009090253A (en
Inventor
友明 宮ノ下
和彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2007265438A priority Critical patent/JP4763670B2/en
Publication of JP2009090253A publication Critical patent/JP2009090253A/en
Application granted granted Critical
Publication of JP4763670B2 publication Critical patent/JP4763670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Filtration Of Liquid (AREA)

Description

本発明は、水処理において、懸濁物質を凝集させてろ過処理するろ過装置に関する。   The present invention relates to a filtration apparatus for aggregating suspended substances and performing filtration treatment in water treatment.

工業用水や河川水等を原水として、工場の製造工程水や、水道水を製造する水処理、排水処理等において、懸濁物質の除去のために凝集ろ過処理が広く採用されている。凝集ろ過処理では、例えば原水に対しアルミニウム系の凝集剤等を添加混合し、原水中の懸濁物質をフロック化する。そして、この発生したフロックをろ材で捕捉することで、懸濁物質を除去する。このようにして、清澄なろ過水を得ている。
ろ過装置においては、ろ材が所定量の懸濁物質を捕捉するとろ過抵抗が上昇し、またフロックの流出が大きくなる。このため、ろ材を再生するための洗浄を行う。この洗浄は洗浄用水(通常はろ過水)をろ過装置に逆流させ、捕捉した懸濁物質を除去することによって行う。ところが、この洗浄を行った直後においては、ろ過水中の懸濁物質が増加し、充分なろ過が行えない場合が多い。これは、洗浄によりろ材表面の凝集剤が除去され、ろ過処理再開後は、ろ材表面に凝集剤が充分にコーティングされないまま懸濁物質と凝集剤がろ過装置内に導入されるため、懸濁物質、凝集剤、ろ材がうまく結着できないためと考えられている。
一方、工場用水の処理設備では工業用水を凝集ろ過した後、逆浸透膜ろ過(RO膜ろ過)を行うことがある。RO膜ろ過の原水としてはSDI(Silt Density Index)で3.0〜4.0程度の水質が要求される。そのため、凝集ろ過装置でもろ過処理初期から、SDIが3.0未満という水質で供給することが望まれている。
一般的に、浄水場ではろ過速度5m/h程度の急速砂ろ過池が多く用いられているが、ろ過処理初期の水質悪化を防ぐために、ろ過速度の減速、捨て水等を行っている。工場用水の処理においては、より早いろ過速度での処理が要求される。例えばろ過速度を20m/h以上とする場合には、上述のようにろ過処理初期には懸濁物質、凝集剤、ろ材がうまく結着できず、ろ過処理初期に濁質成分をSDIで3.0未満とすることはさらに困難となる。
このような、ろ過処理初期の水質悪化防止策として、ろ過速度の減速、ろ過処理初期の捨て水、ろ過処理初期の水の原水槽への返送、ろ過池の洗浄工程の最後での凝集剤添加(例えば、特許文献1)、ろ過池前段またはろ材層内での追加凝集等がある(例えば、特許文献2)。
特開2001−259313号公報 特開2001−137616号公報
Coagulation filtration is widely used for removing suspended solids in industrial process water, river water, etc., as raw water for manufacturing processes in plants, water treatment for producing tap water, wastewater treatment, and the like. In the coagulation filtration treatment, for example, an aluminum-based coagulant or the like is added to and mixed with raw water to flock suspended substances in the raw water. The suspended flocs are removed by capturing the generated floc with a filter medium. In this way, clear filtered water is obtained.
In the filtration device, when the filter medium captures a predetermined amount of suspended solids, the filtration resistance increases and the outflow of flocs increases. For this reason, cleaning for regenerating the filter medium is performed. This washing is performed by allowing washing water (usually filtered water) to flow back through the filtration device and removing the trapped suspended matter. However, immediately after this washing is performed, suspended substances in the filtered water increase and sufficient filtration cannot be performed in many cases. This is because the flocculant on the surface of the filter medium is removed by washing, and after the filtration process is resumed, the suspended substance and flocculant are introduced into the filtration device without the flocculant being sufficiently coated on the filter medium surface. It is thought that the flocculant and the filter medium cannot be bound well.
On the other hand, in industrial water treatment facilities, industrial water may be subjected to a coagulation filtration followed by reverse osmosis membrane filtration (RO membrane filtration). As raw water for RO membrane filtration, a water quality of about 3.0 to 4.0 is required by SDI (Silt Density Index). For this reason, it is desired that even an aggregating filtration apparatus supplies water with an SDI of less than 3.0 from the beginning of the filtration process.
Generally, rapid sand filtration basins with a filtration rate of about 5 m / h are often used in water purification plants, but in order to prevent deterioration of water quality at the initial stage of the filtration process, the filtration rate is reduced, waste water, etc. is used. In the treatment of industrial water, treatment at a faster filtration rate is required. For example, when the filtration rate is 20 m / h or more, as described above, suspended substances, flocculants, and filter media cannot be bound well at the beginning of the filtration process, and the turbid component is converted to SDI at the initial stage of the filtration process. It becomes more difficult to make it less than 0.
As measures to prevent deterioration of water quality at the beginning of filtration treatment, slowing the filtration rate, discarding water at the beginning of filtration treatment, returning water to the raw water tank at the beginning of filtration treatment, adding flocculant at the end of the washing process of the filtration pond (For example, Patent Document 1), additional aggregation in the filter basin or in the filter medium layer (for example, Patent Document 2).
JP 2001-259313 A JP 2001-137616 A

しかしながら、上述の対策では、ろ過水の水質の改善効果が得られる一方、運転制御の複雑化や、凝集剤注入設備の増設が必要になるという問題点があった。
本発明では、ろ過処理初期から、SDIが3.0未満のろ過水が得られるろ過装置の提供を目的とする。
However, the above-mentioned measures have the problem that the quality of filtered water can be improved, but the operation control is complicated and the addition of a flocculant injection facility is required.
In this invention, it aims at provision of the filtration apparatus from which the filtered water whose SDI is less than 3.0 is obtained from the filtration treatment initial stage.

本発明のろ過装置は、被処理水中の懸濁物に凝集剤を添加する手段と、懸濁物を除去するろ過塔とを有するろ過装置であって、前記ろ過塔は安息角が18〜30°の粒状ろ材からなるろ材層を1以上有することを特徴とする。前記ろ過塔は、ろ過処理開始前の空隙率が40〜60%であって、かつろ材層高が1000mmのろ材層にろ過速度20m/hで通液した場合に下記(1)式で定義される圧密率が0.5〜5.0%となるろ材層を有することが好ましい。   The filtration apparatus of the present invention is a filtration apparatus having a means for adding a flocculant to a suspension in water to be treated and a filtration tower for removing the suspension, and the repose angle of the filtration tower is 18 to 30. It has one or more filter media layers made of granular filter media at 0 °. The filtration tower is defined by the following equation (1) when the porosity before the start of filtration treatment is 40 to 60% and the filter medium layer is passed through a filter medium layer having a height of 1000 mm at a filtration rate of 20 m / h. It is preferable to have a filter medium layer with a compaction rate of 0.5 to 5.0%.

Figure 0004763670
Figure 0004763670

本発明によれば、ろ過処理初期から、SDIが3.0未満のろ過水が得られるろ過装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the filtration apparatus from which the filtered water whose SDI is less than 3.0 can be obtained from the early stage of a filtration process can be provided.

以下、本発明のろ過装置について例を挙げて説明する。ただし、本発明は以下の実施形態に限定されるものではない。
図1は本発明の一実施形態であるろ過装置10の模式図である。ろ過装置10は精製前の原水である被処理水(以下、原水という)を一時的に貯蔵する受槽12と、凝集剤タンク14、酸タンク16、ろ過塔20、ろ過処理をした水を貯蔵する水槽28を有している。
受槽12は内部にポンプ30を有し、ポンプ30に接続された配管50aはバルブ42aと流量計32を経由して、ラインミキサ18と接続されている。ラインミキサ18の二次側の配管50dはバルブ42bを経由し、分岐60aに至る。分岐60aでは配管50fと配管50eに分岐している。配管50eはバルブ42cを経由して、図示されない排出口へと接続されている。一方、配管50fはろ過塔20の上部に接続されている。
ろ過塔20は第1ろ材層24と、第2ろ材層26と、差圧計38を有している。ろ過塔20の底部には第2ろ材層26に使用される粒状ろ材の粒径よりも小さな目開きの支持材が設置され、その上に粒状ろ材が充填されて第2ろ材層26が形成されている。第2ろ材層26の上部には、さらに第1ろ材層24に使用される粒状ろ材が充填されて第1ろ材層24が形成されている。第1ろ材層24の上部にはフリーボードが設けられている。
ろ過塔20の下部に接続されている配管50gは分岐60bで配管50hと50iに分岐している。配管50iはバルブ42dを経由して、水槽28へ接続されている。水槽28に接続された配管50hは、ポンプ40とバルブ42eを経由して分岐60bで配管50gと合流している。凝集剤タンク14はポンプ34を経由して配管50bにより、酸タンク16はポンプ36を経由して配管50cにより、ラインミキサ18の一次側で配管50aと合流している。
Hereinafter, an example is given and explained about the filtration device of the present invention. However, the present invention is not limited to the following embodiments.
FIG. 1 is a schematic view of a filtration device 10 according to an embodiment of the present invention. The filtration apparatus 10 stores a treated tank (hereinafter referred to as raw water) that is raw water before purification, a receiving tank 12 that temporarily stores, a flocculant tank 14, an acid tank 16, a filtration tower 20, and filtered water. A water tank 28 is provided.
The receiving tank 12 has a pump 30 inside, and a pipe 50 a connected to the pump 30 is connected to the line mixer 18 via a valve 42 a and a flow meter 32. The pipe 50d on the secondary side of the line mixer 18 reaches the branch 60a via the valve 42b. The branch 60a branches to a pipe 50f and a pipe 50e. The pipe 50e is connected to a discharge port (not shown) via a valve 42c. On the other hand, the pipe 50 f is connected to the upper part of the filtration tower 20.
The filtration tower 20 includes a first filter medium layer 24, a second filter medium layer 26, and a differential pressure gauge 38. A support material having an opening smaller than the particle size of the granular filter medium used for the second filter medium layer 26 is installed at the bottom of the filtration tower 20, and the second filter medium layer 26 is formed by filling the granular filter medium thereon. ing. An upper portion of the second filter medium layer 26 is further filled with a granular filter medium used for the first filter medium layer 24 to form the first filter medium layer 24. A free board is provided above the first filter medium layer 24.
The pipe 50g connected to the lower part of the filtration tower 20 is branched into pipes 50h and 50i by a branch 60b. The pipe 50i is connected to the water tank 28 via the valve 42d. The pipe 50h connected to the water tank 28 merges with the pipe 50g at the branch 60b via the pump 40 and the valve 42e. The flocculant tank 14 is joined to the pipe 50a via the pump 34 and the acid tank 16 is joined to the pipe 50a on the primary side of the line mixer 18 via the pump 36 and the pipe 50c.

ろ過塔20が有する第1ろ材層24と第2ろ材層26の少なくとも一方は、安息角が18〜30°の粒状ろ材が充填されて形成されている。ここで、安息角とは、注入法(JIS R9301−2−2)により求まる角度である(以降において同じ)。
粒状ろ材において、同じ材質で、かつ同じ平均粒径で安息角が異なる場合、安息角が大きいということは、粒状物同士の摩擦力が大きい、すなわち表面の凹凸や角が多いと考えられる。安息角の大きい粒状ろ材は、凸部や角同士で接触している比率が相対的に高く、ろ材層における空隙率が高くなる。この空隙は、粒状ろ材同士の接触面積が小さく、不安定な空間である。従って、ろ材層に対して、通水による圧力が加わったり、外部からの振動等による衝撃が加わると、粒状ろ材間の接触面積が小さいために空隙が崩れ易い。
本発明における粒状ろ材において、安息角が18〜30°なのは、安息角が18°未満であると、通水前の初期空隙率と圧密率が共に低くなりすぎて、ろ過処理開始時におけるろ材への凝集剤接触が不足し、ろ過処理初期に懸濁物質を充分に除去できないためである。一方、安息角が30°を超えると、初期空隙率と圧密率が共に高くなりすぎて、ろ過時間が短くなり、懸濁物質を充分に捕捉できないためである。
At least one of the first filter medium layer 24 and the second filter medium layer 26 included in the filtration tower 20 is formed by being filled with a granular filter medium having an angle of repose of 18 to 30 °. Here, the angle of repose is an angle obtained by the injection method (JIS R9301-2-2) (the same applies hereinafter).
In the granular filter medium, when the angle of repose is the same material and the same average particle diameter, the angle of repose is large. It is considered that the frictional force between the granular materials is large, that is, the surface has many irregularities and corners. The granular filter medium having a large angle of repose has a relatively high ratio of contact between convex portions and corners, and the porosity in the filter medium layer is high. This void is an unstable space with a small contact area between the particulate filter media. Therefore, when pressure due to water flow is applied to the filter medium layer or an impact due to external vibration or the like is applied, the contact area between the granular filter media is small, and the voids are likely to collapse.
In the granular filter medium in the present invention, the angle of repose is 18 to 30 °. If the angle of repose is less than 18 °, both the initial void ratio and the consolidation ratio before passing water are too low, and the filter medium at the start of the filtration treatment This is because contact with the flocculant is insufficient, and the suspended solids cannot be sufficiently removed at the beginning of the filtration process. On the other hand, if the angle of repose exceeds 30 °, both the initial void ratio and the consolidation ratio are too high, the filtration time is shortened, and the suspended solids cannot be captured sufficiently.

本発明におけるろ材層の初期空隙率は40〜60%であることが好ましい。初期空隙率が40%未満であると、ろ過処理開始時から差圧が大きくなり、結果としてろ過継続時間が短くなってしまう。また、60%を超えると、ろ材の間隙あるいは目開きが大きくなり、発生したフロックのうち特に微小なものをろ材間で捕捉しにくくなるためである。
ここで、初期空隙率とは、ろ過処理開始前の第1ろ材層24、第2ろ材層26における空隙率をいい、下記式(2)により求められる。具体的には、ろ材層の体積から粒状ろ材の体積を除いた体積、すなわち空隙がろ材層の体積に占める割合である。また、粒状ろ材の体積は、粒状ろ材の質量を粒状ろ材の比重で除して求めることができる。
The initial porosity of the filter medium layer in the present invention is preferably 40 to 60%. If the initial porosity is less than 40%, the differential pressure increases from the beginning of the filtration process, and as a result, the filtration duration time is shortened. Further, if it exceeds 60%, the gap or opening of the filter medium becomes large, and it becomes difficult to capture particularly minute ones of the generated flocks between the filter mediums.
Here, the initial porosity means the porosity in the first filter medium layer 24 and the second filter medium layer 26 before the start of the filtration treatment, and is obtained by the following formula (2). Specifically, it is the volume obtained by subtracting the volume of the particulate filter medium from the volume of the filter medium layer, that is, the ratio of the voids to the volume of the filter medium layer. The volume of the granular filter medium can be determined by dividing the mass of the granular filter medium by the specific gravity of the granular filter medium.

Figure 0004763670
Figure 0004763670

本発明における安息角が18〜30°のろ材の圧密率は、0.5〜5.0%であることが好ましい。
圧密率が0.5%未満であると、ろ過処理開始時において、ろ材への凝集剤接触が不足して、ろ過処理初期において懸濁物質をフロック化できず、懸濁物質を充分に除去できない。また、圧密率が5.0%を超えると、ろ過時間が短くなり、懸濁物質を充分に除去できないためである。
本発明における圧密率とは、高さ1000mmのろ材層にろ過速度20m/hで通水した場合のろ材の減少の度合いであって、前記式(1)で定義される圧密率(%)で表される。なお、ろ過速度20m/hで通水後に、ろ過速度を遅くした際に、ろ過速度に応じて圧密率が小さくなることを要しない。
The consolidation rate of the filter medium having an angle of repose of 18 to 30 ° in the present invention is preferably 0.5 to 5.0%.
When the consolidation rate is less than 0.5%, the flocculant contact with the filter medium is insufficient at the start of the filtration process, and the suspended solids cannot be flocked at the beginning of the filtration process, and the suspended solids cannot be removed sufficiently. . On the other hand, if the consolidation ratio exceeds 5.0%, the filtration time is shortened and the suspended substances cannot be removed sufficiently.
The consolidation ratio in the present invention is the degree of decrease of the filter medium when water is passed through a filter medium layer having a height of 1000 mm at a filtration rate of 20 m / h, and is a consolidation ratio (%) defined by the above formula (1). expressed. It should be noted that when the filtration rate is slowed down after passing water at a filtration rate of 20 m / h, the compaction rate does not need to be reduced according to the filtration rate.

本発明におけるろ材の材質は特に限定されることはなく、例えば、ケイ砂、アンスラサイト、ポリエステル製粒状繊維ろ材等が挙げられる。
第1ろ材層24と第2ろ材層26に使用する粒状ろ材は、同じ材質であっても良いし、異なる材質であっても良く、原水の水質等やろ過水に求める水質に応じて決定することができる。例えば第1ろ材層24にはアンスラサイトを充填し、第2ろ材層26にはケイ砂を充填したものが用いられる。
ただし、少なくとも第1ろ過24と第2ろ材層26のいずれかのろ材層には、安息角18〜30°のろ材が充填される。
The material of the filter medium in the present invention is not particularly limited, and examples thereof include silica sand, anthracite, polyester granular fiber filter medium, and the like.
The particulate filter media used for the first filter media layer 24 and the second filter media layer 26 may be the same material or different materials, and are determined according to the quality of raw water and the quality required for filtered water. be able to. For example, the first filter medium layer 24 is filled with anthracite, and the second filter medium layer 26 is filled with silica sand.
However, at least one of the first filter 24 and the second filter medium layer 26 is filled with a filter medium having an angle of repose of 18 to 30 °.

第1ろ材層24の高さD1と、第2ろ材層26の高さD2は特に限定されず、原水の汚染状態、処理量等を勘案して決定することができるが、D1、D2はそれぞれ400〜1200mmであることが好ましい。400mm未満であると原水が粒状ろ材と接触する時間が短くなり、原水中の懸濁物質を充分に除去できないおそれがあるためである。一方、1200mmを超えると、洗浄水を多量に使用する必要があり、水回収率が大きく低下してしまうためである。
また、第1ろ材層24の高さD1と第2ろ材層26の高さD2の比率は特に限定されず、原水中の汚染物や、ろ過処理後の水(以下、ろ過水という)に求める清浄度等を勘案して決定することができる。
The height D1 of the first filter medium layer 24 and the height D2 of the second filter medium layer 26 are not particularly limited and can be determined in consideration of the contamination state of the raw water, the treatment amount, etc., but D1 and D2 are respectively It is preferable that it is 400-1200 mm. This is because when the thickness is less than 400 mm, the time during which the raw water comes into contact with the particulate filter medium is shortened, and the suspended matter in the raw water may not be sufficiently removed. On the other hand, if it exceeds 1200 mm, it is necessary to use a large amount of washing water, and the water recovery rate is greatly reduced.
Moreover, the ratio of the height D1 of the first filter medium layer 24 and the height D2 of the second filter medium layer 26 is not particularly limited, and is required for contaminants in raw water and water after filtration (hereinafter referred to as filtered water). It can be determined in consideration of cleanliness and the like.

ろ過装置10による原水のろ過処理方法について説明する。
まず、原水Aが受槽12に流入される。バルブ42c、42eを閉じ、バルブ42a、42b、42dを開ける。凝集剤タンク14から凝集剤をポンプ34により、酸タンク16から酸溶液をポンプ36にてラインミキサ18の一次側に送液する。送液された凝集剤と酸溶液はラインミキサ18を経由してろ過塔20の上部に流入される。流入した凝集剤と酸溶液は第1ろ材層24と第2ろ材層26のろ材内を拡散しながら流通し、ろ材表面に凝集剤の被膜が形成される。
続いて、流量計32で監視しながら、受槽12の原水をポンプ30を用いて所定の流量で送液する。送液された原水はラインミキサ18で凝集剤、酸溶液と混合されてろ過塔20の上部に流入される。ろ過塔20に流入された原水は第1ろ材層24を流通し、次いで第2ろ材層26内を流通する。この間、原水中の懸濁物質は凝集剤によりフロック化し、フロック化した懸濁物質は、第1ろ材層24および第2ろ材層26に充填されたろ材により捕捉されつつ流通する。懸濁物質が除去されたろ過水は、ろ過塔20の下部より流出される。流出したろ過水は水槽28にて貯蔵される。そして、必要に応じてろ過水Bとして送液される。
The raw water filtration method by the filtration device 10 will be described.
First, the raw water A flows into the receiving tank 12. The valves 42c and 42e are closed, and the valves 42a, 42b and 42d are opened. The flocculant is fed from the flocculant tank 14 by the pump 34 and the acid solution is fed from the acid tank 16 by the pump 36 to the primary side of the line mixer 18. The fed flocculant and acid solution flow into the upper part of the filtration tower 20 via the line mixer 18. The flocculant and the acid solution that flowed in flow while diffusing in the filter medium of the first filter medium layer 24 and the second filter medium layer 26, and a film of the flocculant is formed on the surface of the filter medium.
Subsequently, while monitoring with the flow meter 32, the raw water in the receiving tank 12 is fed at a predetermined flow rate using the pump 30. The fed raw water is mixed with the flocculant and the acid solution by the line mixer 18 and flows into the upper portion of the filtration tower 20. The raw water that has flowed into the filtration tower 20 flows through the first filter medium layer 24 and then flows through the second filter medium layer 26. During this time, the suspended substance in the raw water is flocked by the flocculant, and the suspended substance that has been flocked flows while being captured by the filter medium filled in the first filter medium layer 24 and the second filter medium layer 26. The filtered water from which suspended substances have been removed flows out from the lower part of the filtration tower 20. The filtered water that flows out is stored in the water tank 28. And it sends as filtered water B as needed.

上述のろ過処理を継続していくと、次第に第1ろ材層24、第2ろ材層26に捕捉される懸濁物質が増加し、ろ材が飽和して懸濁物質を捕捉できなくなる。そこで、ろ過塔20に設置された差圧計38によりろ過抵抗を監視し、ろ材が完全に飽和する前に、洗浄によるろ材の再生を行う。ろ材の再生はいわゆる逆洗によって行う。
具体的には、ポンプ30を停止して、原水の送液を止めて上述のろ過処理を終了する。次いで、バルブ42a、42b、42dを閉じ、バルブ42c、42eを開ける。水槽28内のろ過水を、ポンプ40により送液し、送液されたろ過水は配管50h、分岐60b、配管50gを経由して、ろ過塔20の下部から上昇流でろ過塔20内に流通される。上昇流となったろ過水は、第1ろ材層24、第2ろ材層26の粒状ろ材に捕捉された懸濁物質を粒状ろ材表面から除去しながら、ろ過塔20の上部から流出され、配管50f、分岐60a、配管50eを経由して図示されない排出口より排出される。逆洗終了後は、再度、上述のろ過処理を開始する。
When the above filtration process is continued, the suspended substances trapped in the first filter medium layer 24 and the second filter medium layer 26 gradually increase, and the filter medium is saturated and the suspended substances cannot be trapped. Therefore, the filtration resistance is monitored by the differential pressure gauge 38 installed in the filtration tower 20, and the filter medium is regenerated by washing before the filter medium is completely saturated. The filter medium is regenerated by so-called backwashing.
Specifically, the pump 30 is stopped, the feed of raw water is stopped, and the above-described filtration process is finished. Next, the valves 42a, 42b, and 42d are closed, and the valves 42c and 42e are opened. The filtrate in the water tank 28 is fed by the pump 40, and the fed filtrate is circulated in the filtration tower 20 from the lower part of the filtration tower 20 through the pipe 50h, the branch 60b, and the pipe 50g. Is done. The filtered water that has become an upward flow is discharged from the upper part of the filtration tower 20 while removing suspended substances trapped in the granular filter medium of the first filter medium layer 24 and the second filter medium layer 26 from the surface of the granular filter medium, and the pipe 50f. The gas is discharged from a discharge port (not shown) via the branch 60a and the pipe 50e. After the backwashing is completed, the above filtration process is started again.

前記凝集剤は特に限定されず、用途に合わせて選択することができ、例えば無機アルミニウム系、鉄系等の凝集剤が挙げられる。この内、無機アルミニウム系の凝集剤が好ましく、中でもポリ塩化アルミニウム(PAC)が特に好ましい。
また、凝集剤の添加量は特に限定されないが、原水に対して2〜30mg/lになるよう添加することが好ましい。2mg/l未満であるとろ過処理開始初期に粒状ろ材表面の被膜形成が不充分となり、原水中の懸濁物質のフロック化と除去が充分に行えないおそれがある。一方、30mg/lを超える濃度では、第1ろ材層24または第2ろ材層26の上部で、凝集剤がフロック化し、ろ材を閉塞させてしまうおそれがあるためである。
The flocculant is not particularly limited and can be selected according to the application. Examples thereof include inorganic aluminum-based and iron-based flocculants. Of these, inorganic aluminum-based flocculants are preferable, and polyaluminum chloride (PAC) is particularly preferable.
Moreover, although the addition amount of a flocculant is not specifically limited, It is preferable to add so that it may become 2-30 mg / l with respect to raw | natural water. If it is less than 2 mg / l, the film formation on the surface of the particulate filter medium becomes insufficient at the beginning of the filtration treatment, and there is a possibility that the suspended substances in the raw water cannot be sufficiently flocculated and removed. On the other hand, when the concentration exceeds 30 mg / l, the flocculant may flock at the upper part of the first filter medium layer 24 or the second filter medium layer 26 to block the filter medium.

前記酸溶液は原水を目的のpHとすることができれば特に限定されず、塩酸、硫酸等の水溶液を挙げることができる。   The acid solution is not particularly limited as long as the raw water can have a target pH, and examples thereof include aqueous solutions such as hydrochloric acid and sulfuric acid.

原水は特に限定されることはなく、河川水、海水、地下水、水道水、工業排水等、いずれであっても良い。   The raw water is not particularly limited and may be any of river water, seawater, groundwater, tap water, industrial wastewater, and the like.

本発明のろ過装置によるろ過速度はLV(線速度)で表され、m/hで示される値である。ろ過処理速度は特に限定されることはないが、LV=10〜40m/hが好ましく、20〜30m/hがより好ましい。ろ過速度が10m/h未満であると多量のろ過水を得るためにはろ過面積を大きくしなくてはならず、40m/hを超えると懸濁物質を充分に除去できない可能性があるためである。さらに、LV=20〜30m/hであれば、ろ過面積を小さく抑えながら、懸濁物質を確実に除去することができるため、より好ましい。   The filtration rate by the filtration device of the present invention is represented by LV (linear velocity) and is a value represented by m / h. Although the filtration processing speed is not particularly limited, LV = 10 to 40 m / h is preferable, and 20 to 30 m / h is more preferable. If the filtration rate is less than 10 m / h, the filtration area must be increased in order to obtain a large amount of filtered water, and if it exceeds 40 m / h, suspended substances may not be sufficiently removed. is there. Furthermore, LV = 20 to 30 m / h is more preferable because suspended substances can be reliably removed while keeping the filtration area small.

逆洗時の通水速度はろ過速度と同じくLVで表される。逆洗の通水速度はろ材の粒径と密度、つまり沈降速度によって限定されるが、洗浄精度と効率の観点から、20〜50m/hで行うことが好ましい。
また、通水量は、第1ろ材層24と第2ろ材層26の空隙体積の合計に対して、体積比で1.5〜5倍量とすることが好ましい。1.5倍量未満であると洗浄が不充分となるおそれがあり、5倍量を超えると多量の洗浄水を要し、かつ廃液も増量し好ましくないためである。
The water flow rate at the time of backwashing is represented by LV as with the filtration rate. The water flow rate for backwashing is limited by the particle size and density of the filter medium, that is, the sedimentation rate, but is preferably 20 to 50 m / h from the viewpoint of washing accuracy and efficiency.
Moreover, it is preferable that the amount of water flow is 1.5 to 5 times the volume ratio of the total void volume of the first filter medium layer 24 and the second filter medium layer 26. If the amount is less than 1.5 times, the cleaning may be insufficient. If the amount exceeds 5 times, a large amount of washing water is required, and the amount of waste liquid increases, which is not preferable.

第1ろ材層24、第2ろ材層26の洗浄のタイミングは、差圧計38によるろ過抵抗の設定の他、経験的に得られる時間に基づくタイマー設定により行っても良い。さらに逆洗は、ろ過水を用いた逆流洗浄に加えて、表面洗浄あるいは空気洗浄を組み合わせて行うことができる。表面洗浄とは第1ろ材層24の上面に水を吹き付けて、第1ろ材層24上部のろ材に付着した懸濁物質を水流によって剥離させる洗浄方法である。空気洗浄とはろ過塔20の下部より空気を流通させ、ろ材表面を空気が通過するときの剪断力により、ろ過塔20内のろ材に付着した懸濁物質を剥離させる洗浄方法である。   The timing of cleaning the first filter medium layer 24 and the second filter medium layer 26 may be set by setting a filtration resistance by the differential pressure gauge 38 or by setting a timer based on an empirically obtained time. Furthermore, backwashing can be performed in combination with surface washing or air washing in addition to backwashing using filtered water. The surface cleaning is a cleaning method in which water is sprayed on the upper surface of the first filter medium layer 24 so that suspended substances attached to the filter medium on the first filter medium layer 24 are separated by a water flow. The air cleaning is a cleaning method in which air is circulated from the lower part of the filtration tower 20 and the suspended substances attached to the filter medium in the filtration tower 20 are peeled off by a shearing force when the air passes through the surface of the filter medium.

本発明は上述の実施形態に限定されるものではなく、本発明の目的を損なわない範囲で変更することができる。
上述の実施形態ではろ過塔20内は第1ろ材層24と第2ろ材層26を有するが、ろ材層は1層だけであっても構わないし、3層以上であっても良い。また、使用する粒状ろ材は2以上の粒状ろ材を混合したものであっても良い。ここで、2種以上の粒状ろ材を混合する場合には、混合後の粒状ろ材の安息角が18〜30°であることが必要である。
上述の実施形態では、第2ろ材層26の上に、直接第1ろ材層24に使用する粒状ろ材を充填して第1ろ材層24を形成しているが、第1ろ材層24と第2ろ材層26の境界面に支持体が設けられていても良い。
上述の実施形態では、pH調整のために酸溶液を用いたが、原水のpHが酸性である場合や、凝集剤の添加によってpHが大きく低下する場合等には、アルカリ溶液を添加して原水のpHを調整しても良い。
The present invention is not limited to the above-described embodiment, and can be modified without departing from the object of the present invention.
In the above-described embodiment, the filtration tower 20 has the first filter medium layer 24 and the second filter medium layer 26, but the filter medium layer may be only one layer or three or more layers. Moreover, the granular filter material to be used may be a mixture of two or more granular filter media. Here, when mixing 2 or more types of granular filter media, the repose angle of the mixed granular filter media needs to be 18-30 degrees.
In the above-described embodiment, the first filter medium layer 24 is formed by filling the particulate filter medium directly used for the first filter medium layer 24 on the second filter medium layer 26. A support may be provided on the boundary surface of the filter medium layer 26.
In the above-described embodiment, the acid solution is used for pH adjustment. However, when the pH of the raw water is acidic or when the pH is greatly reduced by the addition of the flocculant, the alkaline water is added to the raw water. You may adjust pH of.

本発明のろ過装置によれば、ろ材層が適度な空隙を有するために、ろ過処理開始初期に各ろ材は、凝集剤と充分に接触することができ、凝集剤による皮膜が形成される。また、ろ材層は適度な圧密率を有するために、通液後には粒状ろ材間の空隙が縮小し、ろ過時間を適切なものとすることができる。結果、ろ過処理開始直後から、原水中の懸濁物質に対して高い除去能力を有し、SDIが3.0未満のろ過水を得ることができる。   According to the filtration device of the present invention, since the filter medium layer has an appropriate gap, each filter medium can sufficiently come into contact with the flocculant at the beginning of the filtration treatment, and a film of the flocculant is formed. In addition, since the filter medium layer has an appropriate compaction rate, the gap between the granular filter media is reduced after the liquid flow, and the filtration time can be made appropriate. As a result, immediately after the start of the filtration treatment, it is possible to obtain filtered water having a high removal ability with respect to suspended substances in raw water and having an SDI of less than 3.0.

以下、本発明について実施例を挙げて具体的に説明するが、実施例に限定されるものではない。
(SDIの測定)
直径47mm、孔径0.45μmのメンブレンフィルタを用いて、ろ過水を206kPaの加圧下でろ過した。始めの500mlのろ過に要した時間T1を測定し、続けて15分間ろ過した後、さらに500mlのろ過水をろ過するのに要した時間T2を測定し、次式によりSDI値を求めた。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, it is not limited to an Example.
(Measurement of SDI)
The filtered water was filtered under a pressure of 206 kPa using a membrane filter having a diameter of 47 mm and a pore diameter of 0.45 μm. The time T1 required for the first 500 ml filtration was measured, followed by filtration for 15 minutes, and then the time T2 required for filtering 500 ml of filtered water was further measured, and the SDI value was determined by the following formula.

Figure 0004763670
Figure 0004763670

(差圧の測定)
ろ過塔の二次側の圧力を一定の状態で、ろ過塔一次側の圧力を測定し差圧(ゲージ圧)とした。
(Differential pressure measurement)
With the pressure on the secondary side of the filtration tower kept constant, the pressure on the primary side of the filtration tower was measured to obtain a differential pressure (gauge pressure).

(実施例1)
内径200mm、高さ4000mmのカラム(ろ過面積=0.0314m)に、ろ材としてケイ砂1(水道用規格品、有効径:0.6mm、均等係数:1.1、安息角:18°)を充填し、ろ材層とした。このろ材層を逆洗(空気洗浄速度:40m/h×10分、水逆洗速度:36m/h×12分)した後に自然沈降させ、ろ材層高を1000mmとした。次いで、工業用水(濁度:1、pH:7.2〜7.5)を、30m/hのろ過速度で12時間通液した。この際、PACが10mg/lとなるように添加した。同時に、塩酸を添加して、原水のpHが6.5となるように調整した。通液開始後15〜720分の間で測定したろ過水のSDIを図2に示し、ろ過塔の差圧測定結果を図3に示す。また、ろ材の規格並びに圧密率を表1に示す。
Example 1
Silica sand 1 as a filter medium (standard product for water supply, effective diameter: 0.6 mm, uniformity coefficient: 1.1, angle of repose: 18 °) in a column (filtration area = 0.0314 m 2 ) having an inner diameter of 200 mm and a height of 4000 mm To obtain a filter medium layer. The filter medium layer was backwashed (air washing speed: 40 m / h × 10 minutes, water backwashing speed: 36 m / h × 12 minutes), and then naturally settled, so that the height of the filter medium layer was 1000 mm. Subsequently, industrial water (turbidity: 1, pH: 7.2 to 7.5) was passed through for 12 hours at a filtration rate of 30 m / h. At this time, PAC was added so as to be 10 mg / l. At the same time, hydrochloric acid was added to adjust the pH of the raw water to 6.5. The SDI of filtered water measured between 15 and 720 minutes after the start of liquid flow is shown in FIG. 2, and the differential pressure measurement result of the filtration tower is shown in FIG. Table 1 shows the specifications of the filter medium and the consolidation ratio.

(実施例2)
ろ材のケイ砂1を、アンスラサイト1(水道用規格品、有効径:0.8mm、均等係数:1.2、安息角:22°)とした他は実施例1と同様にして行った。SDI測定結果を図2に、ろ過塔の差圧を図3に、ろ材の規格と圧密率を表1に示す。
(Example 2)
The silica sand 1 of the filter medium was the same as Example 1 except that the anthracite 1 (standard product for water supply, effective diameter: 0.8 mm, uniformity coefficient: 1.2, angle of repose: 22 °) was used. The SDI measurement results are shown in FIG. 2, the differential pressure of the filtration tower is shown in FIG. 3, and the specifications of the filter media and the consolidation ratio are shown in Table 1.

(実施例3)
ろ材のケイ砂1を、アンスラサイト2(水道用規格品、有効径:0.8mm、均等係数:1.2、安息角:25°)とした他は実施例1と同様にして行った。SDI測定結果を図2に、ろ過塔の差圧を図3に、ろ材の規格と圧密率を表1に示す。
(Example 3)
The silica sand 1 of the filter medium was carried out in the same manner as in Example 1 except that the anthracite 2 (standard product for water supply, effective diameter: 0.8 mm, uniformity coefficient: 1.2, angle of repose: 25 °) was used. The SDI measurement results are shown in FIG. 2, the differential pressure of the filtration tower is shown in FIG. 3, and the specifications of the filter media and the consolidation ratio are shown in Table 1.

(実施例4)
ろ材のケイ砂1を、ポリエステル製粒状繊維ろ材1(安息角:30°)とした他は実施例1と同様にして行った。SDI測定結果を図2に、ろ過塔の差圧を図3に、ろ材の規格と圧密率を表1に示す。
Example 4
The same operation as in Example 1 was conducted except that the silica sand 1 of the filter medium was changed to a polyester granular fiber filter medium 1 (repose angle: 30 °). The SDI measurement results are shown in FIG. 2, the differential pressure of the filtration tower is shown in FIG. 3, and the specifications of the filter media and the consolidation ratio are shown in Table 1.

(比較例1)
ろ材のケイ砂1を、ケイ砂2(水道用規格品、有効径:0.6mm、均等係数:1.4、安息角:15°)とした他は実施例1と同様にして行った。SDI測定結果を図2に、ろ過塔の差圧を図3に、ろ材の規格と圧密率を表1に示す。
(Comparative Example 1)
The filtration was performed in the same manner as in Example 1 except that the silica sand 1 was changed to silica sand 2 (standard water supply product, effective diameter: 0.6 mm, uniformity coefficient: 1.4, angle of repose: 15 °). The SDI measurement results are shown in FIG. 2, the differential pressure of the filtration tower is shown in FIG.

(比較例2)
ろ材のケイ砂1を、ポリエステル製粒状繊維ろ材2(安息角:40°)とした他は実施例1と同様にして行った。SDI測定結果を図2に、ろ過塔の差圧を図3に、ろ材の規格と圧密率を表1に示す。
(Comparative Example 2)
This was performed in the same manner as in Example 1 except that the silica sand 1 of the filter medium was a polyester granular fiber filter medium 2 (rest angle: 40 °). The SDI measurement results are shown in FIG. 2, the differential pressure of the filtration tower is shown in FIG. 3, and the specifications of the filter media and the consolidation ratio are shown in Table 1.

Figure 0004763670
Figure 0004763670

表1より、実施例1〜4のろ材は、LV=20m/hにおける圧密率が、いずれも0.6〜3.0%の範囲にあり、比較例1は0.5%未満であり、比較例2は5.0%を超えていた。
図2は、実施例1〜4、比較例1、2における、ろ過水のSDIの経時変化を表したグラフである。各凡例はそれぞれ(a)実施例1、(b)実施例2、(c)実施例3、(d)実施例4、(e)比較例1、(f)比較例2の結果を表している。図2の結果から、実施例1〜4では通水開始15分後の測定においてもSDIが3.0未満であった。一方、比較例1ではSDIが3.0未満となるまでに1時間30分以上を要することがわかった。また、比較例2では、ろ過継続時間にかかわらず、SDIを3.0未満にできないことがわかった。実施例1は実施例2〜4に比べて、通水処理終了までの12時間にわたって、SDIは低い値であった。このことから、SDIによる水質評価を行った場合には、アンスラサイトや繊維ろ材に比べて、ケイ砂が好ましいといえる。
図3は、実施例1〜4、比較例1、2における、差圧(ろ過抵抗)の経時変化を表したグラフである。凡例は図2と同じである。図3の結果から、ろ過処理開始後15〜240分間においては、各ろ材の差圧は、比較例2(ポリエステル製粒状繊維ろ材2)<実施例4(ポリエステル製粒状繊維ろ材1)<実施例3(アンスラサイト2)<実施例2(アンスラサイト1)<実施例1(ケイ砂1)<比較例1(ケイ砂2)の順で、差圧が高い傾向で推移している。このことから、有効差圧を同じにした場合には、ろ過処理開始後初期段階においては、ろ過継続時間は繊維ろ材が長く、ケイ砂が短くなることがわかった。
従って、原水の水質、通水時間とろ過水水質を考慮して、適切なろ材を選定することで、ろ過塔の洗浄頻度の低減や、ろ過水の水質向上が図ることができる。例えば、ケイ砂1とアンスラサイト2を組み合わせた2層ろ過とすれば、各々単独の場合よりもろ過継続時間の延長、あるいはろ過水SDIの向上を図ることが可能となる。
From Table 1, the filter media of Examples 1 to 4 have a compaction rate at LV = 20 m / h in the range of 0.6 to 3.0%, and Comparative Example 1 is less than 0.5%. The comparative example 2 exceeded 5.0%.
FIG. 2 is a graph showing changes over time in the SDI of filtered water in Examples 1 to 4 and Comparative Examples 1 and 2. Each legend represents the results of (a) Example 1, (b) Example 2, (c) Example 3, (d) Example 4, (e) Comparative Example 1, and (f) Comparative Example 2, respectively. Yes. From the results of FIG. 2, in Examples 1 to 4, the SDI was less than 3.0 in the measurement 15 minutes after the start of water flow. On the other hand, in Comparative Example 1, it was found that it took 1 hour and 30 minutes or more for the SDI to be less than 3.0. Moreover, in the comparative example 2, it turned out that SDI cannot be less than 3.0 irrespective of filtration continuation time. In Example 1, compared with Examples 2 to 4, the SDI was a low value over 12 hours until the water flow treatment was completed. From this, when water quality evaluation by SDI is performed, it can be said that silica sand is preferable compared to anthracite and fiber filter media.
FIG. 3 is a graph showing the change over time in differential pressure (filtration resistance) in Examples 1 to 4 and Comparative Examples 1 and 2. The legend is the same as in FIG. From the results shown in FIG. 3, the differential pressure of each filter medium is 15 to 240 minutes after the start of the filtration treatment. Comparative Example 2 (polyester granular fiber filter medium 2) <Example 4 (polyester granular fiber filter medium 1) <Example 3 (Anthracite 2) <Example 2 (Anthracite 1) <Example 1 (Silica Sand 1) <Comparative Example 1 (Silica Sand 2) In this order, the pressure difference tends to increase. From this, it was found that when the effective differential pressure was the same, in the initial stage after the start of the filtration treatment, the filtration duration was longer for the fiber filter medium and for the silica sand.
Therefore, it is possible to reduce the frequency of washing the filtration tower and improve the quality of the filtered water by selecting an appropriate filter medium in consideration of the quality of the raw water, the passing time and the filtered water quality. For example, if the two-layer filtration is performed by combining the quartz sand 1 and the anthracite 2, it is possible to extend the filtration duration or improve the filtered water SDI as compared with the case where each is single.

本発明の一実施形態にかかるろ過装置の模式図である。It is a mimetic diagram of a filtration device concerning one embodiment of the present invention. 実施例および比較例のSDIの経時変化を表すグラフである。It is a graph showing the time-dependent change of SDI of an Example and a comparative example. 実施例および比較例における差圧の経時変化を表すグラフである。It is a graph showing the time-dependent change of the differential pressure | voltage in an Example and a comparative example.

符号の説明Explanation of symbols

10 ろ過装置
14 凝集剤タンク
20 ろ過塔
24 第1ろ材層
26 第2ろ材層
DESCRIPTION OF SYMBOLS 10 Filtration apparatus 14 Coagulant tank 20 Filtration tower 24 1st filter medium layer 26 2nd filter medium layer

Claims (2)

被処理水中の懸濁物に凝集剤を添加する手段と、懸濁物を除去するろ過塔とを有するろ過装置であって、前記ろ過塔は安息角が18〜30°の粒状ろ材からなるろ材層を1以上有することを特徴とする、ろ過装置。   A filtration apparatus having means for adding a flocculant to a suspension in water to be treated and a filtration tower for removing the suspension, wherein the filtration tower is made of a granular filter medium having an angle of repose of 18 to 30 °. A filtration apparatus comprising one or more layers. 前記ろ過塔は、ろ過処理開始前の空隙率が40〜60%であって、かつろ材層高が1000mmのろ材層にろ過速度20m/hで通液した場合に、下記(1)式で定義される圧密率が0.5〜5.0%となるろ材層を有することを特徴とする、請求項1に記載のろ過装置。
Figure 0004763670
The filtration tower is defined by the following formula (1) when the porosity before the start of filtration treatment is 40 to 60% and the filter medium layer is passed through a filter medium layer having a height of 1000 mm at a filtration rate of 20 m / h. The filtration apparatus according to claim 1, further comprising a filter medium layer having a consolidation ratio of 0.5 to 5.0%.
Figure 0004763670
JP2007265438A 2007-10-11 2007-10-11 Filtration device Active JP4763670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007265438A JP4763670B2 (en) 2007-10-11 2007-10-11 Filtration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007265438A JP4763670B2 (en) 2007-10-11 2007-10-11 Filtration device

Publications (2)

Publication Number Publication Date
JP2009090253A JP2009090253A (en) 2009-04-30
JP4763670B2 true JP4763670B2 (en) 2011-08-31

Family

ID=40662780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007265438A Active JP4763670B2 (en) 2007-10-11 2007-10-11 Filtration device

Country Status (1)

Country Link
JP (1) JP4763670B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011000565A (en) * 2009-06-22 2011-01-06 Fuso Kensetsu Kogyo Kk Pretreatment method of groundwater
JP7512135B2 (en) 2020-09-07 2024-07-08 清水建設株式会社 Water injection wells and groundwater recharge equipment
CN115893776B (en) * 2023-02-22 2023-05-30 北京中矿科技集团有限公司 Efficient desalination system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412720A (en) * 1987-07-07 1989-01-17 Nippon Inter Electronics Corp Solid-state relay
JP3529056B2 (en) * 1994-09-02 2004-05-24 月島機械株式会社 Apparatus for discharging powder and granules in tank and devices using the same
JP4176915B2 (en) * 1999-05-24 2008-11-05 オルガノ株式会社 Solid-liquid separator
JP3652567B2 (en) * 1999-11-15 2005-05-25 オルガノ株式会社 Cleaning method for filtration equipment
JP4800461B2 (en) * 2000-03-16 2011-10-26 オルガノ株式会社 Backwashing method in filtration equipment
JP5351406B2 (en) * 2007-10-10 2013-11-27 オルガノ株式会社 Aggregation filtration treatment method and aggregation filtration treatment apparatus

Also Published As

Publication number Publication date
JP2009090253A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
EP2694182B1 (en) Method and system for filtration and filtration cake layer formation
JP5614644B2 (en) Membrane filtration method
JP4763670B2 (en) Filtration device
JP4071364B2 (en) Pretreatment device for reverse osmosis membrane separator
WO2017159303A1 (en) Method for treating waste water having high hardness
JP3698678B2 (en) Fine sand slow filtration equipment
JP4519878B2 (en) Filtration device
EP2485981B1 (en) Use of a multi layered particulate filter for reducing the turbidity and sdi of water
JP2005118608A (en) Water treatment method
JP6532471B2 (en) Water treatment apparatus and water treatment method
JP5660255B2 (en) Solid-liquid separation method
JP2009183901A (en) Membrane filtration concentration method of coagulation treated water and coagulated waste muddy water
JP6616593B2 (en) Membrane cleaning method
JP2005125177A (en) Flocculating and settling apparatus and method for treating water to be treated by using the same
JP5068279B2 (en) Softening device and operation method thereof
KR101091092B1 (en) Two step advanced water purification apparatus
JP2007252977A (en) Water treatment process and treatment apparatus containing suspended solid and chromatic component
JP5351406B2 (en) Aggregation filtration treatment method and aggregation filtration treatment apparatus
KR20130005504U (en) Filtration apparatus having means for recovering filter material
JP2004025109A (en) Water treatment method and water treatment apparatus
JP4001490B2 (en) Filtration device, seawater treatment method using the same, and coagulant regeneration method
KR101795908B1 (en) Chemical recycle cleaning system of membrane process and cleaning method using the same
JP2006167591A (en) Method for controlling concentration of precoating liquid
JP6196439B2 (en) Water treatment apparatus and water treatment method for coagulating and filtering suspended water in one tank
JP2009178714A (en) Filtration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4763670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250