JP4001490B2 - Filtration device, seawater treatment method using the same, and coagulant regeneration method - Google Patents

Filtration device, seawater treatment method using the same, and coagulant regeneration method Download PDF

Info

Publication number
JP4001490B2
JP4001490B2 JP2002023646A JP2002023646A JP4001490B2 JP 4001490 B2 JP4001490 B2 JP 4001490B2 JP 2002023646 A JP2002023646 A JP 2002023646A JP 2002023646 A JP2002023646 A JP 2002023646A JP 4001490 B2 JP4001490 B2 JP 4001490B2
Authority
JP
Japan
Prior art keywords
seawater
filtration
filter medium
flocculant
filtration device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002023646A
Other languages
Japanese (ja)
Other versions
JP2003220306A (en
Inventor
哲司 渕脇
拓矢 麻田
長谷川正巳
Original Assignee
財団法人塩事業センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財団法人塩事業センター filed Critical 財団法人塩事業センター
Priority to JP2002023646A priority Critical patent/JP4001490B2/en
Publication of JP2003220306A publication Critical patent/JP2003220306A/en
Application granted granted Critical
Publication of JP4001490B2 publication Critical patent/JP4001490B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Filtering Materials (AREA)
  • Filtration Of Liquid (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、海水中の懸濁粒子を高速で効率的にろ過し、除去して清澄な海水を得、製塩におけるイオン交換膜電気透析槽への懸濁粒子の流入量を低減するろ過装置、該ろ過装置を用いた海水処理方法、および海水ろ過処理における凝集剤の再生方法に関する。
【0002】
【従来の技術】
海水を利用して製塩する際に、イオン交換膜製塩法では通常海水をイオン交換膜電気透析槽で濃縮してかん水を得ているが、この電気透析槽の構造はアニオン膜とカチオン膜との間にゴム枠付きのスペーサーを挟み交互に積み重ねた締付型と呼ばれる型式を一般的に用いており、イオン交換膜は0.3〜0.5mmと狭い間隔で配列している。そのため、脱塩室に海水を供給する流路(潮道)や膜間或いは膜面に海水中の懸濁粒子による詰まりや付着が生じると、それが流動抵抗となり膜表面へのイオンの供給が不足して水に近くなることで電気抵抗が増大して発熱し、膜を劣化させる水解や付着物の蓄積による電気抵抗の増大等のトラブルを招く。
【0003】
そこで、製塩工場では一般に海水を1次ろ過器、2次ろ過器を経由して海水中の懸濁粒子を除去し、イオン交換膜電気透析槽に海水を供給している。この海水処理設備には、上下水道等でよく利用される砂ろ過を使用し、多くは1次、2次ろ過器に有効径0.3〜0.5mmの砂を単層構成で用いている。また、一部ではろ過海水の清澄化向上のために凝集剤を海水に直接的添加してろ過をする直接凝集ろ過を行っており、その場合には1次ろ過器のろ材構成にアンスラサイトと砂の2層構成を用いている。
【0004】
しかし、現行のろ過器では海水中の懸濁粒子を通常70〜90%は除去できるものの、上述した懸濁粒子の影響を防止或いは低減するまでには至らず、ほとんどの製塩工場ではトラブル回避のために定期的な電気透析槽の解体洗浄を余儀なくされている。この海水中の懸濁粒子の影響を低減するためにはFI値(Fouling Index)で3.0以下、濁度値で0.05mg/L以下の海水水質を電気透析槽に供給する必要があるとされている。
【0005】
また、製塩工場では約4000m3/Hの海水処理を行っているが、上述したろ過器のろ過流速は1次ろ過器で8〜15m/H、2次ろ過器で10〜30m/H程度であるため設置面積は膨大なものになっている。
一方、近年の高速ろ過技術には、特公平4−36723号公報や特公平5−11482号公報などに記載されているように鉱物系ろ過材と比較して空隙率が大きい繊維質を長繊維束や繊維塊の形状にしてろ過材に用いているろ過方法および装置の技術が報告されている。しかし、繊維結束や長繊維束のろ過材では繊維の束が圧密に充填されるためろ過初期の捕捉効果は良好であるが、損失水頭が上昇しやすくろ過の持続性に問題があることが指摘されている。また、繊維塊のろ過材の場合には空隙率が高いためにろ過の持続性は良好であるが、長繊維束のろ過材と比較して捕捉(吸着)効果が低く、ろ過材の空隙内部に濁質が残留しやすいことが指摘されている。
【0006】
更に、下流側のろ過流速を上流側より速くすることで流圧によりろ過材の圧縮度を変化させ、懸濁粒子を粒径毎に層別で捕捉するようなろ過方法及び装置構造が特開平10−263315号公報や特開平11−123304号公報に記載されているが、このようなろ過方法及び装置構造を海水処理に適用した具体例はこれまで知られていない。
【0007】
【発明が解決しようとする課題】
本発明は、海水中の懸濁粒子を高速ろ過処理で効率的な除去を可能にするとともに、海水水質の清澄化と製塩におけるろ過装置の縮小化と、更にはろ過時に用いる凝集剤などの薬剤のリサイクルによる廃棄物量の削減を目的とする。
【0008】
【問題を解決するための手段】
本発明の上記の課題は、下記のろ過装置およびそれを利用した海水処理方法により達成された。以下に好ましい実施態様と共に列挙する。
(1) 円筒形カラムと前記円筒形カラムの下方に口径比を絞り込んだ円錐形カラムを連設し、前記円筒形カラム上端および前記円錐形カラム下端に多孔板を設けてなるろ過装置において、円錐形カラムに繊維質ろ過材からなるろ過材層を有し、円筒形カラム上部に邪魔板を有することを特徴とする海水の懸濁粒子除去用ろ過装置。
【0009】
(2) 前記繊維質ろ過材が、8〜15mm角で厚さが5〜10mmの不織布であることを特徴とする前記(1)に記載のろ過装置。
(3) 前記円錐形カラム上端と下端の口径比が2:1〜5:4であることを特徴とする前記(1)または(2)に記載のろ過装置。
(4) 前記(1)に記載のろ過装置の円筒形カラム上端より、凝集剤を添加した海水を30〜100m/Hで流入させて海水をろ過して海水中の懸濁粒子および凝集フロック粒子をろ過材に吸着させる工程と、円錐形カラム下端より酸を添加した水および空気を供給して逆流洗浄する工程と、ろ過材に吸着された懸濁粒子を分離除去する工程と、ろ過材に吸着された凝集フロック粒子をイオン化回収する工程とを含むことを特徴とする海水処理方法。
【0010】
(5) 前記凝集剤を海水1Lに対して0.25〜1.0mg添加することを特徴とする前記(4)に記載の海水処理方法。
(6) 前記凝集剤が硫酸バンドおよび塩化第二鉄から選択されることを特徴とする前記(4)または(5)に記載の海水処理方法。
(7) 前記(4)に記載の方法において、回収した凝集フロック粒子を凝集剤として再度ろ過に用いる工程を含むことを特徴とする海水ろ過処理における凝集剤の再生方法。
【0011】
【発明の実施の形態】
以下に本発明の実施の形態について詳細に説明するが、本発明は以下に説明するものに限定されるものではない。
本発明のろ過装置において、ろ過材層に用いられるろ過材としては、不織布のような繊維質ろ過材を用いることができる。例えば、ポリエステル、ポリエステル・レーヨン混合等が用いられる。形状としては例えば、8〜15mm角、好ましくは9〜12mm角で厚さ5〜10mm、空隙率が90%以上のシート状不織布である。
ろ過材の充填量としては、用いるろ過装置の大きさや円筒形カラム、円錐形カラムの大きさによって異なるため特に限定されないが、実用的には円錐形カラム下端より円筒形カラム300〜600mmの高さまで充填するのが好ましい。
【0012】
本発明のろ過装置構造によれば、ろ過装置下部の円錐形カラム内には圧密ろ過材層を、上部の円筒形カラム内には比較的空隙率の高いろ過材層を短時間に形成することが可能である。
【0013】
本発明のろ過装置の大きさは特に限定されないが、実用的には高さ2000〜3000mm、円筒形カラム内径200〜4000mm、円錐形カラム底部内径100〜3200mmの範囲で、円錐形カラム上端と下端の口径比が2:1〜5:4のものが好ましく適用できる。
【0014】
次に、本発明のろ過装置を使用した海水処理方法について説明する。
本発明のろ過装置を使用して海水ろ過する場合には、海水中に含まれる懸濁粒子を凝集、除去し易くするために通水前に凝集剤を被ろ過海水に添加することが好ましい。凝集剤としては、硫酸バンド、塩化第二鉄、ポリ鉄(ポリ硫酸第二鉄)等が挙げられる。
【0015】
本発明のろ過装置を用いて海水ろ過を行えば、被ろ過海水に凝集剤を添加してもろ過装置内への堆積による圧力損失が非常に小さく、高度に清澄なろ過海水を長時間に亘って得ることが可能である。
また、円筒形カラム上部に邪魔板を設けることで、ろ過装置の逆洗浄の際に逆洗水の旋回流および上昇流によってろ過材を浮遊かつ流動させ、ろ過材に捕捉吸着された濁質粒子を効率的に分離し、系外への排出を容易にすることが可能となる。これによって、逆洗水の少量化を可能にすることができ、さらに逆洗水へ塩酸などの酸を0.01〜0.05Nになるように添加することでろ過で捕捉した凝集フロックをイオン化して回収し、回収した凝集フロックを凝集剤として再度ろ過に使用するといった凝集剤のリサイクルも可能となる。
【0016】
本発明のろ過装置に設置する邪魔板の形状としては、ろ過装置円筒部内径の1/5〜1/4幅で内部円周の1/5〜1/4長のものが好ましく、このような邪魔板をろ過装置内壁面にろ過装置上部から20〜50cm下部の位置に逆洗水の流れを遮るように対角に設置し、またその下部20〜50cmに前記位置と交差位置に設置するのが好ましい。なお、邪魔板はろ過材が積層しないように30〜45°の角度をつけて取り付ける。
【0017】
本発明のろ過装置を構成するカラムの材質としては特に限定されず、SUS(ステンレス鋼)、FRP、塩化ビニル樹脂、アクリル樹脂等が挙げられる。多孔板や邪魔板としては、SUS、塩化ビニル樹脂等が挙げられる。
【0018】
図1は本発明のろ過装置の一例を示している。ろ過装置1には円筒形カラム2と、円筒形カラムの内径を絞り込んだ形状の円錐形カラム3を連設して、円筒形カラム2の上部には逆洗の場合に旋回流を生じさせるための邪魔板4と上端に逆洗時にろ過材の流出を防ぐための多孔板5を設置し、円錐形カラム3の下端にもろ過材を積層するための多孔板5を設置した。ろ過材層6にはシート状片不織布を円錐形カラム下端から円筒形カラムの中位程度まで湿潤の状態で充填して形成させる。
【0019】
本発明のろ過装置1で被ろ過海水をろ過する場合は、以下のようにする。
弁16、18、19を開口して空気と海水を併用した逆洗をしてろ過材層を均一に攪拌した後、弁16、18、19を閉じて弁14、15、17を開口して被ろ過海水供給配管8より被ろ過海水を流入させ、ろ過装置内部の空気抜き配管にて空気抜きを行う。ろ過装置内部の空気が完全に抜けた後、弁14を閉じると流動により浮遊していたろ過材が円錐形カラム3の多孔板5上に積層してろ過材層6を形成しろ過運転となる。なお、被ろ過海水には凝集剤として例えば塩化第二鉄を、海水中の鉄濃度が0.5mg/Lとなるように添加をする。
【0020】
ろ過を継続するとろ過材層6に海水中の懸濁粒子や凝集フロック粒子が堆積することで圧力損失が次第に増加すると共に、ろ過材層6がろ過方向に圧縮されていく。圧力損失が一定レベルに達すると被ろ過海水供給配管8からの被ろ過海水の供給およびろ過海水排出配管10からのろ過海水の排出を停止して弁15、17を閉じ、弁16を開口する。次に弁18、19を開口し、逆洗水供給配管11から逆洗水、空気供給配管12から空気を供給した逆流洗浄をして、圧密化したろ過材層6を崩し、流動化させると共に、逆洗水排出配管9より捕捉した濁質粒子及び凝集フロック粒子を排出させる。このとき、逆洗水に0.01〜0.05Nになるように塩酸を添加することで、ろ過の継続によりろ過材層6に蓄積された凝集フロックを再度イオン化して回収することができ、回収物を凝集剤として再利用することもできる。
【0021】
【実施例】
以下実施例において、実験的に得た知見について詳細に述べるが、本発明はこれに限定されるものではない。
【0022】
実験に使用したろ過装置としては、図1に示した形状の装置を用いた。具体的には、高さ2000mmのろ過装置1に内径300mm、高さ1500mmの塩化ビニル樹脂製の円筒形カラム2と、円筒形カラムの内径を3:2に絞り込んだ形状の塩化ビニル樹脂製の円錐形カラム3(高さ500mm)を連設して、円筒形カラム2の上部には逆洗の場合に旋回流を生じさせるための塩化ビニル樹脂製邪魔板4と上端に逆洗時にろ過材の流出を防ぐための塩化ビニル樹脂製多孔板5を設置し、円錐形カラム3の下端にもろ過材を積層するための塩化ビニル樹脂製多孔板5を設置した。ろ過材層6としては、10mm×10mm×5mmの薄く小さいポリエステル不織布をろ過材とし、円錐形カラム下端から円筒形カラムの下端より50cm上位まで湿潤の状態で充填して形成させた。
【0023】
次に、弁16、18、19を開口して空気と海水を併用した逆洗をしてろ過材層を均一に攪拌した後、弁16、18、19を閉じて弁14、15、17を開口して被ろ過海水供給配管8より被ろ過海水を60m/Hで流入させ、ろ過装置内部の空気抜き配管にて空気抜きを行った。ろ過装置内部の空気が完全に抜けた後、弁14を閉じると流動により浮遊していたろ過材が円錐形カラム3の多孔板5上に積層してろ過材層6を形成しろ過運転となった。なお、被ろ過海水には凝集剤として塩化第二鉄を海水中の鉄濃度が0.5mg/Lとなるように添加した。
【0024】
実施例において、被ろ過海水、ろ過海水の水質評価としてFI値測定及びレーザー濁度計による濁度測定、ろ過の持続性の評価としてろ過損失水頭上昇速度(ΔP)を測定した。測定方法については以下に示す。
FI値測定は、試料海水を0.2MPaの定圧下で孔径0.45μmのフィルター(MILLIPORE社製)でろ過を行い、ろ過初期と15分間ろ過後の試料液500mlをろ過するのに要した時間(t1、t2)を計測して以下の式により算出した。
【0025】
FI値 = ( 1 ― t1/t2 ) / 15 × 100 (1)
t1: 最初の試料海水500mlが通過する時間
t2: 15分後の試料海水500mlが通過する時間
FI値は6.7が最大値であり、数値が低いほど清澄化した水質を示す。製塩における電気透析槽供給海水の水質はFI値3.0以下とされている。
【0026】
ろ過損失水頭上昇速度(ΔP)は、圧力計によりろ過装置入口圧の連続的測定をして、逆洗直後(tS)の損失水頭(PS)と逆洗が開始する直前(tE)の損失水頭(PE)から以下の式により算出した。
ΔP = (PE−PS)/(tE−tS) (2)
実施例では相模湾の海水を被ろ過海水として用いた。この被ろ過海水の温度20〜23度、FI値5.5〜6.0であった。
【0027】
図2は本発明のろ過装置を使用して通水したろ過海水のFI値の経時変化を示すが、ろ過を開始した当初、ろ過海水のFI値は3.48であったが、30分経過以降には3.0以下を推移しており、良好なろ過が行われていることが分かる。また、図3に示す濁度測定結果においてもろ過を開始した当初、濁度は0.06mg/Lを示したが、その後は急激に濁度は減少して5分経過後には0.01mg/L以下となり、それ以降も濁度は維持され良好なろ過が認められた。これはろ過が経過すると共にろ過材層6の間隙内に海水中の懸濁粒子や凝集フロック粒子の堆積が進行するために見かけ上のふるい分け効果が向上したものと考える。
【0028】
図4はろ過装置入口圧の経時変化を示したものであるが、ろ過装置入口圧はろ過を開始した当初には0.046Mpa、4時間経過には0.091MPaを示し、そのろ過損失水頭上昇速度は0.01MPa/Hであった。これにより、通常の砂ろ過で用いる圧力式ろ過器のろ過損失水頭の上限は0.2〜0.3MPa程度であるため、過剰な耐圧設備にすることなく60m/Hのろ過流速で10時間以上の運転が可能であることが分かった。
【0029】
ろ過運転後、被ろ過海水の供給およびろ過海水の排出を停止し、ろ過装置1の逆洗水供給配管10から逆洗水、空気供給配管11から空気を供給し逆洗を行った。逆洗前のろ過材層6はろ過操作によりかなり緻密になっていたが、逆洗水と空気を流入させることによってろ過材が薄く小さいためにすぐに崩れ、邪魔板4等の装置構造で形成された旋回流および上昇流によって流動して、吸着捕捉した濁質粒子や凝集フロック粒子を効率的に分離して、逆洗排水配管9によりろ過装置1系外に排出した。
【0030】
また、上記逆洗時に塩酸を0.05Nになるように逆洗水に添加してその排水から凝集剤を回収し、それを再度ろ過に使用した場合のろ過海水のFI値を図5に示した。図5より、凝集剤の再利用を行った場合には未使用の凝集剤を使用した場合と比較してろ過能力の低下がやや認められるがリサイクル(再利用)は可能であることが判明した。これにより、凝集剤のリサイクルによって薬剤の使用量を削減するだけでなく、ろ過による廃棄物量の削減も可能となることがわかった。
【0031】
【発明の効果】
以上説明したように、本発明の高速ろ過装置は、海水中の濁質粒子を高速処理で効果的に除去することができ、かつ、製塩におけるろ過装置の縮小化を実現可能とするものである。更には、凝集剤をリサイクルすることで薬剤の使用量を削減し、それによりろ過による廃棄物量の削減も可能とするものである。
【0032】
【図面の簡単な説明】
【図1】本発明のろ過装置の基本構成を説明する図である。
【図2】本発明のろ過装置を用いた場合のろ過性能を表すために、ろ過海水のFI値測定結果の経時変化を示す図である。
【図3】本発明のろ過装置を用いた場合のろ過性能を表すために、ろ過海水の濁度測定結果の経時変化を示す図である。
【図4】本発明のろ過装置を用いた場合のろ過性能を表すために、ろ過運転時におけるろ過装置入口圧力の経時変化を示す図である。
【図5】本発明の実施形態における凝集剤の再利用性を表すために、ろ過海水のFI値測定結果の経時変化を示す図である。
【符号の説明】
1 ろ過装置本体
2 円筒形カラム
3 コーンカラム
4 邪魔板
5 多孔板
6 ろ過材層
7 空気抜き配管
8 被ろ過海水供給配管
9 逆洗排水配管
10 ろ過海水取出し配管
11 逆洗水供給配管
12 逆洗空気供給配管
13 排水配管
14〜20 弁
[0001]
BACKGROUND OF THE INVENTION
The present invention is a filtration device for efficiently filtering suspended particles in seawater at high speed and removing them to obtain clear seawater, and reducing the amount of suspended particles flowing into the ion exchange membrane electrodialysis tank in salt production, The present invention relates to a seawater treatment method using the filtration device and a method for regenerating the flocculant in the seawater filtration treatment.
[0002]
[Prior art]
When making salt using seawater, the ion-exchange membrane salt production method usually concentrates seawater in an ion-exchange membrane electrodialysis tank to obtain brine. The structure of this electrodialysis tank consists of an anion membrane and a cation membrane. In general, a type called a clamping type in which spacers with rubber frames are sandwiched and stacked alternately is used, and the ion exchange membranes are arranged at a narrow interval of 0.3 to 0.5 mm. For this reason, if clogging or adhesion due to suspended particles in seawater occurs between the flow path (tide channel) or the membrane surface or the membrane surface that supplies seawater to the desalination chamber, it becomes a flow resistance, and ions are supplied to the membrane surface. The shortage of water near the surface increases the electrical resistance to generate heat, causing troubles such as hydrolysis that deteriorates the film and an increase in electrical resistance due to the accumulation of deposits.
[0003]
Therefore, salt production plants generally remove seawater suspended particles from seawater through a primary filter and a secondary filter, and supply seawater to an ion exchange membrane electrodialysis tank. This seawater treatment facility uses sand filtration that is often used in water and sewage systems, and many use sand with an effective diameter of 0.3 to 0.5 mm in a single layer configuration for primary and secondary filters. . In some cases, in order to improve the clarification of filtered seawater, direct agglomeration filtration is performed in which a flocculant is added directly to seawater and filtration is performed. A two-layer structure of sand is used.
[0004]
However, although 70 to 90% of suspended particles in seawater can be removed normally with current filters, the effects of suspended particles described above have not been prevented or reduced, and most salt mills can avoid trouble. For this reason, the electrodialysis tank must be periodically disassembled and washed. In order to reduce the influence of suspended particles in seawater, it is necessary to supply seawater water quality of 3.0 or less in FI value (Fouling Index) and 0.05 mg / L or less in turbidity value to the electrodialysis tank. It is said that.
[0005]
Moreover, although about 4000 m < 3 > / H seawater treatment is performed in the salt production factory, the filtration flow rate of the above-mentioned filter is about 8 to 15 m / H for the primary filter and about 10 to 30 m / H for the secondary filter. Therefore, the installation area is enormous.
On the other hand, in recent high-speed filtration technology, as described in Japanese Patent Publication No. 4-36723 and Japanese Patent Publication No. 5-11482, a fiber having a larger porosity than a mineral filter medium is used as a long fiber. The technique of the filtration method and apparatus which are used for the filter medium in the shape of a bundle or a fiber lump has been reported. However, fiber bundles and long fiber bundles are packed with fiber bundles so that the trapping effect at the beginning of filtration is good, but the loss head is likely to rise and there is a problem with the sustainability of filtration. Has been. In the case of fiber mass filter media, the porosity is high due to the high porosity, but the trapping (adsorption) effect is low compared to the filter media of long fiber bundles, and the inside of the filter media voids. It has been pointed out that turbidity tends to remain.
[0006]
Further, there is disclosed a filtration method and an apparatus structure in which the compression rate of the filter medium is changed by the flow pressure by increasing the downstream filtration flow rate from the upstream side, and suspended particles are captured by layer for each particle size. Although it describes in 10-263315 gazette and Unexamined-Japanese-Patent No. 11-123304, the specific example which applied such a filtration method and apparatus structure to seawater treatment is not known until now.
[0007]
[Problems to be solved by the invention]
The present invention enables efficient removal of suspended particles in seawater by high-speed filtration, clarifying the quality of seawater, reducing the size of filtration equipment in salt production, and further, agents such as flocculants used during filtration The purpose is to reduce the amount of waste through recycling.
[0008]
[Means for solving problems]
The above-described problems of the present invention have been achieved by the following filtration device and a seawater treatment method using the same. Listed below together with preferred embodiments.
(1) In a filtration apparatus in which a cylindrical column and a conical column with a reduced aperture ratio are provided below the cylindrical column and a perforated plate is provided at the upper end of the cylindrical column and the lower end of the conical column. A filtration apparatus for removing suspended particles of seawater, comprising a filter medium layer made of a fibrous filter medium in a cylindrical column and a baffle plate on the upper part of the cylindrical column.
[0009]
(2) The filtration device according to (1), wherein the fibrous filter material is a nonwoven fabric having an 8 to 15 mm square and a thickness of 5 to 10 mm.
(3) The filtration device according to (1) or (2), wherein the aperture ratio between the upper end and the lower end of the conical column is 2: 1 to 5: 4.
(4) From the upper end of the cylindrical column of the filtration device according to (1), seawater to which a flocculant is added is allowed to flow at 30 to 100 m / H to filter the seawater, and suspended particles and aggregated floc particles in seawater. To the filter medium, to supply water and air to which acid is added from the lower end of the conical column and backwash, to separate and remove suspended particles adsorbed on the filter medium, and to the filter medium And a step of ionizing and recovering the adsorbed aggregated floc particles.
[0010]
(5) The seawater treatment method according to (4), wherein 0.25 to 1.0 mg of the flocculant is added to 1 L of seawater.
(6) The seawater treatment method according to (4) or (5), wherein the flocculant is selected from a sulfate band and ferric chloride.
(7) A method for regenerating a flocculant in a seawater filtration process, comprising the step of using the recovered floc particles as a flocculant for filtration again in the method according to (4).
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail below, but the present invention is not limited to those described below.
In the filtration device of the present invention, a fibrous filter material such as a nonwoven fabric can be used as the filter medium used for the filter medium layer. For example, polyester, polyester / rayon mixture, or the like is used. The shape is, for example, a sheet-like nonwoven fabric having a size of 8 to 15 mm square, preferably 9 to 12 mm square, a thickness of 5 to 10 mm, and a porosity of 90% or more.
The packing amount of the filter medium is not particularly limited because it varies depending on the size of the filtration device to be used, the size of the cylindrical column, and the size of the conical column, but practically from the lower end of the conical column to the height of the cylindrical column 300 to 600 mm. Filling is preferred.
[0012]
According to the filter structure of the present invention, a compact filter medium layer is formed in a conical column at the lower part of the filter apparatus, and a filter medium layer having a relatively high porosity is formed in an upper cylindrical column in a short time. Is possible.
[0013]
The size of the filtration device of the present invention is not particularly limited, but practically a height of 2000 to 3000 mm, a cylindrical column inner diameter of 200 to 4000 mm, and a conical column bottom inner diameter of 100 to 3200 mm. Those having an aperture ratio of 2: 1 to 5: 4 are preferably applicable.
[0014]
Next, a seawater treatment method using the filtration device of the present invention will be described.
When performing seawater filtration using the filtration device of the present invention, it is preferable to add a flocculant to the seawater to be filtered before passing water in order to facilitate aggregation and removal of suspended particles contained in the seawater. Examples of the flocculant include sulfate band, ferric chloride, polyiron (polyferric sulfate) and the like.
[0015]
When seawater filtration is performed using the filtration device of the present invention, even if a flocculant is added to the seawater to be filtered, the pressure loss due to accumulation in the filtration device is very small, and highly clear filtered seawater is used for a long time. Can be obtained.
In addition, by providing a baffle plate at the top of the cylindrical column, the filter media is suspended and flowed by the swirling flow and upward flow of backwash water during backwashing of the filtration device, and suspended particles that are trapped and adsorbed by the filter media Can be efficiently separated and discharged to the outside of the system. As a result, it is possible to reduce the amount of backwash water, and further, by adding an acid such as hydrochloric acid to the backwash water so as to be 0.01 to 0.05 N, the aggregated flocs captured by filtration are ionized. Thus, the flocculant can be recycled such that the collected floc floc is used again as a flocculant for filtration.
[0016]
As the shape of the baffle plate installed in the filtration device of the present invention, one having a width of 1/5 to 1/4 of the inner diameter of the cylindrical portion of the filtration device and a length of 1/5 to 1/4 of the inner circumference is preferable. A baffle plate is installed diagonally on the inner wall surface of the filtration device at a position 20 to 50 cm below the upper portion of the filtration device so as to block the flow of backwash water, and at a lower portion 20 to 50 cm at a position intersecting with the above position. Is preferred. The baffle plate is attached at an angle of 30 to 45 ° so that the filter medium is not laminated.
[0017]
It does not specifically limit as a material of the column which comprises the filtration apparatus of this invention, SUS (stainless steel), FRP, a vinyl chloride resin, an acrylic resin, etc. are mentioned. Examples of the perforated plate and baffle plate include SUS and vinyl chloride resin.
[0018]
FIG. 1 shows an example of the filtration device of the present invention. The filtration device 1 is provided with a cylindrical column 2 and a conical column 3 having a shape in which the inner diameter of the cylindrical column is reduced, and a swirling flow is generated in the upper part of the cylindrical column 2 in the case of backwashing. A perforated plate 5 was installed on the baffle plate 4 and the upper end to prevent the filter material from flowing out during backwashing, and a perforated plate 5 was also installed on the lower end of the conical column 3. The filter medium layer 6 is formed by filling a sheet-like piece nonwoven fabric in a wet state from the lower end of the conical column to the middle level of the cylindrical column.
[0019]
When filtering the seawater to be filtered with the filtration device 1 of the present invention, the following is performed.
After opening the valves 16, 18, 19 and backwashing with air and seawater together and stirring the filter medium layer uniformly, the valves 16, 18, 19 are closed and the valves 14, 15, 17 are opened The seawater to be filtered is introduced from the seawater supply pipe 8 to be filtered, and the air is vented by the air vent pipe inside the filtration device. When the valve 14 is closed after the air inside the filtration device is completely removed, the filter medium suspended by the flow is laminated on the perforated plate 5 of the conical column 3 to form the filter medium layer 6 and the filtration operation is performed. . For example, ferric chloride is added to the seawater to be filtered as a flocculant so that the iron concentration in the seawater is 0.5 mg / L.
[0020]
If the filtration is continued, suspended particles and aggregated floc particles in seawater accumulate on the filter medium layer 6 so that the pressure loss gradually increases and the filter medium layer 6 is compressed in the filtration direction. When the pressure loss reaches a certain level, the supply of the filtered seawater from the filtered seawater supply pipe 8 and the discharge of the filtered seawater from the filtered seawater discharge pipe 10 are stopped, the valves 15 and 17 are closed, and the valve 16 is opened. Next, the valves 18 and 19 are opened, backwashing water is supplied from the backwashing water supply pipe 11 and backwashing is performed by supplying air from the air supply pipe 12, and the compacted filter material layer 6 is broken and fluidized. Then, turbid particles and aggregated floc particles captured from the backwash water discharge pipe 9 are discharged. At this time, by adding hydrochloric acid to the backwash water so as to be 0.01 to 0.05 N, the flocs accumulated in the filter medium layer 6 can be ionized again by the continuation of filtration and recovered. The recovered material can be reused as a flocculant.
[0021]
【Example】
In the following Examples, findings obtained experimentally will be described in detail, but the present invention is not limited thereto.
[0022]
As a filtration device used in the experiment, a device having the shape shown in FIG. 1 was used. Specifically, a cylindrical column 2 made of vinyl chloride resin having an inner diameter of 300 mm and a height of 1500 mm in a filtration device 1 having a height of 2000 mm, and a vinyl chloride resin made by narrowing the inner diameter of the cylindrical column to 3: 2. A conical column 3 (height 500 mm) is provided continuously, and a vinyl chloride resin baffle plate 4 for generating a swirling flow in the upper part of the cylindrical column 2 and a filter medium at the upper end during backwashing. A perforated plate 5 made of vinyl chloride resin for preventing the outflow of water was installed, and a perforated plate 5 made of vinyl chloride resin for laminating the filter medium was also installed at the lower end of the conical column 3. The filter material layer 6 was formed by filling a thin and small polyester nonwoven fabric of 10 mm × 10 mm × 5 mm as a filter medium and filling it in a wet state from the lower end of the conical column to 50 cm above the lower end of the cylindrical column.
[0023]
Next, the valves 16, 18, and 19 are opened and backwashing is performed using air and seawater in combination to uniformly stir the filter medium layer. Then, the valves 16, 18, and 19 are closed, and the valves 14, 15, and 17 are closed. The seawater to be filtered was flown in at 60 m / H from the seawater supply pipe 8 to be filtered, and the air was vented through the air vent pipe inside the filtration apparatus. After the air inside the filtration device is completely removed, when the valve 14 is closed, the filter medium that has floated by the flow is laminated on the perforated plate 5 of the conical column 3 to form the filter medium layer 6 and the filtration operation is performed. It was. In addition, ferric chloride as a flocculant was added to the seawater to be filtered so that the iron concentration in the seawater was 0.5 mg / L.
[0024]
In the examples, FI value measurement and turbidity measurement using a laser turbidimeter were performed as the water quality evaluation of filtered seawater and filtered seawater, and the filtration loss head elevation rate (ΔP) was measured as an evaluation of the sustainability of filtration. The measurement method is shown below.
The FI value is measured by filtering the sample seawater with a 0.45 μm pore size filter (MILLIPORE) under a constant pressure of 0.2 MPa, and the time required to filter 500 ml of the sample solution after the initial filtration and 15 minutes of filtration. (t 1 , t 2 ) was measured and calculated by the following formula.
[0025]
FI value = (1 - t 1 / t 2) / 15 × 100 (1)
t 1 : Time for the first sample seawater 500ml to pass
t 2 : Time required for 500 ml of sample seawater to pass after 15 minutes
The maximum FI value is 6.7, and the lower the value, the clearer the water quality. The water quality of the seawater supplied to the electrodialysis tank in salt production is an FI value of 3.0 or less.
[0026]
The filtration loss head rise rate (ΔP) is determined by continuously measuring the inlet pressure of the filtration device with a pressure gauge, the head loss (P S ) immediately after backwash (t S ), and immediately before the start of backwash (t E ). From the loss head (P E ), the following formula was used.
ΔP = (P E −P S ) / (t E −t S ) (2)
In the examples, seawater of Sagami Bay was used as filtered seawater. This filtered seawater had a temperature of 20 to 23 degrees and an FI value of 5.5 to 6.0.
[0027]
FIG. 2 shows the change over time in the FI value of filtered seawater that was passed using the filtration device of the present invention. At the beginning of filtration, the FI value of filtered seawater was 3.48, but 30 minutes passed. After that, it is 3.0 or less, and it can be seen that good filtration is performed. In the turbidity measurement results shown in FIG. 3, the turbidity was 0.06 mg / L at the beginning of filtration, but after that, the turbidity decreased rapidly and after 5 minutes, 0.01 mg / L. After that, the turbidity was maintained and good filtration was observed. This is considered to be because the apparent sieving effect was improved because the accumulation of suspended particles and aggregated floc particles in seawater progressed in the gaps between the filter media layers 6 as filtration progressed.
[0028]
FIG. 4 shows the change over time in the inlet pressure of the filtration device. The inlet pressure of the filtration device was 0.046 MPa at the beginning of filtration, and 0.091 MPa after 4 hours. The speed was 0.01 MPa / H. Thereby, since the upper limit of the filtration loss head of the pressure type filter used for normal sand filtration is about 0.2 to 0.3 MPa, it is 10 hours or more at a filtration flow rate of 60 m / H without using excessive pressure-resistant equipment. It was found that it was possible to drive.
[0029]
After the filtration operation, the supply of filtered seawater and the discharge of filtered seawater were stopped, and backwashing water was supplied from the backwash water supply pipe 10 of the filtration device 1 and air was supplied from the air supply pipe 11 to perform backwashing. The filter medium layer 6 before backwashing was considerably dense due to the filtration operation, but the filter medium was thin and small by flowing backwash water and air, so it collapsed immediately and formed with a device structure such as a baffle plate 4 The adsorbed and trapped turbid particles and the aggregated floc particles were efficiently separated by the swirling flow and the upward flow, and discharged out of the filtration device 1 system by the backwash drainage pipe 9.
[0030]
Also, FIG. 5 shows the FI value of the filtered seawater when hydrochloric acid is added to the backwashing water so that it becomes 0.05 N during the backwashing, and the flocculant is recovered from the drainage and used again for filtration. It was. From FIG. 5, it was found that when the flocculant was reused, the filtration ability was somewhat lower than when the unused flocculant was used, but recycling (reuse) was possible. . As a result, it was found that not only the amount of chemicals used can be reduced by recycling the flocculant, but also the amount of waste by filtration can be reduced.
[0031]
【The invention's effect】
As described above, the high-speed filtration device of the present invention can effectively remove turbid particles in seawater by high-speed treatment, and can reduce the size of the filtration device in salt production. . Furthermore, the amount of chemicals used can be reduced by recycling the flocculant, thereby reducing the amount of waste by filtration.
[0032]
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a basic configuration of a filtration device according to the present invention.
FIG. 2 is a graph showing the change over time of the FI value measurement result of filtered seawater in order to show the filtration performance when the filtration device of the present invention is used.
FIG. 3 is a graph showing the change over time in the turbidity measurement results of filtered seawater in order to show the filtration performance when using the filtration device of the present invention.
FIG. 4 is a graph showing a change with time of the inlet pressure of the filtration device during the filtration operation in order to express the filtration performance when the filtration device of the present invention is used.
FIG. 5 is a diagram showing a change with time of the FI value measurement result of filtered seawater in order to represent the reusability of the flocculant in the embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Filtration apparatus main body 2 Cylindrical column 3 Cone column 4 Baffle plate 5 Porous plate 6 Filter material layer 7 Air vent pipe 8 Filtered seawater supply pipe 9 Backwash drainage pipe 10 Filtered seawater extraction pipe 11 Backwash water supply pipe 12 Backwash air Supply piping 13 Drainage piping 14-20 Valve

Claims (4)

円筒形カラムと前記円筒形カラムの下方に口径比を絞り込んだ円錐形カラムを連設し、前記円筒形カラム上端および前記円錐形カラム下端に多孔板を設けてなるろ過装置において、円錐形カラムに繊維質ろ過材からなるろ過材層を有し、円筒形カラム上部に邪魔板を有することを特徴とする海水の懸濁粒子除去用ろ過装置の円筒形カラム上端より、凝集剤を添加した海水を30〜100m/Hで流入させて海水をろ過して海水中の懸濁粒子および凝集フロック粒子をろ過材に吸着させる工程と、円錐形カラム下端より酸を添加した水および空気を供給して逆流洗浄する工程と、ろ過材に吸着された懸濁粒子を分離除去する工程と、ろ過材に吸着された凝集フロック粒子をイオン化回収する工程とを含むことを特徴とする海水処理方法。 In the filtration apparatus in which a cylindrical column and a conical column with a reduced aperture ratio are provided below the cylindrical column and a perforated plate is provided at the upper end of the cylindrical column and the lower end of the conical column, From the upper end of the cylindrical column of the filtration device for removing suspended particles of seawater, which has a filter medium layer made of a fibrous filter medium and a baffle plate at the upper part of the cylindrical column, the seawater to which the flocculant is added is added. A process of inflowing at 30 to 100 m / H to filter seawater to adsorb suspended particles and agglomerated floc particles in the seawater to the filter medium, and supply water and air to which acid is added from the lower end of the conical column to counter flow A seawater treatment method comprising a step of washing, a step of separating and removing suspended particles adsorbed on a filter medium, and a step of ionizing and recovering aggregated floc particles adsorbed on the filter medium. 前記凝集剤を海水1Lに対して0.25〜1.0mg添加することを特徴とする請求項に記載の海水処理方法。The seawater treatment method according to claim 1 , wherein 0.25 to 1.0 mg of the flocculant is added to 1 L of seawater. 前記凝集剤が硫酸バンドおよび塩化第二鉄から選択されることを特徴とする請求項1または2に記載の海水処理方法。The seawater treatment method according to claim 1 or 2 , wherein the flocculant is selected from a sulfate band and ferric chloride. 請求項に記載の方法において、回収した凝集フロック粒子を凝集剤として再度ろ過に用いる工程を含むことを特徴とする海水ろ過処理における凝集剤の再生方法。2. The method for regenerating a flocculant in a seawater filtration process according to claim 1 , further comprising the step of using the recovered floc floc particles as a flocculant for filtration again.
JP2002023646A 2002-01-31 2002-01-31 Filtration device, seawater treatment method using the same, and coagulant regeneration method Expired - Lifetime JP4001490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002023646A JP4001490B2 (en) 2002-01-31 2002-01-31 Filtration device, seawater treatment method using the same, and coagulant regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002023646A JP4001490B2 (en) 2002-01-31 2002-01-31 Filtration device, seawater treatment method using the same, and coagulant regeneration method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007117056A Division JP4519878B2 (en) 2007-04-26 2007-04-26 Filtration device

Publications (2)

Publication Number Publication Date
JP2003220306A JP2003220306A (en) 2003-08-05
JP4001490B2 true JP4001490B2 (en) 2007-10-31

Family

ID=27746301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002023646A Expired - Lifetime JP4001490B2 (en) 2002-01-31 2002-01-31 Filtration device, seawater treatment method using the same, and coagulant regeneration method

Country Status (1)

Country Link
JP (1) JP4001490B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102743909A (en) * 2012-06-11 2012-10-24 徐州五洋科技股份有限公司 Fine mining filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102743909A (en) * 2012-06-11 2012-10-24 徐州五洋科技股份有限公司 Fine mining filter

Also Published As

Publication number Publication date
JP2003220306A (en) 2003-08-05

Similar Documents

Publication Publication Date Title
CA1165698A (en) Method of removing fine suspended solids from effluent stream
JPH07112185A (en) Waste water treating device and washing method therefor
JP4519878B2 (en) Filtration device
KR101446273B1 (en) Operation method of up-flow sand filtration using head loss and water treatment method using the same
WO2016132557A1 (en) Regeneration method for filtration device, filtration device, and water treatment device
JP4001490B2 (en) Filtration device, seawater treatment method using the same, and coagulant regeneration method
KR100354836B1 (en) Apparatus for filtering suspended solid in water
JP4763670B2 (en) Filtration device
US4810389A (en) Filtration system
JPH06304559A (en) Method for treating water and device therefor
JPH0966296A (en) Water treatment method and apparatus
JP2008279339A (en) Solid/liquid separation apparatus
JP2016172238A (en) Desalination method, cleaning method of desalination apparatus, and desalination apparatus
CN203715430U (en) Electroplating nickel-containing wastewater up-to-standard treatment system for workshops of metallurgical plants
JP3766880B2 (en) Water purification apparatus and operation method
CN220376532U (en) Sewage treatment mechanism and chemical cleaning tank
KR101345261B1 (en) Filtering apparatus without back wash
JP2000511823A (en) High-speed filtration system
US10308525B2 (en) Suspended-matter removing method utilizing biofilm and suspended-matter removing apparatus utilizing biofilm
RU2102112C1 (en) Installation for treatment of sewage waters
JP2000218109A (en) Treatment of waste water
JPH03131312A (en) Operation of ceramic filter
KR200242577Y1 (en) Apparatus for filtering suspended solid in water
WO2016132555A1 (en) Suspensoid removal method and suspensoid removal device
JP2004016843A (en) Method and apparatus for separating liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4001490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term