JPH06304559A - Method for treating water and device therefor - Google Patents

Method for treating water and device therefor

Info

Publication number
JPH06304559A
JPH06304559A JP5099196A JP9919693A JPH06304559A JP H06304559 A JPH06304559 A JP H06304559A JP 5099196 A JP5099196 A JP 5099196A JP 9919693 A JP9919693 A JP 9919693A JP H06304559 A JPH06304559 A JP H06304559A
Authority
JP
Japan
Prior art keywords
water
raw water
reverse osmosis
pipe
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5099196A
Other languages
Japanese (ja)
Inventor
Fumio Yokoyama
文郎 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP5099196A priority Critical patent/JPH06304559A/en
Publication of JPH06304559A publication Critical patent/JPH06304559A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To restrain the clogging of the reverse osmosis membrane and to make equipment long in service life by providing two processes of a sand filtration one and a superfine filtration or ultrafiltration one, thereby facilitating the removal of impurities in raw water and enabling a reverse osmosis operation. CONSTITUTION:A water treating device for producing ultrapure water used in electronic industry and pharmaceutical industry, etc., has a sand filter 1 into which raw water added with a flocculant 10 as necessary is introduced under pressure by a booster pump 6, and impurities of over 1-100mum particle diameter are removed therein. After the raw water leaving the sand filter 1 is once stored in a storage tank 5, it is sent to a superfine filter 2 by a booster pump 6 and fine particles of over 0.01-10mum particle diameter and microorganisms such as algae are removed mainly therein. Next, after the raw water is once stored in a storage tank 5 similarly, it is fed to a reverse osmosis device 3 through a safety filter 7 and a high pressure pump 8 and dissolved salts and organic materials, etc., are separated therein.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高水質の純水、とくに
超純水を効率よく製造する水処理方法および水処理装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment method and a water treatment apparatus for efficiently producing high-quality pure water, particularly ultrapure water.

【0002】[0002]

【従来の技術】電子工業や製薬工業をはじめとする各種
産業においては高度の純水を大量に使用しているが、要
求される純水の水質は年々高度になり、需要量も年々大
きく増加している。これらの分野では、高水質の純水、
ことに超純水の製造には、殆どの場合、低分子化合物や
塩類を効率よく分離する能力のある逆浸透装置を使用し
ている。この他、逆浸透装置は、純水の循環利用、造水
などにも多数実用化されている。逆浸透装置が普及する
につれ、さらに丈夫で高度の分離能を具備し、広い用途
に経済的に使用するための研究も進展した。すなわち、
新しい逆浸透膜や各種複合膜が開発され、分離膜の使用
形態、すなわちモジュールもスパイラル型、中空糸型、
チューブラ型など各種のものが実用化されている。
2. Description of the Related Art A large amount of high-grade pure water is used in various industries such as the electronics industry and the pharmaceutical industry. The quality of pure water required is becoming higher year by year, and the demand volume is also increasing year by year. is doing. In these fields, high quality pure water,
In particular, in the production of ultrapure water, a reverse osmosis device capable of efficiently separating low-molecular compounds and salts is used in most cases. In addition, a large number of reverse osmosis devices have been put to practical use for the circulation use of pure water, water production, and the like. With the spread of reverse osmosis devices, research has been advanced to make them more durable and have a high degree of separation and to be economically used in a wide range of applications. That is,
New reverse osmosis membranes and various composite membranes have been developed, and the usage patterns of separation membranes, that is, modules are spiral type, hollow fiber type
Various types such as tubular type have been put to practical use.

【0003】一方、逆浸透膜は、藻類などの微生物や
0.1〜5μmくらいの懸濁粒子およびコロイドなどに
よってトラブルを起こしやすい。そこで、これらの不純
物を含む原水を逆浸透装置で処理する場合には、アルミ
ニウムや鉄イオンを含む電解質を凝集剤として原水に添
加して微粒子類をを凝集させ、砂ろ過法などを用いて凝
集粒子をあらかじめ除去してから、被処理水を逆浸透装
置に送る方法が取られている。
On the other hand, the reverse osmosis membrane is apt to cause troubles due to microorganisms such as algae and suspended particles or colloids having a size of 0.1 to 5 μm. Therefore, when treating raw water containing these impurities with a reverse osmosis device, an electrolyte containing aluminum or iron ions is added to the raw water as a coagulant to agglomerate the fine particles, and then a sand filtration method is used to agglomerate them. A method of removing the particles in advance and then sending the water to be treated to a reverse osmosis device is adopted.

【0004】[0004]

【発明が解決しようとする課題】前記のように、各種の
複合膜やモジュールなどの開発によって、逆浸透装置は
技術的に大きく性能が向上し、トラブルも起こりにく
く、安定して長期間使用できるようになった。しかし、
逆浸透装置に対して、さらに処理水の連続安定供給、経
済性向上などの要求が提出され、本発明者はその課題を
解決する手段を研究してきたが、新しい逆浸透分離膜や
モジュールの開発のほかにシステム全体の構築を研究す
ることによって課題の解決が図られることを知った。本
発明は、逆浸透装置の長期安定操業、経済性の向上など
を目的に最も効率のよい工程を研究の結果、完成された
ものである。
As described above, by developing various composite membranes and modules, the reverse osmosis device has technically improved performance, is less likely to cause trouble, and can be used stably for a long period of time. It became so. But,
The reverse osmosis device has been submitted with requests for continuous and stable supply of treated water and improvement of economic efficiency, and the present inventor has studied means for solving the problem. However, development of new reverse osmosis separation membrane and module In addition to, I learned that the problem can be solved by studying the construction of the entire system. The present invention has been completed as a result of research on the most efficient process for the purpose of long-term stable operation of a reverse osmosis device and improvement of economic efficiency.

【0005】[0005]

【課題を解決するための手段】本発明は、第1の発明と
して、(イ)砂ろ過装置を用いて、原水中から、その原
水中に含まれている、径が1〜100μmを超える不純
物を除去する工程と、(ロ)精密ろ過装置を用いて、前
記工程(イ)から得られる処理水から、その処理水中に
含まれている、粒径が0.01〜10μmを超える不純
物を除去する工程と、(ハ)逆浸透装置を用いて、前記
工程(ロ)から得られる処理水から、その処理水中に含
まれている不純物を除去する工程、を含む水処理方法を
提供する。
Means for Solving the Problems As a first aspect of the present invention, (a) an impurity contained in raw water and having a diameter exceeding 1 to 100 μm is used by using a sand filter. And (b) using a microfiltration device to remove impurities contained in the treated water from the treated water obtained in the step (a) having a particle size of more than 0.01 to 10 μm. And a step (c) of removing impurities contained in the treated water from the treated water obtained in the step (b) using the reverse osmosis device.

【0006】また、第2の発明として、(イ)砂ろ過装
置を用いて、原水中から、その原水中に含まれている、
径が1〜100μmを超える不純物を除去する工程と、
(ロ)限外ろ過装置を用いて、前記工程(イ)から得ら
れる処理水から、その処理水中に含まれている、粒径が
0.001〜1μmを超える不純物を除去する工程と、
(ハ)逆浸透装置を用いて、前記工程(ロ)から得られ
る処理水から、その処理水中に含まれている不純物を除
去する工程、を含む水処理方法を提供する。
As a second aspect of the invention, (a) the sand filter is used to remove the raw water from the raw water.
A step of removing impurities whose diameter exceeds 1 to 100 μm,
(B) a step of removing impurities contained in the treated water obtained in the step (a) and having a particle size of more than 0.001 to 1 μm using an ultrafiltration device;
(C) A water treatment method is provided, which comprises a step of removing impurities contained in the treated water from the treated water obtained in the step (B) using a reverse osmosis device.

【0007】第1の発明または第2の発明においては、
工程(ロ)から得られる逆洗水および/または濃縮水を
原水中に還流させることができる。また、工程(ハ)か
ら得られる濃縮水を原水中に還流させることもできる。
さらに、第3の発明として、原水導入管と、この原水導
入管に入側を接続して設けた、粒径が1〜100μmを
超える不純物を除去する砂ろ過装置と、この砂ろ過装置
の出側に入側を接続して設た、粒径が0.01〜10μ
mを超える不純物を除去する精密ろ過装置と、この精密
ろ過装置の出側に入側を接続して設けた逆浸透装置とを
備えていることを特徴とする水処理装置を提供する。こ
の水処理装置において、精密ろ過装置と原水導入管とを
連結する配管を設けることができる。
In the first invention or the second invention,
The backwash water and / or the concentrated water obtained from the step (b) can be refluxed into the raw water. Further, the concentrated water obtained in the step (c) can be refluxed in the raw water.
Further, as a third invention, a raw water introducing pipe, a sand filtering device provided with an inlet side connected to the raw water introducing pipe, for removing impurities having a particle size of more than 1 to 100 μm, and an output of the sand filtering device. The particle size is 0.01-10μ
There is provided a water treatment device comprising a microfiltration device for removing impurities exceeding m, and a reverse osmosis device provided by connecting an inlet side to an outlet side of the microfiltration device. In this water treatment device, a pipe connecting the microfiltration device and the raw water introduction pipe can be provided.

【0008】さらにまた、第4の発明として、原水導入
管と、この原水導入管に入側を接続して設けた、粒径が
1〜100μmを超える不純物を除去する砂ろ過装置
と、この砂ろ過装置の出側に入側を接続して設けた、粒
径が0.001〜1μmを超える不純物を除去する限外
ろ過装置と、この限外ろ過装置の出側に入側を接続して
設けた逆浸透装置とを備えていることを特徴とする水処
理装置を提供する。この水処理装置において、限外ろ過
装置と原水導入管とを連結する配管を設けることができ
る。そして、上記の各水処理装置においては、逆浸透装
置と原水導入管とを連結する配管を設けることもでき
る。
Further, as a fourth invention, a raw water introducing pipe, a sand filtering device which is provided by connecting an inlet side of the raw water introducing pipe and removes impurities having a particle diameter of more than 1 to 100 μm, and the sand. By connecting the inlet side to the outlet side of the filtration device and removing the impurities having a particle size of more than 0.001 to 1 μm, and connecting the inlet side to the outlet side of the ultrafiltration device. Provided is a reverse osmosis device which is provided. In this water treatment device, a pipe connecting the ultrafiltration device and the raw water introduction pipe can be provided. Further, in each of the above-mentioned water treatment devices, a pipe connecting the reverse osmosis device and the raw water introduction pipe can be provided.

【0009】[0009]

【実施態様例と作用】高純度の純水、なかでも超純水を
製造する水処理方法および水処理装置の分野では、従来
の研究がもっぱら逆浸透膜とモジュールとの開発に重点
をおいて進行していた。これに対し、本発明の水処理方
法および水処理装置は、逆浸透装置の性能を高度に発揮
させるための工程全体に重点をおいて完成された。以
下、本発明を実施態様例をあげつつ、図面を参照して説
明する。図1は、本発明を具現化するための実施態様例
を示す概略フローシートである。
[Examples and Actions] In the field of water treatment methods and water treatment devices for producing high-purity pure water, especially ultrapure water, conventional research has focused mainly on the development of reverse osmosis membranes and modules. It was going on. On the other hand, the water treatment method and the water treatment apparatus of the present invention were completed by emphasizing the whole process for highly exhibiting the performance of the reverse osmosis apparatus. Hereinafter, the present invention will be described with reference to the drawings, citing examples of embodiments. FIG. 1 is a schematic flow sheet showing an example of an embodiment for embodying the present invention.

【0010】本発明の水処理方法および水処理装置のう
ち、第1の発明は、少なくとも砂ろ過工程と精密ろ過工
程と逆浸透工程との3工程を、第2の発明は、少なくと
も砂ろ過工程と限外ろ過工程と逆浸透工程との3工程を
含む水処理方法である。また、第3の発明は、少なくと
も砂ろ過装置、精密ろ過装置および逆浸透装置を、第4
の発明は、少なくとも砂ろ過装置、限外ろ過装置および
逆浸透装置を備えた水処理装置である。砂ろ過は、原水
を砂やアンスラサイトなどの粒状ろ材の充填層を通過さ
せ、含有する主に固形分を除去するろ過である。精密ろ
過および限外ろ過は、ともに多孔質膜をろ材とするろ過
であって、使用する多孔質膜の孔径によって両者のおよ
その区別がなされている。一般的に、孔径が0.01〜
1μmの多孔質膜を使用する場合を精密ろ過、孔径が
0.001〜0.01μmの多孔質膜を使用する場合を
限外ろ過としている。
Of the water treatment method and water treatment apparatus of the present invention, the first invention comprises at least three steps of a sand filtration step, a microfiltration step and a reverse osmosis step, and the second invention comprises at least a sand filtration step. And a water treatment method including three steps of an ultrafiltration step and a reverse osmosis step. In addition, a third invention includes at least a sand filtration device, a microfiltration device, and a reverse osmosis device, and a fourth invention.
Is a water treatment device including at least a sand filter, an ultrafilter and a reverse osmosis device. The sand filtration is filtration in which raw water is passed through a packed bed of granular filter media such as sand or anthracite to remove mainly contained solids. Both microfiltration and ultrafiltration are filtrations using a porous membrane as a filter medium, and the two are roughly distinguished by the pore diameter of the porous membrane used. Generally, the pore size is 0.01 to
Precision filtration is used when a 1 μm porous membrane is used, and ultrafiltration is used when a porous membrane having a pore size of 0.001 to 0.01 μm is used.

【0011】まず、第1および第3の発明について説明
する。砂ろ過工程は、原水導入配管4から送入される原
水中に含まれる懸濁物質や一部の有機物を除去し、次の
精密ろ過工程およびその次の逆浸透工程において使用す
る、精密ろ過装置2および逆浸透装置3の保護と不純物
の分離効率を高める作用を有する。砂ろ過工程に使用す
る砂ろ過装置1は、公知の圧力式でも重力式でもよく、
通常、平均粒径が0.3〜3mmのろ材を単層または多
層にして使用する。単なる砂ろ過だけで目的の不純物を
十分に分離できない場合には、あらかじめ凝集剤添加配
管10から原水に凝集剤を添加し、不純物を凝集させる
ことができる。使用する凝集剤としては、硫酸アルミニ
ウム、電解アルミニウム、ポリ塩化アルミニウムなどが
あげられる。この他、pH調整剤として硫酸や水酸化ナ
トリウムなどを、殺菌剤として次亜塩素酸ナトリウムな
どを添加することができる。砂ろ過工程では、凝集剤の
作用で形成されるフロックや、原水中に含まれる主に径
が1〜100μmを超える大きさの粒子を除去する。逆
洗には、タイマー式や差圧式に代表される自動方式を採
用するとよい。
First, the first and third inventions will be described. The sand filtration step removes suspended substances and some organic substances contained in the raw water fed from the raw water introduction pipe 4, and is used in the next microfiltration step and the next reverse osmosis step. 2 and the reverse osmosis device 3 are protected and impurities are separated efficiently. The sand filtration device 1 used in the sand filtration step may be a known pressure type or gravity type,
Usually, a filter medium having an average particle size of 0.3 to 3 mm is used in a single layer or multiple layers. If the desired impurities cannot be sufficiently separated by simple sand filtration, the coagulant can be added to the raw water from the coagulant-adding pipe 10 in advance to coagulate the impurities. Examples of the aggregating agent used include aluminum sulfate, electrolytic aluminum and polyaluminum chloride. In addition, sulfuric acid, sodium hydroxide or the like can be added as a pH adjusting agent, and sodium hypochlorite or the like can be added as a sterilizing agent. In the sand filtration step, flocs formed by the action of the flocculant and particles having a diameter of mainly 1 to 100 μm contained in the raw water are removed. For backwashing, it is advisable to adopt an automatic method represented by a timer method or a differential pressure method.

【0012】次の精密ろ過工程では、砂ろ過工程を通過
し、処理水中に残存する主に微小粒子や藻類などの微生
物を除去し、次の逆浸透工程に使用する逆浸透装置3の
保護と不純物の分離効率を高める作用を有する。とくに
逆浸透膜にトラブルを引起こしたり、透過効率を損なう
藻類などの微生物や粒径が1μm以下の懸濁粒子などを
除去するのに有効である。精密ろ過装置2に使用する膜
としては、酢酸セルロースなどのセルロース誘導体、ポ
リスルホン、ポリ塩化ビニル、アクリル樹脂、ポリ4フ
ッ化エチレン、ポリプロピレンなどの有機高分子や多孔
性セラミックなどの多孔質膜があげられる。これらの多
孔質膜は、プリーツ状にして支持材とともにスパイラル
に巻いたカートリッジ型や、中空糸束型などにすること
ができるが、実施態様に応じていずれの形態でも選択す
ることができる。精密ろ過装置2は、全ろ過方式でもク
ロスフロー方式でもよいが、逆洗水または濃縮水は原水
に還流することが好ましい。このために、精密ろ過装置
2と原水導入管4とを連結する配管11を設けておくこ
とが好ましい。
In the next microfiltration step, microorganisms such as fine particles and algae remaining in the treated water that pass through the sand filtration step are removed to protect the reverse osmosis device 3 used in the next reverse osmosis step. It has the effect of increasing the separation efficiency of impurities. In particular, it is effective for removing troubles in the reverse osmosis membrane and removing microorganisms such as algae that impair permeation efficiency and suspended particles having a particle size of 1 μm or less. Examples of the membrane used in the microfiltration device 2 include a cellulose derivative such as cellulose acetate, an organic polymer such as polysulfone, polyvinyl chloride, acrylic resin, polytetrafluoroethylene and polypropylene, or a porous membrane such as a porous ceramic. To be These porous membranes can be in the form of pleats, such as a cartridge type in which they are spirally wound with a support material, a hollow fiber bundle type, or the like, but any form can be selected according to the embodiment. The microfiltration device 2 may be either a full filtration system or a cross flow system, but it is preferable that the backwash water or the concentrated water is refluxed to the raw water. For this reason, it is preferable to provide a pipe 11 that connects the microfiltration device 2 and the raw water introduction pipe 4.

【0013】そして逆浸透工程において、前記の工程を
通過し処理水中に残存する不純物、たとえば、溶解塩類
や有機物などを分離する。使用する逆浸透装置3にとく
に制限はない。逆浸透膜には、酢酸セルロース系、ポリ
アミド系、ポリエチレンイミン系、ポリエチレンオキシ
ド系、ポリエーテル系などの非対称膜、複合膜を用いる
ことができる。モジュールもスパイラル型、プリーツ
型、中空糸型など、いずれでもよい。通常、逆浸透装置
3に送水する高圧ポンプ8の吸引側には、高圧ポンプ8
の保安のためのフィルタ7を挿入しておく。不純物を分
離除去した純水は配管9からに取り出す。濃縮水は、排
水用配管13から系外に抜出してもよいが、逆浸透装置
3と原水導入管4とを連結する配管12を通して原水に
還流すれば、純水の取得率が向上して好ましい結果が得
られる。
In the reverse osmosis step, impurities that have passed through the above steps and remain in the treated water, such as dissolved salts and organic substances, are separated. The reverse osmosis device 3 used is not particularly limited. As the reverse osmosis membrane, a cellulose acetate-based, polyamide-based, polyethyleneimine-based, polyethylene oxide-based or polyether-based asymmetric membrane or composite membrane can be used. The module may be a spiral type, a pleated type, a hollow fiber type or the like. Normally, the high pressure pump 8 is provided on the suction side of the high pressure pump 8 that supplies water to the reverse osmosis device 3.
The filter 7 for security is inserted in advance. The pure water from which the impurities have been separated and removed is taken out from the pipe 9. The concentrated water may be extracted from the drainage pipe 13 to the outside of the system, but it is preferable to return the concentrated water to the raw water through the pipe 12 that connects the reverse osmosis device 3 and the raw water introducing pipe 4 because the pure water acquisition rate is improved. The result is obtained.

【0014】原水中の不純物の種類や粒度分布によって
は、第1または第3の発明に代えて第2または第4の発
明を利用するとよい。第2または第4の発明において
は、前記の精密ろ過装置2に代えて限外ろ過装置2´を
用いる。限外ろ過工程は、砂ろ過の工程を通過し処理水
中に残存する径が0.001〜1μmを超える大きさの
粒子を除去するのに有効であって、処理水中にコロイド
粒子やそれに近いタンパク質をはじめとする溶存高分子
が多量に存在する場合に、逆浸透装置3の負荷を軽減し
保護することができる。限外ろ過膜には、ポリアクリロ
ニトリル、ポリスルホンなどの有機系の膜、グラファイ
トや多孔性セラミックスを用いる無機系の膜などを使用
することができる。モジュールの形状や流通方式など
は、前記の精密ろ過工程に準ずる。限外ろ過装置2´の
逆洗水または濃縮水は原水に還流することが好ましく、
限外ろ過装置と原水導入管とを連結する配管11´を設
けるとよい。このほか、前記の各発明を実施するため
に、図面では省略したが各装置には、通常、逆洗のため
のポンプや配管が設けられる。また、温度調整、pH調
整なども必要に応じて実施する。本発明を実施し易いよ
うに、各工程の間に処理水の貯槽5を設けておくとよ
い。そして、原水中の不純物の種類や純水の使用目的な
どに応じて、本発明の各工程の間に、たとえば、イオン
交換処理、活性炭処理、紫外線または塩素殺菌処理など
を実施しても差し支えない。
Depending on the type of impurities in the raw water and the particle size distribution, the second or fourth invention may be used instead of the first or third invention. In 2nd or 4th invention, it replaces with the said microfiltration apparatus 2 and uses the ultrafiltration apparatus 2 '. The ultrafiltration step is effective for removing particles having a size of 0.001 to 1 μm and remaining in the treated water after passing through the sand filtration step, and the colloidal particles or proteins close to the colloidal particles are treated in the treated water. In the case where a large amount of dissolved polymer such as the above exists, the load on the reverse osmosis device 3 can be reduced and protected. As the ultrafiltration membrane, an organic membrane such as polyacrylonitrile or polysulfone, an inorganic membrane using graphite or porous ceramics, or the like can be used. The shape and distribution method of the module conforms to the above-mentioned microfiltration step. The backwash water or concentrated water of the ultrafiltration device 2'is preferably returned to the raw water,
It is advisable to provide a pipe 11 ′ that connects the ultrafiltration device and the raw water introduction pipe. In addition, in order to carry out each of the above-described inventions, although not shown in the drawings, each device is usually provided with a pump and piping for backwashing. Moreover, temperature adjustment, pH adjustment, etc. are also carried out as necessary. A storage tank 5 of treated water may be provided between the respective steps so that the present invention can be easily carried out. Then, depending on the type of impurities in the raw water and the purpose of using pure water, for example, ion exchange treatment, activated carbon treatment, ultraviolet ray or chlorine sterilization treatment may be performed between the steps of the present invention. .

【0015】[0015]

【実施例】以下、実施例をあげて本発明を説明する。こ
れは、従来、砂ろ過工程と逆浸透工程とからなる水処理
方法を用い、火力発電ボイラ用の純水を供給していたの
を、本発明を利用し、砂ろ過工程と逆浸透工程との間に
精密ろ過工程を挿入して設け、卓越した効果をあげるこ
とができた例である。なお、以下の説明中のFI値は、
ASTM D4189に記載の方法に準拠して測定した
値である。
EXAMPLES The present invention will be described below with reference to examples. Conventionally, the water treatment method consisting of a sand filtration step and a reverse osmosis step was used to supply pure water for a thermal power generation boiler. This is an example in which a microfiltration process was inserted between the two to provide excellent results. The FI value in the following description is
It is a value measured according to the method described in ASTM D4189.

【0016】この場合、FIが5.5〜6.3の工業用
水に硫酸を添加してpH6に調整し、さらに凝集剤とし
てポリ塩化アルミニウムが5ppmになるように添加し
ていた。この原水を、平均径が1.6mmのアンスラサ
イトを60cm、平均径が0.6mmの砂を40cm充
填した内径60cmの2層式砂ろ過装置に、ろ過速度が
10m/hになるように通水していた。砂ろ過をおえた
処理水のFIは3.0〜4.0であった。従来の水処理
方法では、この処理水を直接逆浸透工程に送水し純水を
製造していた。使用していた逆浸透膜モジュールは、メ
ンブラSU−720(東レ(株)製)であった。得られ
た純水量は100m3 /hであり、33m3 /hの濃縮
水が系外に排出されていた。すなわち、従来の原水の回
収率は75.2%であった。また、逆浸透膜は、2月に
1回のクエン酸洗浄が必要でその平均寿命は24月であ
った。
In this case, sulfuric acid was added to industrial water having an FI of 5.5 to 6.3 to adjust the pH to 6, and polyaluminum chloride was added as a coagulant to 5 ppm. This raw water was passed through a two-layer sand filter with an inner diameter of 60 cm filled with 60 cm of anthracite having an average diameter of 1.6 mm and 40 cm of sand having an average diameter of 0.6 mm at a filtration speed of 10 m / h. There was water. The FI of the treated water that had been subjected to sand filtration was 3.0 to 4.0. In the conventional water treatment method, this treated water is directly sent to the reverse osmosis step to produce pure water. The reverse osmosis membrane module used was Membrane SU-720 (manufactured by Toray Industries, Inc.). The amount of pure water obtained was 100 m 3 / h, and 33 m 3 / h of concentrated water had been discharged out of the system. That is, the recovery rate of conventional raw water was 75.2%. Further, the reverse osmosis membrane needs to be washed with citric acid once in February, and its average life is 24 months.

【0017】そこで、砂ろ過工程の後に新しく精密ろ過
工程を設けて本発明を実施した。使用した精密ろ過膜
は、孔径0.01μmのポリスルホン中空糸膜であっ
た。精密ろ過工程を経た処理水のFIは、0.3〜1.
0となった。この処理水を逆浸透工程で処理した。その
結果、得られる純水量は、120m3 /hに増加し、原
水の回収率を90%に向上させても、クエン酸洗浄の回
数を1年に1回に減らすことができ、逆浸透膜の平均寿
命は48月に延長することができた。
Therefore, the present invention was carried out by newly providing a microfiltration step after the sand filtration step. The microfiltration membrane used was a polysulfone hollow fiber membrane with a pore size of 0.01 μm. The FI of the treated water that has undergone the microfiltration process has a FI of 0.3 to 1.
It became 0. This treated water was treated in the reverse osmosis process. As a result, the amount of pure water obtained increased to 120 m 3 / h, and even if the recovery rate of raw water was improved to 90%, the number of citric acid washes could be reduced to once a year. Average life expectancy could be extended to 48 months.

【0018】[0018]

【発明の効果】本発明の水処理方法や水処理装置を利用
すれば、砂ろ過工程と、精密ろ過または限外ろ過工程と
の2工程で、従来、逆浸透装置にトラブルを引起こし負
担を増大させていた原水中の不純物が除去され、安定し
た逆浸透操作が可能になる。その結果、逆浸透膜の目詰
まりは激減して膜の洗浄が殆ど必要でなくなり、その寿
命が長くなる。さらに、処理量を増加させることができ
て経済的な効果も大きい。また、精密ろ過または限外ろ
過工程から排出される逆洗水、および/または逆浸透工
程から排出される濃縮水を原水に還流することによっ
て、純水の取得率が大幅に向上する。
EFFECTS OF THE INVENTION By using the water treatment method and the water treatment apparatus of the present invention, the conventional reverse osmosis apparatus causes troubles and burdens in the two steps of the sand filtration step and the microfiltration or ultrafiltration step. Impurities in the raw water, which had been increasing, are removed, and stable reverse osmosis operation becomes possible. As a result, the clogging of the reverse osmosis membrane is drastically reduced, the membrane is hardly required to be cleaned, and its life is extended. Furthermore, the amount of treatment can be increased, and the economic effect is large. Further, by refluxing the backwash water discharged from the microfiltration or ultrafiltration step and / or the concentrated water discharged from the reverse osmosis step to the raw water, the acquisition rate of pure water is significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明を具現化するための実施態様例を示す
概略フローシート。
FIG. 1 is a schematic flow sheet showing an exemplary embodiment for embodying the present invention.

【符号の説明】[Explanation of symbols]

1:砂ろ過装置 2:精密ろ過装置 2´:限外ろ過装置 3:逆浸透装置 4:原水導
入配管 5:貯槽 6:昇圧ポンプ 7:保安フィルタ 8:高圧ポン
プ 9:純水送出配管 10:凝集剤添加用配管 11:精密ろ過装置と原水
導入管とを連結する配管 11´:限外ろ過装置と原水導入管とを連結する配管 12:逆浸透装置と原水導入管とを連結する配管 1
3:排水用配管
1: Sand filtration device 2: Microfiltration device 2 ': Ultrafiltration device 3: Reverse osmosis device 4: Raw water introduction pipe 5: Storage tank 6: Booster pump 7: Security filter 8: High pressure pump 9: Pure water delivery pipe 10: Flocculant addition pipe 11: Pipe connecting microfiltration device and raw water introduction pipe 11 ': Pipe connecting ultrafiltration device and raw water introduction pipe 12: Pipe connecting reverse osmosis device and raw water introduction pipe 1
3: Drainage pipe

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】(イ)砂ろ過装置を用いて、原水中から、
その原水中に含まれている、径が1〜100μmを超え
る不純物を除去する工程と、(ロ)精密ろ過装置を用い
て、前記工程(イ)から得られる処理水から、その処理
水中に含まれている、粒径が0.01〜10μmを超え
る不純物を除去する工程と、(ハ)逆浸透装置を用い
て、前記工程(ロ)から得られる処理水から、その処理
水中に含まれている不純物を除去する工程、を含む水処
理方法。
(A) Using a sand filter, from raw water,
A step of removing impurities contained in the raw water, the diameter of which exceeds 1 to 100 μm, and (b) using a microfiltration device, from the treated water obtained in the step (a), to the treated water. A step of removing impurities having a particle size of from 0.01 to more than 10 μm, and (c) using a reverse osmosis device, from the treated water obtained from the step (b), to the treated water. Water treatment method including the step of removing existing impurities.
【請求項2】(イ)砂ろ過装置を用いて、原水中から、
その原水中に含まれている、径が1〜100μmを超え
る不純物を除去する工程と、(ロ)限外ろ過装置を用い
て、前記工程(イ)から得られる処理水から、その処理
水中に含まれている、粒径が0.001〜1μmを超え
る不純物を除去する工程と、(ハ)逆浸透装置を用い
て、前記工程(ロ)から得られる処理水から、その処理
水中に含まれている不純物を除去する工程、を含む水処
理方法。
2. (a) Using a sand filter, from raw water,
A step of removing impurities contained in the raw water, the diameter of which exceeds 1 to 100 μm, and (b) an ultrafiltration device, from the treated water obtained in the step (a) to the treated water. A step of removing impurities contained therein, the particle size of which exceeds 0.001 to 1 μm; Water treatment method, which comprises removing impurities present in the water.
【請求項3】工程(ロ)から得られる逆洗水および/ま
たは濃縮水を原水中に還流させる、請求項1または2の
水処理方法。
3. The water treatment method according to claim 1, wherein the backwash water and / or the concentrated water obtained in the step (b) is refluxed into the raw water.
【請求項4】工程(ハ)から得られる濃縮水を原水中に
還流させる、請求項1、2または3の水処理方法。
4. The water treatment method according to claim 1, 2 or 3, wherein the concentrated water obtained in step (c) is refluxed into raw water.
【請求項5】原水導入管と、この原水導入管に入側を接
続して設けた、粒径が1〜100μmを超える不純物を
除去する砂ろ過装置と、この砂ろ過装置の出側に入側を
接続して設けた、粒径が0.01〜10μmを超える不
純物を除去する精密ろ過装置と、この精密ろ過装置の出
側に入側を接続して設けた逆浸透装置とを備えているこ
とを特徴とする水処理装置。
5. A raw water introducing pipe, a sand filtering device provided with an inlet side connected to the raw water introducing pipe, for removing impurities having a particle size exceeding 1 to 100 μm, and an inlet side of the sand filtering device. And a reverse osmosis device provided by connecting the inlet side to the outlet side of the microfiltration device, which is provided by connecting the sides thereof to remove impurities having a particle size of from 0.01 to 10 μm or more. Water treatment device characterized by being
【請求項6】原水導入管と、この原水導入管に入側を接
続して設けた、粒径が1〜100μmを超える不純物を
除去する砂ろ過装置と、この砂ろ過装置の出側に入側を
接続して設けた、粒径が0.001〜1μmを超える不
純物を除去する限外ろ過装置と、この限外ろ過装置の出
側に入側を接続して設けた逆浸透装置とを備えているこ
とを特徴とする水処理装置。
6. A raw water introducing pipe, a sand filtering device provided with an inlet side connected to the raw water introducing pipe, for removing impurities having a particle size exceeding 1 to 100 μm, and an inlet side of the sand filtering device. An ultrafiltration device, which is provided by connecting the sides thereof to remove impurities having a particle size of more than 0.001 to 1 μm, and a reverse osmosis device which is provided by connecting the inlet side to the outlet side of the ultrafiltration device. A water treatment device characterized by being provided.
【請求項7】精密ろ過装置と原水導入管とを連結する配
管を備えている、請求項5の水処理装置。
7. The water treatment device according to claim 5, further comprising a pipe connecting the microfiltration device and the raw water introduction pipe.
【請求項8】限外ろ過装置と原水導入管とを連結する配
管を備えている、請求項6の水処理装置。
8. The water treatment device according to claim 6, further comprising a pipe connecting the ultrafiltration device and the raw water introduction pipe.
【請求項9】逆浸透装置と原水導入管とを連結する配管
を備えている、請求項5、6、7または8の水処理装
置。
9. The water treatment device of claim 5, 6, 7 or 8 comprising a pipe connecting the reverse osmosis device and the raw water introduction pipe.
JP5099196A 1993-04-26 1993-04-26 Method for treating water and device therefor Pending JPH06304559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5099196A JPH06304559A (en) 1993-04-26 1993-04-26 Method for treating water and device therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5099196A JPH06304559A (en) 1993-04-26 1993-04-26 Method for treating water and device therefor

Publications (1)

Publication Number Publication Date
JPH06304559A true JPH06304559A (en) 1994-11-01

Family

ID=14240901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5099196A Pending JPH06304559A (en) 1993-04-26 1993-04-26 Method for treating water and device therefor

Country Status (1)

Country Link
JP (1) JPH06304559A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10337410A (en) * 1997-06-05 1998-12-22 Hitachi Plant Eng & Constr Co Ltd Water purifying method and device therefor
WO2008000169A1 (en) * 2006-06-19 2008-01-03 Xian Jin A rapid high-temperature oxidation method for treating wastewater produced by pharmaceutical industry
JP2008229418A (en) * 2007-03-16 2008-10-02 Kurita Water Ind Ltd Method and apparatus for industrial water treatment
JP2009300034A (en) * 2008-06-16 2009-12-24 Toyobo Engineering Kk Temporary purified water bath facility
CN103608298A (en) * 2011-06-24 2014-02-26 Emd密理博公司 System and method for water purification with automatic purge
JP2015213880A (en) * 2014-05-12 2015-12-03 栗田工業株式会社 Method for treating free chlorine-containing waste water
US9926210B2 (en) 2011-06-24 2018-03-27 Emd Millipore Corporation System and method for purification and distribution of water with separation barrier taking away the biological contamination

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10337410A (en) * 1997-06-05 1998-12-22 Hitachi Plant Eng & Constr Co Ltd Water purifying method and device therefor
WO2008000169A1 (en) * 2006-06-19 2008-01-03 Xian Jin A rapid high-temperature oxidation method for treating wastewater produced by pharmaceutical industry
JP2008229418A (en) * 2007-03-16 2008-10-02 Kurita Water Ind Ltd Method and apparatus for industrial water treatment
JP2009300034A (en) * 2008-06-16 2009-12-24 Toyobo Engineering Kk Temporary purified water bath facility
CN103608298A (en) * 2011-06-24 2014-02-26 Emd密理博公司 System and method for water purification with automatic purge
JP2014519980A (en) * 2011-06-24 2014-08-21 イー・エム・デイー・ミリポア・コーポレイシヨン System and method for water purification with automatic purging
US9745207B2 (en) 2011-06-24 2017-08-29 Emd Millipore Corporation System and method for water purification with automatic purge
US9926210B2 (en) 2011-06-24 2018-03-27 Emd Millipore Corporation System and method for purification and distribution of water with separation barrier taking away the biological contamination
CN110078171A (en) * 2011-06-24 2019-08-02 Emd密理博公司 For purified water and there is the system and method cleaned automatically
JP2015213880A (en) * 2014-05-12 2015-12-03 栗田工業株式会社 Method for treating free chlorine-containing waste water

Similar Documents

Publication Publication Date Title
TW302294B (en)
JP5561473B2 (en) Filtration device and water treatment device
US20150060360A1 (en) Systems and methods of membrane separation
JP2015071155A (en) Wastewater treatment method and production method of terephthalic acid
JP2004130197A (en) Water treatment method
WO1997047375A1 (en) Membrane filter system and pressure vessel suitable for membrane filtration
JP4071364B2 (en) Pretreatment device for reverse osmosis membrane separator
JPH10225682A (en) Method of removing boron in reverse osmosis seawater desalination
EP3950603B1 (en) Drinking water purification system comprising a backwashable filter cartridge and a nanofiltration unit
JPH06304559A (en) Method for treating water and device therefor
JPH09248429A (en) Separation method and apparatus therefor
CN207108703U (en) One kind purifying membrane system
CN210885551U (en) Waste liquid recovery device of electrode foil
JPH0679272A (en) Device for production of pure water
JP4519878B2 (en) Filtration device
Gupta et al. Liquid radwaste processing with crossflow microfiltration and spiral wound reverse osmosis
CN110862167A (en) Electrode foil corrosion wastewater treatment system and treatment process thereof
KR200383096Y1 (en) Advanced water treatment using membrane Filtration
JP3838689B2 (en) Water treatment system
CN210796016U (en) Electrode foil corrosion wastewater treatment system
JP2019076827A (en) Water treatment equipment and water treatment method
JPH0966296A (en) Water treatment method and apparatus
JP2008183513A (en) Water purifying apparatus
JPH0957261A (en) Two-stage type reverse osmosis membrane treatment
JP2002346347A (en) Method and apparatus for filtration