JP4359025B2 - Muddy water treatment method - Google Patents

Muddy water treatment method Download PDF

Info

Publication number
JP4359025B2
JP4359025B2 JP2002184126A JP2002184126A JP4359025B2 JP 4359025 B2 JP4359025 B2 JP 4359025B2 JP 2002184126 A JP2002184126 A JP 2002184126A JP 2002184126 A JP2002184126 A JP 2002184126A JP 4359025 B2 JP4359025 B2 JP 4359025B2
Authority
JP
Japan
Prior art keywords
treatment
filtration
water
turbid water
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002184126A
Other languages
Japanese (ja)
Other versions
JP2004025011A (en
Inventor
和久 熊見
泰光 宮崎
健治 萩森
茂 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicen Membrane Systems Ltd
Okumura Corp
Original Assignee
Daicen Membrane Systems Ltd
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicen Membrane Systems Ltd, Okumura Corp filed Critical Daicen Membrane Systems Ltd
Priority to JP2002184126A priority Critical patent/JP4359025B2/en
Publication of JP2004025011A publication Critical patent/JP2004025011A/en
Application granted granted Critical
Publication of JP4359025B2 publication Critical patent/JP4359025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)
  • Filtration Of Liquid (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、トンネルやダム工事のように、粘土混じりの濁水が生じるような施工現場において好適な濁水の処理方法、及び濁水の処理装置に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
工事現場等で発生する濁水は大量の泥や砂を含んでおり、そのままでは河川等に放流することはできず、従来は凝集処理後に放流されていた。しかし、工事現場で生じる濁水の組成は変動が大きいため、凝集処理法を適用する場合、凝集剤の投入量の制御が困難であること、攪拌条件等によっても大きな影響を受けることから安定した濁水処理が困難であった。
【0003】
トンネル工事で生じる濁水(トンネル濁水)の処理は、一般的には凝集沈殿による方法が用いられている。しかし、トンネル濁水は、組成の変動が大きいため、凝集沈殿法では凝集剤の添加量の制御が難しいことや、アルミニウムを含む凝集剤や高分子凝集剤を含む処理水を河川に放流するため、環境に対して悪影響を与えるという問題がある。
【0004】
一方、本発明者らは、凝集沈殿法に替わる方法として、膜分離法によるダイナミック濾過法を提案している(特開2001−104953号公報参照)。この発明は、不織布膜を用いて濁水を濾過処理するもので、膜上に濁水中の粒子成分を堆積させてダイナミック層を形成し、このダイナミック層を濾過体として濁水を濾過処理するものである。この発明によれば、粘土分の少ない濁水は良好に処理できるが、粘土分の多い濁水は、粘土分が膜を通過して濾過できないか、又は膜に粘土分が付着して目詰まりし、逆圧洗浄でも目詰まりした粘土分が膜から剥がれず、目詰まりが解消できないため、それ以降の濾過処理ができないという問題がある。このような問題が生じる原因は、以下のとおりであると推定される。
【0005】
粘土分を多く含む濁水をダイナミック濾過する場合、濾過を開始した初期の段階では、粘土分は膜の網目を通過し、濾過水は清浄な処理水とはならない。これは、粘土粒子の大きさは5〜10μm程度であり、不織布膜の網目よりはるかに小さく、粘土粒子が膜を容易に通過するためである。そして、濾過処理を長時間継続すると、不織布膜を構成する繊維の周囲に粘土粒子が付着しはじめ、それが粘土特有の粘着性により剥がれることなく、時間の経過と共に徐々に太くなっていき、ついには不織布膜の網目を塞ぐ程度にまで成長してしまうものと考えられる。
【0006】
このように不織布膜の網目が閉塞された状態になれば、それ以降の濾過処理はできなくなるため、通常は、この時点又はこのような状態になる以前の時点で、逆圧洗浄により、膜面に付着した粘土を剥がし落とす処理を行う。しかし、粘土分を多く含む濁水の場合、粘土の粘着力が強いためか、この洗浄によっても膜に付着した粘土分を剥がし落とすことができず、濾過能力を回復させることができない。このようなことから、粘土分を多く含む濁水を不織布膜でダイナミック濾過処理する方法を適用した場合、初期の段階では、濾過水は濁った状態であり、ある程度時間が経過して清浄な濾過水が得られるようになった段階から、短時間で目詰まりが生じるため、結果的にはほとんど濾過処理できない状態となるものと考えられる。
【0007】
本発明は、トンネルやダム工事現場等で生じる粘土を含む濁水の処理方法を提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明は、上記課題の解決手段として、粘土を含む懸濁質を含有している濁水の処理方法であり、濁水を、カルシウムを含む無機成分を主成分とする凝集剤で凝集処理した後、膜濾過処理する濁水の処理方法を提供する。
【0009】
また本発明は、上記他の課題の解決手段として、上記の濁水の処理方法に適用できる濁水の処理装置であり、濁水を沈降処理する沈降処理部、沈降処理後の上澄液を必要に応じて中和処理する中和処理部、濁水の濁度を検知して凝集剤の添加量を調整できる凝集剤添加手段及び攪拌手段を備えた凝集処理部、濾過処理部、透過液を濃縮処理する濃縮処理部、並びに透過液を貯水する貯水部を有しており、前記各処理部が、少なくとも前記順序で接続ラインにより接続されており、濃縮処理部において濃縮液と分離された液を沈降処理部、中和処理部又は凝集処理部に返送できるように、濃縮処理部と、沈降処理部、中和処理部又は凝集処理部が接続ラインにより接続されている濁水の処理装置を提供する。
【0010】
本発明でいう粘土は、カオリナイト、ハロイサイト、パイロフィライト、セリサイト、モンモリロナイト、クロライト、イライト、バーミキュライト、その他の公知の粘土鉱物を含むものである。
【0011】
【発明の実施の形態】
以下、本発明に係る濁水の処理方法の一実施形態を、図1に示す濁水の処理装置を適用して処理した場合について説明する。図1は、本発明に係る濁水の処理装置の概念図である。なお、図1に示した濁水の処理装置は、当業者において通常なされる改変により変更することができる。
【0012】
トンネルやダム工事等で生じた粘土を含有する濁水(原水)は、沈降処理槽1に供給され、大きめの石、砂、泥等を沈殿させた後、第1上澄液を送液ライン30により濁水槽(第1上澄液槽)2に送る。この濁水槽2には送液ポンプ10が設けられている。この濁水槽2は省略することもできる。
【0013】
次に、濁水槽2中の第1上澄液を、送液ライン31により凝集処理槽3に送るが、必要に応じて、濁水槽2と凝集処理槽3との間に中和処理槽を設けることができるほか、中和処理を凝集処理槽3で行うこともできる。
【0014】
粘土を含む濁水中には、アルカリ土類酸化物、SiO、Al、TiO、P、ZnO等の多価の酸化物と水との水和物が含まれており、そのまま濾過処理部4において濾過体と接触させた場合、前記水和物が濾過体表面に付着して透過流束を低下させる。そのまま放置しておくと、更なる透過流束の低下を生じさせると共に、逆圧洗浄によっても除去できなくなる。このため、濾過体による処理に先立って中和処理することが望ましい。中和処理法は特に制限されるものではないが、濁水と弱酸、好ましくは二酸化炭素ガスを接触させて中和することが好ましく、例えば、凝集処理槽3(又は中和処理槽)の底部から二酸化炭素ガスでばっ気して中和する方法を適用できる。
【0015】
凝集処理槽3には、濁水の懸濁質(SS)濃度を検知して凝集剤の添加量を調整できる凝集剤添加手段、及び攪拌手段15を備えている。
【0016】
凝集剤は、カルシウムを含む無機系凝集剤を主成分とするものであり、実験結果をもとに粘土分を含む濁水の凝集効果及びその後の膜濾過性を考慮すれば、カルシウムを5質量%以上含有するものが好ましく、8質量%以上含有するものがより好ましく、10質量%以上含有するものが更に好ましい。
【0017】
凝集剤は、カルシウムを含む無機系凝集剤と有機系凝集剤の混合物にすることが望ましい。混合物であれば、1つの凝集剤投入装置のみでよく、設備費用が軽減される。また両凝集剤を併せて用いることにより、無機系凝集剤の粘性を落とす機能と有機系凝集剤の適度な大きさのフロックを形成する機能とが相俟って、その後のダイナミック濾過を行うのに好適な状態の被処理水を得ることができる。また、混合物中、カルシウムを含む無機系凝集剤の含有量が5質量%以上であることが好ましい。カルシウムを含む無機系凝集剤としては、硫酸カルシウムや塩化カルシウム等が挙げられる。
【0018】
他の無機系凝集剤としては、ポリ塩化アルミニウム、ポリ塩化鉄、硫酸第二鉄、硫酸アルミニウム、ベントナイト、シリカ等が挙げられる。有機系凝集剤としては、ポリアクリル酸エステル系、ポリメタクリル酸エステル系、ポリアクリルアミド系、ポリアミン系、ポリジシアンジアミド系等のカチオン性高分子凝集剤、ポリアクリル酸ソーダ系、ポリアクリルアミド系等のアニオン性高分子凝集剤、ポリアクリルアミド系のノニオン性高分子凝集剤、アミン系等の低分子有機凝集剤等が挙げられる。
【0019】
凝集剤の添加量は、凝集剤がカルシウムを5質量%以上含有しているものであるとき、濁水中の懸濁質(SS)量に対して、0.2〜2.0質量%となる量が好ましく、0.4〜2.0質量%となる量がより好ましく、0.4〜1.0質量%となる量が更に好ましい。
【0020】
凝集剤の添加量は、濁水の懸濁質の発生源となる工事現場等の粘土量を予め測定しておき、粘土量に応じて決定することができる。このとき、予め測定した粘土量に応じて凝集剤の大まかな添加量を調整し、実際の処理過程において、添加量を微調整するようにしても良い。
【0021】
凝集剤の添加時には、凝集剤と第1上澄液とが充分に接触でき、フロックの形成が容易になるように、攪拌手段15により、緩やかに攪拌することが望ましい。
【0022】
次に、凝集処理槽3で凝集処理した後の被処理液を、送液ライン32により濾過処理部4に送る。濾過処理部4は、被処理液を貯水した処理槽内に濾過体を浸漬して濾過処理する浸漬方式のもの、処理槽外に濾過体を設置して、処理槽内の被処理液を濾過体に循環させる外置き方式のものでも良い。
【0023】
濾過処理部4では、例えば、図2に示すような構造の濾過装置20を用いることができる。図2は、一部断面(本体部が断面で示されている)を含む正面図である。
【0024】
濾過装置20は、処理槽21内に所要数の濾過エレメント22が浸漬されており、底部には、ポンプ11に接続されたエアバブリング用の散気管23が取付られている。24はオーバーフローラインであり、送液ライン37に接続される。
【0025】
濾過エレメント22は、1以上の所要数の集水管を備えた枠体の両面に、濾過体を張り付けた袋状のものであり(必要に応じて、2枚の濾過体間に間隔保持部材を配置できる。)、図1では、一つの集水管が透過液ノズル25となっている。複数の濾過エレメント22におけるそれぞれの透過液ノズル25は、透過液ライン33に接続されている。
【0026】
濾過体はどのようなものでも良いが、均一な径の孔や隙間を有する濾過体が好ましく、更には格子状のネットを用いることが好ましい。不均一孔の膜であれば、処理水の水質を確保するため、膜が有する最大孔径の孔付近を基準にして孔径を選定する必要があり、平均孔径が必要以上に小さくなる。このため、膜の孔に原液の微粒子がはまり込み、詰まりを生じ易くなる。一方、均一孔の膜であれば、処理水の水質を維持するための孔は、ほぼ平均孔径で選定することになり、更に孔径が均一のため、サイズが小さい孔自体も少なく、膜の目詰まりは少なくなる。
【0027】
なお、均一な孔径とは、全ての孔の径が完全に均一であることを意味するものではなく、本発明の目的を損なわない範囲内で、製造上の誤差や材質による誤差(例えば、±数%の誤差)があっても差し支えない。
【0028】
濾過体は、平均孔径が10〜100μmのものが好ましく、10〜50μmのものがより好ましく、下記のとおり、(a)平均孔径、(b)開孔率及び(c)厚みの3つの要件を具備するネットが更に好ましい。
(a)の平均孔径は、次式:(M−L)/M×100(Lは最小孔径、Mは平均孔径を示す)で規定される孔径分布が±20%以内、好ましくは±15%以内である。
(b)の開孔率は、好ましくは20〜60%、より好ましくは25〜50%である。
(c)の厚みは、好ましくは25〜150μm、より好ましくは30〜100μmである。
【0029】
更に、(a)〜(c)の要件を具備するネットは、(d)線径が好ましくは20〜80μm、より好ましくは30〜70μmとの要件も合わせて具備するものが好ましい。
【0030】
濾過体は、濁水の組成によっては次亜塩素酸ナトリウム耐性を有するものであることが望ましく、2×10cmの大きさの濾過体を有効塩素濃度1質量%の次亜塩素酸ナトリウム水溶液に1ヶ月浸漬したとき、初期の引張強度に対する減少率が30%未満であるものが好ましい。
【0031】
濾過体は、金属繊維又はプラスチック繊維からなるものが好ましい。金属繊維としては、鉄、銀、銅、銅合金、チタン、ステンレス、基材となる金属に銀や銅をメッキしたものからなるものを挙げることができるが、銅、ステンレスが好ましい。プラスチック繊維としては、ポリエステル、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、ポリ(メタ)アクリル酸エステル、ビスコースレーヨン、酢酸セルロース、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエーテル、ポリエーテルエステル及びこれらの共重合体、ブレンド物又は架橋物等を挙げることができるが、ポリ塩化ビニリデン、ポリエステル、ポリエチレン、ポリプロピレンが好ましく、ポリエステル、ポリエチレンがより好ましい。
【0032】
濾過処理部4においては、低い膜間差圧によりダイナミック濾過することが望ましく、膜間差圧を低く保つことができ、エネルギーを省力化できることから、好ましくは0.5〜50cm、より好ましくは1〜10cmの水頭差(図2中のΔh)を利用してダイナミック濾過することが望ましい。
【0033】
濾過処理部4で濾過処理した透過液は、原水の供給流量よりも小さな流量で、透過液ライン33により貯水槽5に送られて貯水され、河川等に放流される。このとき、透過液中のSS濃度に応じて、透過液を再度濾過処理したり、沈降処理したりすることができる。
【0034】
このような濾過処理を継続して行った場合、濾過処理部4の濾過エレメント22の表面(濾過体の表面)には、SSからなる過度のケーキ層が形成されて孔が目詰まりを生じ、そのまま放置しておくと透過流束が著しく低下してしまう。このため、適当な運転間隔をおいて、濁水の流入を停止した後、エアバブリングを伴う濾過エレメント22の逆圧洗浄を行うことで、ケーキ層の厚みを調整することが望ましい。
【0035】
濾過エレメント22の逆圧洗浄法は特に制限されるものではなく、貯水槽5内の透過液を逆洗ポンプ13により供給して、透過液ライン33から濾過エレメント22内部に圧入する方法、濾過処理部4の処理槽21の底面から、散気管23によりエアバブリングする方法、それらを組み合わせた方法を適用できる。逆圧洗浄水には、必要に応じて、薬液槽8から、次亜塩素酸ナトリウム等の薬液を添加することができる。
【0036】
逆圧洗浄に用いた洗浄液は、濃縮液と共に、送液ライン34により濃縮処理部6に送る。濃縮処理部6では沈降処理を行い、上澄液(第2上澄液)は、ポンプ12を作動させて、送液ライン37により凝集処理槽3に返送する。このとき、第2上澄液は、沈降処理槽1又は濁水槽2に返送することもできる。
【0037】
濃縮処理部6に滞留する汚泥は、送液ライン36により汚泥貯留槽7に送った後、ポンプ14を作動させてフィルタープレス機に送って脱水処理し、残液は沈降処理槽1、濁水槽2又は凝集処理槽3に返送する。また、汚泥量が過剰の場合は、適宜、汚泥引き抜きライン35より引き抜く。
【0038】
本発明の濁水の処理方法では、透過流束を好ましくは3m/日以上、より好ましくは5〜15m/日に設定することで、濁度(日本水道協会上水試験方法に記載の散乱光測定法による)の減少率を90%以上、更には95%以上にすることができる。
【0039】
本発明の処理方法における処理機構は、次のとおりであると推定される。凝集処理により、濁水中の粘土分は凝集され、カルシウム成分の固結作用により、ある程度の大きさと固結度を有する塊(フロック)になり、粘土粒子のような粘着性は少なくなる。この塊は、濾過処理で使用する膜の網目と比べて、著しく小さいということはなく、著しく大きいということもない。従って、濾過に伴い、膜面上には速やかにダイナミック層が形成され、このダイナミック層により濁水が効率良く濾過される。ダイナミック層は、粘土分が固結した塊が積み重なった状態となり、塊の間には濾過水が通過できる十分な空隙が生じている。
【0040】
一定時間経過すれば、膜面上にはダイナミック層が厚く堆積し、濾過速度の低下が生じるので、この時点で、上記のとおり、逆圧洗浄を行うことで、膜面上に堆積したダイナミック層は容易に剥がれ落ちる。これは、ダイナミック層が粘土が団結した塊で形成されているため、粘着力は小さく、塊状であるため、粒子相互の接触面積も小さいためである。
【0041】
以上のとおりの処理機構であるため、粘土を含む濁水に対しても、高い濾過能力を安定して発揮できる。
【0042】
本発明の濁水の処理方法及び処理装置は、トンネル、ダム等の工事現場で生じる粘土を含有する濁水の処理用として好適であるが、粘土を含まない濁水にも適用できる。
【0043】
また本発明の処理装置は、図2に示す濾過装置単独又は濾過装置と図1に示すような他の装置を組み合わせた装置を用いるものであり、これらの装置は、トンネルやダムの工事現場に車で持ち運びができるように構成できるものである。
【0044】
【実施例】
以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
【0045】
実施例1
図1、図2に示す処理装置を用いて濁水の処理を行った。まず、沈降処理槽1において、トンネル工事現場より排出された粘土を含む濁水を沈降処理した後、第1上澄液(SS濃度が約5000mg/L、pH10.5)を濁水槽2に送った。
【0046】
次に、濁水槽2から凝集処理槽3に濁水(第1上澄液)を送り、中和と凝集処理を行った。中和は、凝集処理槽3の底部から二酸化炭素ガスを5リットル/分で10分間程度曝気して行った。凝集処理は、無機系凝集剤(カルシウム含有量11質量%)(パピルス001、エム・シー鉱産社製)を50mg/Lになるように添加し、攪拌機15により約2分間攪拌して行った。
【0047】
次に、凝集処理後の液(SS濃度が約5000mg/L、pH7.5)を濾過処理部4に送り、ダイナミック濾過した。濾過処理部4では、図2に示す水頭差Δhが5cm(0.5kPa)で、連続的にダイナミック濾過し、透過液は貯水槽5に送り、貯水した。なお、濾過エレメントとして、綾織ステンレス製ネット(平均孔径43μm、孔径分布±5%以内、線径34μm、開孔率30%、厚み70μm)2枚からなる濾過体を枠体の両側に貼り付けた袋状のもの(有効濾過面積0.01m)を用いた。30分間の濾過処理後、逆圧洗浄とエアバブリングを0.5分間行い、この運転サイクルを繰り返した。
【0048】
運転初期の透過液のSS濃度は平均で10mg/L、平均処理能力は濾過体の有効濾過面積当たり5.1m/m・日であった。5時間の運転後における透過液のSS濃度は平均で10mg/L、平均処理能力は濾過体の有効濾過面積当たり5.0m/m・日であり、運転初期との濾過性能との差はなかった。
【0049】
実施例2
実施例1と同様にして濁水を処理した。但し、第1上澄液はSS濃度が約700mg/L、pH11.3であり、凝集剤の添加量は7mg/Lとした。運転初期の透過液のSS濃度は平均5mg/L、平均処理能力は有効濾過面積当たり9.4m/m・日であり、5時間経過後にも全く変化はなかった。
【0050】
比較例1
凝集剤としてポリ塩化アルミニウム(タイキ薬品工業社製)を使用した以外は実施例1と全く同様にして濁水を処理した。運転初期の透過液のSS濃度は平均45mg/L、平均処理能力は有効濾過面積当たり4.8m/m・日であったが、5時間経過後には、透過液のSS濃度は平均25mg/L、平均処理能力は有効濾過面積当たり1.3m/m・日となり、濾過性能が大幅に低下した。
【0051】
比較例2
凝集剤として塩化第二鉄(和光純薬社製)を用いた以外は実施例2と全く同様にして濁水を処理した。運転初期の透過液のSS濃度は平均31mg/L、平均処理能力は有効濾過面積当たり7.8m/m・日であったが、5時間経過後には、透過液のSS濃度は平均19mg/L、平均処理能力は有効濾過面積当たり1.9m/m・日となり、濾過性能が大幅に低下した。
【0052】
以上の実施例及び比較例との対比から明らかなとおり、本発明の処理方法を適用することにより、粘土分を多く含有するトンネル濁水を処理したとき、粘土分は膜による濾過処理により取り除かれ、更に中和処理を併用しているので、濾過時に膜面に粘土分が付着することを抑制することができる。このため、処理液中のSS濃度は低く、平均処理能力の経時的な変化も小さくできる。
【0053】
【発明の効果】
本発明の濁水の処理方法を適用すれば、粘土分を多く含有するトンネル濁水等を処理したとき、処理液中のSS濃度を低下させ、かつ平均処理能力の経時的変化も小さくできるので、処理水を河川等に放流したときでも、水質を汚染することがない。
【図面の簡単な説明】
【図1】 濁水の処理方法に使用する処理装置の概念図。
【図2】 処理装置に含まれる濾過装置の概念図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a muddy water treatment method and a muddy water treatment apparatus suitable for construction sites where turbid water mixed with clay is generated, such as in tunnels and dam construction.
[0002]
[Prior art and problems to be solved by the invention]
The turbid water generated at the construction site contains a large amount of mud and sand and cannot be discharged into a river or the like as it is, and is conventionally discharged after a coagulation treatment. However, the composition of the turbid water generated at the construction site varies greatly, so when applying the flocculation method, it is difficult to control the amount of flocculant input, and it is also greatly affected by the stirring conditions, etc., so stable turbid water Processing was difficult.
[0003]
For the treatment of muddy water (tunnel muddy water) generated in tunnel construction, a method by coagulation sedimentation is generally used. However, since the composition of tunnel turbid water is large, it is difficult to control the amount of flocculant added in the coagulation sedimentation method, and treated water containing aluminum flocculant and polymer flocculant is discharged into the river. There is a problem of adversely affecting the environment.
[0004]
On the other hand, the present inventors have proposed a dynamic filtration method using a membrane separation method as a method instead of the coagulation sedimentation method (see Japanese Patent Application Laid-Open No. 2001-104953). This invention filters turbid water using a non-woven membrane, forms a dynamic layer by depositing particle components in turbid water on the membrane, and filters turbid water using the dynamic layer as a filter. . According to this invention, turbid water with a low clay content can be treated well, but the turbid water with a high clay content is clogged because the clay content cannot pass through the membrane or the clay content adheres to the membrane, The clogged clay is not peeled off from the membrane even by back pressure cleaning, and the clogging cannot be eliminated. The reason why such a problem occurs is estimated as follows.
[0005]
In the case of dynamically filtering turbid water containing a large amount of clay, the clay passes through the mesh of the membrane at the initial stage when filtration is started, and the filtered water does not become clean treated water. This is because the size of the clay particles is about 5 to 10 μm, which is much smaller than the mesh of the nonwoven fabric film, and the clay particles easily pass through the film. And if the filtration process is continued for a long time, clay particles begin to adhere around the fibers constituting the nonwoven fabric film, and it gradually gets thicker as time passes without peeling off due to the clay-specific adhesiveness. Is considered to grow to such an extent that the mesh of the nonwoven fabric film is blocked.
[0006]
If the mesh of the nonwoven fabric membrane becomes blocked in this way, the subsequent filtration treatment cannot be performed. Therefore, the membrane surface is usually washed by back pressure washing at this point or before such a state. Remove the clay adhering to the surface. However, in the case of turbid water containing a large amount of clay, the clay adhering to the membrane cannot be removed even by this washing because the clay has strong adhesive strength, and the filtration ability cannot be recovered. For this reason, when a method of dynamically filtering turbid water containing a large amount of clay with a nonwoven membrane is applied, the filtered water is turbid at the initial stage, and after a certain amount of time has passed, clean filtered water is used. From this stage, clogging occurs in a short time, and as a result, it is considered that almost no filtration treatment is possible.
[0007]
This invention makes it a subject to provide the processing method of the muddy water containing the clay produced in a tunnel, a dam construction site, etc.
[0008]
[Means for Solving the Problems]
The present invention is a method for treating turbid water containing a suspension containing clay as a means for solving the above problems, and after turbid water is agglomerated with a flocculant mainly composed of an inorganic component containing calcium, Provided is a method for treating muddy water by membrane filtration.
[0009]
Further, the present invention is a turbid water treatment apparatus applicable to the above-described turbid water treatment method as a means for solving the above-mentioned other problems. A sedimentation treatment unit for sedimentation of turbid water, and a supernatant after sedimentation as needed. Neutralization treatment unit for neutralization treatment, flocculation treatment unit with flocculant addition means and stirring means that can detect the turbidity of turbid water and adjust the addition amount of flocculant, filtration treatment part, permeate is concentrated A concentration processing unit, and a water storage unit for storing permeate, wherein each of the processing units is connected by a connection line in at least the order, and the liquid separated from the concentrated solution in the concentration processing unit is settled An apparatus for treating turbid water in which a concentration processing unit, a sedimentation processing unit, a neutralization processing unit, or a coagulation processing unit are connected by a connection line so as to be returned to the unit, the neutralization processing unit, or the coagulation processing unit.
[0010]
The clay referred to in the present invention includes kaolinite, halloysite, pyrophyllite, sericite, montmorillonite, chlorite, illite, vermiculite, and other known clay minerals.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, one embodiment of the muddy water treatment method according to the present invention will be described in the case where the muddy water treatment apparatus shown in FIG. 1 is applied. FIG. 1 is a conceptual diagram of a muddy water treatment apparatus according to the present invention. The turbid water treatment apparatus shown in FIG. 1 can be changed by modifications usually made by those skilled in the art.
[0012]
Turbid water (raw water) containing clay generated by tunnels, dam construction, etc. is supplied to the sedimentation tank 1 to settle large stones, sand, mud, etc., and then the first supernatant is fed to the feed line 30. To the muddy water tank (first supernatant tank) 2. The muddy water tank 2 is provided with a liquid feed pump 10. This muddy water tank 2 can also be omitted.
[0013]
Next, the first supernatant in the turbid water tank 2 is sent to the flocculation treatment tank 3 through the liquid feed line 31, but if necessary, a neutralization treatment tank is provided between the turbid water tank 2 and the flocculation treatment tank 3. In addition, the neutralization treatment can be performed in the aggregation treatment tank 3.
[0014]
The muddy water containing clay contains hydrates of polyvalent oxides such as alkaline earth oxides, SiO 2 , Al 2 O 3 , TiO 2 , P 2 O 5 , ZnO and water. When the filter treatment unit 4 is brought into contact with the filter body as it is, the hydrate adheres to the surface of the filter body and lowers the permeation flux. If it is left as it is, it causes a further decrease in permeation flux and cannot be removed by back pressure washing. For this reason, it is desirable to neutralize prior to the treatment with the filter body. The neutralization treatment method is not particularly limited, but it is preferable to neutralize by contacting turbid water and a weak acid, preferably carbon dioxide gas. For example, from the bottom of the aggregation treatment tank 3 (or neutralization treatment tank). A method of neutralizing by aeration with carbon dioxide gas can be applied.
[0015]
The agglomeration treatment tank 3 is provided with a flocculant addition means that can detect the suspended solid (SS) concentration of muddy water and adjust the addition amount of the flocculant, and a stirring means 15.
[0016]
The flocculant is mainly composed of an inorganic flocculant containing calcium, and considering the flocculating effect of turbid water containing clay and the subsequent membrane filterability based on the experimental results, the calcium content is 5% by mass. Those contained above are preferred, those containing 8% by mass or more are more preferred, and those containing 10% by mass or more are more preferred.
[0017]
The flocculant is preferably a mixture of an inorganic flocculant containing calcium and an organic flocculant. In the case of a mixture, only one flocculant charging device is required, and the equipment cost is reduced. Also, by using both coagulants together, the function of lowering the viscosity of the inorganic coagulant and the function of forming a moderately sized floc of the organic coagulant can be combined to perform subsequent dynamic filtration. Water to be treated can be obtained in a state suitable for the above. Moreover, it is preferable that content of the inorganic type coagulant containing calcium is 5 mass% or more in a mixture. Examples of inorganic flocculants containing calcium include calcium sulfate and calcium chloride.
[0018]
Examples of other inorganic flocculants include polyaluminum chloride, polyiron chloride, ferric sulfate, aluminum sulfate, bentonite, and silica. Examples of organic flocculants include polyacrylic acid ester-based, polymethacrylic acid ester-based, polyacrylamide-based, polyamine-based, polydicyandiamide-based cationic polymer flocculants, polyacrylic acid soda-based, polyacrylamide-based anions, etc. And a low molecular organic flocculant such as an amine-based polymer flocculant, a polyacrylamide-based nonionic polymer flocculant, and an amine-based flocculant.
[0019]
When the flocculant contains 5% by mass or more of calcium, the amount of the flocculant is 0.2 to 2.0% by mass with respect to the amount of suspended matter (SS) in muddy water. The amount is preferably, more preferably 0.4 to 2.0% by mass, and still more preferably 0.4 to 1.0% by mass.
[0020]
The amount of the flocculant added can be determined according to the amount of clay by measuring in advance the amount of clay at the construction site or the like that is the source of turbid water suspension. At this time, the rough addition amount of the flocculant may be adjusted according to the amount of clay measured in advance, and the addition amount may be finely adjusted in the actual processing.
[0021]
When adding the flocculant, it is desirable that the flocculant and the first supernatant be sufficiently brought into contact with each other and gently stirred by the stirring means 15 so that flocs can be easily formed.
[0022]
Next, the liquid to be processed after being subjected to the coagulation treatment in the coagulation treatment tank 3 is sent to the filtration processing unit 4 through the liquid feed line 32. The filtration processing unit 4 is of an immersion type in which a filter body is immersed in a treatment tank in which the liquid to be treated is stored and is subjected to filtration treatment. A filtration body is installed outside the treatment tank to filter the treatment liquid in the treatment tank. It may be an external type that circulates in the body.
[0023]
In the filtration processing unit 4, for example, a filtration device 20 having a structure as shown in FIG. 2 can be used. FIG. 2 is a front view including a partial cross section (a main body portion is shown in cross section).
[0024]
The filtration device 20 has a required number of filtration elements 22 immersed in a treatment tank 21, and an air bubbling air diffuser 23 connected to the pump 11 is attached to the bottom. An overflow line 24 is connected to the liquid supply line 37.
[0025]
The filter element 22 has a bag shape in which a filter body is pasted on both surfaces of a frame body having a required number of water collecting pipes of 1 or more (if necessary, a spacing member is provided between two filter bodies. In FIG. 1, one water collecting pipe is a permeate nozzle 25. Each permeate nozzle 25 in the plurality of filtration elements 22 is connected to a permeate line 33.
[0026]
Any filter body may be used, but a filter body having holes and gaps with a uniform diameter is preferable, and a lattice-shaped net is preferably used. In the case of a non-uniform pore film, in order to ensure the quality of the treated water, it is necessary to select the pore diameter based on the vicinity of the maximum pore diameter of the membrane, and the average pore diameter becomes smaller than necessary. For this reason, the fine particles of the undiluted solution get stuck in the pores of the membrane, and clogging is likely to occur. On the other hand, in the case of a uniform pore membrane, the pores for maintaining the quality of the treated water are selected with an average pore diameter. Furthermore, since the pore diameter is uniform, there are few small pores themselves, and the pore size of the membrane is small. There will be less clogging.
[0027]
The uniform hole diameter does not mean that the diameters of all the holes are completely uniform, and an error due to manufacturing or material (for example, ± There is no problem even if there is an error of several percent).
[0028]
The filter body preferably has an average pore diameter of 10 to 100 μm, more preferably 10 to 50 μm, and has the following three requirements: (a) average pore diameter, (b) open area ratio, and (c) thickness. The net provided is more preferable.
The average pore size of (a) is a pore size distribution defined by the following formula: (ML) / M × 100 (L is the minimum pore size, M is the average pore size) within ± 20%, preferably ± 15% Is within.
The porosity of (b) is preferably 20 to 60%, more preferably 25 to 50%.
The thickness of (c) is preferably 25 to 150 μm, more preferably 30 to 100 μm.
[0029]
Furthermore, the net having the requirements (a) to (c) preferably has a requirement (d) that the wire diameter is preferably 20 to 80 μm, more preferably 30 to 70 μm.
[0030]
Depending on the composition of the turbid water, the filter body is preferably resistant to sodium hypochlorite, and the filter body having a size of 2 × 10 cm is placed in a sodium hypochlorite aqueous solution having an effective chlorine concentration of 1 mass% for one month. It is preferable that when dipped, the reduction rate with respect to the initial tensile strength is less than 30%.
[0031]
The filter body is preferably made of metal fibers or plastic fibers. Examples of the metal fiber include iron, silver, copper, copper alloy, titanium, stainless steel, and metal made by plating silver or copper on a base metal, but copper or stainless steel is preferable. Plastic fibers include polyester, polystyrene, polyvinyl chloride, polyvinylidene chloride, polytetrafluoroethylene, poly (meth) acrylic acid ester, viscose rayon, cellulose acetate, polyethylene, polypropylene, and other polyolefins, polyethers, polyether esters And copolymers, blends or cross-linked products of these, and polyvinylidene chloride, polyester, polyethylene and polypropylene are preferred, and polyester and polyethylene are more preferred.
[0032]
In the filtration processing unit 4, it is desirable to perform dynamic filtration with a low transmembrane pressure difference, the transmembrane differential pressure can be kept low, and energy can be saved, so that it is preferably 0.5 to 50 cm, more preferably 1 It is desirable to perform dynamic filtration using a water head difference of 10 cm (Δh in FIG. 2).
[0033]
The permeate filtered by the filtration unit 4 is sent to the water storage tank 5 through the permeate line 33 at a flow rate smaller than the supply flow rate of the raw water, stored, and discharged to a river or the like. At this time, the permeate can be filtered again or settled according to the SS concentration in the permeate.
[0034]
When such a filtration treatment is continued, an excessive cake layer made of SS is formed on the surface of the filtration element 22 of the filtration treatment unit 4 (the surface of the filter body), resulting in clogging of the holes. If left as it is, the permeation flux will be significantly reduced. For this reason, it is desirable to adjust the thickness of the cake layer by performing back pressure washing of the filtration element 22 accompanied by air bubbling after stopping the inflow of muddy water at an appropriate operation interval.
[0035]
The back pressure washing method of the filtration element 22 is not particularly limited, and a method in which the permeate in the water storage tank 5 is supplied by the back wash pump 13 and is press-fitted into the filter element 22 from the permeate line 33, and a filtration process. A method of air bubbling from the bottom surface of the processing tank 21 of the unit 4 by the air diffusion tube 23, or a method of combining them can be applied. A chemical solution such as sodium hypochlorite can be added to the back pressure wash water from the chemical solution tank 8 as necessary.
[0036]
The cleaning liquid used for the reverse pressure cleaning is sent to the concentration processing unit 6 through the liquid supply line 34 together with the concentrated liquid. In the concentration processing unit 6, sedimentation is performed, and the supernatant (second supernatant) is returned to the aggregating treatment tank 3 through the liquid feeding line 37 by operating the pump 12. At this time, the second supernatant can be returned to the sedimentation tank 1 or the muddy water tank 2.
[0037]
After the sludge staying in the concentration processing unit 6 is sent to the sludge storage tank 7 through the liquid feed line 36, the pump 14 is operated and sent to the filter press machine for dehydration, and the residual liquid is the sedimentation tank 1 and the muddy water tank. 2 or return to the coagulation treatment tank 3. When the amount of sludge is excessive, the sludge is extracted from the sludge extraction line 35 as appropriate.
[0038]
In the method for treating turbid water of the present invention, the permeation flux is preferably set to 3 m / day or more, more preferably 5 to 15 m / day, so that (Depending on the method) can be reduced to 90% or more, more preferably 95% or more.
[0039]
It is presumed that the processing mechanism in the processing method of the present invention is as follows. By the agglomeration treatment, the clay content in the muddy water is agglomerated, and due to the caking action of the calcium component, it becomes a lump (floc) having a certain size and caking degree, and the stickiness like clay particles is reduced. This lump is not significantly smaller than the membrane mesh used in the filtration process and is not significantly larger. Therefore, with filtration, a dynamic layer is quickly formed on the membrane surface, and muddy water is efficiently filtered by this dynamic layer. The dynamic layer is in a state in which lumps obtained by consolidation of clay components are stacked, and sufficient voids are formed between the lumps through which filtered water can pass.
[0040]
After a certain period of time, the dynamic layer is thickly deposited on the film surface and the filtration rate is reduced. At this time, the dynamic layer deposited on the film surface is subjected to back pressure cleaning as described above. Will peel off easily. This is because the dynamic layer is formed of lumps obtained by uniting clay, so that the adhesive force is small and the lumps are formed, and the contact area between the particles is also small.
[0041]
Since it is a processing mechanism as described above, it is possible to stably exhibit high filtration ability even for turbid water containing clay.
[0042]
The method and apparatus for treating muddy water of the present invention are suitable for treating muddy water containing clay generated at construction sites such as tunnels and dams, but can also be applied to muddy water not containing clay.
[0043]
Further, the processing apparatus of the present invention uses a single filtration apparatus shown in FIG. 2 or a combination of the filtration apparatus and another apparatus as shown in FIG. 1, and these apparatuses are used in construction sites of tunnels and dams. It can be configured to be carried by car.
[0044]
【Example】
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
[0045]
Example 1
The muddy water was treated using the treatment apparatus shown in FIGS. First, in the sedimentation treatment tank 1, turbid water containing clay discharged from the tunnel construction site was settled, and then the first supernatant (SS concentration was about 5000 mg / L, pH 10.5) was sent to the turbid water tank 2. .
[0046]
Next, muddy water (first supernatant) was sent from the muddy water tank 2 to the coagulation treatment tank 3 to perform neutralization and coagulation treatment. Neutralization was performed by aeration of carbon dioxide gas at 5 liter / min for about 10 minutes from the bottom of the aggregation treatment tank 3. The agglomeration treatment was performed by adding an inorganic flocculant (calcium content: 11% by mass) (Papyrus 001, manufactured by MC Mining Co., Ltd.) to 50 mg / L and stirring with a stirrer 15 for about 2 minutes.
[0047]
Next, the liquid after the aggregation treatment (SS concentration is about 5000 mg / L, pH 7.5) was sent to the filtration treatment unit 4 and subjected to dynamic filtration. In the filtration processing unit 4, the water head difference Δh shown in FIG. 2 was 5 cm ( 0.5 kPa), and continuous dynamic filtration was performed, and the permeate was sent to the water storage tank 5 and stored. In addition, as a filter element, a filter body composed of two twill weave stainless nets (average pore diameter 43 μm, pore diameter distribution within ± 5%, wire diameter 34 μm, aperture ratio 30%, thickness 70 μm) was attached to both sides of the frame body. A bag (effective filtration area 0.01 m 2 ) was used. After filtration for 30 minutes, backwashing and air bubbling were performed for 0.5 minutes, and this operation cycle was repeated.
[0048]
The SS concentration of the permeate at the initial stage of operation was 10 mg / L on average, and the average treatment capacity was 5.1 m 3 / m 2 · day per effective filtration area of the filter body. The SS concentration of the permeate after 5 hours of operation is 10 mg / L on average, and the average treatment capacity is 5.0 m 3 / m 2 · day per effective filtration area of the filter, which is the difference from the filtration performance from the initial operation. There was no.
[0049]
Example 2
Muddy water was treated in the same manner as in Example 1. However, the first supernatant had an SS concentration of about 700 mg / L and a pH of 11.3, and the amount of flocculant added was 7 mg / L. The SS concentration of the permeate at the beginning of the operation was 5 mg / L on average and the average treatment capacity was 9.4 m 3 / m 2 · day per effective filtration area, and there was no change even after 5 hours.
[0050]
Comparative Example 1
Muddy water was treated in the same manner as in Example 1 except that polyaluminum chloride (manufactured by Taiki Pharmaceutical Co., Ltd.) was used as a flocculant. The SS concentration of the permeate at the beginning of the operation was an average of 45 mg / L and the average processing capacity was 4.8 m 3 / m 2 · day per effective filtration area, but after 5 hours, the SS concentration of the permeate was an average of 25 mg. / L, the average treatment capacity was 1.3 m 3 / m 2 · day per effective filtration area, and the filtration performance was greatly reduced.
[0051]
Comparative Example 2
Muddy water was treated in exactly the same manner as in Example 2 except that ferric chloride (manufactured by Wako Pure Chemical Industries, Ltd.) was used as the flocculant. The SS concentration of the permeate at the beginning of operation averaged 31 mg / L, and the average processing capacity was 7.8 m 3 / m 2 · day per effective filtration area, but after 5 hours, the SS concentration of the permeate averaged 19 mg. / L, the average treatment capacity was 1.9 m 3 / m 2 · day per effective filtration area, and the filtration performance was greatly reduced.
[0052]
As is clear from the comparison with the above Examples and Comparative Examples, by applying the treatment method of the present invention, when the tunnel turbid water containing a large amount of clay content is treated, the clay content is removed by filtration with a membrane, Furthermore, since the neutralization process is used together, it can suppress that a clay component adheres to the film | membrane surface at the time of filtration. For this reason, the SS concentration in the processing liquid is low, and the change with time of the average processing capacity can be reduced.
[0053]
【The invention's effect】
By applying the turbid water treatment method of the present invention, when processing tunnel turbid water containing a large amount of clay, etc., the SS concentration in the treatment liquid can be reduced and the change in the average treatment capacity over time can be reduced. Even when water is discharged into rivers, water quality is not contaminated.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a treatment apparatus used in a muddy water treatment method.
FIG. 2 is a conceptual diagram of a filtration device included in the processing device.

Claims (6)

粘土を含む懸濁質を含有している濁水を、カルシウムを5質量%以上含む無機系凝集剤で凝集処理した後、凝集処理後のフロックを含む液をそのまま濾過処理部に送ってダイナミック濾過により膜濾過処理する濁水の処理方法であり、
前記凝集処理が、前記無機系凝集剤を前記濁水中の懸濁質量に対して0.2〜2.0質量%となる量を添加し、
前記ダイナミック濾過が、膜間差圧が1〜10cmの水頭差となるように濾過する、濁水の処理方法。
The turbid water containing the suspension containing clay is agglomerated with an inorganic flocculant containing 5% by mass or more of calcium, and the flocs containing flocs after the agglomeration are sent to the filtration unit as they are and subjected to dynamic filtration. It is a treatment method of turbid water that performs membrane filtration treatment,
The agglomeration treatment is performed by adding an amount of 0.2 to 2.0% by mass of the inorganic flocculant with respect to the suspended mass in the muddy water,
A method for treating turbid water, wherein the dynamic filtration is performed such that a transmembrane differential pressure is a water head difference of 1 to 10 cm.
濁水と二酸化炭素ガスとを接触させて中和した後、凝集剤で凝集処理する請求項1記載の濁水の処理方法。  The turbid water treatment method according to claim 1, wherein the turbid water and carbon dioxide gas are brought into contact with each other and neutralized, and then a flocculation treatment is performed with a flocculant. 濾過処理が、均一な径の孔を有する濾過体によりなされる請求項1又は2記載の濁水の処理方法。  The method for treating turbid water according to claim 1 or 2, wherein the filtration treatment is performed by a filter body having pores having a uniform diameter. 濾過処理後の濃縮水を沈降処理して懸濁質を沈降させ、更に濃縮した後、沈降汚泥を固化処理し、上澄液を凝集処理前の濁水に混合する請求項1〜3のいずれか1記載の濁水の処理方法。  The concentrated water after the filtration treatment is settled to settle the suspended matter, further concentrated, the precipitated sludge is solidified, and the supernatant is mixed with the turbid water before the flocculation treatment. The method for treating muddy water according to 1. 濾過処理後の透過液を沈降処理するか、又は再度濾過処理する請求項1〜4のいずれか1記載の濁水の処理方法。  The method for treating turbid water according to any one of claims 1 to 4, wherein the permeate after the filtration treatment is subjected to sedimentation treatment or filtration treatment again. 請求項1〜5のいずれか1記載の濁水の処理方法に適用できる濁水の処理装置であり、濁水を沈降処理する沈降処理部、沈降処理後の上澄液を必要に応じて中和処理する中和処理部、濁水の濁度を検知して凝集剤の添加量を調整できる凝集剤添加手段及び攪拌手段を備えた凝集処理部、濾過処理部、透過液を濃縮処理する濃縮処理部、並びに透過液を貯水する貯水部を有しており、前記各処理部が、少なくとも前記順序で接続ラインにより接続されており、濃縮処理部において濃縮液と分離された液を沈降処理部、中和処理部又は凝集処理部に返送できるように、濃縮処理部と、沈降処理部、中和処理部又は凝集処理部が接続ラインにより接続されている濁水の処理装置。  It is a turbid water processing apparatus applicable to the turbid water processing method of any one of Claims 1-5, and the neutralization process is performed for the sedimentation processing part which settles turbid water, and the supernatant liquid after sedimentation treatment as needed. A neutralization treatment unit, a coagulant addition unit capable of detecting the turbidity of turbid water and adjusting the addition amount of the coagulant and a coagulation treatment unit equipped with a stirring unit, a filtration treatment unit, a concentration treatment unit for concentrating the permeate, A water storage section for storing the permeate, wherein each of the processing sections is connected by a connection line in at least the order, and the liquid separated from the concentrated liquid in the concentration processing section is settled and neutralized. A turbid water treatment apparatus in which a concentration processing unit, a sedimentation processing unit, a neutralization processing unit, or a coagulation processing unit are connected by a connection line so that they can be returned to the unit or the coagulation processing unit.
JP2002184126A 2002-06-25 2002-06-25 Muddy water treatment method Expired - Fee Related JP4359025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002184126A JP4359025B2 (en) 2002-06-25 2002-06-25 Muddy water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002184126A JP4359025B2 (en) 2002-06-25 2002-06-25 Muddy water treatment method

Publications (2)

Publication Number Publication Date
JP2004025011A JP2004025011A (en) 2004-01-29
JP4359025B2 true JP4359025B2 (en) 2009-11-04

Family

ID=31180110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002184126A Expired - Fee Related JP4359025B2 (en) 2002-06-25 2002-06-25 Muddy water treatment method

Country Status (1)

Country Link
JP (1) JP4359025B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9102825B2 (en) 2013-09-17 2015-08-11 Nike, Inc. Dynamically crosslinked thermoplastic material process
US9328224B2 (en) 2013-09-17 2016-05-03 Nike, Inc. Dynamically crosslinked thermoplastic material process

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569200B2 (en) * 2004-07-23 2010-10-27 富士電機ホールディングス株式会社 Water treatment method and membrane filtration water treatment device operation method
WO2011097727A1 (en) 2010-02-10 2011-08-18 Queen's University At Kingston Water with switchable ionic strength
JP5526954B2 (en) * 2010-04-07 2014-06-18 株式会社大林組 Flocculant addition method, solid flocculant installation amount determination method in this method, and solid flocculant replacement frequency determination method
JP6599082B2 (en) * 2010-12-15 2019-10-30 クィーンズ ユニバーシティー アット キングストン Switchable water composition and method for adjusting osmotic pressure gradient across a semipermeable membrane
JP6164941B2 (en) * 2013-06-10 2017-07-19 りんかい日産建設株式会社 Muddy water treatment system and muddy water treatment method
JP5501544B1 (en) * 2014-01-30 2014-05-21 株式会社テクノス北海道 Flocculant for wastewater treatment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9102825B2 (en) 2013-09-17 2015-08-11 Nike, Inc. Dynamically crosslinked thermoplastic material process
US9127152B2 (en) 2013-09-17 2015-09-08 Nike, Inc. Dynamically crosslinked thermoplastic material process
US9328224B2 (en) 2013-09-17 2016-05-03 Nike, Inc. Dynamically crosslinked thermoplastic material process
US9481792B2 (en) 2013-09-17 2016-11-01 Nike, Inc. Dynamically crosslinked thermoplastic material process
US9598579B2 (en) 2013-09-17 2017-03-21 Nike, Inc. Dynamically crosslinked thermoplastic material process

Also Published As

Publication number Publication date
JP2004025011A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP4309633B2 (en) Water treatment method
JP4359025B2 (en) Muddy water treatment method
JP4176915B2 (en) Solid-liquid separator
WO2017159303A1 (en) Method for treating waste water having high hardness
JP2018192411A (en) Water treatment method, water treatment equipment and method for control of addition of cake layer formation substance to raw water
JPH11188206A (en) Flocculation and settling device
WO2019150604A1 (en) Method and apparatus for treating coal wastewater
JPWO2014034845A1 (en) Fresh water generation method
JP5017922B2 (en) Water treatment method
JP2005125177A (en) Flocculating and settling apparatus and method for treating water to be treated by using the same
JP2009119427A (en) Method of treating muddy water
JP2005111404A (en) Flocculating/filtering method
JP3786885B2 (en) Water purification method for manganese-containing water
JP4052419B2 (en) Filtration membrane cleaning method and seawater filtration apparatus using the same
JP3874635B2 (en) Sewage treatment method and treatment apparatus
JP2003103289A (en) Wastewater treatment method
JP4800463B2 (en) Filtration device
JP3831055B2 (en) Public water supply
JP4800462B2 (en) Filtration method
CN110040904A (en) A kind of heavy metal waste water treatment system and method
JPH11253704A (en) Flocculator and operation method thereof
JP3889254B2 (en) Solid-liquid separation method and apparatus for biological treatment liquid of organic wastewater
CN216549934U (en) Sewage treatment flocculation filter equipment
WO2021117542A1 (en) Water softener
JP2001104953A (en) Method and apparatus for treating turbid water

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150814

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150814

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees