JP2020006332A - Water treatment apparatus and water treatment method - Google Patents

Water treatment apparatus and water treatment method Download PDF

Info

Publication number
JP2020006332A
JP2020006332A JP2018130551A JP2018130551A JP2020006332A JP 2020006332 A JP2020006332 A JP 2020006332A JP 2018130551 A JP2018130551 A JP 2018130551A JP 2018130551 A JP2018130551 A JP 2018130551A JP 2020006332 A JP2020006332 A JP 2020006332A
Authority
JP
Japan
Prior art keywords
water
cod
treated
membrane
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018130551A
Other languages
Japanese (ja)
Inventor
祐人 端谷
Yuto Hataya
祐人 端谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp filed Critical Oji Holdings Corp
Priority to JP2018130551A priority Critical patent/JP2020006332A/en
Publication of JP2020006332A publication Critical patent/JP2020006332A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

To provide a water treatment apparatus capable of performing control to enhance a flux without irreversible clogging of a filtration membrane in the case of using water to be treated of which the quality fluctuates with time.SOLUTION: A water treatment apparatus 41 includes: water quality measuring means 11 for measuring the COD of water to be treated 2 of which the quality fluctuates with time; coagulation treatment means 13 for adding a coagulant to the water to be treated 2 downstream of the water quality measuring means 11 to obtain coagulation-treated water 3; a filtration membrane 22 for subjecting the coagulation-treated water 3 to membrane filtration to obtain treated water 4; and flux controlling means 14 for controlling a flux of the filtration membrane 22 based on the COD value measured by the water quality measuring means 11. The filtration membrane 22 is a microfiltration membrane or an ultrafiltration membrane. A water treatment method uses the water treatment apparatus.SELECTED DRAWING: Figure 1

Description

本発明は、水処理装置および水処理方法に関する。   The present invention relates to a water treatment device and a water treatment method.

逆浸透膜(Reverse Osmosis Membrane:RO膜)を用いて水の精製をする水処理は一般的に増加している。具体的には、海水の脱塩、飲料水の製造、冷却塔の補給水、プロセス水の製造、ボイラー給水の前処理等のために使用されている。ここで、有機物含有排水を用いる場合、逆浸透膜を用いる水処理の前処理として、生物処理や限外ろ過膜(UF膜)での膜処理を行うことが知られている(特許文献1および2参照)。   Water treatment for purifying water using a reverse osmosis membrane (RO membrane) is generally increasing. Specifically, it is used for desalination of seawater, production of drinking water, makeup water for cooling towers, production of process water, pretreatment of boiler feedwater, and the like. Here, in the case of using organic matter-containing wastewater, it is known to perform biological treatment or membrane treatment with an ultrafiltration membrane (UF membrane) as pretreatment of water treatment using a reverse osmosis membrane (Patent Document 1 and 2).

特許文献1には、有機物を含む原水に凝集剤を添加して凝集分離を行って凝集分離処理水を得る凝集分離工程と、凝集分離処理水をろ過してろ過処理水を得るろ過処理工程と、ろ過処理水を逆浸透膜により逆浸透膜透過水と逆浸透膜濃縮水に分離する逆浸透膜分離工程を含む逆浸透膜透過水の製造方法において、凝集分離工程をpHが3〜6の酸性領域で行う逆浸透膜透過水の製造方法が記載されている。   Patent Literature 1 discloses a coagulation separation step of adding a coagulant to raw water containing an organic substance and performing coagulation separation to obtain coagulation separation treatment water, a filtration treatment step of filtering coagulation separation treatment water to obtain filtration treatment water, In a method for producing a reverse osmosis membrane permeated water comprising a reverse osmosis membrane separation step of separating filtered water into a reverse osmosis membrane permeated water and a reverse osmosis membrane concentrated water by a reverse osmosis membrane, the coagulation separation step is performed at a pH of 3 to 6. A method for producing reverse osmosis permeated water in an acidic region is described.

特許文献2には、有機排水を生物処理する生物処理手段と、生物処理手段からの生物処理水の少なくとも一部が導入される濾過装置及び濾過装置の濾過水が導入される逆浸透膜分離装置とを含む回収処理手段と、濾過装置の逆洗排水、濾過装置の薬品洗浄排水及び逆浸透膜分離装置の濃縮水のうちの少なくとも1種を生物処理手段の原水導入側へ返送する返送手段とを有する有機排水の回収処理装置において、返送手段で生物処理手段の原水導入側へ返送される水の少なくとも一部を凝集処理した後固液分離する凝集処理手段と固液分離手段とを有し、固液分離手段の処理水が生物処理手段に送給される有機排水の回収処理装置が記載されている。   Patent Document 2 discloses a biological treatment means for biologically treating organic wastewater, a filtration device into which at least a part of biologically treated water from the biological treatment means is introduced, and a reverse osmosis membrane separation device into which filtered water from the filtration device is introduced. And a return means for returning at least one of the backwash wastewater of the filtration device, the chemical wash wastewater of the filtration device, and the concentrated water of the reverse osmosis membrane separation device to the raw water introduction side of the biological treatment means. An organic waste water recovery treatment device having a coagulation treatment means for solid-liquid separation after coagulation treatment of at least a part of water returned to the raw water introduction side of the biological treatment means by the return means, and a solid-liquid separation means Also, there is described an organic wastewater recovery treatment apparatus in which treated water of a solid-liquid separation means is supplied to a biological treatment means.

特開2013−244468号公報JP 2013-244468 A 特開2013−085983号公報JP 2013-08983 A

ここで、紙パルプ工場の総合排水などは水質が時間変動するため、一般的に想定される前処理においてろ過膜の閉塞等が生じ、前処理が不安定となることが知られている(特許文献1参照)。   Here, it is known that, since the water quality of the general wastewater of a pulp and paper mill fluctuates with time, clogging of a filtration membrane occurs in generally assumed pretreatment, and the pretreatment becomes unstable (Patent Reference 1).

水質が時間変動する被処理水を用いた場合、フラックス(流束)またはろ過水量を一定制御としたときは、COD(化学的酸素要求量)が低い被処理水に対しては安定運転(ろ過膜が不可逆的に閉塞しにくい安全運転)となるが、回収水の量が少なくなる問題がある。このとき、CODが高い排水に対してはろ過膜が不可逆的に閉塞してしまう問題がある。
しかし、特許文献1および2には、これらの問題について解決する方法は記載されていなかった。特に、特許文献2の[0013]には、凝集処理による前処理では膜フラックスの問題を解決できないことが記載されている。
When treated water whose water quality fluctuates with time, when the flux (flux) or the amount of filtered water is controlled to be constant, stable operation (filtration) is performed for the treated water with low COD (chemical oxygen demand). This is a safe operation in which the membrane is irreversibly blocked, but there is a problem that the amount of recovered water is reduced. At this time, there is a problem that the filtration membrane is irreversibly blocked for wastewater having a high COD.
However, Patent Documents 1 and 2 do not describe a method for solving these problems. In particular, [0013] of Patent Document 2 describes that the problem of the film flux cannot be solved by the pretreatment by the aggregation treatment.

本発明が解決しようとする課題は、水質が時間変動する被処理水を用いた場合に、不可逆的なろ過膜の閉塞を起こさずにフラックスを高くするように制御できる水処理装置を提供することである。   The problem to be solved by the present invention is to provide a water treatment apparatus that can control so as to increase the flux without causing irreversible clogging of a filtration membrane when using water to be treated whose water quality fluctuates with time. It is.

本発明では、水質が時間変動する被処理水のCODを測定して、測定したCODの値に基づいてろ過膜のフラックスを制御することによって、水質が時間変動する被処理水を用いた場合に、不可逆的なろ過膜の閉塞を起こさずにフラックスを高くするように制御できることを見出し、上記課題を解決した。   In the present invention, by measuring the COD of the water to be treated whose water quality fluctuates with time, and controlling the flux of the filtration membrane based on the value of the measured COD, when the water to be treated whose water quality fluctuates with time is used. The inventors have found that the flux can be controlled to be high without causing irreversible clogging of the filtration membrane, and the above-mentioned problem has been solved.

上記課題を解決するための具体的な手段である本発明の構成と、本発明の好ましい構成を以下に記載する。
[1] 水質が時間変動する被処理水のCODを測定する水質測定手段と、
水質測定手段の下流で被処理水に凝集剤を添加して凝集処理水を得る凝集処理手段と、
凝集処理水を膜ろ過して処理水を得るろ過膜と、
水質測定手段で測定したCODの値に基づいてろ過膜のフラックスを制御するフラックス制御手段を備え、
ろ過膜が精密ろ過膜または限外ろ過膜である、水処理装置。
[2] 水質測定手段と凝集処理手段の間に、被処理水のpHを5〜7に調整するpH調整手段を備える[1]に記載の水処理装置。
[3] 凝集剤が無機凝集剤である[1]または[2]に記載の水処理装置。
[4] ろ過膜を逆洗浄する逆洗浄手段を備える[1]〜[3]のいずれか一つに記載の水処理装置。
[5] 水質測定手段で測定したCODの値が200mg/L以下である場合はフラックスが下記式1を満たし、
水質測定手段で測定したCODの値が200mg/Lを超える場合はフラックスが0.28±0.05m/dayとなるようにフラックス制御手段を制御する[1]〜[4]のいずれか一つに記載の水処理装置。
式1
−0.0045×COD+1.08≦フラックス≦−0.0039×COD+1.08
(式1中、CODの単位はmg/Lであり、フラックスの単位はm/dayである。)
[6] フラックス制御手段が、凝集処理水をろ過膜の一次側から供給する送水ポンプである[1]〜[5]のいずれか一つに記載の水処理装置。
[7] 水質測定手段で測定したCODの値に基づいて凝集剤の添加量を制御する凝集剤の添加量制御手段を備え、
水質測定手段で測定したCODの値が200mg/L以下である場合は凝集剤の添加量が下記式2を満たし、
水質測定手段で測定したCODの値が200mg/Lを超える場合は凝集剤の添加量が100±10mg/Lとなるように、凝集剤の添加量制御手段を制御する[1]〜[6]のいずれか一つに記載の水処理装置。
式2
0.4×COD≦凝集剤の添加量≦0.6×COD
(式2中、CODの単位はmg/Lであり、凝集剤の添加量の単位はmg/Lである。)
[8] 水質測定手段で測定したCODの値に基づいて殺菌剤の添加量を制御する殺菌剤の添加量制御手段を備え、
水質測定手段で測定したCODの値が200mg/L以下である場合は殺菌剤の添加量が下記式3を満たし、
水質測定手段で測定したCODの値が200mg/Lを超える場合は殺菌剤の添加量が200±10mg/Lとなるように、殺菌剤の添加量制御手段を制御する[1]〜[7]のいずれか一つに記載の水処理装置。
式3
0.9×COD≦殺菌剤の添加量≦1.1×COD
(式3中、CODの単位はmg/Lであり、殺菌剤の添加量の単位はmg/Lである。)
[9] 水質測定手段で測定したCODの値に基づいて殺菌剤の添加量を制御する殺菌剤の添加量制御手段を備え、
凝集剤の添加量制御手段が凝集剤ポンプであり、
殺菌剤の添加量制御手段が殺菌剤ポンプである[7]または[8]に記載の水処理装置。
[10] 水質測定手段の上流に生物処理槽を備え、かつ、
被処理水が紙パルプ工場の排水および段ボール工場の排水のうち少なくとも一方を生物処理して得られる[1]〜[9]のいずれか一つに記載の水処理装置。
[11] 凝集処理手段からろ過膜までの間に、固液分離手段を備える[1]〜[10]のいずれか一つに記載の水処理装置。
[12] 被処理水のCODが少なくとも200mg/L以下の範囲を含んで時間変動する[1]〜[11]のいずれか一つに記載の水処理装置。
[13] 水質が時間変動する被処理水のCODを測定する水質測定工程と、
水質測定工程の下流で被処理水に凝集剤を添加して凝集処理水を得る凝集処理工程と、
凝集処理水をろ過膜で膜ろ過して処理水を得る膜ろ過工程と、
水質測定工程で測定したCODの値に基づいてろ過膜のフラックスを制御するフラックス制御工程を備え、
ろ過膜が精密ろ過膜または限外ろ過膜である、水処理方法。
The configuration of the present invention, which is a specific means for solving the above problems, and a preferred configuration of the present invention will be described below.
[1] Water quality measuring means for measuring the COD of the water to be treated whose quality varies with time,
Coagulation treatment means to obtain coagulation treatment water by adding a coagulant to the water to be treated downstream of the water quality measurement means,
A filtration membrane that obtains treated water by membrane filtration of the coagulation treated water,
A flux control unit that controls the flux of the filtration membrane based on the value of COD measured by the water quality measurement unit,
A water treatment device, wherein the filtration membrane is a microfiltration membrane or an ultrafiltration membrane.
[2] The water treatment apparatus according to [1], further including a pH adjusting unit for adjusting the pH of the water to be treated to 5 to 7 between the water quality measuring unit and the aggregation treatment unit.
[3] The water treatment apparatus according to [1] or [2], wherein the coagulant is an inorganic coagulant.
[4] The water treatment apparatus according to any one of [1] to [3], further comprising a backwashing unit for backwashing the filtration membrane.
[5] When the value of COD measured by the water quality measurement means is 200 mg / L or less, the flux satisfies the following formula 1,
When the value of COD measured by the water quality measurement means exceeds 200 mg / L, the flux control means is controlled so that the flux becomes 0.28 ± 0.05 m / day. Any one of [1] to [4] A water treatment apparatus according to item 1.
Equation 1
−0.0045 × COD + 1.08 ≦ flux ≦ −0.0039 × COD + 1.08
(In the formula 1, the unit of COD is mg / L, and the unit of flux is m / day.)
[6] The water treatment apparatus according to any one of [1] to [5], wherein the flux control means is a water supply pump that supplies the coagulated water from the primary side of the filtration membrane.
[7] A coagulant addition amount control unit that controls the coagulant addition amount based on the COD value measured by the water quality measurement unit,
When the value of COD measured by the water quality measurement means is 200 mg / L or less, the amount of the coagulant added satisfies the following formula 2,
When the value of COD measured by the water quality measurement means exceeds 200 mg / L, the control means for controlling the addition amount of the flocculant is controlled so that the addition amount of the flocculant becomes 100 ± 10 mg / L [1] to [6]. The water treatment apparatus according to any one of the above.
Equation 2
0.4 × COD ≦ addition amount of flocculant ≦ 0.6 × COD
(In Formula 2, the unit of COD is mg / L, and the unit of the amount of the coagulant added is mg / L.)
[8] a fungicide addition amount control means for controlling the fungicide addition amount based on the COD value measured by the water quality measurement means,
When the value of COD measured by the water quality measuring means is 200 mg / L or less, the amount of the fungicide added satisfies the following formula 3,
When the value of COD measured by the water quality measuring means exceeds 200 mg / L, the controlling means for controlling the amount of fungicide to be added is controlled so that the amount of fungicide to be added is 200 ± 10 mg / L [1] to [7]. The water treatment apparatus according to any one of the above.
Equation 3
0.9 × COD ≦ addition amount of fungicide ≦ 1.1 × COD
(In Formula 3, the unit of COD is mg / L, and the unit of the amount of the fungicide added is mg / L.)
[9] a disinfectant addition amount control means for controlling the disinfectant addition amount based on the COD value measured by the water quality measurement means,
The flocculant addition amount control means is a flocculant pump,
The water treatment apparatus according to [7] or [8], wherein the disinfectant addition amount control means is a disinfectant pump.
[10] A biological treatment tank is provided upstream of the water quality measuring means, and
The water treatment apparatus according to any one of [1] to [9], wherein the water to be treated is obtained by biologically treating at least one of wastewater from a pulp and paper mill and wastewater from a cardboard factory.
[11] The water treatment apparatus according to any one of [1] to [10], further including a solid-liquid separation unit between the aggregation treatment unit and the filtration membrane.
[12] The water treatment apparatus according to any one of [1] to [11], wherein the COD of the water to be treated fluctuates with time including at least a range of 200 mg / L or less.
[13] a water quality measuring step of measuring the COD of the water to be treated whose water quality fluctuates with time;
A coagulation treatment step of adding a coagulant to the water to be treated downstream of the water quality measurement step to obtain coagulation treatment water,
A membrane filtration step of subjecting the coagulated water to membrane filtration with a filtration membrane to obtain treated water;
Comprising a flux control step of controlling the flux of the filtration membrane based on the value of COD measured in the water quality measurement step,
A water treatment method, wherein the filtration membrane is a microfiltration membrane or an ultrafiltration membrane.

本発明によれば、水質が時間変動する被処理水を用いた場合に、不可逆的なろ過膜の閉塞を起こさずにフラックスを高くするように制御できる水処理装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, when using the to-be-processed water whose water quality fluctuates with time, the water treatment apparatus which can be controlled so that flux may be increased without causing irreversible clogging of a filtration membrane can be provided.

図1は、本発明の水処理装置を用いた水処理方法の一例のフローチャートである。FIG. 1 is a flowchart of an example of a water treatment method using the water treatment device of the present invention. 図2は、本発明の水処理装置を用いた水処理方法の他の一例のフローチャートである。FIG. 2 is a flowchart of another example of the water treatment method using the water treatment device of the present invention. 図3は、本発明の水処理装置を用いた水処理方法の他の一例のフローチャートである。FIG. 3 is a flowchart of another example of the water treatment method using the water treatment device of the present invention.

以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「〜」を用いて表される数値範囲は「〜」前後に記載される数値を下限値および上限値として含む範囲を意味する。   Hereinafter, the present invention will be described in detail. The description of the components described below may be made based on representative embodiments or specific examples, but the present invention is not limited to such embodiments. In addition, in this specification, the numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.

[水処理装置]
本発明の水処理装置は、水質が時間変動する被処理水のCODを測定する水質測定手段と、水質測定手段の下流で被処理水に凝集剤を添加して凝集処理水を得る凝集処理手段と、凝集処理水を膜ろ過して処理水を得るろ過膜と、水質測定手段で測定したCODの値に基づいてろ過膜のフラックスを制御するフラックス制御手段を備え、ろ過膜が精密ろ過膜または限外ろ過膜である。
本発明によれば、水質が時間変動する被処理水を用いた場合に、不可逆的なろ過膜の閉塞を起こさずにフラックスを高くすることを制御(好ましくは自動制御)できる。その結果、本発明の水処理装置は、長期にわたり安定運転を継続することができる。また、本発明によれば、排水を工場用の工業用水に利用でき、工場での工業用水の購入費用も削減できる。
以下、本発明の水処理装置の好ましい態様について説明する。
[Water treatment equipment]
The water treatment apparatus of the present invention comprises a water quality measuring means for measuring the COD of the water to be treated whose water quality fluctuates with time, and a coagulation treatment means for adding a coagulant to the water to be treated downstream of the water quality measuring means to obtain coagulated water. And a filtration membrane for obtaining treated water by membrane filtration of the coagulated water, and a flux control means for controlling the flux of the filtration membrane based on the value of COD measured by the water quality measurement means, wherein the filtration membrane is a microfiltration membrane or It is an ultrafiltration membrane.
ADVANTAGE OF THE INVENTION According to this invention, when using the to-be-processed water whose water quality fluctuates with time, it can control (preferably automatic control) to raise a flux without causing irreversible blockage of a filtration membrane. As a result, the water treatment device of the present invention can continue stable operation for a long time. Further, according to the present invention, wastewater can be used for industrial water for factories, and the cost of purchasing industrial water at factories can be reduced.
Hereinafter, preferred embodiments of the water treatment apparatus of the present invention will be described.

<水処理装置の全体的な構成>
本発明の水処理装置の全体的な構成の好ましい態様を、図面を用いて説明する。図1は、本発明の水処理装置を用いた水処理方法の一例のフローチャートである。
図1に示した水処理装置41は、被処理水2のCODを測定する水質測定手段11と、水質測定手段11の下流で被処理水2に凝集剤を添加して凝集処理水3を得る凝集処理手段13と、凝集処理水3を膜ろ過して処理水4を得るろ過膜22と、水質測定手段11で測定したCODの値に基づいてろ過膜22のフラックスを制御するフラックス制御手段14を備える。図1に示した水処理装置41では、凝集処理手段13は凝集攪拌槽21内の被処理水2に凝集剤を添加できるように配置される。
<Overall configuration of water treatment device>
Preferred embodiments of the overall configuration of the water treatment apparatus of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart of an example of a water treatment method using the water treatment device of the present invention.
The water treatment apparatus 41 shown in FIG. 1 includes a water quality measuring unit 11 for measuring the COD of the water 2 to be treated, and a coagulant added to the water 2 to be treated downstream of the water quality measuring unit 11 to obtain the coagulated water 3. Coagulation treatment means 13, filtration membrane 22 for subjecting coagulation treatment water 3 to membrane filtration to obtain treatment water 4, and flux control means 14 for controlling the flux of filtration membrane 22 based on the value of COD measured by water quality measurement means 11. Is provided. In the water treatment apparatus 41 shown in FIG. 1, the coagulation treatment means 13 is arranged so that a coagulant can be added to the water 2 to be treated in the coagulation stirring tank 21.

図2は、本発明の水処理装置を用いた水処理方法の他の一例のフローチャートである。図2に示した水処理装置41は、図1に示した水処理装置のより好ましい態様である。図1に示した水処理装置に加えて、図2に示した水処理装置41では、凝集処理手段として凝集剤の添加量制御手段13aおよび殺菌剤の添加量制御手段13bを備える。
図2に示した水処理装置41では、水質測定手段11と凝集処理手段13の間に、pH調整手段12を備える。pH調整手段12は凝集攪拌槽21内の被処理水2に酸またはアルカリを添加できるように配置される。
図2に示した水処理装置41では、ろ過膜22を逆洗浄する逆洗浄手段15を備える。逆洗浄手段15は、ろ過膜22の2次側から1次側に向けて洗浄流体6または気体(不図示)を通過させられるように配置される。
FIG. 2 is a flowchart of another example of the water treatment method using the water treatment device of the present invention. The water treatment device 41 shown in FIG. 2 is a more preferable embodiment of the water treatment device shown in FIG. In addition to the water treatment device shown in FIG. 1, the water treatment device 41 shown in FIG. 2 includes a coagulant addition amount control unit 13a and a bactericide addition amount control unit 13b as coagulation treatment units.
In the water treatment apparatus 41 shown in FIG. 2, a pH adjustment unit 12 is provided between the water quality measurement unit 11 and the coagulation treatment unit 13. The pH adjusting means 12 is arranged so that an acid or an alkali can be added to the water 2 to be treated in the coagulation stirring tank 21.
The water treatment apparatus 41 shown in FIG. 2 includes the back washing means 15 for back washing the filtration membrane 22. The reverse cleaning means 15 is arranged so that the cleaning fluid 6 or gas (not shown) can be passed from the secondary side to the primary side of the filtration membrane 22.

図3は、本発明の水処理装置を用いた水処理方法の他の一例のフローチャートである。図3に示した水処理装置41は、図2に示した水処理装置のより好ましい態様である。
図3に示した水処理装置41は、水質測定手段11の上流に生物処理槽24を備える。生物処理槽24は、工場51からの排水である原水1を生物処理して被処理水2を得られることが好ましい。なお、生物処理槽24からの生物処理水のうち一部のみを被処理水2として用い、残りの生物処理水は下水などに放流してもよい(不図示)。
図3に示した水処理装置41は、処理水4を逆浸透膜処理して透過水5を得る逆浸透膜23を備える。透過水5は、例えば工場51に用水として供給されることが好ましい。
以下、本発明の水処理装置を構成する各部分の好ましい態様を説明する。
FIG. 3 is a flowchart of another example of the water treatment method using the water treatment device of the present invention. The water treatment device 41 shown in FIG. 3 is a more preferable embodiment of the water treatment device shown in FIG.
The water treatment device 41 shown in FIG. 3 includes a biological treatment tank 24 upstream of the water quality measurement unit 11. It is preferable that the biological treatment tank 24 can biologically treat the raw water 1 that is the wastewater from the factory 51 to obtain the water 2 to be treated. In addition, only a part of the biologically treated water from the biological treatment tank 24 may be used as the water to be treated 2, and the remaining biologically treated water may be discharged to sewage or the like (not shown).
The water treatment apparatus 41 shown in FIG. 3 includes a reverse osmosis membrane 23 that obtains permeated water 5 by subjecting treated water 4 to reverse osmosis membrane treatment. It is preferable that the permeated water 5 be supplied to, for example, a factory 51 as service water.
Hereinafter, preferred embodiments of each part constituting the water treatment apparatus of the present invention will be described.

<原水>
水処理装置に用いられる原水は、特に制限はなく、例えば下水や工場の排水等の様々な種類の排水を、原水として用いることができる。CODが時間変動する原水を用いることが好ましい。CODが時間変動し、かつ、生物処理が困難な難分解性有機物を含む原水を用いることがより好ましい。難分解性有機物としては、リン酸を含む有機物を挙げることができる。このような排水としては、製紙工場の排水を挙げられる。製紙工場の排水は、難分解性有機物を含み、抄造工程で銘柄が変化することで薬剤の使用量が増減し、かつ排水を再利用して系内で循環させているために排水中の有機物が濃縮される結果、水質が時間変動する。製紙工場の排水の中でも、紙パルプ工場の排水および段ボール工場の排水などを原水として用いられる。紙パルプ工場の排水としては、紙パルプ総合排水や白水(パルプ製造工程の脱水工程により発生するろ液)を挙げることができ、特に白水を用いることが好ましい。白水としては、CODが200mg/L以上の水を好ましく用いることができる。
原水のpHは5.0〜7.0であることが好ましく、5.0〜6.0であることがより好ましい。
原水に対して、必要に応じて適当な前処理をした水を被処理水として用いることが好ましい。前処理としては、生物処理を挙げることができる。
<Raw water>
Raw water used in the water treatment apparatus is not particularly limited, and various types of wastewater such as sewage and factory wastewater can be used as the raw water. It is preferable to use raw water whose COD varies with time. It is more preferable to use raw water that has a COD that fluctuates with time and contains a hardly decomposable organic substance that is difficult to treat biologically. Examples of the hardly decomposable organic substance include an organic substance containing phosphoric acid. Examples of such wastewater include wastewater from a paper mill. Wastewater from paper mills contains hardly decomposable organic matter, the amount of chemicals used increases and decreases due to brand changes during the papermaking process, and the organic matter in the wastewater is recycled because the wastewater is reused and circulated in the system. As a result, water quality fluctuates over time. Of the wastewater from a paper mill, the wastewater from a pulp and paper mill and the wastewater from a cardboard factory are used as raw water. Examples of the wastewater from the pulp and paper mill include general wastewater from pulp and paper and white water (filtrate generated in the dewatering step of the pulp manufacturing process). It is particularly preferable to use white water. As the white water, water having a COD of 200 mg / L or more can be preferably used.
The pH of the raw water is preferably from 5.0 to 7.0, and more preferably from 5.0 to 6.0.
It is preferable to use, as the water to be treated, water which has been appropriately pretreated as needed with respect to the raw water. Biological treatment can be mentioned as pretreatment.

<生物処理槽>
本発明の水処理装置は、原水のCODを低減させた被処理水を得る観点から、生物処理槽を備えることが好ましい。生物処理槽の位置は特に制限はないが、凝集処理手段の上流に生物処理槽を備えることが好ましく、水質測定手段の上流に生物処理槽を備えることがより好ましい。生物処理槽は特に制限はないが、曝気槽を少なくとも備え、活性汚泥処理を行えることが好ましい。なお、CODが時間変動する原水を生物処理した場合、当然にCODが時間変動する生物処理水を得られる。
<Biological treatment tank>
The water treatment apparatus of the present invention preferably includes a biological treatment tank from the viewpoint of obtaining the water to be treated in which the COD of the raw water is reduced. Although the position of the biological treatment tank is not particularly limited, a biological treatment tank is preferably provided upstream of the coagulation treatment means, and more preferably a biological treatment tank is provided upstream of the water quality measurement means. The biological treatment tank is not particularly limited, but is preferably provided with at least an aeration tank and capable of performing activated sludge treatment. When raw water whose COD fluctuates with time is biologically treated, naturally biologically treated water whose COD fluctuates with time can be obtained.

<被処理水>
本発明の水処理装置では、水質が時間変動する被処理水を用いる。本発明では、被処理水が紙パルプ工場の排水および段ボール工場の排水のうち少なくとも一方を生物処理して得られることが好ましい。
本明細書中のCODは、CODMn(過マンガン酸カリウムによる化学的酸素要求量)であることが好ましい。本明細書中におけるCODMnの値は、JIS K 0102:2013「100℃における過マンガン酸カリウムによる酸素消費量(CODMn)」に準拠して求められる値である。ただし、CODCr(二クロム酸カリウムによる化学的酸素要求量)などその他の酸化剤の種類によるCODを用いてもよい。
被処理水はCODMn(過マンガン酸カリウムによる化学的酸素要求量)が10〜300mg/Lであることが好ましく、30〜200mg/Lであることがより好ましく、50〜200mg/Lであることが特に好ましい。本発明では、被処理水のCODMnが少なくとも200mg/L以下の範囲を含んで時間変動することが好ましく、少なくとも50〜200mg/Lの範囲を含んで時間変動することがより好ましい。
本発明では、被処理水が難分解性有機物を含んでいてもよい。被処理水は、リン酸濃度が0.1〜100mg/Lであることが好ましく、0.1〜50mg/Lであることがより好ましく、0.1〜10mg/Lであることが特に好ましい。
また、本発明では、被処理水がカルシウムを高濃度で含んでいてもよい。被処理水は、カルシウム濃度が0.1〜1000mg/Lであることが好ましく、0.1〜500mg/Lであることがより好ましく、0.1〜100mg/Lであることが特に好ましい。
<Water to be treated>
In the water treatment apparatus of the present invention, treated water whose water quality fluctuates with time is used. In the present invention, the water to be treated is preferably obtained by biologically treating at least one of wastewater from a pulp and paper mill and wastewater from a cardboard factory.
COD in the present specification is preferably COD Mn (chemical oxygen demand by potassium permanganate). The value of COD Mn in the present specification is a value determined in accordance with JIS K 0102: 2013 “Oxygen consumption by potassium permanganate at 100 ° C. (COD Mn )”. However, COD depending on the type of other oxidizing agent such as COD Cr (chemical oxygen demand by potassium dichromate) may be used.
The water to be treated preferably has COD Mn (chemical oxygen demand by potassium permanganate) of 10 to 300 mg / L, more preferably 30 to 200 mg / L, and 50 to 200 mg / L. Is particularly preferred. In the present invention, the COD Mn of the water to be treated preferably fluctuates with time including at least a range of 200 mg / L or less, and more preferably fluctuates with time including at least a range of 50 to 200 mg / L.
In the present invention, the water to be treated may contain a hardly decomposable organic substance. The water to be treated preferably has a phosphoric acid concentration of 0.1 to 100 mg / L, more preferably 0.1 to 50 mg / L, and particularly preferably 0.1 to 10 mg / L.
Further, in the present invention, the water to be treated may contain calcium at a high concentration. The water to be treated preferably has a calcium concentration of 0.1 to 1000 mg / L, more preferably 0.1 to 500 mg / L, and particularly preferably 0.1 to 100 mg / L.

<水質測定手段>
本発明の水処理装置は、被処理水のCODを測定する水質測定手段を備える。水質測定手段としては特に制限はなく、公知のCOD計またはUV計(紫外線吸光度計)を用いることができる。UV計で計測される被処理水の吸光度と被処理水中のCODは相関性が高いことが知られているため、両者の相関データを予め取得しておき、両者の相関データに基づいて被処理水の吸光度から被処理水中のCODを求められる。任意の制御部に吸光度とCODとの相関データを格納しておき、その制御部が取得した吸光度を両者の相関データに照合して被処理水中のCODを求めてもよい。
水質測定手段は、測定したCODの値を、フラックス制御手段に伝える手段を備えていてもよい。水質測定手段は、測定したCODの値を、さらに凝集剤の添加量制御手段および殺菌剤の添加量制御手段に伝える手段を備えていてもよい。これらの伝える手段としては電磁波の送信手段を挙げることができ、有線または無線を介して各部分の電磁波の受信手段に測定したCODの値を伝えることができる。これらにより、不可逆的なろ過膜の閉塞を起こさずにフラックスを高くすることなどを自動制御できる。
一方、水質測定手段は、測定したCODの値を制御部に伝える手段を有していてもよい。制御部は、記憶部、演算部等により構成され、記憶部に記憶されたコンピュータプログラムを実行することにより、所定の機能を発揮することができる。制御部は、フラックス制御手段、凝集剤の添加量制御手段および殺菌剤の添加量制御手段を適切な状態となるように制御を行うことが好ましい。
なお、水質測定手段が、測定したCODの値を、フラックス制御手段、凝集剤の添加量制御手段および殺菌剤の添加量制御手段、あるいは、制御部に伝える手段を備えていなくてもよい。その場合、水質測定手段が測定したCODの値を表示する手段を備え、測定したCODの値の表示をもとに、フラックス制御手段、凝集剤の添加量制御手段および殺菌剤の添加量制御手段などを管理者が制御してもよい。
<Water quality measurement means>
The water treatment apparatus of the present invention includes a water quality measurement unit that measures the COD of the water to be treated. There is no particular limitation on the water quality measuring means, and a known COD meter or UV meter (ultraviolet absorbance meter) can be used. It is known that the absorbance of the water to be treated and the COD in the water to be treated, which are measured by a UV meter, have a high correlation. Therefore, the correlation data of both is obtained in advance, and the treatment is performed based on the correlation data of both. The COD in the water to be treated can be obtained from the absorbance of the water. Correlation data between absorbance and COD may be stored in an arbitrary control unit, and the COD in the water to be treated may be obtained by comparing the absorbance obtained by the control unit with the correlation data between the two.
The water quality measuring means may include means for transmitting the measured COD value to the flux control means. The water quality measuring means may further include a means for transmitting the measured COD value to the flocculant addition amount control means and the bactericide addition amount control means. Examples of these transmitting means include an electromagnetic wave transmitting means, and the measured COD value can be transmitted to the electromagnetic wave receiving means of each portion via a wire or wirelessly. Thus, it is possible to automatically control, for example, increasing the flux without causing irreversible blockage of the filtration membrane.
On the other hand, the water quality measuring means may have means for transmitting the measured COD value to the control unit. The control unit includes a storage unit, a calculation unit, and the like, and can perform predetermined functions by executing a computer program stored in the storage unit. It is preferable that the control unit controls the flux control unit, the coagulant addition amount control unit, and the disinfectant addition amount control unit to be in an appropriate state.
The water quality measuring means may not include a flux control means, a flocculant addition amount control means, a disinfectant addition amount control means, or a means for transmitting the measured COD value to the control unit. In this case, the water quality measuring means is provided with a means for displaying the value of the COD measured, and based on the display of the measured COD value, the flux controlling means, the adding quantity controlling means for the flocculant and the adding quantity controlling means for the disinfectant are provided. May be controlled by an administrator.

<pH調整手段>
水処理装置は、pH調整手段を備えることが好ましい。pH調整手段の位置は特に制限はないが、水質測定手段と凝集処理手段の間にpH調整手段を備えることが好ましい。凝集処理手段の下流にpH調整手段を有してもよいが、凝集処理手段の下流にpH調整手段を有さないことが好ましい。特に、凝集処理手段の下流でアルカリを添加しないことが、アルカリ添加によりスケールが生じないようにする観点から好ましい。特に原水が硬度(カルシウム)を多く含む場合、アルカリ添加によりカルシウムスケールが生じないようにすることが好ましい。
pH調整手段では、被処理水のpHを5.0〜7.0に調整することが好ましく、5.0〜6.0に調整することがより好ましい。
なお、原水のpHが5.0〜6.0で無機凝集剤の凝集域である場合、pH調整手段を設けなくてもよい。
<PH adjustment means>
The water treatment device preferably includes a pH adjusting unit. The position of the pH adjusting means is not particularly limited, but it is preferable to provide a pH adjusting means between the water quality measuring means and the coagulation treatment means. Although a pH adjusting unit may be provided downstream of the aggregating unit, it is preferable that no pH adjusting unit is provided downstream of the aggregating unit. In particular, it is preferable not to add an alkali downstream of the aggregation treatment means from the viewpoint of preventing scale from being generated by the addition of the alkali. In particular, when the raw water contains a large amount of hardness (calcium), it is preferable to prevent calcium scale from being generated by adding an alkali.
In the pH adjusting means, the pH of the water to be treated is preferably adjusted to 5.0 to 7.0, more preferably to 5.0 to 6.0.
In the case where the pH of the raw water is 5.0 to 6.0 and the pH of the raw water is within the coagulation range of the inorganic coagulant, the pH adjusting means may not be provided.

<凝集処理手段>
本発明の水処理装置は、水質測定手段の下流で被処理水に凝集剤を添加して凝集処理水を得る凝集処理手段を備える。凝集処理手段により、得られた凝集処理水にフロックを形成することが好ましい。
凝集剤としては、無機凝集剤および高分子凝集剤を挙げることができる。無機凝集剤としては、硫酸アルミニウム(硫酸バンド)、ポリ塩化アルミニウム(PAC)、塩化第二鉄、硫酸第一鉄、ポリ硫酸鉄、ポリシリカ鉄が例示される。これらの中でも、硫酸バンドおよびPACが好ましく、PACがより好ましい。高分子凝集剤としては、両性高分子凝集剤、ノニオン性高分子凝集剤、アニオン性高分子凝集剤、カチオン性高分子凝集剤などを挙げることができる。本発明では、凝集剤が無機凝集剤であることが好ましい。
<Aggregation treatment means>
The water treatment apparatus of the present invention includes a coagulation treatment means for obtaining a coagulation treatment water by adding a coagulant to water to be treated downstream of the water quality measurement means. It is preferable to form flocs in the obtained coagulated water by the coagulation treatment means.
Examples of the flocculant include an inorganic flocculant and a polymer flocculant. Examples of the inorganic coagulant include aluminum sulfate (sulfuric acid band), polyaluminum chloride (PAC), ferric chloride, ferrous sulfate, polyiron sulfate, and polysilica iron. Among these, a sulfate band and PAC are preferable, and PAC is more preferable. Examples of the polymer flocculant include an amphoteric polymer flocculant, a nonionic polymer flocculant, an anionic polymer flocculant, and a cationic polymer flocculant. In the present invention, the coagulant is preferably an inorganic coagulant.

本発明では、凝集処理手段が、水質測定手段の下流で被処理水に殺菌剤を添加する殺菌剤添加手段を備えていてもよい。殺菌剤添加手段と凝集剤添加手段の設置順序は特に限定されず、いずれが先であってもよく、実質的に同時に殺菌剤と凝集剤を添加してもよい。
殺菌剤としては特に制限はなく、酸化剤、スライムコントロール剤、アルカリ剤を挙げることができる。
酸化剤としては、塩素系酸化剤、臭素系酸化剤、オゾンを挙げることができる。特に、被処理水を塩素系酸化剤で殺菌することにより、ろ過膜(および/または逆浸透膜)の膜面のバイオファウリングを抑制することが、よりろ過膜(および/または逆浸透膜)の薬品洗浄の頻度を抑制する観点から好ましい。ただし、水処理の条件にあわせて最適な殺菌剤を選択できる。
塩素系酸化剤としては、二酸化塩素、次亜塩素酸、次亜塩素酸ナトリウムなどを挙げることができ、次亜塩素酸ナトリウムがより好ましい。
In the present invention, the coagulation treatment means may include a disinfectant addition means for adding a disinfectant to the water to be treated downstream of the water quality measurement means. The order in which the disinfectant adding means and the flocculant adding means are installed is not particularly limited, and any one may be provided first, and the disinfectant and the flocculant may be added substantially simultaneously.
The fungicide is not particularly limited, and includes an oxidizing agent, a slime control agent, and an alkali agent.
Examples of the oxidizing agent include a chlorine-based oxidizing agent, a bromine-based oxidizing agent, and ozone. In particular, by sterilizing the water to be treated with a chlorine-based oxidizing agent, it is possible to suppress biofouling on the membrane surface of the filtration membrane (and / or the reverse osmosis membrane). This is preferable from the viewpoint of suppressing the frequency of chemical cleaning. However, an optimum bactericide can be selected according to the conditions of the water treatment.
Examples of the chlorine-based oxidizing agent include chlorine dioxide, hypochlorous acid, and sodium hypochlorite, and sodium hypochlorite is more preferable.

(凝集剤の添加量制御手段)
本発明の水処理装置は、水質測定手段で測定したCODの値に基づいて凝集剤の添加量を制御する凝集剤の添加量制御手段を備えることが好ましい。特に、ろ過膜以外の固液分離手段を用いずに、ろ過膜でフロックを除去できるような粒径のフロックが形成できるように凝集剤の添加量を制御することが好ましい。
本発明では、水質測定手段で測定したCODの値が200mg/L以下である場合は凝集剤の添加量が下記式2を満たし、水質測定手段で測定したCODの値が200mg/Lを超える場合は凝集剤の添加量が100±10mg/Lとなるように、凝集剤の添加量制御手段を制御することが好ましい。
式2
0.4×COD≦凝集剤の添加量≦0.6×COD
(式2中、CODの単位はmg/Lであり、凝集剤の添加量の単位はmg/Lである。)
特に、水質測定手段で測定したCODの値が200mg/L以下である場合は凝集剤の添加量が下記式2Aを満たし、水質測定手段で測定したCODの値が200mg/Lを超える場合は凝集剤の添加量が100±5mg/Lとなるように、凝集剤の添加量制御手段を制御することがより好ましい。
式2A
0.45×COD≦凝集剤の添加量≦0.55×COD
(式2A中、CODの単位はmg/Lであり、凝集剤の添加量の単位はmg/Lである。)
その他の制御方法として、例えばCODが120mg/L未満の場合、120〜150mg/Lの場合、150〜180mg/Lの場合、180mg/L以上の場合など数通りに場合分けして各場合についてあらかじめ凝集剤の添加量の値を決めておき、水質測定手段で測定したCODの値に基づいて凝集剤の添加量を自動または手動で制御してもよい。
本発明では、凝集剤の添加量制御手段が凝集剤ポンプであることが好ましく、水質測定手段で測定したCODの値に基づいて凝集剤の添加量を自動で制御できる凝集剤ポンプであることがより好ましい。
(Means for controlling the amount of coagulant added)
The water treatment apparatus of the present invention preferably includes a coagulant addition amount control unit that controls the coagulant addition amount based on the COD value measured by the water quality measurement unit. In particular, it is preferable to control the amount of the flocculant to be added so that a floc having a particle diameter capable of removing the floc by the filtration membrane can be formed without using a solid-liquid separation means other than the filtration membrane.
In the present invention, when the COD value measured by the water quality measuring means is 200 mg / L or less, the amount of the coagulant added satisfies the following formula 2, and the COD value measured by the water quality measuring means exceeds 200 mg / L. It is preferable to control the means for controlling the amount of coagulant added so that the amount of coagulant added is 100 ± 10 mg / L.
Equation 2
0.4 × COD ≦ addition amount of flocculant ≦ 0.6 × COD
(In Formula 2, the unit of COD is mg / L, and the unit of the amount of the coagulant added is mg / L.)
In particular, when the COD value measured by the water quality measurement means is 200 mg / L or less, the amount of the coagulant added satisfies the following formula 2A, and when the COD value measured by the water quality measurement means exceeds 200 mg / L, the coagulation is performed. It is more preferable to control the coagulant addition amount control means so that the addition amount of the agent is 100 ± 5 mg / L.
Equation 2A
0.45 × COD ≦ the amount of coagulant added ≦ 0.55 × COD
(In Formula 2A, the unit of COD is mg / L, and the unit of the amount of the coagulant added is mg / L.)
As other control methods, for example, when the COD is less than 120 mg / L, when the COD is 120 to 150 mg / L, when the COD is 150 to 180 mg / L, and when the The addition amount of the coagulant may be determined in advance, and the addition amount of the coagulant may be automatically or manually controlled based on the COD value measured by the water quality measuring means.
In the present invention, the coagulant addition amount control means is preferably a coagulant pump, and may be a coagulant pump capable of automatically controlling the coagulant addition amount based on the COD value measured by the water quality measurement means. More preferred.

(殺菌剤の添加量制御手段)
本発明の水処理装置は、水質測定手段で測定したCODの値に基づいて殺菌剤の添加量を制御する殺菌剤の添加量制御手段を備えることが好ましい。特に、ろ過膜以外の固液分離手段を用いずに、ろ過膜のバイオファウリングを抑制できるように殺菌剤の添加量を制御することが好ましい。
本発明では、水質測定手段で測定したCODの値が200mg/L以下である場合は殺菌剤の添加量が下記式3を満たし、水質測定手段で測定したCODの値が200mg/Lを超える場合は殺菌剤の添加量が200±10mg/Lとなるように、殺菌剤の添加量制御手段を制御することが好ましい。
式3
0.9×COD≦殺菌剤の添加量≦1.1×COD
(式3中、CODの単位はmg/Lであり、殺菌剤の添加量の単位はmg/Lである。)
特に、水質測定手段で測定したCODの値が200mg/L以下である場合は殺菌剤の添加量が下記式3Aを満たし、水質測定手段で測定したCODの値が200mg/Lを超える場合は殺菌剤の添加量が200±5mg/Lとなるように、殺菌剤の添加量制御手段を制御することがより好ましい。
式3A
0.95×COD≦殺菌剤の添加量≦1.05×COD
(式3A中、CODの単位はmg/Lであり、殺菌剤の添加量の単位はmg/Lである。)
その他の制御方法として、例えばCODが120mg/L未満の場合、120〜150mg/Lの場合、150〜180mg/Lの場合、180mg/L以上の場合など数通りに場合分けして各場合についてあらかじめ殺菌剤の添加量の値を決めておき、水質測定手段で測定したCODの値に基づいて殺菌剤の添加量を自動または手動で制御してもよい。
本発明では、殺菌剤の添加量制御手段が殺菌剤ポンプであることが好ましく、水質測定手段で測定したCODの値に基づいて殺菌剤の添加量を自動で制御できる殺菌剤ポンプであることがより好ましい。
(Means for controlling the amount of fungicide added)
The water treatment apparatus of the present invention preferably includes a disinfectant addition amount control unit that controls the disinfectant addition amount based on the COD value measured by the water quality measurement unit. In particular, it is preferable to control the addition amount of the bactericide so that biofouling of the filtration membrane can be suppressed without using a solid-liquid separation means other than the filtration membrane.
In the present invention, when the COD value measured by the water quality measuring means is 200 mg / L or less, the amount of the fungicide added satisfies the following formula 3, and when the COD value measured by the water quality measuring means exceeds 200 mg / L. It is preferable to control the disinfectant addition amount control means so that the disinfectant addition amount is 200 ± 10 mg / L.
Equation 3
0.9 × COD ≦ addition amount of fungicide ≦ 1.1 × COD
(In Formula 3, the unit of COD is mg / L, and the unit of the amount of the fungicide added is mg / L.)
In particular, when the COD value measured by the water quality measuring means is 200 mg / L or less, the amount of the fungicide added satisfies the following formula 3A, and when the COD value measured by the water quality measuring means exceeds 200 mg / L, sterilization is performed. It is more preferable to control the disinfectant addition amount control means so that the addition amount of the agent is 200 ± 5 mg / L.
Equation 3A
0.95 × COD ≦ addition amount of fungicide ≦ 1.05 × COD
(In Formula 3A, the unit of COD is mg / L, and the unit of the amount of the fungicide added is mg / L.)
As other control methods, for example, when the COD is less than 120 mg / L, when the COD is 120 to 150 mg / L, when the COD is 150 to 180 mg / L, and when the The value of the amount of the disinfectant may be determined in advance, and the amount of the disinfectant may be automatically or manually controlled based on the COD value measured by the water quality measuring means.
In the present invention, the disinfectant addition amount control means is preferably a disinfectant pump, and may be a disinfectant pump capable of automatically controlling the disinfectant addition amount based on the COD value measured by the water quality measuring means. More preferred.

<ろ過膜>
本発明の水処理装置は、凝集処理水を膜ろ過して処理水を得るろ過膜を備える。本発明では、ろ過膜が精密ろ過膜または限外ろ過膜である。
精密ろ過膜の開口径は特に制限はなく、0.1〜0.5μmであることが好ましく、0.1〜0.2μmであることがより好ましい。限外ろ過膜の開口径は特に制限はなく、0.01〜0.05μmであることが好ましく、0.01〜0.02μmであることがより好ましい。
ろ過膜の形状は特に制限はなく、例えば中空糸膜、スパイラル膜、プリーツ膜、平膜などを挙げることができる。ろ過膜が、中空糸膜であることが好ましい。
<Filtration membrane>
The water treatment apparatus of the present invention includes a filtration membrane that obtains treated water by membrane-filtrating coagulated treated water. In the present invention, the filtration membrane is a microfiltration membrane or an ultrafiltration membrane.
The opening diameter of the microfiltration membrane is not particularly limited, and is preferably 0.1 to 0.5 μm, and more preferably 0.1 to 0.2 μm. The opening diameter of the ultrafiltration membrane is not particularly limited, but is preferably 0.01 to 0.05 μm, and more preferably 0.01 to 0.02 μm.
The shape of the filtration membrane is not particularly limited, and examples thereof include a hollow fiber membrane, a spiral membrane, a pleated membrane, and a flat membrane. Preferably, the filtration membrane is a hollow fiber membrane.

<フラックス制御手段>
本発明の水処理装置は、水質測定手段で測定したCODの値に基づいてろ過膜のフラックスを制御するフラックス制御手段を備える。
本発明では、水質測定手段で測定したCODの値が200mg/L以下である場合はフラックスが下記式1を満たし、水質測定手段で測定したCODの値が200mg/Lを超える場合はフラックスが0.28±0.05m/dayとなるようにフラックス制御手段を制御することが好ましい。
式1
−0.0045×COD+1.08≦フラックス≦−0.0039×COD+1.08
(式1中、CODの単位はmg/Lであり、フラックスの単位はm/dayである。)
特に、水質測定手段で測定したCODの値が200mg/L以下である場合はフラックスが下記式1Aを満たし、水質測定手段で測定したCODの値が200mg/Lを超える場合はフラックスが0.28±0.02m/dayとなるようにフラックス制御手段を制御することがより好ましい。
式1A
−0.0041×COD+1.08≦フラックス≦−0.0039×COD+1.08
(式1A中、CODの単位はmg/Lであり、フラックスの単位はm/dayである。)
その他の制御方法として、例えばCODが120mg/L未満の場合、120〜150mg/Lの場合、150〜180mg/Lの場合、180mg/L以上の場合など数通りに場合分けして各場合についてあらかじめフラックスの値を決めておき、水質測定手段で測定したCODの値に基づいてろ過膜のフラックスを自動または手動で制御してもよい。
本発明では、フラックス制御手段が、凝集処理水をろ過膜の一次側から供給する送水ポンプであることが好ましく、水質測定手段で測定したCODの値に基づいてフラックスを自動で制御できる送水ポンプであることがより好ましい。
<Flux control means>
The water treatment apparatus of the present invention includes a flux control unit that controls the flux of the filtration membrane based on the value of COD measured by the water quality measurement unit.
In the present invention, when the COD value measured by the water quality measuring means is 200 mg / L or less, the flux satisfies the following formula 1, and when the COD value measured by the water quality measuring means exceeds 200 mg / L, the flux is 0. It is preferable to control the flux control means so as to be .28 ± 0.05 m / day.
Equation 1
−0.0045 × COD + 1.08 ≦ flux ≦ −0.0039 × COD + 1.08
(In the formula 1, the unit of COD is mg / L, and the unit of flux is m / day.)
In particular, when the COD value measured by the water quality measurement means is 200 mg / L or less, the flux satisfies the following formula 1A. When the COD value measured by the water quality measurement means exceeds 200 mg / L, the flux is 0.28 / L. It is more preferable to control the flux control means so as to be ± 0.02 m / day.
Formula 1A
−0.0041 × COD + 1.08 ≦ flux ≦ −0.0039 × COD + 1.08
(In Formula 1A, the unit of COD is mg / L, and the unit of flux is m / day.)
As other control methods, for example, when the COD is less than 120 mg / L, when the COD is 120 to 150 mg / L, when the COD is 150 to 180 mg / L, and when the The value of the flux may be determined, and the flux of the filtration membrane may be automatically or manually controlled based on the value of the COD measured by the water quality measuring means.
In the present invention, the flux control means is preferably a water supply pump that supplies coagulated water from the primary side of the filtration membrane, and a water supply pump that can automatically control the flux based on the value of COD measured by the water quality measurement means. More preferably, there is.

<逆洗浄手段>
本発明の水処理装置は、ろ過膜を逆洗浄する逆洗浄手段を備えることが好ましい。逆洗浄は、空気や洗浄流体などを用いることができ、洗浄流体を用いることが好ましい。
<Backwashing means>
It is preferable that the water treatment apparatus of the present invention includes a backwashing unit for backwashing the filtration membrane. For the reverse cleaning, air, a cleaning fluid, or the like can be used, and it is preferable to use a cleaning fluid.

<薬品洗浄>
本発明の水処理装置は、薬品を用いたCIP(クリーニングインプレイス洗浄)洗浄を行う手段を有することが好ましい。薬品を用いたCIP洗浄は水処理を止めて水処理装置の系内に薬品を循環させることが好ましい。
薬品を用いたCIP洗浄に用いられる薬品は酸、アルカリまたは洗浄剤であることが好ましい。被処理水が鉱物を多く含む場合は、酸が好ましい。酸としては、塩酸や硫酸、硝酸、クエン酸、シュウ酸、EDTAなどを挙げることができる。被処理水が有機物を多く含む場合はアルカリであることが好ましい。また、薬品は、限外ろ過膜への耐性を有する洗浄剤であることが好ましい。アルカリや限外ろ過膜への耐性を有する洗浄剤としては、次亜塩素酸またはその塩、水酸化ナトリウム、過酸化水素水などを挙げることができ、次亜塩素酸ナトリウムであることが好ましい。
<Chemical cleaning>
The water treatment apparatus of the present invention preferably has means for performing CIP (cleaning-in-place cleaning) cleaning using a chemical. In the CIP cleaning using a chemical, it is preferable to stop the water treatment and circulate the chemical in the system of the water treatment apparatus.
The chemical used for the CIP cleaning using the chemical is preferably an acid, an alkali, or a cleaning agent. When the water to be treated contains a large amount of minerals, acids are preferred. Examples of the acid include hydrochloric acid, sulfuric acid, nitric acid, citric acid, oxalic acid, and EDTA. When the water to be treated contains a large amount of organic substances, it is preferably alkali. Further, the chemical is preferably a cleaning agent having resistance to the ultrafiltration membrane. Examples of the detergent having resistance to an alkali or an ultrafiltration membrane include hypochlorous acid or a salt thereof, sodium hydroxide, hydrogen peroxide, and the like, and sodium hypochlorite is preferable.

<処理水>
ろ過膜を通過した処理水は、浮遊物質(suspended solids;SS)が十分に除去されるため、そのまま逆浸透膜に供給することができる。
<Treatment water>
The treated water that has passed through the filtration membrane can be supplied to the reverse osmosis membrane as it is because suspended solids (SS) are sufficiently removed.

<逆浸透膜>
水処理装置は、処理水を透過して透過水を得られる逆浸透膜を備えることが好ましい。
逆浸透膜の開口径は特に制限はなく、0.001〜0.005μmであることが好ましく、0.001〜0.002μmであることがより好ましい。
逆浸透膜の材料としては特に制限はなく、例えばポリアミド膜などを用いることができる。
<Reverse osmosis membrane>
It is preferable that the water treatment apparatus includes a reverse osmosis membrane capable of permeating treated water to obtain permeated water.
The opening diameter of the reverse osmosis membrane is not particularly limited, and is preferably 0.001 to 0.005 μm, and more preferably 0.001 to 0.002 μm.
The material of the reverse osmosis membrane is not particularly limited, and for example, a polyamide membrane or the like can be used.

<透過水>
水処理装置によって、処理水を逆浸透膜処理し、透過水(回収水とも言われる)として回収して、再利用することができる。例えば、工場からの排水を工業用水並みの水質の透過水として回収し、用水(工業用水)として再利用することができる。また、透過水は、無菌水として再利用することができる。
<Permeated water>
The treated water can be subjected to reverse osmosis membrane treatment, recovered as permeated water (also referred to as recovered water), and reused. For example, wastewater from a factory can be collected as permeated water having a quality similar to that of industrial water, and can be reused as service water (industrial water). The permeated water can be reused as sterile water.

<その他の装置>
水処理装置は、その他の機能を有する部分を備えていてもよい。
また、水処理装置には、生物処理槽からろ過膜までの間に沈殿槽、浮上槽、遠心分離機などの固液分離手段を設けてもよい。特に凝集処理手段からろ過膜までの間に固液分離手段を備える態様を挙げることができる。ただし、本発明の水処理装置はろ過膜の上流に固液分離手段がなくても連続稼働できるため、生物処理槽からろ過膜までの間に、固液分離手段を備えないことがコストを低減する観点から好ましい。特に凝集処理手段からろ過膜までの間に固液分離手段を備えないことがより好ましい。膜ろ過工程で固液分離することにより、設備規模を小さくすることができる。また、凝集処理手段の後段としての固液分離手段でも凝集剤を使用できることから、過剰な使用によるリークの可能性を減らすため、または、凝集剤の種類によっては凝集フロックの分離膜への吸着を促進することに起因する分離膜汚染やろ過性能低下につながる可能性を減らすため、固液分離手段を備えないことが好ましい。
さらに固液分離手段で高分子凝集剤を使わない場合、高分子凝集剤の過剰添加によるリークが起こらず、高分子凝集剤がろ過膜に付着して不可逆的な閉塞が起きることもない。
<Other devices>
The water treatment device may include a portion having another function.
Further, the water treatment apparatus may be provided with a solid-liquid separation means such as a settling tank, a floating tank, and a centrifugal separator between the biological treatment tank and the filtration membrane. In particular, an embodiment in which a solid-liquid separation means is provided between the aggregation treatment means and the filtration membrane can be mentioned. However, since the water treatment apparatus of the present invention can be continuously operated without a solid-liquid separation means upstream of the filtration membrane, the cost can be reduced by not providing the solid-liquid separation means between the biological treatment tank and the filtration membrane. It is preferable from the viewpoint of doing. In particular, it is more preferable that no solid-liquid separation means is provided between the aggregation treatment means and the filtration membrane. By performing solid-liquid separation in the membrane filtration step, the equipment scale can be reduced. In addition, since the flocculant can be used in the solid-liquid separation means as a subsequent stage of the flocculation treatment means, the possibility of leakage due to excessive use is reduced, or depending on the type of the flocculant, adsorption of the flocculent floc to the separation membrane is performed. In order to reduce the possibility of separation membrane contamination or filtration performance deterioration due to the promotion, it is preferable not to provide a solid-liquid separation means.
Further, when the polymer flocculant is not used in the solid-liquid separation means, no leak occurs due to excessive addition of the polymer flocculant, and the polymer flocculant does not adhere to the filtration membrane and irreversible blocking does not occur.

[水処理方法]
本発明の水処理方法は、水質が時間変動する被処理水のCODを測定する水質測定工程と、水質測定工程の下流で被処理水に凝集剤を添加して凝集処理水を得る凝集処理工程と、凝集処理水をろ過膜で膜ろ過して処理水を得る膜ろ過工程と、水質測定工程で測定したCODの値に基づいてろ過膜のフラックスを制御するフラックス制御工程を備え、ろ過膜が精密ろ過膜または限外ろ過膜である。
本発明の水処理方法の好ましい態様は、本発明の水処理装置の好ましい態様と同様である。
[Water treatment method]
The water treatment method of the present invention comprises a water quality measurement step of measuring the COD of the water to be treated whose water quality fluctuates with time, and a coagulation treatment step of adding a coagulant to the water to be treated downstream of the water quality measurement step to obtain coagulated water. And a membrane filtration step of obtaining treated water by membrane filtration of the coagulation-treated water with a filtration membrane, and a flux control step of controlling the flux of the filtration membrane based on the COD value measured in the water quality measurement step. It is a microfiltration membrane or an ultrafiltration membrane.
The preferred embodiment of the water treatment method of the present invention is the same as the preferred embodiment of the water treatment apparatus of the present invention.

以下に実施例と比較例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. Materials, usage amounts, ratios, processing contents, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples described below.

[実施例1]
図3に記載の水処理装置を用いて、製紙工場の排水(紙パルプ工場からの白水)を原水として、以下の水処理を行った。原水のpHは5.0〜6.0であった。
まず、工場51からの原水1に対して、生物処理槽24で活性汚泥処理を行い、得られた生物処理水を被処理水2とした。被処理水2のCODMnを、COD計を含む水質測定手段11で測定したところ、CODMn濃度は78〜200mg/Lであった。また、被処理水2は、リン酸濃度が5〜20mg/Lであったことから、原水および被処理水は生物処理が困難な難分解性有機物を含むと考えられた。被処理水2は、カルシウム濃度が100〜500mg/Lであった。
[Example 1]
Using the water treatment apparatus shown in FIG. 3, the following water treatment was performed using wastewater from a paper mill (white water from a pulp and paper mill) as raw water. The pH of the raw water was 5.0 to 6.0.
First, the raw water 1 from the factory 51 was subjected to activated sludge treatment in the biological treatment tank 24, and the obtained biologically treated water was used as the water 2 to be treated. When the COD Mn of the water 2 to be treated was measured by the water quality measuring means 11 including a COD meter, the COD Mn concentration was 78 to 200 mg / L. In addition, since the water 2 to be treated had a phosphoric acid concentration of 5 to 20 mg / L, it was considered that the raw water and the water to be treated contained a hardly decomposable organic substance that was difficult to biologically treat. The water 2 to be treated had a calcium concentration of 100 to 500 mg / L.

被処理水2を凝集攪拌槽21に導入し、pH調整手段12からpH調整剤として水酸化ナトリウムを添加し、凝集攪拌槽21内のpHが6.0〜6.5になるように自動調整した。さらに、凝集攪拌槽21に対し、凝集剤の添加量制御手段13aを備える凝集剤ポンプと、殺菌剤の添加量制御手段13bを備える殺菌剤ポンプからなる凝集処理手段13から、無機凝集剤および殺菌剤を添加した。
無機凝集剤としてPACを使用した。凝集剤の添加量の制御はCOD計で測定されたCODMn(mg/L)の値に応じて行い、以下の換算式で凝集剤の添加量(mg/L)を決定した。PACは原液濃度10質量%品を使用した。
式2B
凝集剤の添加量=0.5×CODMn
殺菌剤として次亜塩素酸ナトリウムを使用した。殺菌剤の添加量の制御はCOD計で測定されたCODMn(mg/L)の値に応じて行い、以下の換算式で殺菌剤の添加量(mg/L)を決定した。次亜塩素酸ナトリウムは原液濃度12質量%品を使用した。
式3B
殺菌剤の添加量=1.0×CODMn
The water to be treated 2 is introduced into the coagulation and stirring tank 21, and sodium hydroxide is added as a pH adjuster from the pH adjusting means 12 to automatically adjust the pH in the coagulation and stirring tank 21 to 6.0 to 6.5. did. Further, for the coagulation and stirring tank 21, the coagulation treatment means 13 including the coagulant pump having the coagulant addition amount control means 13a and the bactericide pump having the bactericide addition amount control means 13b are used. The agent was added.
PAC was used as an inorganic flocculant. The addition amount of the coagulant was controlled according to the value of COD Mn (mg / L) measured by the COD meter, and the addition amount (mg / L) of the coagulant was determined by the following conversion formula. PAC used a stock solution concentration of 10% by mass.
Equation 2B
Amount of coagulant added = 0.5 × COD Mn
Sodium hypochlorite was used as a bactericide. Control of the amount of the fungicide was performed in accordance with the value of COD Mn (mg / L) measured by the COD meter, and the amount of the fungicide added (mg / L) was determined by the following conversion formula. Sodium hypochlorite used was a stock solution having a concentration of 12% by mass.
Equation 3B
Disinfectant addition = 1.0 x COD Mn

凝集攪拌槽21から凝集処理水3を、送水ポンプからなるフラックス制御手段14によりろ過膜22の一次側に供給し、膜ろ過して処理水4を得た。
膜ろ過では、ろ過膜22として限外ろ過膜であるOJI−MENBRANE(登録商標)を用い、予め設定したフラックスで処理した。ろ過膜22のフラックスの制御はCOD計で測定されたCODMn(mg/L)の値に応じて行い、以下の換算式でフラックス(単位は、膜面積1m当たりの1日のろ過水量(m/day)であるm/(m・day)、すなわちm/day)を決定した。
式1B
フラックス=−0.004×CODMn+1.08
The coagulation treatment water 3 was supplied from the coagulation stirring tank 21 to the primary side of the filtration membrane 22 by the flux control means 14 comprising a water pump, and the treatment water 4 was obtained by membrane filtration.
In the membrane filtration, an ultrafiltration membrane, OJI-MENBRANE (registered trademark) was used as the filtration membrane 22, and the membrane was treated with a previously set flux. The control of the flux of the filtration membrane 22 is performed according to the value of COD Mn (mg / L) measured by the COD meter, and the flux (unit is the amount of filtered water per day per 1 m 2 of membrane area) m 3 / (m 2 · day), that is, m 3 / day), that is, m / day) was determined.
Equation 1B
Flux = −0.004 × COD Mn + 1.08

以上の条件で膜ろ過工程までを行い、10分間当たり1回の洗浄流体(不図示の処理水槽に貯留された、処理水4)を用いた逆洗浄および1日間当たり2回の次亜塩素酸ナトリウム溶液を用いた薬品洗浄を行った。その結果、限外ろ過膜は約半年間にわたって逆洗浄の直後にろ過膜の差圧が40〜60kPaを維持できた。   Up to the membrane filtration process under the above conditions, backwashing using a cleaning fluid (processed water 4 stored in a process water tank, not shown) once per 10 minutes, and hypochlorous acid twice per day Chemical cleaning using a sodium solution was performed. As a result, the ultrafiltration membrane was able to maintain the differential pressure of the filtration membrane at 40 to 60 kPa immediately after the backwash for about half a year.

[実施例2]
実施例1とは別の紙パルプ工場からの白水(別の銘柄の紙を製造するため、抄造工程の薬剤が異なる)を原水として用いた。原水のpHは5.0〜6.0であった。
工場51からの原水1に対して、生物処理槽24で活性汚泥処理を行い、得られた生物処理水を被処理水2とした。被処理水2のCODMnを、COD計を含む水質測定手段11で測定したところ、CODMn濃度は常に200mg/Lを超過した範囲内で時間変動していた。また、被処理水2は、リン酸濃度が5〜20mg/Lであったことから、原水および被処理水は生物処理が困難な難分解性有機物を含むと考えられた。被処理水2は、カルシウム濃度が100〜500mg/Lであった。
この被処理水を用い、フラックス、凝集剤の添加量、および殺菌剤の添加量をそれぞれ以下のとおりに変更した以外は実施例1と同様にして、水処理を行った。
フラックス=0.28m/day
凝集剤の添加量=100mg/L
殺菌剤の添加量=200mg/L
以上の条件で膜ろ過工程までを行い、10分間当たり1回の逆洗浄および1日間当たり2回の次亜塩素酸ナトリウム溶液を用いた薬品洗浄を行った。その結果、限外ろ過膜は約半年間にわたって逆洗浄の直後にろ過膜の差圧が40〜60kPaを維持できた。
[Example 2]
White water from a pulp and paper mill different from that in Example 1 (different chemicals in the paper making process for producing paper of another brand) was used as raw water. The pH of the raw water was 5.0 to 6.0.
Activated sludge treatment was performed on the raw water 1 from the factory 51 in the biological treatment tank 24, and the obtained biologically treated water was used as the water to be treated 2. When the COD Mn of the water 2 to be treated was measured by the water quality measuring means 11 including a COD meter, the COD Mn concentration always fluctuated within a range exceeding 200 mg / L. In addition, since the water 2 to be treated had a phosphoric acid concentration of 5 to 20 mg / L, it was considered that the raw water and the water to be treated contained a hardly decomposable organic substance that was difficult to biologically treat. The water 2 to be treated had a calcium concentration of 100 to 500 mg / L.
Using this water to be treated, water treatment was carried out in the same manner as in Example 1 except that the amount of addition of the flux, the coagulant, and the amount of the bactericide were changed as follows.
Flux = 0.28m / day
Addition amount of flocculant = 100 mg / L
Fungicide addition = 200 mg / L
The steps up to the membrane filtration step were performed under the above conditions, and one reverse washing was performed once every 10 minutes and two chemical washings using a sodium hypochlorite solution were performed per day. As a result, the ultrafiltration membrane was able to maintain the differential pressure of the filtration membrane at 40 to 60 kPa immediately after the backwash for about half a year.

[比較例1]
実施例1および2とは別の紙パルプ工場からの白水(別の銘柄の紙を製造するため、抄造工程の薬剤が異なる)を原水として用いた。原水のpHは5.0〜6.0であった。
工場51からの原水1に対して、生物処理槽24で活性汚泥処理を行い、得られた被処理水を被処理水2とした。被処理水2のCODMnを、COD計を含む水質測定手段11で測定したところ、CODMn濃度は常に150〜200mg/Lの範囲および200mg/Lを超過した範囲の両方を含む範囲で時間変動していた。また、被処理水2は、リン酸濃度が5〜20mg/Lであったことから、原水および被処理水は生物処理が困難な難分解性有機物を含むと考えられた。被処理水2は、カルシウム濃度が100〜500mg/Lであった。
この被処理水を用い、被処理水のCODMnの値に応じて制御することなくフラックス、凝集剤の添加量および殺菌剤の添加量をそれぞれ以下のとおりに決定した以外は実施例1と同様にして、水処理を行った。
フラックス=0.5m/day
凝集剤の添加量=100mg/L
殺菌剤の添加量=200mg/L
以上の条件で膜ろ過工程までを行い、10分間当たり1回の逆洗浄および1日間当たり2回の次亜塩素酸ナトリウム溶液を用いた薬品洗浄を行ったが安定運転することができず、逆洗浄の直後にろ過膜の差圧が40〜60kPaを維持できなくなった。その後、逆洗浄および薬品洗浄の頻度をさらに高くしても差圧が回復しなくなり、約1ヶ月経過後に通水不能となった。
[Comparative Example 1]
White water from a different pulp and paper mill from Examples 1 and 2 (different chemicals in the papermaking process to produce different brands of paper) was used as raw water. The pH of the raw water was 5.0 to 6.0.
Activated sludge treatment was performed on the raw water 1 from the factory 51 in the biological treatment tank 24, and the obtained water to be treated was used as the water to be treated 2. When the COD Mn of the water to be treated 2 was measured by the water quality measuring means 11 including a COD meter, the COD Mn concentration always fluctuated with time in a range including both a range of 150 to 200 mg / L and a range exceeding 200 mg / L. Was. In addition, since the water 2 to be treated had a phosphoric acid concentration of 5 to 20 mg / L, it was considered that the raw water and the water to be treated contained a hardly decomposable organic substance that was difficult to biologically treat. The water 2 to be treated had a calcium concentration of 100 to 500 mg / L.
Using this water to be treated, the same as in Example 1 except that the flux, the added amount of the flocculant and the added amount of the bactericide were determined as described below without controlling according to the value of COD Mn of the water to be treated. To perform water treatment.
Flux = 0.5m / day
Addition amount of flocculant = 100 mg / L
Fungicide addition = 200 mg / L
Up to the membrane filtration step under the above conditions, and once backwashing for 10 minutes and twice for chemical cleaning using sodium hypochlorite solution per day were performed, but stable operation was not possible. Immediately after the washing, the differential pressure of the filtration membrane could not be maintained at 40 to 60 kPa. Thereafter, even if the frequency of the back washing and the chemical washing was further increased, the differential pressure did not recover, and water was not allowed to pass after about one month.

以上より、本発明の水処理装置によれば、水質が時間変動する被処理水を用いた場合に、不可逆的なろ過膜の閉塞を起こさずにフラックスを高くするように制御できることがわかった。
比較例1より、水質測定手段で測定したCODの値に基づかずにフラックスを固定値とすると、水質が時間変動する被処理水を用いた場合に、不可逆的なろ過膜の閉塞を起こすことがわかった。
As described above, according to the water treatment apparatus of the present invention, it has been found that when using the water to be treated whose time fluctuates, the flux can be controlled to be high without causing irreversible blockage of the filtration membrane.
From Comparative Example 1, when the flux is set to a fixed value without being based on the value of COD measured by the water quality measuring means, irreversible blocking of the filtration membrane may be caused when the water to be treated whose water quality varies with time is used. all right.

1 原水
2 被処理水
3 凝集処理水
4 処理水
5 透過水
6 洗浄流体
11 水質測定手段
12 pH調整手段
13 凝集処理手段
13a 凝集剤の添加量制御手段
13b 殺菌剤の添加量制御手段
14 フラックス制御手段
15 逆洗浄手段
21 凝集攪拌槽
22 ろ過膜
23 逆浸透膜
24 生物処理槽
41 水処理装置
51 工場
REFERENCE SIGNS LIST 1 raw water 2 treated water 3 flocculated treated water 4 treated water 5 permeated water 6 cleaning fluid 11 water quality measuring means 12 pH adjusting means 13 flocculating processing means 13a flocculant addition amount control means 13b disinfectant addition amount control means 14 flux control Means 15 Reverse washing means 21 Coagulation stirring tank 22 Filtration membrane 23 Reverse osmosis membrane 24 Biological treatment tank 41 Water treatment device 51 Factory

Claims (13)

水質が時間変動する被処理水のCODを測定する水質測定手段と、
前記水質測定手段の下流で前記被処理水に凝集剤を添加して凝集処理水を得る凝集処理手段と、
前記凝集処理水を膜ろ過して処理水を得るろ過膜と、
前記水質測定手段で測定したCODの値に基づいて前記ろ過膜のフラックスを制御するフラックス制御手段を備え、
前記ろ過膜が精密ろ過膜または限外ろ過膜である、水処理装置。
Water quality measuring means for measuring the COD of the water to be treated whose quality varies with time,
Coagulation treatment means to obtain coagulation treatment water by adding a coagulant to the water to be treated downstream of the water quality measurement means,
A filtration membrane to obtain treated water by membrane filtration of the coagulated water,
Flux control means for controlling the flux of the filtration membrane based on the value of COD measured by the water quality measurement means,
The water treatment device, wherein the filtration membrane is a microfiltration membrane or an ultrafiltration membrane.
前記水質測定手段と前記凝集処理手段の間に、前記被処理水のpHを5〜7に調整するpH調整手段を備える、請求項1に記載の水処理装置。   The water treatment apparatus according to claim 1, further comprising a pH adjusting unit that adjusts a pH of the water to be treated to 5 to 7 between the water quality measuring unit and the aggregation treatment unit. 前記凝集剤が無機凝集剤である、請求項1または2に記載の水処理装置。   The water treatment apparatus according to claim 1, wherein the coagulant is an inorganic coagulant. 前記ろ過膜を逆洗浄する逆洗浄手段を備える、請求項1〜3のいずれか一項に記載の水処理装置。   The water treatment apparatus according to any one of claims 1 to 3, further comprising a backwashing unit that backwashes the filtration membrane. 前記水質測定手段で測定したCODの値が200mg/L以下である場合は前記フラックスが下記式1を満たし、
前記水質測定手段で測定したCODの値が200mg/Lを超える場合は前記フラックスが0.28±0.05m/dayとなるように前記フラックス制御手段を制御する、請求項1〜4のいずれか一項に記載の水処理装置。
式1
−0.0045×COD+1.08≦フラックス≦−0.0039×COD+1.08
(式1中、CODの単位はmg/Lであり、フラックスの単位はm/dayである。)
When the value of COD measured by the water quality measuring means is 200 mg / L or less, the flux satisfies the following formula 1,
The method according to any one of claims 1 to 4, wherein when the COD value measured by the water quality measurement means exceeds 200 mg / L, the flux control means is controlled so that the flux becomes 0.28 ± 0.05 m / day. The water treatment device according to claim 1.
Equation 1
−0.0045 × COD + 1.08 ≦ flux ≦ −0.0039 × COD + 1.08
(In the formula 1, the unit of COD is mg / L, and the unit of flux is m / day.)
前記フラックス制御手段が、前記凝集処理水を前記ろ過膜の一次側から供給する送水ポンプである、請求項1〜5のいずれか一項に記載の水処理装置。   The water treatment device according to any one of claims 1 to 5, wherein the flux control unit is a water supply pump that supplies the coagulated water from a primary side of the filtration membrane. 前記水質測定手段で測定したCODの値に基づいて前記凝集剤の添加量を制御する凝集剤の添加量制御手段を備え、
前記水質測定手段で測定したCODの値が200mg/L以下である場合は前記凝集剤の添加量が下記式2を満たし、
前記水質測定手段で測定したCODの値が200mg/Lを超える場合は前記凝集剤の添加量が100±10mg/Lとなるように、前記凝集剤の添加量制御手段を制御する、請求項1〜6のいずれか一項に記載の水処理装置。
式2
0.4×COD≦凝集剤の添加量≦0.6×COD
(式2中、CODの単位はmg/Lであり、凝集剤の添加量の単位はmg/Lである。)
The apparatus further includes a coagulant addition amount control unit that controls an addition amount of the coagulant based on a value of COD measured by the water quality measurement unit,
When the value of COD measured by the water quality measuring means is 200 mg / L or less, the amount of the coagulant added satisfies the following formula 2,
2. The method according to claim 1, wherein when the COD value measured by the water quality measurement means exceeds 200 mg / L, the addition amount control means for the coagulant is controlled so that the addition amount of the coagulant is 100 ± 10 mg / L. The water treatment device according to any one of claims 6 to 6.
Equation 2
0.4 × COD ≦ addition amount of flocculant ≦ 0.6 × COD
(In Formula 2, the unit of COD is mg / L, and the unit of the amount of the coagulant added is mg / L.)
前記水質測定手段で測定したCODの値に基づいて殺菌剤の添加量を制御する殺菌剤の添加量制御手段を備え、
前記水質測定手段で測定したCODの値が200mg/L以下である場合は前記殺菌剤の添加量が下記式3を満たし、
前記水質測定手段で測定したCODの値が200mg/Lを超える場合は前記殺菌剤の添加量が200±10mg/Lとなるように、前記殺菌剤の添加量制御手段を制御する、請求項1〜7のいずれか一項に記載の水処理装置。
式3
0.9×COD≦殺菌剤の添加量≦1.1×COD
(式3中、CODの単位はmg/Lであり、殺菌剤の添加量の単位はmg/Lである。)
A disinfectant addition amount control unit that controls an addition amount of the disinfectant based on the value of COD measured by the water quality measurement unit,
When the value of COD measured by the water quality measuring means is 200 mg / L or less, the amount of the fungicide added satisfies the following formula 3,
2. The disinfectant addition amount control means is controlled such that when the COD value measured by the water quality measurement means exceeds 200 mg / L, the disinfectant addition amount is 200 ± 10 mg / L. The water treatment apparatus according to any one of claims 7 to 7.
Equation 3
0.9 × COD ≦ addition amount of fungicide ≦ 1.1 × COD
(In Formula 3, the unit of COD is mg / L, and the unit of the amount of the fungicide added is mg / L.)
前記水質測定手段で測定したCODの値に基づいて殺菌剤の添加量を制御する殺菌剤の添加量制御手段を備え、
前記凝集剤の添加量制御手段が凝集剤ポンプであり、
前記殺菌剤の添加量制御手段が殺菌剤ポンプである、請求項7または8に記載の水処理装置。
A disinfectant addition amount control unit that controls an addition amount of the disinfectant based on the value of COD measured by the water quality measurement unit,
The flocculant addition amount control means is a flocculant pump,
9. The water treatment apparatus according to claim 7, wherein the disinfectant addition amount control means is a disinfectant pump.
前記水質測定手段の上流に生物処理槽を備え、かつ、
前記被処理水が紙パルプ工場の排水および段ボール工場の排水のうち少なくとも一方を生物処理して得られる、請求項1〜9のいずれか一項に記載の水処理装置。
A biological treatment tank is provided upstream of the water quality measuring means, and
The water treatment apparatus according to any one of claims 1 to 9, wherein the water to be treated is obtained by biologically treating at least one of wastewater from a pulp and paper plant and wastewater from a cardboard plant.
前記凝集処理手段から前記ろ過膜までの間に、固液分離手段を備える、請求項1〜10のいずれか一項に記載の水処理装置。   The water treatment apparatus according to any one of claims 1 to 10, further comprising a solid-liquid separation unit between the coagulation treatment unit and the filtration membrane. 前記被処理水のCODが少なくとも200mg/L以下の範囲を含んで時間変動する、請求項1〜11のいずれか一項に記載の水処理装置。   The water treatment apparatus according to any one of claims 1 to 11, wherein the COD of the water to be treated fluctuates with time including at least a range of 200 mg / L or less. 水質が時間変動する被処理水のCODを測定する水質測定工程と、
前記水質測定工程の下流で前記被処理水に凝集剤を添加して凝集処理水を得る凝集処理工程と、
前記凝集処理水をろ過膜で膜ろ過して処理水を得る膜ろ過工程と、
前記水質測定工程で測定したCODの値に基づいて前記ろ過膜のフラックスを制御するフラックス制御工程を備え、
前記ろ過膜が精密ろ過膜または限外ろ過膜である、水処理方法。
A water quality measuring step of measuring the COD of the water to be treated whose water quality fluctuates with time,
A coagulation treatment step of adding a coagulant to the water to be treated downstream of the water quality measurement step to obtain coagulation treatment water,
A membrane filtration step of subjecting the coagulated water to membrane filtration with a filtration membrane to obtain treated water;
A flux control step of controlling the flux of the filtration membrane based on the value of COD measured in the water quality measurement step,
The water treatment method, wherein the filtration membrane is a microfiltration membrane or an ultrafiltration membrane.
JP2018130551A 2018-07-10 2018-07-10 Water treatment apparatus and water treatment method Pending JP2020006332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018130551A JP2020006332A (en) 2018-07-10 2018-07-10 Water treatment apparatus and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018130551A JP2020006332A (en) 2018-07-10 2018-07-10 Water treatment apparatus and water treatment method

Publications (1)

Publication Number Publication Date
JP2020006332A true JP2020006332A (en) 2020-01-16

Family

ID=69149907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018130551A Pending JP2020006332A (en) 2018-07-10 2018-07-10 Water treatment apparatus and water treatment method

Country Status (1)

Country Link
JP (1) JP2020006332A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111847614A (en) * 2020-08-20 2020-10-30 中法水务管理(中山)有限公司 Accurate dosing method and system
CN112919683A (en) * 2021-02-07 2021-06-08 汪波 Advanced biochemical treatment system for papermaking sewage
WO2021192583A1 (en) * 2020-03-24 2021-09-30 オルガノ株式会社 Water recovery system and water recovery method
WO2021192582A1 (en) * 2020-03-24 2021-09-30 オルガノ株式会社 Water treatment method, water treatment device and slime inhibitor for membranes
WO2022201709A1 (en) * 2021-03-23 2022-09-29 パナソニックIpマネジメント株式会社 Water purification apparatus and operation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192583A1 (en) * 2020-03-24 2021-09-30 オルガノ株式会社 Water recovery system and water recovery method
WO2021192582A1 (en) * 2020-03-24 2021-09-30 オルガノ株式会社 Water treatment method, water treatment device and slime inhibitor for membranes
CN115315413A (en) * 2020-03-24 2022-11-08 奥加诺株式会社 Water treatment method, water treatment apparatus, and slime inhibitor for membrane
JP7333865B2 (en) 2020-03-24 2023-08-25 オルガノ株式会社 Water treatment method and water treatment equipment
CN111847614A (en) * 2020-08-20 2020-10-30 中法水务管理(中山)有限公司 Accurate dosing method and system
CN112919683A (en) * 2021-02-07 2021-06-08 汪波 Advanced biochemical treatment system for papermaking sewage
WO2022201709A1 (en) * 2021-03-23 2022-09-29 パナソニックIpマネジメント株式会社 Water purification apparatus and operation method thereof

Similar Documents

Publication Publication Date Title
JP2020006332A (en) Water treatment apparatus and water treatment method
US10710917B2 (en) System and methods for water treatment
Ordóñez et al. Replacement of fresh water use by final effluent recovery in a highly optimized 100% recovered paper mill
TW201043579A (en) Slime control agent for activated carbon, method of passing water through activated-carbon device, and method and apparatus for treating organic-containing water
JP6194887B2 (en) Fresh water production method
JP5807634B2 (en) Reverse osmosis membrane treatment method
JP2018015684A (en) Wastewater treatment apparatus and method
JP6735830B2 (en) Membrane filtration method and membrane filtration system
JP6738492B2 (en) Water treatment method and water treatment device
JP6565268B2 (en) Method and apparatus for treating inorganic carbon-containing water
JP2006281174A (en) Method, apparatus and system for recycling wastewater
JP2012061402A (en) Desalination system
US20140076808A1 (en) Sanitary cold water treatment systems and methods
JP7119568B2 (en) Water treatment device and water treatment method
JP2020006333A (en) Water treatment apparatus and water treatment method
Shukla et al. Combining activated sludge process with membrane separation to obtain recyclable quality water from paper mill effluent
US20180056242A1 (en) Combined electrodialysis and pressure membrane systems and methods for processing water samples
Lim et al. Treatment of RO concentrate for enhanced water recovery from wastewater treatment plant effluent
US20230227342A1 (en) Water treatment method and water treatment apparatus
JP7354744B2 (en) Wastewater utilization system
WO2023026554A1 (en) Method and device for treating fluorine-containing water
JP2020138110A (en) Water treatment device, manufacturing method of water treatment device and water treatment method
JP6797540B2 (en) Raw water treatment method
WO2015002014A1 (en) Treatment method and treatment device for wastewater containing cationic surfactant
JP2017189743A (en) Method and device for treating wastewater containing organic deoxidizer and suspended matter