JP5807634B2 - Reverse osmosis membrane treatment method - Google Patents

Reverse osmosis membrane treatment method Download PDF

Info

Publication number
JP5807634B2
JP5807634B2 JP2012509526A JP2012509526A JP5807634B2 JP 5807634 B2 JP5807634 B2 JP 5807634B2 JP 2012509526 A JP2012509526 A JP 2012509526A JP 2012509526 A JP2012509526 A JP 2012509526A JP 5807634 B2 JP5807634 B2 JP 5807634B2
Authority
JP
Japan
Prior art keywords
water
chlorine
membrane
pretreatment
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012509526A
Other languages
Japanese (ja)
Other versions
JPWO2011125764A1 (en
Inventor
平尾 孝典
孝典 平尾
克美 松本
克美 松本
上村 啓二
啓二 上村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2012509526A priority Critical patent/JP5807634B2/en
Publication of JPWO2011125764A1 publication Critical patent/JPWO2011125764A1/en
Application granted granted Critical
Publication of JP5807634B2 publication Critical patent/JP5807634B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/18Removal of treatment agents after treatment
    • C02F2303/185The treatment agent being halogen or a halogenated compound

Description

本発明は、汚染性物質を含む被処理水を逆浸透膜(以下、RO膜という場合がある)を用いて処理する方法に関し、さらに詳細には、FI(ファウリングインデックス)の高い被処理水を逆浸透膜を用いて、膜の汚染、劣化を防止して処理する方法に関するものである。   The present invention relates to a method of treating water to be treated containing a pollutant using a reverse osmosis membrane (hereinafter sometimes referred to as RO membrane), and more specifically, water to be treated having a high FI (fouling index). The present invention relates to a method for treating a membrane using a reverse osmosis membrane to prevent contamination and deterioration of the membrane.

RO膜は溶質の阻止率が高いため、RO膜処理により得られる清澄な透過水は良好な水質を有するので、各種用途に有効に再利用が可能である。しかし、被処理水に濁質や有機物などのRO膜を汚染する汚染性物質が含まれていると、これらの物質によって逆浸透膜が汚染され、処理の継続に伴いRO膜の透過流束が低下し、あるいは脱塩率が低下するなどの問題がある。   Since the RO membrane has a high solute rejection rate, the clear permeated water obtained by the RO membrane treatment has a good water quality and can be effectively reused in various applications. However, if the water to be treated contains pollutants that contaminate the RO membrane, such as turbidity and organic matter, the reverse osmosis membrane is contaminated by these substances, and the permeation flux of the RO membrane increases as the treatment continues. There are problems such as a decrease or a desalting rate.

RO膜を用いて水処理を行う場合、このようなRO膜の汚染(ファウリング)を防止し、処理効率を高めるために、RO膜装置への供給水を、JIS K3802に定義されているファウリングインデックス(FI)、またはASTM D4189に定義されているシルトデンシティインデックス(SDI)で評価し、この値が既定値以下となるように、例えばFI値又はSDI値が3〜4、或いはそれ以下となるように、前処理(凝集処理、固液分離、活性炭処理)を実施し、逆浸透膜供給水をある程度清澄にすることにより、逆浸透膜装置における透過流束の低下や操作圧力の上昇などの障害を避け、安定運転を継続する方法が実施されている。   When water treatment is performed using the RO membrane, in order to prevent such contamination (fouling) of the RO membrane and increase the treatment efficiency, water supplied to the RO membrane device is supplied with the fouling defined in JIS K3802. Evaluate with the ring index (FI) or the silt density index (SDI) defined in ASTM D4189, and for example, the FI value or the SDI value is 3 to 4 or less so that this value is less than the predetermined value. Pretreatment (flocculation treatment, solid-liquid separation, activated carbon treatment) is performed so that the reverse osmosis membrane feed water is clarified to some extent, thereby reducing the permeation flux and the operating pressure in the reverse osmosis membrane device. A method is being implemented to avoid the obstacles and continue stable operation.

循環冷却水系では、熱源を冷却した冷却水が冷却塔で冷却される際、一部の水が蒸発するため、濁質や有機物などの汚染性物質が濃縮される。そして外部からスライムの原因となる細菌が混入し、また冷却塔で生成したスライムが剥離して混入するため、スライム対策としての殺菌も必要になる。すなわち濁質や有機物などの汚染性物質が除去されても、被処理水中に細菌が含まれていると、細菌が膜面で増殖し、RO膜の透過流束が低下するので、被処理水に殺菌剤を添加して殺菌し、細菌の増殖による膜面の汚染を防止している。   In the circulating cooling water system, when the cooling water that has cooled the heat source is cooled by the cooling tower, a part of the water evaporates, so that pollutants such as turbidity and organic matter are concentrated. Since bacteria that cause slime are mixed from the outside and slime generated in the cooling tower is peeled and mixed, sterilization as a countermeasure against slime is also necessary. That is, even if contaminants such as turbidity and organic matter are removed, if bacteria are contained in the treated water, the bacteria grow on the membrane surface and the permeation flux of the RO membrane decreases, so the treated water It is sterilized by adding a bactericidal agent to prevent contamination of the membrane surface due to bacterial growth.

殺菌剤としては、一般の水系では塩素、次亜塩素酸ナトリウム等の遊離塩素剤が広く用いられているが、これらは酸化剤としてRO膜を劣化させ、性能低下させるので、酸化性を緩和させるものとして、特許文献1(日本特開平1−104310号)には、遊離塩素剤を添加して殺菌を行った後、アンモニウムイオンを添加してクロラミンを生成させる方法が提案されている。しかし特許文献1では、汚染性物質が含まれる被処理水への適用については、どの段階で、どのように適用するかなどについては、詳細に示されていない。   As a disinfectant, free chlorine agents such as chlorine and sodium hypochlorite are widely used in general aqueous systems, but these deteriorate the RO membrane as an oxidant and lower the performance, thus reducing the oxidization property. As a method, Patent Document 1 (Japanese Patent Laid-Open No. 1-104310) proposes a method of adding a free chlorine agent to sterilize and then adding ammonium ions to produce chloramine. However, Patent Document 1 does not show in detail at which stage and how to apply to treated water containing pollutant substances.

特許文献2(日本特開2006−263510号)には、塩素系酸化剤とスルファミン酸化合物とからなる結合塩素剤を含む膜分離用スライム防止剤が提案されている。特許文献2には、上記の結合塩素剤は被処理水中では、遊離塩素が一定の割合で含まれ、平衡関係に類似の関係があることが示されている。そして殺菌効果を得るためには、被処理水中に遊離塩素が検出される濃度で使用され、実施例では遊離塩素濃度が2〜6mg/L、全塩素濃度が20〜60mg/Lで使用されている。   Patent Document 2 (Japanese Patent Laid-Open No. 2006-263510) proposes a slime inhibitor for membrane separation containing a combined chlorine agent composed of a chlorine-based oxidizing agent and a sulfamic acid compound. Patent Document 2 shows that the above-mentioned combined chlorine agent contains free chlorine at a certain ratio in the water to be treated, and has a similar relationship in the equilibrium relationship. And in order to acquire a bactericidal effect, it uses by the density | concentration in which free chlorine is detected in to-be-processed water, and in an Example, free chlorine density | concentration is used at 2-6 mg / L, and total chlorine density | concentration is used at 20-60 mg / L. Yes.

ところがRO膜、特にポリアミド、アラミド系等の窒素含有基を有する高分子膜からなるRO膜は遊離塩素に侵されやすく、脱塩率、除去率等の膜分離性能が悪化するという問題があり、遊離塩素を含まない状態でRO膜処理を行うことが重要とされている。このため特許文献3(日本特開平9−57067号)では、遊離塩素剤で殺菌した後、亜硫酸水素ナトリウムなどの還元剤を添加して殺菌剤を消去し、RO膜処理を行うことが示されている。特許文献3では、還元剤を添加して殺菌剤を消去しても、なお不十分であるとして、銅の濃度を限定しているが、いずれにしても遊離塩素剤で殺菌した後、遊離塩素を消去することが、RO膜の劣化を防止するために必要であるとされている。   However, RO membranes, in particular RO membranes made of polymer membranes having nitrogen-containing groups such as polyamide and aramid, are susceptible to free chlorine, and there is a problem that membrane separation performance such as desalination rate and removal rate deteriorates. It is important to perform the RO membrane treatment without containing free chlorine. For this reason, Patent Document 3 (Japanese Patent Laid-Open No. 9-57067) shows that after sterilizing with a free chlorine agent, a reducing agent such as sodium bisulfite is added to erase the sterilizing agent, and RO membrane treatment is performed. ing. In Patent Document 3, the concentration of copper is limited because it is still insufficient even if the reducing agent is added and the bactericidal agent is erased. It is said that erasing is necessary to prevent the deterioration of the RO membrane.

日本特開平1−104310号Japanese Unexamined Patent Publication No. 1-104310 日本特開2006−263510号Japanese Unexamined Patent Publication No. 2006-263510 日本特開平9−57067号Japanese Unexamined Patent Publication No. 9-57067

本発明の課題は、前記のような従来の問題点を解決するため、汚染物質を含む被処理水を、簡単な機構と簡単な操作により、汚染物質を除去するとともに、生物不活性状態にして、RO膜の汚染、劣化を防止して、効率よくRO膜処理する方法を提案することである。   In order to solve the conventional problems as described above, the object of the present invention is to remove the pollutant from the treated water containing the pollutant by a simple mechanism and simple operation, and to make it in a biologically inactive state. An object of the present invention is to propose a method for efficiently treating the RO membrane while preventing contamination and deterioration of the RO membrane.

本発明は次の逆浸透膜処理方法である。
(1) 汚染性物質を含む被処理水を逆浸透膜処理する方法であって、
被処理水から遊離塩素の存在下に汚染性物質を除去する前処理工程と、
前処理水を結合塩素剤の存在下に逆浸透膜により膜分離する膜分離工程とを含み、
前処理工程から得られる前処理水の全塩素濃度が3〜10mg/L、遊離塩素濃度が0.2〜10mg/Lであり、
膜分離工程へ供給する前処理水の全塩素濃度が1〜5mg/L、遊離塩素濃度が0.1mg/L以下であることを特徴とする逆浸透膜処理方法。
(2) 前処理工程から得られる前処理水に還元剤を添加した後、結合塩素剤を添加して膜分離工程に供給することを特徴とする上記(1)記載の方法。
(3) 前処理工程において、結合塩素剤を添加して、汚染性物質を除去することを特徴とする上記(1)または(2)記載の方法。
(4) 結合塩素剤が、スルファミン酸またはその塩と、遊離塩素剤とからなることを特徴とする上記(1)ないし(3)のいずれかに記載の方法。
(5) 前処理工程が、凝集処理、固液分離および活性炭処理から選ばれる1以上の汚染性物質を除去操作を含む上記(1)ないし(4)のいずれかに記載の方法。
(6) 還元剤が亜硫酸水素塩である上記(2)ないし(5)のいずれかに記載の方法。
The present invention is the following reverse osmosis membrane treatment method.
(1) A method for reverse osmosis membrane treatment of water to be treated containing pollutants,
A pretreatment process for removing pollutants from the water to be treated in the presence of free chlorine;
A membrane separation step of separating the pretreated water with a reverse osmosis membrane in the presence of a bound chlorine agent,
The total chlorine concentration of pretreated water obtained from the pretreatment step is 3 to 10 mg / L, the free chlorine concentration is 0.2 to 10 mg / L,
A reverse osmosis membrane treatment method, wherein the total chlorine concentration of pretreatment water supplied to the membrane separation step is 1 to 5 mg / L, and the free chlorine concentration is 0.1 mg / L or less.
(2) The method according to (1) above, wherein after adding a reducing agent to the pretreated water obtained from the pretreatment step, a combined chlorine agent is added and supplied to the membrane separation step.
(3) The method according to (1) or (2) above, wherein in the pretreatment step, a bound chlorine agent is added to remove the pollutant.
(4) The method according to any one of (1) to (3) above, wherein the combined chlorine agent comprises sulfamic acid or a salt thereof and a free chlorine agent.
(5) The method according to any one of (1) to (4) above, wherein the pretreatment step comprises an operation of removing one or more pollutants selected from agglomeration treatment, solid-liquid separation and activated carbon treatment.
(6) The method according to any one of (2) to (5) above, wherein the reducing agent is bisulfite.

本発明は次の逆浸透膜処理方法である。
(1) 汚染性物質を含む被処理水を逆浸透膜処理する方法であって、
被処理水から遊離塩素の存在下に汚染性物質を除去する前処理工程と、
前処理水を結合塩素剤の存在下に逆浸透膜により膜分離する膜分離工程とを含み、
前処理工程では、得られる前処理水の全塩素濃度が3〜10mg/L、遊離塩素濃度が0.2〜10mg/Lとなるように、遊離塩素の存在下に殺菌した状態で汚染性物質を除去し
前処理工程から得られる前処理水に還元剤を添加した後、
スルファミン酸またはその塩と、遊離塩素剤とからなる結合塩素剤を添加し、
膜分離工程へ供給する前処理水の全塩素濃度が1〜5mg/L、遊離塩素濃度が0.05mg/L以下となる条件で膜分離工程に供給することを特徴とする逆浸透膜処理方法。
(2) 前処理工程において、結合塩素剤を添加して、汚染性物質を除去することを特徴とする上記(1)記載の方法。
(3) 前処理工程が、凝集処理、固液分離および活性炭処理から選ばれる1以上の汚染性物質を除去する操作を含む上記(1)または(2)記載の方法。
(4) 還元剤が亜硫酸水素塩である上記(1)ないし(3)のいずれかに記載の方法。
The present invention is the following reverse osmosis membrane treatment method.
(1) A method for reverse osmosis membrane treatment of water to be treated containing pollutants,
A pretreatment process for removing pollutants from the water to be treated in the presence of free chlorine;
A membrane separation step of separating the pretreated water with a reverse osmosis membrane in the presence of a bound chlorine agent,
Contaminating material before the processing step, the total chlorine concentration of pretreated water obtained is 3-10 mg / L, as free chlorine concentration of 0.2 to 10 mg / L, while sterilization in the presence of free chlorine Remove
After adding the reducing agent to the pretreated water obtained from the pretreatment step,
Add bound chlorinating agent consisting of sulfamic acid or its salt and free chlorinating agent,
Reverse osmosis membrane total chlorine concentration of 1 to 5 mg / L of pretreated water to be supplied to the membrane separation process, the free chlorine concentration which is characterized that you fed to membrane separation step under conditions such that less 0.05 mg / L Processing method.
(2) In the pretreatment step, with the addition of combined chlorine agent, the method of mounting the above (1) SL and removing contaminating substances.
(3) The method according to (1) or (2) above, wherein the pretreatment step comprises an operation of removing one or more pollutants selected from agglomeration treatment, solid-liquid separation and activated carbon treatment.
(4) The method according to any one of (1) to (3) above, wherein the reducing agent is bisulfite.

本発明において、RO膜処理の対象とする被処理水は、汚染性物質を含む被処理水である。汚染性物質はRO膜を汚染する物質であって、RO膜に付着して、透過流束や脱塩率等の膜分離性能を低下させる物質であり、濁質、有機物、コロイドなどが一般的であるが、微生物のように増殖により汚染性を増すものも含まれる。このような汚染性物質は、通常の水源から得られる水に含まれるため、これらの水がすべて本発明の対象となるが、本発明では特にFI(ファウリングインデックス)の高い被処理水を用いる処理に適している。   In the present invention, the water to be treated for RO membrane treatment is water to be treated containing a pollutant. Contaminating substances are substances that contaminate RO membranes, and are substances that adhere to RO membranes and reduce membrane separation performance such as permeation flux and desalination rate. Turbidity, organic matter, colloids, etc. are common However, it also includes those that increase contamination by growth, such as microorganisms. Since such pollutants are contained in water obtained from ordinary water sources, all of these waters are the subject of the present invention. In the present invention, water to be treated having a particularly high FI (fouling index) is used. Suitable for processing.

FIはRO膜に対する汚染性の指標であり、FIの高い被処理水はRO膜に対する汚染性が高いことを示している。このようなFIの高い被処理水は、濁質、有機物、コロイドなどのほか、微生物を多量に含み、微生物の増殖によりRO膜に対する汚染性が高まる場合が多い。このようなFIの高い被処理水は、自然水よりも排水等の回収水に多いが、特に循環冷却水系では、塩類や濁質等が濃縮されるほか、冷却塔で生成したスライムが剥離して混入するため、付着性の微生物が多量に含まれることになるため、微生物の増殖性がない状態に前処理することが要求される。   FI is an index of the contamination with respect to the RO membrane, and the water to be treated having a high FI has a high contamination with the RO membrane. Such treated water with a high FI often contains a large amount of microorganisms in addition to turbidity, organic matter, colloid, and the like, and the contamination of the RO membrane is often increased by the growth of microorganisms. Such treated water with a high FI is more collected water such as wastewater than natural water. In particular, in the circulating cooling water system, salt and turbidity are concentrated, and slime generated in the cooling tower is peeled off. Therefore, a large amount of adherent microorganisms are contained, and therefore, pretreatment is required in a state where there is no growth of microorganisms.

本発明では、このような汚染性物質を含む被処理水、特にFIの高い被処理水から、前処理工程において、遊離塩素の存在下に汚染性物質を除去することにより、RO膜に対する汚染性を解消させ、この前処理水を膜分離工程において、結合塩素剤の存在下に逆浸透膜により膜分離する。このとき前処理工程から得られる前処理水の全塩素濃度を3〜10mg/L、遊離塩素濃度を0.2〜10mg/Lとし、膜分離工程へ供給する前処理水の全塩素濃度を1〜5mg/L、遊離塩素濃度を0.1mg/L以下とすることにより、RO膜の汚染、劣化を防止して、効率よくRO膜処理することができる。   In the present invention, the pollutant on the RO membrane is removed by removing the pollutant in the presence of free chlorine in the pretreatment process from the water to be treated containing such a pollutant, in particular, the water to be treated having a high FI. In the membrane separation step, the pretreated water is subjected to membrane separation with a reverse osmosis membrane in the presence of a combined chlorine agent. At this time, the total chlorine concentration of pretreatment water obtained from the pretreatment step is 3 to 10 mg / L, the free chlorine concentration is 0.2 to 10 mg / L, and the total chlorine concentration of pretreatment water supplied to the membrane separation step is 1. When the free chlorine concentration is set to ˜5 mg / L and the free chlorine concentration is 0.1 mg / L or less, the RO membrane can be prevented from being contaminated and deteriorated, and the RO membrane can be processed efficiently.

前処理工程において遊離塩素を存在させ、前処理工程から得られる前処理水を上記の全塩素濃度および遊離塩素濃度とするためには、遊離塩素剤および/または結合塩素剤を添加することができるが、前処理工程において結合塩素剤を添加して、汚染性物質を除去し、得られる前処理水を上記の全塩素濃度および遊離塩素濃度となるように、前処理工程において添加する結合塩素剤の量を調整するのが好ましい。膜分離工程へ供給する前処理水を上記の全塩素濃度および遊離塩素濃度とするためには、前処理工程から得られる前処理水に還元剤を添加し、結合塩素剤を添加することができる。   In order to make free chlorine exist in the pretreatment step and the pretreated water obtained from the pretreatment step has the above total chlorine concentration and free chlorine concentration, a free chlorine agent and / or a combined chlorine agent can be added. However, in the pretreatment step, the combined chlorine agent is added to remove the pollutant, and the pretreatment water is added in the pretreatment step so that the total pretreatment water concentration and the free chlorine concentration are as described above. It is preferable to adjust the amount. In order to make the pretreatment water supplied to the membrane separation step have the above total chlorine concentration and free chlorine concentration, a reducing agent can be added to the pretreatment water obtained from the pretreatment step, and a combined chlorine agent can be added. .

本発明における遊離塩素、結合塩素および全塩素は、JIS K 0400−33−10:1999に示されており、N,N−ジエチル−1,4−フェニレンジアミンを用いるDPD法によりClの濃度として測定される。遊離塩素は次亜塩素酸、次亜塩素酸イオンまたは溶存塩素の形で存在する塩素とされ、結合塩素はクロロアミンおよび有機クロロアミンの形で存在する塩素とされ、全塩素は遊離塩素、結合塩素または両者の形で存在する塩素とされている。Free chlorine, combined chlorine and total chlorine in the present invention are shown in JIS K 0400-33-10: 1999, and the concentration of Cl 2 is determined by the DPD method using N, N-diethyl-1,4-phenylenediamine. Measured. Free chlorine is chlorine existing in the form of hypochlorous acid, hypochlorite ion or dissolved chlorine, combined chlorine is chlorine existing in the form of chloroamine and organic chloroamine, and total chlorine is free chlorine, combined chlorine or Chlorine is present in both forms.

遊離塩素剤は上記遊離塩素を生成する薬剤であり、活性遊離塩素剤として元素状塩素、次亜塩素酸、潜在遊離塩素剤として次亜塩素酸塩が例示されている。結合塩素剤は上記結合塩素生成する薬剤であるが、クロロアミンは、1、2または3個の水素原子を塩素原子で置換したアンモニアの塩素誘導体(モノクロロアミン(NHCl)、ジクロロアミン(NHCl)、三塩化窒素(NCl))および同規格の測定方法で定量されるすべての有機窒素化合物の塩素誘導体とされており、スルファミン酸の塩素誘導体も含まれる。A free chlorine agent is a chemical | medical agent which produces | generates the said free chlorine, Elemental chlorine and hypochlorous acid are illustrated as an active free chlorine agent, and hypochlorite is illustrated as a latent free chlorine agent. A bonded chlorine agent is an agent that forms the above-mentioned bonded chlorine, but chloroamine is a chlorine derivative of ammonia in which 1, 2 or 3 hydrogen atoms are substituted with chlorine atoms (monochloroamine (NH 2 Cl), dichloroamine (NHCl 2 )). ), Nitrogen trichloride (NCl 3 )) and all organic nitrogen compounds quantified by the measurement method of the same standard, including chlorine derivatives of sulfamic acid.

本発明で使用できる遊離塩素剤としては、上記塩素ガス、次亜塩素酸またはその塩のほか、亜塩素酸またはその塩、塩素酸またはその塩、過塩素酸またはその塩、塩素化イソシアヌール酸またはその塩などを用いることができる。塩としては、ナトリウム、カリウム等のアルカリ金属塩、バリウム等のアルカリ土類金属塩、ニッケル等の他の金属塩、アンモニウム塩などが挙げられる。これらは1種以上を用いることができる。これらの中では次亜塩素酸が取扱性に優れるため好ましい。   Examples of the free chlorine agent that can be used in the present invention include the above chlorine gas, hypochlorous acid or a salt thereof, chlorous acid or a salt thereof, chloric acid or a salt thereof, perchloric acid or a salt thereof, chlorinated isocyanuric acid Alternatively, a salt thereof can be used. Examples of the salt include alkali metal salts such as sodium and potassium, alkaline earth metal salts such as barium, other metal salts such as nickel, ammonium salts, and the like. One or more of these can be used. Of these, hypochlorous acid is preferable because of its excellent handleability.

本発明で使用する結合塩素剤において、上記の遊離塩素が結合する窒素化合物としては、アンモニアまたはその化合物、メラミン、尿素、アセトアミド、スルファミド、サイクロラミン酸、スルファミン酸、トルエンスルホンアミド、コハク酸イミド、フタル酸イミド、イソシアヌル酸、N−クロロトルエンスルホンアミド、尿酸、サッカリンまたはこれらの塩などを挙げることができる。本発明で使用する結合塩素剤は、これらの窒素化合物に上記の遊離塩素が結合したものである。本発明で使用する結合塩素剤としては、上記の窒素化合物と遊離塩素剤とを混合して反応させたもの、特にそれぞれを水溶液の状態で混合して反応させたものが好ましい。水溶液の濃度としては、全塩素濃度換算で5〜10重量%、好ましくは5.5〜7.5重量%とするのが好ましい。   In the bound chlorine agent used in the present invention, the nitrogen compound to which the free chlorine is bound is ammonia or a compound thereof, melamine, urea, acetamide, sulfamide, cyclolamic acid, sulfamic acid, toluenesulfonamide, succinimide, Examples thereof include phthalimide, isocyanuric acid, N-chlorotoluenesulfonamide, uric acid, saccharin, and salts thereof. The bonded chlorine agent used in the present invention is a compound in which the above-mentioned free chlorine is bonded to these nitrogen compounds. As the combined chlorine agent used in the present invention, those obtained by mixing and reacting the above nitrogen compound and free chlorine agent, particularly those obtained by mixing and reacting each in the state of an aqueous solution are preferable. The concentration of the aqueous solution is 5 to 10% by weight, preferably 5.5 to 7.5% by weight in terms of total chlorine concentration.

このような結合塩素剤としては、前記特許文献1に示されたクロラミン、前記特許文献2に示された塩素系酸化剤とスルファミン酸化合物とからなる結合塩素剤のほか、クロラミン−T(N−クロロ−4−メチルベンゼンスルホンアミドのナトリウム塩)、クロラミン−B(N−クロロ−ベンゼンスルホンアミドのナトリウム塩)、N−クロロ−パラニトロベンゼンスルホンアミドのナトリウム塩、トリクロロメラミン、モノ−もしくはジ−クロロメラミンのナトリウム塩またはカリウム塩、トリクロロ−イソシアヌレート、モノ−もしくはジ−クロロイソシアヌール酸のナトリウム塩またはカリウム塩、モノ−もしくはジ−クロロスルファミン酸のナトリウム塩またはカリウム塩、モノクロロヒダントインもしくは1,3−ジクロロヒダントインまたはその5,5−アルキル誘導体等が挙げられる。   Examples of such bonded chlorinating agents include chloramine shown in Patent Document 1, chloramine-T (N--), as well as chlorinated amines composed of a chlorine-based oxidizing agent and a sulfamic acid compound described in Patent Document 2. Sodium salt of chloro-4-methylbenzenesulfonamide), chloramine-B (sodium salt of N-chloro-benzenesulfonamide), sodium salt of N-chloro-paranitrobenzenesulfonamide, trichloromelamine, mono- or di-chloro Sodium salt or potassium salt of melamine, sodium salt or potassium salt of trichloro-isocyanurate, mono- or di-chloroisocyanuric acid, sodium salt or potassium salt of mono- or di-chlorosulfamic acid, monochlorohydantoin or 1,3 -Dichlorohydan In or 5,5-alkyl derivatives.

これらの中では、前記特許文献2に示された遊離塩素剤とスルファミン酸化合物とからなる結合塩素剤はスルファミン酸を含み、スライム剥離性を有するので好ましい。特にスルファミン酸化合物と遊離塩素剤との混合比は、N:有効塩素(モル比)で1:0.45〜0.60、好ましくは1:0.45〜0.55とするのが好ましい。水溶液の濃度としては、全塩素濃度換算で5〜10重量%、好ましくは5.5〜7.5重量%とするのが好ましい。スルファミン酸は、RNSOH・・・〔1〕で表されるアミド硫酸で、R、Rはそれぞれ独立にH、炭素数1〜6の炭化水素基である。このようなスルファミン酸としては、R、RがそれぞれHである狭義のスルファミン酸が好ましいが、N−メチルスルファミン酸、N,N−ジメチルスルファミン酸、N−フェニルスルファミン酸なども使用できる。これらのスルファミン酸は、遊離(粉末状)の酸の状態で用いても良く、またナトリウム塩、カリウム塩等のアルカリ金属塩などの塩であっても良い。上記のN:有効塩素(モル比)は、Nにより構成されるスルファミン酸のモル数と、前記JIS K 0400−33−10:1999により測定される塩素系酸化剤のClのモル数との比に相当する。また水溶液の濃度は、前記JIS K 0400−33−10:1999により測定される遊離塩素および結合塩素濃度を、Clとして全塩素濃度換算で示される値である。Among these, the combined chlorine agent composed of a free chlorine agent and a sulfamic acid compound disclosed in Patent Document 2 contains sulfamic acid and is preferable because it has slime peelability. In particular, the mixing ratio of the sulfamic acid compound and the free chlorine agent is preferably 1: 0.45-0.60, preferably 1: 0.45-0.55 in terms of N: effective chlorine (molar ratio). The concentration of the aqueous solution is 5 to 10% by weight, preferably 5.5 to 7.5% by weight in terms of total chlorine concentration. The sulfamic acid is amidosulfuric acid represented by R 1 R 2 NSO 3 H (1), and R 1 and R 2 are each independently H and a hydrocarbon group having 1 to 6 carbon atoms. As such sulfamic acid, sulfamic acid in the narrow sense in which R 1 and R 2 are each H is preferable, but N-methylsulfamic acid, N, N-dimethylsulfamic acid, N-phenylsulfamic acid and the like can also be used. These sulfamic acids may be used in a free (powdered) acid state, or may be a salt such as an alkali metal salt such as a sodium salt or a potassium salt. The above-mentioned N: effective chlorine (molar ratio) is the number of moles of sulfamic acid constituted by N and the number of moles of Cl 2 of the chlorinated oxidant measured according to JIS K 0400-33-10: 1999. It corresponds to the ratio. The concentration of the aqueous solution, the JIS K 0400-33-10: free chlorine and combined chlorine concentration is measured by 1999 is a value represented by the total chlorine concentration calculated as Cl 2.

本発明では、膜分離工程に先立って、被処理水から遊離塩素の存在下に汚染性物質を除去する前処理工程を行う。前処理工程において、汚染性物質を除去する操作としては、濁質、有機物、コロイド、微生物その他のRO膜に対し汚染性を示す物質を除去できる操作であれば制限はなく、公知のものが採用できる。好ましい操作としては、凝集処理、固液分離および活性炭処理から選ばれる1以上の汚染性物質の除去操作を採用でき、特に凝集処理、濾過分離および活性炭処理の組合せが好ましい。   In the present invention, prior to the membrane separation step, a pretreatment step of removing pollutants from the water to be treated in the presence of free chlorine is performed. In the pretreatment process, the operation for removing the pollutant is not limited as long as it can remove turbidity, organic matter, colloid, microorganisms, and other substances that show contamination to the RO membrane, and a known one is adopted. it can. As a preferable operation, an operation for removing one or more pollutants selected from flocculation treatment, solid-liquid separation and activated carbon treatment can be employed, and a combination of flocculation treatment, filtration separation and activated carbon treatment is particularly preferred.

本発明では、このような汚染性物質を除去する前処理工程を遊離塩素の存在下に行い、前処理工程から得られる前処理水の全塩素濃度が3〜10mg/L、好ましくは5〜7mg/L、遊離塩素濃度が0.2〜10mg/L、好ましくは1〜5mg/Lであるように前処理工程を行う。前処理工程を遊離塩素の存在下に行うということは、前処理工程を殺菌状態に維持することを意味する。従来の前処理でも、これらの分離操作の前または後に、殺菌処理が行われることがあるが、分離操作の前または後に設けられる液の貯留部、滞留部において微生物が増殖することがあり、これにより前処理水に微生物が流出し、RO膜で増殖する場合があったので、本発明では、前処理工程を遊離塩素の存在下に行うことにより、前処理水に微生物が流出するのを防止する。   In the present invention, the pretreatment step for removing such pollutants is performed in the presence of free chlorine, and the total chlorine concentration in the pretreatment water obtained from the pretreatment step is 3 to 10 mg / L, preferably 5 to 7 mg. / L, the pretreatment step is performed so that the free chlorine concentration is 0.2 to 10 mg / L, preferably 1 to 5 mg / L. Performing the pretreatment step in the presence of free chlorine means maintaining the pretreatment step in a sterilized state. Even in the conventional pretreatment, sterilization may be performed before or after these separation operations. However, microorganisms may grow in the liquid storage part or the retention part provided before or after the separation operation. In some cases, microorganisms may flow out into the pretreated water and grow on the RO membrane. Therefore, in the present invention, the pretreatment step is performed in the presence of free chlorine to prevent the microorganisms from flowing out into the pretreated water. To do.

前処理工程から得られる前処理水の全塩素濃度が3〜10mg/L、遊離塩素濃度が0.2〜10mg/Lとなるように、前処理工程を遊離塩素の存在下に行う。このためには、前記遊離塩素剤を添加してもよいが、遊離塩素剤とともに、あるいは遊離塩素剤に代えて、前記結合塩素剤を添加することができる。結合塩素剤は遊離塩素剤に比べて酸化力(ORP)は低いが、窒素化合物が遊離塩素を保持して貯留し、徐々に放出する機能を有するので、持続性に優れ、また遊離塩素の放出後は遊離塩素を添加するだけで、遊離塩素を保持して貯留し、結合塩素剤として回復するので、好適である。   The pretreatment step is performed in the presence of free chlorine so that the total chlorine concentration of pretreated water obtained from the pretreatment step is 3 to 10 mg / L and the free chlorine concentration is 0.2 to 10 mg / L. For this purpose, the free chlorine agent may be added, but the combined chlorine agent can be added together with or in place of the free chlorine agent. Combined chlorinating agents have lower oxidizing power (ORP) than free chlorinating agents, but nitrogen compounds hold and store free chlorine and have a function of gradually releasing them, so they have excellent sustainability and release of free chlorine. Thereafter, the free chlorine is retained and stored only by adding free chlorine, and recovered as a combined chlorine agent, which is preferable.

前記の通り、結合塩素剤は被処理水中では、遊離塩素が一定の割合で含まれ、平衡関係に類似の関係があるので、結合塩素剤を添加することにより、前処理工程の全工程にわたり、全塩素濃度が3〜10mg/L、遊離塩素濃度が0.2〜10mg/Lとなるようにコントロールできれば、結合塩素剤の添加だけで前処理工程の塩素濃度コントロールができることになる。このような結合塩素剤は、前処理工程の初めに1回だけ添加してもよく、また全塩素濃度および遊離塩素濃度を維持するように連続的または間欠的に添加してもよい。いずれにしても塩素濃度を測定してコントロールができるので、制御が容易である。   As described above, the combined chlorine agent contains free chlorine in a certain ratio in the water to be treated, and has an equilibrium relationship similar to that. By adding the combined chlorine agent, the entire process of the pretreatment step is performed. If the total chlorine concentration can be controlled to be 3 to 10 mg / L and the free chlorine concentration is 0.2 to 10 mg / L, the chlorine concentration in the pretreatment process can be controlled only by adding the combined chlorine agent. Such a combined chlorine agent may be added only once at the beginning of the pretreatment step, or may be added continuously or intermittently to maintain the total and free chlorine concentrations. In any case, since the chlorine concentration can be measured and controlled, the control is easy.

前処理工程において、遊離塩素の存在下に汚染性物質を除去する操作、例えば遊離塩素の存在下に凝集処理、濾過分離等を行えば、被処理水中の微生物は殺菌され、濁質、有機物、コロイド等とともに分離除去され、しかも前処理工程を通して全塩素濃度および遊離塩素濃度が所定値以上に維持されているため、前処理水中に微生物が残留することはない。   In the pretreatment process, if an operation for removing pollutants in the presence of free chlorine, for example, agglomeration treatment, filtration separation, etc. in the presence of free chlorine, the microorganisms in the water to be treated are sterilized, turbidity, organic matter, Since it is separated and removed together with colloids and the like, and the total chlorine concentration and free chlorine concentration are maintained at a predetermined value or more throughout the pretreatment step, microorganisms do not remain in the pretreatment water.

本発明では、このような前処理水を膜分離工程において、結合塩素剤の存在下にRO膜により膜分離するが、前処理水の全塩素濃度が1〜5mg/L、好ましくは1〜3mg/L、遊離塩素濃度が0.05mg/L以下となる条件で膜分離工程へ供給する。RO膜は遊離塩素により損傷を受ける恐れがあるため、遊離塩素濃度が0.05mg/L以下の条件で供給するが、このような条件では、前処理工程で殺菌されないで流出した微生物や、膜分離工程で混入した微生物が増殖する可能性を排除できない。このため膜分離工程へ供給する前処理水の全塩素濃度を上記範囲に維持し、微生物の増殖を防止する。 In the present invention, such pretreated water is subjected to membrane separation by RO membrane in the presence of bound chlorine agent in the membrane separation step, and the total chlorine concentration of the pretreated water is 1 to 5 mg / L, preferably 1 to 3 mg. / L, free chlorine concentration is 0 . It supplies to a membrane separation process on the conditions used as 05 mg / L or less. Since RO membranes which may be damaged by free chlorine, free chlorine concentration supplied Suruga under the following conditions 0.05 mg / L, microorganisms and in such condition, flowing out without being sterilized by the pretreatment step, The possibility that microorganisms mixed in the membrane separation process grow cannot be excluded. For this reason, the total chlorine concentration of the pretreatment water supplied to the membrane separation step is maintained within the above range to prevent the growth of microorganisms .

膜分離工程へ供給する前処理水を上記の全塩素濃度および遊離塩素濃度とするためには、前処理工程から得られる前処理水に還元剤を添加し、残留塩素の一部を消去することにより調整してもよいが、前処理工程から得られる前処理水に過剰の還元剤を添加し、残留塩素の全部を消去した後、結合塩素剤を添加して前記全塩素濃度および遊離塩素濃度に調整すると、膜分離工程に供給する前処理水の全塩素濃度および遊離塩素濃度を正確に調整することができ、RO膜の劣化の防止に好都合である。前処理水に添加する還元剤としては、残留塩素の少なくとも一部を消去するものであれば制限はないが、亜硫酸水素ナトリウムのような亜硫酸水素塩が好ましい。   In order to make the pretreatment water supplied to the membrane separation process have the above total chlorine concentration and free chlorine concentration, a reducing agent is added to the pretreatment water obtained from the pretreatment process, and a part of residual chlorine is eliminated. It is possible to adjust the total chlorine concentration and free chlorine concentration by adding an excess reducing agent to the pretreated water obtained from the pretreatment step, erasing all of the residual chlorine, and then adding a combined chlorine agent. When adjusted to, the total chlorine concentration and free chlorine concentration of the pretreatment water supplied to the membrane separation step can be accurately adjusted, which is convenient for preventing the deterioration of the RO membrane. The reducing agent added to the pretreated water is not limited as long as it removes at least a part of residual chlorine, but a bisulfite such as sodium bisulfite is preferable.

このようにして膜分離工程へ供給する前処理水を上記の全塩素濃度および遊離塩素濃度とすると、前処理工程において殺菌された前処理水殺菌性雰囲気を維持し、RO膜において微生物が増殖して膜面を汚染するのを防止することができる。膜分離工程ではRO膜処理により、被処理水は濃縮されるので、残留塩素の一部が消去されても殺菌濃度を維持することができ、このためRO膜において微生物が増殖して膜面を汚染するのを防止する状態を長く維持することができる。 When the pretreatment water supplied to the membrane separation step is set to the above total chlorine concentration and free chlorine concentration in this way, the sterilizing atmosphere of the pretreatment water sterilized in the pretreatment step is maintained, and microorganisms grow on the RO membrane. Thus, it is possible to prevent the film surface from being contaminated. In the membrane separation process, the water to be treated is concentrated by the RO membrane treatment, so that the bactericidal concentration can be maintained even if a part of the residual chlorine is erased. The state which prevents contamination can be maintained for a long time.

本発明によれば、汚染性物質を含む被処理水を逆浸透膜処理する方法において、被処理水から遊離塩素の存在下に汚染性物質を除去する前処理工程と、前処理水を結合塩素剤の存在下に逆浸透膜により膜分離する膜分離工程とを含み、前処理工程では、得られる前処理水の全塩素濃度が3〜10mg/L、遊離塩素濃度が0.2〜10mg/Lとなるように、遊離塩素の存在下に殺菌した状態で汚染性物質を除去し、前処理工程から得られる前処理水に還元剤を添加した後、スルファミン酸またはその塩と、遊離塩素剤とからなる結合塩素剤を添加し、膜分離工程へ供給する前処理水の全塩素濃度が1〜5mg/L、遊離塩素濃度が0.05mg/L以下となる条件で膜分離工程に供給するようにしたので、汚染物質を含む被処理水を、簡単な機構と簡単な操作により、汚染物質を除去するとともに、生物不活性状態にして、RO膜の汚染、劣化を防止して、効率よくRO膜処理を行うことができる。
According to the present invention, in a method for treating a water to be treated containing a pollutant with a reverse osmosis membrane, a pretreatment step for removing the pollutant from the water to be treated in the presence of free chlorine, and the pretreated water is combined with chlorine. A membrane separation step of membrane separation with a reverse osmosis membrane in the presence of an agent. In the pretreatment step , the total chlorine concentration of the pretreated water obtained is 3 to 10 mg / L, and the free chlorine concentration is 0.2 to 10 mg / L After removing the pollutant in a sterilized state in the presence of free chlorine so as to be L and adding a reducing agent to the pretreated water obtained from the pretreatment step, sulfamic acid or a salt thereof and a free chlorine agent was added combined chlorine agent comprising a membrane total chlorine concentration of 1 to 5 mg / L of pretreated water to be supplied to the separation step, supplied to the membrane separation step under conditions that free chlorine concentration of less than 0.05 mg / L So , it is easy to treat the treated water containing pollutants. With this simple mechanism and simple operation, it is possible to remove the pollutants and bring them into a biologically inactive state to prevent the RO membrane from being contaminated and deteriorated, and to efficiently perform the RO membrane treatment.

実施形態の逆浸透膜処理方法のフロー図である。It is a flowchart of the reverse osmosis membrane processing method of embodiment. 実施例1の生産水量と差圧の変化を示すグラフである。It is a graph which shows the change of the production water amount of Example 1, and a differential pressure | voltage. 実施例1の脱塩率の変化を示すグラフである。2 is a graph showing changes in the desalting rate of Example 1. 比較例1の生産水量と差圧の変化を示すグラフである。It is a graph which shows the change of the production water amount of Comparative Example 1, and a differential pressure | voltage. 比較例1の脱塩率の変化を示すグラフである。6 is a graph showing changes in the desalting rate of Comparative Example 1. 比較例2の生産水量と差圧の変化を示すグラフである。It is a graph which shows the change of the amount of production water of comparative example 2, and differential pressure. 比較例2の脱塩率の変化を示すグラフである。6 is a graph showing changes in the desalting rate of Comparative Example 2.

以下、本発明の実施形態を図1により説明する。図1において、1は冷却水系であって、冷却塔2を含む。10は前処理工程であって、被処理水槽11、凝集槽12、濾過槽13、活性炭処理槽14を含む。20は膜分離工程であって、前処理水槽21、保安フィルタ22、RO膜処理装置23を含む。RO膜処理装置23はRO膜24により、濃縮液室25と透過液室26に区画されている。   Hereinafter, an embodiment of the present invention will be described with reference to FIG. In FIG. 1, reference numeral 1 denotes a cooling water system including a cooling tower 2. Reference numeral 10 denotes a pretreatment process, which includes a water tank 11 to be treated, a flocculation tank 12, a filtration tank 13, and an activated carbon treatment tank 14. Reference numeral 20 denotes a membrane separation step, which includes a pretreatment water tank 21, a safety filter 22, and an RO membrane treatment device 23. The RO membrane treatment device 23 is divided into a concentrate chamber 25 and a permeate chamber 26 by an RO membrane 24.

冷却水系1では、冷却塔2の冷却水ピット3からラインL1を通して冷却水を供給し、ラインL2から戻り水を冷却水ピット3へ循環し、冷却塔2により循環水を冷却して循環するように構成されている。冷却塔2において水分の一部を蒸発させて冷却することにより、冷却水は濃縮され、ルーバ4から汚染性物質や微生物が混入するため、冷却水ピット3にスケール防止剤やスライムコントロール剤等を添加して冷却水処理が行われる。   In the cooling water system 1, the cooling water is supplied from the cooling water pit 3 of the cooling tower 2 through the line L1, the return water is circulated from the line L2 to the cooling water pit 3, and the circulating water is cooled and circulated by the cooling tower 2. It is configured. By cooling by evaporating a part of the water in the cooling tower 2, the cooling water is concentrated and contaminating substances and microorganisms are mixed from the louver 4. Therefore, a scale inhibitor, a slime control agent, etc. are added to the cooling water pit 3. The cooling water treatment is performed by adding.

前処理工程10では、冷却水ピット3から冷却水の一部を被処理水として、ラインL4を通して被処理水槽11へ引き出し、貯留する。ラインL5から被処理水槽11へ遊離塩素剤および/または結合塩素剤の水溶液を添加し、被処理水が遊離塩素の存在下に汚染性物質を除去できるように調製する。被処理水槽11からラインL6を通して、遊離塩素を含む被処理水を凝集槽12へ供給し、ラインL7からPAC等の無機凝集剤、ラインL8からポリアクリルアミド等の高分子凝集剤を添加し、攪拌して凝集処理を行う。これにより被処理水中の濁質、有機物、コロイド、微生物等は凝集フロックに取り込まれる。   In the pretreatment process 10, a part of the cooling water from the cooling water pit 3 is treated as water to be treated and drawn out to the water tank 11 to be treated through the line L4 and stored. An aqueous solution of a free chlorine agent and / or a combined chlorine agent is added from the line L5 to the water tank 11 to be treated so that the water to be treated can remove contaminants in the presence of free chlorine. Water to be treated containing free chlorine is supplied to the coagulation tank 12 from the water tank 11 to be treated through the line L6, and an inorganic coagulant such as PAC is added from the line L7, and a polymer coagulant such as polyacrylamide is added from the line L8 and stirred. Then, agglomeration treatment is performed. As a result, turbidity, organic matter, colloids, microorganisms, etc. in the water to be treated are taken into the flocs.

凝集処理液はラインL9から濾過槽13へ供給して、凝集フロックを濾過分離する。濾過水はラインL10から活性炭処理槽14へ供給して、凝集処理で除去できない有機物その他の汚染性物質を吸着除去する。これにより微生物等は殺菌された状態で、被処理水中の濁質、有機物、コロイド等の他の汚染性物質とともに除去され、前処理水は殺菌性雰囲気を維持する。前処理工程10から得られる前処理水の全塩素濃度が3〜10mg/L、遊離塩素濃度が0.2〜10mg/LとなるようにラインL5から被処理水槽11に添加する結合塩素剤の量を決めるが、他の場所への分割注入、あるいは連続注入を行ってもよい。なお、本実施の形態のように活性炭処理槽14を有する場合は、活性炭が遊離塩素を分解するため、活性炭処理槽14の出口において、遊離塩素濃度は0.2mg/Lをそれほど超えて大きくなることはない。上限の10mg/Lは活性炭処理槽14を有さない場合の濃度である。   The aggregation treatment liquid is supplied from the line L9 to the filtration tank 13, and the aggregation floc is separated by filtration. The filtered water is supplied from the line L10 to the activated carbon treatment tank 14 to adsorb and remove organic substances and other pollutants that cannot be removed by the coagulation treatment. Thereby, microorganisms etc. are sterilized and removed together with other pollutants such as turbidity, organic matter and colloid in the water to be treated, and the pretreated water maintains a bactericidal atmosphere. The combined chlorine agent added to the water tank 11 to be treated from the line L5 so that the total chlorine concentration of pretreated water obtained from the pretreatment step 10 is 3 to 10 mg / L and the free chlorine concentration is 0.2 to 10 mg / L. Although the amount is determined, divided injection to other places or continuous injection may be performed. In addition, when it has the activated carbon treatment tank 14 like this Embodiment, since activated carbon decomposes | disassembles free chlorine, a free chlorine density | concentration will become large exceeding 0.2 mg / L so much in the exit of the activated carbon treatment tank 14. There is nothing. The upper limit of 10 mg / L is the concentration when the activated carbon treatment tank 14 is not provided.

膜分離工程20では、活性炭処理槽14の処理水、すなわち前処理工程10から得られる前処理水は、ラインL11から前処理水槽21へ導入し、貯留する。このときラインL12からラインL11へ亜硫酸水素ナトリウム等の還元剤を添加して、前処理水に含まれる全塩素濃度および遊離塩素濃度をゼロにする。そしてラインL13から前処理水槽21へ結合塩素剤を添加し、前処理水槽21内の前処理水の全塩素濃度を1〜5mg/L、遊離塩素濃度を0.1mg/L以下に調整する。   In the membrane separation process 20, the treated water in the activated carbon treatment tank 14, that is, the pretreated water obtained from the pretreatment process 10, is introduced into the pretreated water tank 21 from the line L11 and stored. At this time, a reducing agent such as sodium hydrogen sulfite is added from the line L12 to the line L11, and the total chlorine concentration and the free chlorine concentration contained in the pretreated water are made zero. Then, the combined chlorine agent is added from the line L13 to the pretreatment water tank 21, and the total chlorine concentration of the pretreatment water in the pretreatment water tank 21 is adjusted to 1 to 5 mg / L, and the free chlorine concentration is adjusted to 0.1 mg / L or less.

前処理水槽21内の前処理水は、ラインL14から保安フィルタ22を通して、さらにラインL15からポンプPにより加圧し、RO膜処理装置23の濃縮液室25に供給し、RO膜24によりRO膜処理を行う。これにより透過液室26に透過した透過液はL16から冷却塔2の冷却水ピット3へ循環し、濃縮液室25で濃縮した濃縮液はL17から系外へ排出される。前処理水槽21内の前処理水の全塩素濃度を1〜5mg/L、遊離塩素濃度を0.1mg/L以下に調整することにより、RO膜24に供給される前処理水の殺菌状態を維持し、RO膜において微生物が増殖して膜面を汚染するのを防止することができる。   The pretreatment water in the pretreatment water tank 21 is pressurized by the pump P from the line L15 through the safety filter 22 and supplied from the line L15 to the concentrated liquid chamber 25 of the RO membrane treatment device 23, and the RO membrane treatment is performed by the RO membrane 24. I do. As a result, the permeate that has permeated into the permeate chamber 26 circulates from L16 to the cooling water pit 3 of the cooling tower 2, and the concentrate concentrated in the concentrate chamber 25 is discharged out of the system from L17. By adjusting the total chlorine concentration of the pretreatment water in the pretreatment water tank 21 to 1 to 5 mg / L and the free chlorine concentration to 0.1 mg / L or less, the sterilization state of the pretreatment water supplied to the RO membrane 24 is changed. It is possible to prevent the microorganisms from growing on the RO membrane and contaminating the membrane surface.

この場合、前処理工程の全体にわたり遊離塩素の存在下に汚染性物質を除去することにより、被処理水に含まれる微生物を殺菌した状態で他の汚染性物質とともに除去して、前処理水中に微生物が残留することを防止し、しかも殺菌性の状態を維持するため、膜分離工程へ供給する前処理水の遊離塩素濃度を0.1mg/L以下としても、結合塩素剤により殺菌性雰囲気を維持することができ、微生物の増殖によるRO膜の汚染を防止することができる。   In this case, by removing the pollutants in the presence of free chlorine throughout the pretreatment process, the microorganisms contained in the water to be treated are removed together with other pollutants in a sterilized state, In order to prevent microorganisms from remaining and to maintain a bactericidal state, even if the concentration of free chlorine in the pretreatment water supplied to the membrane separation step is 0.1 mg / L or less, a bactericidal atmosphere is created by the combined chlorine agent. It can be maintained, and contamination of the RO membrane due to the growth of microorganisms can be prevented.

以下、本発明の実施例、比較例について説明する。   Examples of the present invention and comparative examples will be described below.

〔実施例1〕:
図1に従って冷却水の前処理およびRO処理を行った。被処理水としての冷却水の水質は、pH:6.8、電気伝導度:589mS/m、酸消費量(4.8):28mg/L(as CaCO)、TOC:6.6mg/L、Cl:1380mg/L、SO:955mg/L、Na:979mg/Lである。
[Example 1]:
Cooling water pretreatment and RO treatment were performed according to FIG. The quality of the cooling water as the water to be treated is pH: 6.8, electric conductivity: 589 mS / m, acid consumption (4.8): 28 mg / L (as CaCO 3 ), TOC: 6.6 mg / L , Cl: 1380mg / L, SO 4: 955mg / L, Na: a 979 mg / L.

前処理工程10では、スルファミン酸0.4重量%および次亜塩素酸ナトリウム0.3重量%(有効塩素として)の2種類の水溶液をそれぞれ被処理水槽11へ添加して、凝集槽12で凝集処理、濾過槽13で濾過分離、活性炭処理槽14で活性炭処理を行った。凝集処理はPAC80mg/Lおよび高分子凝集剤クリフロックPA−331(栗田工業(株)製、商標)を2mg/L添加し攪拌してフロックを形成した。濾過分離は粒径0.45mm、均等係数1.4の砂および粒径0.9mmのアンスラサイトからなるろ材を用いる二層濾過層にSV=10で通液してろ過を行った。活性炭処理は石炭系活性炭クリコールWG−160(栗田工業(株)製、商標)を用いる活性炭層にSV=15で通液して活性炭処理を行った。被処理水槽11へのスルファミン酸0.4重量%水溶液と次亜塩素酸ナトリウム0.3重量%水溶液の添加量は、活性炭処理水の全塩素濃度が5mg/L、遊離塩素濃度が0.5mg/Lを管理値として調整した。   In the pretreatment step 10, two kinds of aqueous solutions of 0.4% by weight of sulfamic acid and 0.3% by weight of sodium hypochlorite (as effective chlorine) are respectively added to the water tank 11 to be treated and agglomerated in the coagulation tank 12. Treatment, filtration separation in the filtration tank 13, and activated carbon treatment in the activated carbon treatment tank 14 were performed. For aggregation treatment, 2 mg / L of PAC 80 mg / L and a polymer flocculant Cliff Rock PA-331 (trade name, manufactured by Kurita Kogyo Co., Ltd.) were added and stirred to form a floc. Filtration separation was carried out by passing SV = 10 through a two-layer filtration layer using a filter medium composed of sand having a particle size of 0.45 mm, uniformity coefficient of 1.4 and anthracite having a particle size of 0.9 mm. In the activated carbon treatment, the activated carbon treatment was performed by passing SV = 15 through an activated carbon layer using coal-based activated carbon Crycol WG-160 (trade name, manufactured by Kurita Kogyo Co., Ltd.). The amount of sulfamic acid 0.4 wt% aqueous solution and sodium hypochlorite 0.3 wt% aqueous solution added to the water tank 11 to be treated is 5 mg / L in total chlorine concentration of activated carbon treated water and 0.5 mg in free chlorine concentration. / L was adjusted as a control value.

活性炭処理水の水質は、pH:7.4、電気伝導度:746mS/m、酸消費量(4.8):38mg/L(as CaCO)、TOC:6.5mg/L、Cl:1770mg/L、SO:1150mg/L、Na:985mg/Lであった。被処理水と活性炭処理水の全塩素濃度と遊離塩素濃度を表1に示す。Water quality of the activated carbon treated water is pH: 7.4, electric conductivity: 746 mS / m, acid consumption (4.8): 38 mg / L (as CaCO 3 ), TOC: 6.5 mg / L, Cl: 1770 mg / L, SO 4 : 1150 mg / L, Na: 985 mg / L. Table 1 shows the total chlorine concentration and free chlorine concentration of treated water and activated carbon treated water.

Figure 0005807634
Figure 0005807634

活性炭処理槽14の活性炭処理水をラインL11から前処理水槽21へ導入する際、ラインL12から10重量%亜硫酸水素ナトリウム水溶液を、亜硫酸水素ナトリウムが15mg/Lとなるように添加して、前処理水に含まれる全塩素濃度および遊離塩素濃度をゼロにした。そして水酸化ナトリウム10重量%、スルファミン酸16重量%および次亜塩素酸ナトリウム6重量%(有効塩素として)の混合水溶液反応物(pH>13)からなる結合塩素剤をラインL13から前処理水槽21へ結合塩素剤を添加した。なお、前処理水槽21への結合塩素剤の添加量は、前処理水槽21出口での全塩素濃度が1.2mg/L、遊離塩素濃度が0.05mg/Lとなるよう制御した。   When the activated carbon treated water in the activated carbon treatment tank 14 is introduced from the line L11 to the pretreatment water tank 21, a 10% by weight sodium hydrogen sulfite aqueous solution is added from the line L12 so that the sodium hydrogen sulfite is 15 mg / L. The total chlorine concentration and free chlorine concentration in water were set to zero. Then, a combined chlorine agent comprising a mixed aqueous solution (pH> 13) of 10% by weight of sodium hydroxide, 16% by weight of sulfamic acid and 6% by weight of sodium hypochlorite (as effective chlorine) is added from the line L13 to the pretreatment water tank 21. Bound chlorine agent was added. The amount of the combined chlorine agent added to the pretreatment water tank 21 was controlled so that the total chlorine concentration at the outlet of the pretreatment water tank 21 was 1.2 mg / L and the free chlorine concentration was 0.05 mg / L.

前処理水槽21内の前処理水を、ラインL14から保安フィルタ22を通して、さらにラインL15からポンプPにより1.5MPaに加圧し、RO膜処理装置23の濃縮液室25に供給し、RO膜24によりRO膜処理を行った。RO膜処理装置は芳香族ポリアミド系RO膜の4インチスパイラル型RO膜エレメント(日東電工(株)製、ES20−D4)を1本ベッセルに充填したものを用いた。   The pretreatment water in the pretreatment water tank 21 is pressurized to 1.5 MPa from the line L14 through the safety filter 22 and from the line L15 by the pump P, and is supplied to the concentrated liquid chamber 25 of the RO membrane treatment device 23. The RO membrane treatment was performed. The RO membrane treatment apparatus used was an aromatic polyamide RO membrane 4-inch spiral RO membrane element (Nitto Denko Corporation, ES20-D4) filled in one vessel.

活性炭処理槽14出口、前処理水槽21入口および出口の全塩素濃度と遊離塩素濃度を表2に示す。   Table 2 shows the total chlorine concentration and free chlorine concentration at the outlet of the activated carbon treatment tank 14, the inlet and outlet of the pretreatment water tank 21.

Figure 0005807634
Figure 0005807634

上記の条件で3ヶ月の連続運転を行ったが、その間RO膜は劣化せず、RO膜の差圧は増大せず、スライムトラブルは発生しなかった。この間の生産水量と差圧の変化を図2に、脱塩率の変化を図3に示すが、運転開始から差圧が増大せず、透過水量が低下しないことから、スライムによる閉塞障害が起こっていないことが確認できる。また運転開始から脱塩率が低下していないことから、RO膜に汚れが付着し、またはRO膜が劣化して、生産水の水質低下が起こっていないことが確認できる。   Although continuous operation was performed for 3 months under the above conditions, the RO membrane did not deteriorate, the differential pressure of the RO membrane did not increase, and no slime trouble occurred. Changes in the production water volume and differential pressure during this period are shown in FIG. 2, and changes in the desalination rate are shown in FIG. 3. Since the differential pressure does not increase from the start of operation and the permeated water volume does not decrease, a clogging failure due to slime occurs. It can be confirmed that it is not. Moreover, since the desalination rate has not decreased since the start of operation, it can be confirmed that the RO membrane is contaminated or the RO membrane is deteriorated and the water quality of the production water is not lowered.

〔比較例1〕:
実施例1において、RO膜へ供給する前処理水にさらに塩素剤を添加して、全塩素濃度が13mg/L、遊離塩素濃度が0.2mg/Lとして供給したときの生産水量と差圧の変化を図4に、脱塩率の変化を図5に示すが、RO膜の性能低下が認められる。
[Comparative Example 1]
In Example 1, the amount of product water and the pressure difference when a chlorine agent is further added to the pretreatment water supplied to the RO membrane and the total chlorine concentration is 13 mg / L and the free chlorine concentration is 0.2 mg / L. The change is shown in FIG. 4 and the change in the desalting rate is shown in FIG.

〔比較例2〕:
実施例1において、前処理工程における被処理水に塩素剤を添加せず、遊離塩素濃度が0.0mg/Lのときの処理結果として、生産水量と差圧の変化を図6に、脱塩率の変化を図7に示すが、スライム生成によるフラックスの低下が認められる。
[Comparative Example 2]
In Example 1, the amount of produced water and the change in the differential pressure are shown in FIG. 6 as a treatment result when no chlorine agent is added to the water to be treated in the pretreatment step and the free chlorine concentration is 0.0 mg / L. The change in rate is shown in FIG. 7, where a decrease in flux due to slime formation is observed.

〔参考試験例1〜3〕:
実施例1で用いた冷却水のブロー水とその他の廃水の混合排水を、スライムコントロール剤無添加で3日間通水して汚染した保安フィルタを解体して、汚染物が付着した10cm×10cmのフィルタを取出して試験片とした。この試験片を300mLの純水に、実施例1で前処理水槽21に添加したのと同じ結合塩素剤を添加して全塩素濃度および遊離塩素濃度を調整した試験液に3日間浸漬した。3日後の、各試験液の濁度およびフィルタの目視観察結果を表3に示す。表3に示す通り、全塩素濃度が1.7mg/L程度では十分にフィルタに付着した汚染物を剥離できず、全塩素濃度が8mg/Lの液を用いたものでは十分に汚染物を剥離除去できていることから、この程度の塩素濃度で前処理を行う必要があることがわかる。
[Reference Test Examples 1 to 3]:
The mixed drainage of the cooling water blow water and other waste water used in Example 1 was passed for 3 days without addition of a slime control agent, and the contaminated safety filter was disassembled, and a 10 cm × 10 cm of contaminated substances adhered. The filter was taken out and used as a test piece. The test piece was immersed in 300 mL of pure water for 3 days in a test solution in which the same combined chlorine agent as that added to the pretreatment water tank 21 in Example 1 was added to adjust the total chlorine concentration and the free chlorine concentration. Table 3 shows the turbidity of each test solution and the visual observation result of the filter after 3 days. As shown in Table 3, when the total chlorine concentration is about 1.7 mg / L, the contaminants attached to the filter cannot be removed sufficiently, and when the total chlorine concentration is 8 mg / L, the contaminants are sufficiently removed. Since it can remove, it turns out that it is necessary to perform a pretreatment with such a chlorine concentration.

Figure 0005807634
Figure 0005807634

本発明は、汚染性物質を含む被処理水を逆浸透膜を用いて処理する方法、特に冷却水系等のFI(ファウリングインデックス)の高い被処理水を逆浸透膜を用いて、膜の汚染、劣化を防止して膜分離処理する方法に利用可能である。   The present invention relates to a method for treating treated water containing a pollutant using a reverse osmosis membrane, and in particular, to treat treated water having a high FI (fouling index) such as a cooling water system using a reverse osmosis membrane. It can be used in a method for preventing membrane deterioration and performing membrane separation treatment.

1:冷却水系、2:冷却塔、3:冷却水ピット、4:ルーバ、10:前処理工程、11:被処理水槽、12:凝集槽、13:濾過槽、14:活性炭処理槽、20:膜分離工程、21:前処理水槽、22:保安フィルタ、23:RO膜処理装置、24:RO膜、25:濃縮液室、26:透過液室。   1: cooling water system, 2: cooling tower, 3: cooling water pit, 4: louver, 10: pretreatment step, 11: water tank to be treated, 12: flocculation tank, 13: filtration tank, 14: activated carbon treatment tank, 20: Membrane separation step, 21: pretreatment water tank, 22: security filter, 23: RO membrane treatment device, 24: RO membrane, 25: concentrate chamber, 26: permeate chamber.

Claims (4)

汚染性物質を含む被処理水を逆浸透膜処理する方法であって、
被処理水から遊離塩素の存在下に汚染性物質を除去する前処理工程と、
前処理水を結合塩素剤の存在下に逆浸透膜により膜分離する膜分離工程とを含み、
前処理工程では、得られる前処理水の全塩素濃度が3〜10mg/L、遊離塩素濃度が0.2〜10mg/Lとなるように、遊離塩素の存在下に殺菌した状態で汚染性物質を除去し
前処理工程から得られる前処理水に還元剤を添加した後、
スルファミン酸またはその塩と、遊離塩素剤とからなる結合塩素剤を添加し、
膜分離工程へ供給する前処理水の全塩素濃度が1〜5mg/L、遊離塩素濃度が0.05mg/L以下となる条件で膜分離工程に供給することを特徴とする逆浸透膜処理方法。
A method for treating a water to be treated containing a pollutant with a reverse osmosis membrane,
A pretreatment process for removing pollutants from the water to be treated in the presence of free chlorine;
A membrane separation step of separating the pretreated water with a reverse osmosis membrane in the presence of a bound chlorine agent,
Contaminating material before the processing step, the total chlorine concentration of pretreated water obtained is 3-10 mg / L, as free chlorine concentration of 0.2 to 10 mg / L, while sterilization in the presence of free chlorine Remove
After adding the reducing agent to the pretreated water obtained from the pretreatment step,
Add bound chlorinating agent consisting of sulfamic acid or its salt and free chlorinating agent,
Reverse osmosis membrane total chlorine concentration of 1 to 5 mg / L of pretreated water to be supplied to the membrane separation process, the free chlorine concentration which is characterized that you fed to membrane separation step under conditions such that less 0.05 mg / L Processing method.
前処理工程において、結合塩素剤を添加して、汚染性物質を除去することを特徴とする請求項1記載の方法。 In the pretreatment step, with the addition of combined chlorine agent, claim 1 Symbol placement method and removing a contaminant substance. 前処理工程が、凝集処理、固液分離および活性炭処理から選ばれる1以上の汚染性物質を除去する操作を含む請求項1または2記載の方法。 The method according to claim 1 or 2 , wherein the pretreatment step comprises an operation of removing one or more contaminants selected from agglomeration treatment, solid-liquid separation, and activated carbon treatment. 還元剤が亜硫酸水素塩である請求項ないしのいずれかに記載の方法。 The method according to any one of claims 1 to 3 , wherein the reducing agent is bisulfite.
JP2012509526A 2010-03-31 2011-03-30 Reverse osmosis membrane treatment method Active JP5807634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012509526A JP5807634B2 (en) 2010-03-31 2011-03-30 Reverse osmosis membrane treatment method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010082778 2010-03-31
JP2010082778 2010-03-31
JP2012509526A JP5807634B2 (en) 2010-03-31 2011-03-30 Reverse osmosis membrane treatment method
PCT/JP2011/058072 WO2011125764A1 (en) 2010-03-31 2011-03-30 Treatment method using reverse osmosis membrane

Publications (2)

Publication Number Publication Date
JPWO2011125764A1 JPWO2011125764A1 (en) 2013-07-08
JP5807634B2 true JP5807634B2 (en) 2015-11-10

Family

ID=44762705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012509526A Active JP5807634B2 (en) 2010-03-31 2011-03-30 Reverse osmosis membrane treatment method

Country Status (2)

Country Link
JP (1) JP5807634B2 (en)
WO (1) WO2011125764A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102233760B1 (en) 2019-06-03 2021-03-30 (주)프라임 텍 인터내쇼날 A method of biofouling treatment by using aminoacids for replacing the free chlorine to combinded chlorine in reverse osmosis membrane system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2013268842B2 (en) * 2012-05-30 2017-09-07 Kurita Water Industries Ltd. Agent for cleaning permeation film, and cleaning method
JP2015123430A (en) * 2013-12-27 2015-07-06 東レ株式会社 Water producing method
JP5888365B2 (en) * 2014-05-19 2016-03-22 栗田工業株式会社 Concentration adjustment method for cooling water treatment chemical in circulating cooling water system, cooling drain water recovery method and water treatment equipment
KR102314591B1 (en) 2015-03-31 2021-10-18 쿠리타 고교 가부시키가이샤 Reverse osmosis membrane treatment system operation method and reverse osmosis membrane treatment system
JP6691418B2 (en) * 2016-04-08 2020-04-28 アクアス株式会社 Microbial inhibitor composition and method for inhibiting microorganisms
KR101911929B1 (en) 2017-05-26 2018-10-25 애큐랩(주) Method for water treatment with reverse osmosis pressure using stabilized halogen oxidizing biocide
JP7220112B2 (en) * 2019-03-29 2023-02-09 栗田工業株式会社 Membrane separation method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104310A (en) * 1987-10-14 1989-04-21 Kurita Water Ind Ltd Membrane separation
JPH01135506A (en) * 1987-11-20 1989-05-29 Toray Ind Inc Method for producing purified water
JPH0957067A (en) * 1995-08-28 1997-03-04 Toray Ind Inc Separation with reverse osmotic membrane and apparatus therefor
JPH0957076A (en) * 1995-08-28 1997-03-04 Toray Ind Inc Operation of reverse osmosis membrane device
JP2006263510A (en) * 2005-03-22 2006-10-05 Kurita Water Ind Ltd Slime preventing agent for membrane separation and membrane separation method
WO2009028315A1 (en) * 2007-08-29 2009-03-05 Kurita Water Industries Ltd. Method and apparatus for treating water containing organic matter
JP2009240902A (en) * 2008-03-31 2009-10-22 Toray Ind Inc Water treating method and water treating apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01104310A (en) * 1987-10-14 1989-04-21 Kurita Water Ind Ltd Membrane separation
JPH01135506A (en) * 1987-11-20 1989-05-29 Toray Ind Inc Method for producing purified water
JPH0957067A (en) * 1995-08-28 1997-03-04 Toray Ind Inc Separation with reverse osmotic membrane and apparatus therefor
JPH0957076A (en) * 1995-08-28 1997-03-04 Toray Ind Inc Operation of reverse osmosis membrane device
JP2006263510A (en) * 2005-03-22 2006-10-05 Kurita Water Ind Ltd Slime preventing agent for membrane separation and membrane separation method
WO2009028315A1 (en) * 2007-08-29 2009-03-05 Kurita Water Industries Ltd. Method and apparatus for treating water containing organic matter
JP2009240902A (en) * 2008-03-31 2009-10-22 Toray Ind Inc Water treating method and water treating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102233760B1 (en) 2019-06-03 2021-03-30 (주)프라임 텍 인터내쇼날 A method of biofouling treatment by using aminoacids for replacing the free chlorine to combinded chlorine in reverse osmosis membrane system

Also Published As

Publication number Publication date
WO2011125764A1 (en) 2011-10-13
JPWO2011125764A1 (en) 2013-07-08

Similar Documents

Publication Publication Date Title
JP5807634B2 (en) Reverse osmosis membrane treatment method
TWI415801B (en) The treatment method and the processing device of the water containing the organic matter
TWI532525B (en) Combined chlorine agent, preparation method thereof, and use thereof
KR101671168B1 (en) Slime control agent for activated carbon, method of passing water through activated-carbon device, and method and apparatus for treating organic-containing water
WO2000004986A1 (en) Method for inhibiting growth of bacteria or sterilizing around separating membrane
WO2020071177A1 (en) Water treatment device, water treatment method, forward osmosis membrane treatment method, forward osmosis membrane treatment system, and water treatment system
JP2013111559A (en) Pretreating apparatus for supplying seawater to apparatus desalting or concentrating salt in seawater by using film
WO2012133620A1 (en) Membrane-separation method
JP6447133B2 (en) Fresh water generation system and fresh water generation method
JP5969749B2 (en) Organic wastewater treatment apparatus and treatment method
JP2009028724A (en) Method for water treatment and apparatus for water treatment
IE86828B1 (en) Rainwater purification system
JP3547018B2 (en) Reverse osmosis treatment method and fresh water method
JP2014221450A (en) Method for producing fresh water
JP6970516B2 (en) Water treatment method using reverse osmosis membrane
JP3312483B2 (en) Reverse osmosis treatment method and desalination method
JP7243746B2 (en) Membrane separation method
JP2015186773A (en) Fresh water generation method and fresh water generator
JP2007260638A (en) Water treatment method using reverse osmosis membrane
JP7052461B2 (en) Operation control method of electric regeneration type deionization device and water treatment device
JP2002320968A (en) Membrane separation method
JP6900641B2 (en) Disinfectant water production method and disinfectant water production system
WO2019181998A1 (en) Water system orp monitor and/or control method, and water treatment method and device
Ladewig et al. Characteristics of Membrane Concentrate
JP2011183273A (en) Water treatment method and method for producing ultrapure water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150824

R150 Certificate of patent or registration of utility model

Ref document number: 5807634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150