WO2012133620A1 - Membrane-separation method - Google Patents

Membrane-separation method Download PDF

Info

Publication number
WO2012133620A1
WO2012133620A1 PCT/JP2012/058314 JP2012058314W WO2012133620A1 WO 2012133620 A1 WO2012133620 A1 WO 2012133620A1 JP 2012058314 W JP2012058314 W JP 2012058314W WO 2012133620 A1 WO2012133620 A1 WO 2012133620A1
Authority
WO
WIPO (PCT)
Prior art keywords
chlorine
sulfamic acid
water
free chlorine
membrane
Prior art date
Application number
PCT/JP2012/058314
Other languages
French (fr)
Japanese (ja)
Inventor
賢二 木幡
邦洋 早川
孝博 川勝
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to JP2012516245A priority Critical patent/JP5998929B2/en
Publication of WO2012133620A1 publication Critical patent/WO2012133620A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/162Use of acids
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/683Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of complex-forming compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/29Chlorine compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/18Removal of treatment agents after treatment
    • C02F2303/185The treatment agent being halogen or a halogenated compound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the sulfamic acid compound so that the free chlorine concentration of the water to be treated is 0.4 mg / L or less, preferably 0.3 mg / L or less immediately before the membrane separator.
  • the free chlorine concentration of the water to be treated is continuously or periodically measured at a position in front of the membrane separation device, and the free chlorine concentration of the water to be treated is 0.4 mg / L or less, preferably 0.8.
  • the amount of sulfamic acid compound added can be adjusted to 3 mg / L or less. In this case, it is preferable to adjust the addition amount of the sulfamic acid-based compound so that the total chlorine concentration of the water to be treated is 1 to 100 mg / L, preferably 5 to 20 mg / L.
  • a reducing agent such as sodium bisulfite can be added to the treated water to adjust the free chlorine concentration to the above value.
  • the free chlorine concentration of the water to be treated is continuously or periodically measured at a position in front of the membrane separation device, and the free chlorine concentration of the water to be treated is 0.4 mg / L or less, preferably 0.8.
  • Sodium bisulfite can be added so that it may be 3 mg / L or less.
  • Examples 1 to 7 and Comparative Examples 1 to 3 The sulfamic acid-based compound and / or the wastewater treated water prepared by adding sodium hypochlorite as the treated water to a free chlorine concentration of 1.0 mg / L and sterilized using the RO membrane separation apparatus having the configuration shown in FIG. Sodium bisulfite (SBS) was added, and membrane separation was performed by passing water for 1 month.
  • SBS sodium bisulfite
  • RO membrane TW-30 (trade name) made of aromatic polyamide manufactured by DOW Chemical was used.

Abstract

A membrane separation method in which the concentration of free chlorine is reduced and the total chlorine concentration is increased using a small amount of chemicals and a simple operation, whereby it is possible to prevent even permeable membranes having low chlorine resistance from being contaminated by slime deposition based on microbial proliferation, and to efficiently perform membrane separation over a prolonged period of time, without any reduction in the removal rate or desalination rate due to degradation of the permeable membrane. When treated water containing free chlorine is fed from L1 to a membrane separation device (4) and subjected to membrane separation by a permeable membrane (4a), one or more sulfamic acid compounds selected from the group consisting of sulfamic acid, combined-chlorine sulfamic acid, and a salt of sulfamic acid or combined-chlorine sulfamic acid are added from L2 to the treated water to convert free chlorine to combined chlorine, and a reduction agent is added as required from L6 to remove residual free chlorine and prevent slime deposition in membrane separation.

Description

膜分離方法Membrane separation method
 本発明は、遊離塩素を含有する被処理水を、逆浸透膜(以下、RO膜という場合がある)などの透過膜を備えた膜分離装置に供給して膜分離する方法に関する。さらに詳細には本発明は、膜分離装置の給水として、遊離塩素剤を添加して微生物の殺菌を行い、残留塩素を除去しない状態の遊離塩素を含有する被処理水に、スルファミン酸化合物を含む結合塩素系酸化剤を添加し、遊離塩素濃度を低くして膜の劣化を防止するとともに、スライムによる膜の閉塞を防止して、膜分離するようにした膜分離方法に関する。 The present invention relates to a method for membrane separation by supplying water to be treated containing free chlorine to a membrane separation apparatus having a permeable membrane such as a reverse osmosis membrane (hereinafter also referred to as RO membrane). More specifically, the present invention includes a sulfamic acid compound in the water to be treated containing free chlorine in a state where residual chlorine is not removed by adding a free chlorine agent to sterilize microorganisms as feed water for the membrane separation apparatus. The present invention relates to a membrane separation method in which a combined chlorine-based oxidant is added to reduce the free chlorine concentration to prevent membrane deterioration and to prevent membrane clogging by slime to perform membrane separation.
 RO膜などの透過膜で膜処理を行うとき、被処理水に微生物が含まれていると、透過膜にスライムが付着して閉塞が起こり、これにより透過流束が低下し、あるいは分離率が低下するなどの問題がある。このような透過膜の汚染を防止し、処理効率を高めるために、膜分離装置への供給水に塩素系酸化剤を添加してスライムの付着を防止することが行われている。 When membrane treatment is performed with a permeable membrane such as RO membrane, if microorganisms are contained in the water to be treated, slime adheres to the permeable membrane and clogging occurs, thereby reducing the permeation flux or increasing the separation rate. There are problems such as lowering. In order to prevent such contamination of the permeable membrane and increase the processing efficiency, a chlorinated oxidant is added to the water supplied to the membrane separation device to prevent the adhesion of slime.
 殺菌剤としては、一般の水系では塩素、次亜塩素酸ナトリウム等の遊離塩素剤が広く用いられているが、これらは酸化剤として透過膜の材質を劣化させるため、透過膜の性能低下が起こる。特にポリアミド、アラミド系等の窒素含有基を有する高分子膜からなるRO膜等の透過膜は、遊離塩素に侵されやすく、脱塩率、除去率等の膜分離性能が悪化するという問題があり、遊離塩素を含まない状態でRO膜処理を行うことが重要とされている。 As a disinfectant, free chlorine agents such as chlorine and sodium hypochlorite are widely used in general aqueous systems, but these deteriorate the material of the permeable membrane as an oxidizing agent, resulting in a decrease in performance of the permeable membrane. . In particular, permeable membranes such as RO membranes made of polymer membranes containing nitrogen-containing groups such as polyamide and aramid are susceptible to free chlorine, and there is a problem that membrane separation performance such as desalination rate and removal rate deteriorates. In addition, it is important to perform the RO membrane treatment without containing free chlorine.
 このため、RO膜等の透過膜の前段において、遊離塩素を活性炭塔で吸着除去する方法が実施されるが、活性炭塔そのものが微生物の温床になる場合があり、RO膜モジュールヘのスライム付着を助長する場合があった。またRO供給水の遊離塩素がなくなるため、RO膜モジュール内での微生物汚染が進行し、フラックスの低下や脱塩率の低下を引き起こす問題があった。 For this reason, a method of adsorbing and removing free chlorine with an activated carbon tower is carried out before the permeable membrane such as an RO membrane, but the activated carbon tower itself may become a hotbed of microorganisms, and slime adheres to the RO membrane module. There was a case to encourage. Further, since free chlorine in the RO supply water disappears, there is a problem that microbial contamination in the RO membrane module proceeds, causing a decrease in flux and a decrease in desalination rate.
 また還元剤で遊離塩素を分解除去する方法が提案されているが、活性炭で除去する場合と同様に、RO膜モジュール内の微生物汚染が進行するため、問題があった。特許文献1(日本特開平9-57067号)には、遊離塩素剤で殺菌した後、亜硫酸水素ナトリウムなどの還元剤を添加して殺菌剤を消去し、RO膜処理を行うことが示されている。特許文献1では、還元剤を添加して殺菌剤を消去しても、なお不十分であるとして、銅を存在させてスライムの生成を防止している。しかし銅の濃度を特定範囲に制御することは困難である。 Also, although a method for decomposing and removing free chlorine with a reducing agent has been proposed, there has been a problem because microbial contamination in the RO membrane module proceeds in the same manner as with activated carbon. Patent Document 1 (Japanese Patent Laid-Open No. 9-57067) shows that after sterilizing with a free chlorine agent, a reducing agent such as sodium hydrogen sulfite is added to eliminate the sterilizing agent and perform RO membrane treatment. Yes. In patent document 1, even if it adds a reducing agent and erase | eliminates a disinfectant, it is still inadequate and copper is made to exist and the production | generation of slime is prevented. However, it is difficult to control the copper concentration within a specific range.
 特許文献2(日本特開2006-263510)には、塩素系酸化剤とスルファミン酸化合物とからなる結合塩素剤を含有するスライム防止剤を添加して膜分離処理する方法が提案されている。ここでは原水水質の変動や事故によりpHが変動した場合においても、被処理水中の遊離塩素濃度は大きく変動しないため、安定した微生物の殺菌・増殖抑制効果を得られることが示されている。しかしこの結合塩素剤は高価であるため、従来行われていた安価な通常の塩素系酸化剤による殺菌を、すべてこれに替えることは困難である。 Patent Document 2 (Japanese Unexamined Patent Application Publication No. 2006-263510) proposes a method for membrane separation treatment by adding a slime inhibitor containing a combined chlorine agent composed of a chlorine-based oxidizing agent and a sulfamic acid compound. Here, it is shown that, even when the pH of the raw water is changed due to a change in the quality of the raw water or an accident, the concentration of free chlorine in the water to be treated does not change greatly, so that a stable sterilization / growth suppression effect of microorganisms can be obtained. However, since this combined chlorinating agent is expensive, it is difficult to replace all of the conventional sterilizations with a normal chlorinated oxidizing agent which has been conventionally performed.
 特許文献3(日本特開2010-201312)にも、膜分離装置の給水に、スルファミン酸化合物を含む結合塩素剤を添加して膜分離処理する方法が提案されている。ここではスルファミン酸化合物を含む結合塩素系酸化剤は、水中で安定な結合塩素剤であるクロロスルファミン酸塩を形成し、この結合塩素剤により、安定した遊離塩素濃度を維持することにより、透過膜の劣化を引き起こすことなく、良好な剥離効果を発揮することが示されている。しかし特許文献3では、次亜塩素酸ナトリウムなどの遊離塩素系酸化剤で微生物の殺菌を行い、重亜硫酸ナトリウムなどの還元剤を注入して遊離塩素を還元除去することが必要であるとされ、その後結合塩素剤を添加して膜分離を行うことが示されている。 Patent Document 3 (Japanese Unexamined Patent Application Publication No. 2010-201312) also proposes a method of performing membrane separation treatment by adding a bound chlorine agent containing a sulfamic acid compound to the water supply of the membrane separation device. Here, the bound chlorinated oxidant containing a sulfamic acid compound forms a chlorosulfamate salt, which is a stable bound chlorinating agent in water, and maintains a stable free chlorine concentration with this bound chlorinating agent, thereby permeable membrane. It has been shown that a good peeling effect is exhibited without causing deterioration of the film. However, in Patent Document 3, it is said that it is necessary to sterilize microorganisms with a free chlorine-based oxidizing agent such as sodium hypochlorite, and to reduce and remove free chlorine by injecting a reducing agent such as sodium bisulfite. Thereafter, it is shown that a membrane separation is performed by adding a combined chlorine agent.
 しかし被処理水に次亜塩素酸ナトリウムなどの遊離塩素系酸化剤で微生物の殺菌を行った後、重亜硫酸ナトリウムなどの還元剤を注入して遊離塩素を還元除去することは、別の薬剤を用いる別の工程が加わることになり、操作が複雑であり、処理コストが高くなる。そのうえ還元剤を過剰に添加すると、後から加える結合塩素剤の効果を損なうことになり、その後のスライム防止を困難にし、安定して膜分離を行うことが困難になるなどの問題点がある。 However, after sterilizing microorganisms with free chlorine-based oxidizing agents such as sodium hypochlorite in the water to be treated, injecting a reducing agent such as sodium bisulfite to reduce and remove free chlorine is a different agent. Another process to be used is added, the operation is complicated, and the processing cost is increased. In addition, when the reducing agent is added excessively, the effect of the combined chlorine agent added later is impaired, and it is difficult to prevent slime thereafter, and it is difficult to stably perform membrane separation.
日本特開平9-57067Japanese Unexamined Patent Publication No. 9-57067 日本特開2006-263510JP-A-2006-263510 日本特開2010-201312Japan JP 2010-201312
 本発明の目的は、前記のような従来の問題点を解決するため、遊離塩素を含有する被処理水に対し、少ない薬剤量と簡単な操作により、遊離塩素濃度を低くするとともに、全塩素濃度を高くし、これにより耐塩素性の低い透過膜においても、透過膜の劣化による除去率や脱塩率の低下を引き起こすことなく、微生物の増殖に基づくスライム付着による透過膜の汚染を防止し、長期にわたり効率良く膜分離を行うことが可能な膜分離方法を提案することである。 The object of the present invention is to reduce the free chlorine concentration and reduce the total chlorine concentration with a small amount of chemicals and simple operation with respect to the water to be treated containing free chlorine, in order to solve the conventional problems as described above. In this way, even in permeable membranes with low chlorine resistance, contamination of the permeable membrane due to slime adhesion based on the growth of microorganisms is prevented without causing a reduction in the removal rate or desalination rate due to deterioration of the permeable membrane, It is to propose a membrane separation method capable of performing membrane separation efficiently over a long period of time.
 本発明は次の膜分離方法である。
 (1) 透過膜を備えた膜分離装置に被処理水を供給して膜分離する方法であって、
 遊離塩素を含有する被処理水にスルファミン酸、結合塩素型スルファミン酸およびそれらの塩から選ばれる1種以上のスルファミン酸系化合物を添加して、被処理水に含まれる遊離塩素を結合塩素に転換した後、
 被処理水を膜分離装置に供給して膜分離することを特徴とする膜分離方法。
 (2) 被処理水に遊離塩素剤を添加して殺菌した後、
 遊離塩素を含有する被処理水にスルファミン酸、結合塩素型スルファミン酸およびそれらの塩から選ばれる1種以上のスルファミン酸系化合物を添加して、被処理水に含まれる遊離塩素を結合塩素に転換した後、
 被処理水を膜分離装置に供給して膜分離する上記(1)記載の方法。
 (3) 被処理水にさらに重亜硫酸ナトリウムを添加し、遊離塩素濃度を低下させた後、膜分離装置に供給して膜分離する上記(1)または(2)記載の方法。
 (4) スルファミン酸系化合物添加後の被処理水の遊離塩素濃度を連続的にまたは定期的に測定し、
 被処理水の遊離塩素濃度が0.4mg/L以下になるように、スルファミン酸系化合物の添加量を調整する上記(1)ないし(3)のいずれかに記載の方法。
 (5) 被処理水の全塩素濃度が1~100mg/Lになるように、スルファミン酸系化合物の添加量を調整する上記(1)ないし(4)のいずれかに記載の方法。
 (6) 被処理水の遊離塩素濃度を連続的にまたは定期的に測定し、
 遊離塩素濃度が0.4mg/L以下になるように、重亜硫酸ナトリウムを添加する上記(1)ないし(5)のいずれかに記載の方法。
 (7) 透過膜が逆浸透膜である上記(1)ないし(6)のいずれかに記載の方法。
The present invention is the following membrane separation method.
(1) A method of supplying water to be treated to a membrane separation apparatus equipped with a permeable membrane to perform membrane separation,
One or more sulfamic acid compounds selected from sulfamic acid, bound chlorine-type sulfamic acid and their salts are added to the treated water containing free chlorine to convert the free chlorine contained in the treated water into bound chlorine After
A membrane separation method characterized in that the water to be treated is supplied to a membrane separation device for membrane separation.
(2) After adding a free chlorine agent to the treated water and sterilizing it,
One or more sulfamic acid compounds selected from sulfamic acid, bound chlorine-type sulfamic acid and their salts are added to the treated water containing free chlorine to convert the free chlorine contained in the treated water into bound chlorine After
The method according to the above (1), wherein the water to be treated is supplied to a membrane separation apparatus to perform membrane separation.
(3) The method according to (1) or (2) above, wherein sodium bisulfite is further added to the water to be treated to reduce the free chlorine concentration, and then the membrane is separated by feeding to a membrane separator.
(4) Continuously or periodically measure the free chlorine concentration of water to be treated after the addition of sulfamic acid compounds,
The method according to any one of (1) to (3) above, wherein the amount of the sulfamic acid compound added is adjusted so that the free chlorine concentration of the water to be treated is 0.4 mg / L or less.
(5) The method according to any one of (1) to (4) above, wherein the addition amount of the sulfamic acid compound is adjusted so that the total chlorine concentration of the water to be treated is 1 to 100 mg / L.
(6) Measure the free chlorine concentration of the water to be treated continuously or periodically,
The method according to any one of (1) to (5) above, wherein sodium bisulfite is added so that the free chlorine concentration is 0.4 mg / L or less.
(7) The method according to any one of (1) to (6), wherein the permeable membrane is a reverse osmosis membrane.
 本発明において、膜分離装置は透過膜を備え、この透過膜に被処理水を供給して膜分離する装置である。透過膜としてはRO膜、UF膜(限外ろ過膜)、MF膜(精密ろ過膜)など、膜分離に使用されるすべての透過膜が対象となるが、特にRO膜を備えた膜分離装置が対象として好ましい。また透過膜の材質としては、ポリアミド、特に耐塩素性の小さい芳香族ポリアミド、ポリ尿素、ポリピペラジンアミドなどの窒素含有基を有する高分子膜に対して特に有効であるが、酢酸セルロース系、その他の透過膜であってもよい。本発明では、特に耐塩素性の小さい透過膜に対して有効である。また透過膜は、スパイラル型、中空糸型、管型、平膜型など任意の構造のモジュールを構成するものでもよい。 In the present invention, the membrane separation device is a device that includes a permeable membrane and supplies the water to be treated to the permeable membrane for membrane separation. All permeable membranes used for membrane separation, such as RO membranes, UF membranes (ultrafiltration membranes), MF membranes (microfiltration membranes), are targeted as permeable membranes, but membrane separation devices with RO membranes in particular Is preferred as a target. The material of the permeable membrane is particularly effective for a polymer membrane having a nitrogen-containing group such as polyamide, particularly aromatic polyamide having low chlorine resistance, polyurea, polypiperazine amide, etc. It may be a permeable membrane. The present invention is particularly effective for a permeable membrane with low chlorine resistance. The permeable membrane may constitute a module having an arbitrary structure such as a spiral type, a hollow fiber type, a tube type, or a flat membrane type.
 本発明において、このような膜分離装置に供給して膜分離する被処理水は、遊離塩素を含有する被処理水である。このような遊離塩素含有被処理水としては、天然水、工業用水、排水、排水処理水など、微生物、その他の汚染物を含む被処理水に、遊離塩素剤を添加して微生物の殺菌を行った水で、残留塩素を含む被処理水、すなわち遊離塩素剤を添加して微生物の殺菌を行い、残留塩素を除去しない状態の被処理水があげられるが、水道水など、もともと遊離塩素を含有する被処理水であってもよい。上記の汚染物を含む被処理水の殺菌用に添加する遊離塩素剤としては、塩素ガス、二酸化塩素、次亜塩素酸またはその塩など、一般に殺菌剤、消毒剤、酸化剤などとして用いられているものがあげられる。遊離塩素含有被処理水に含まれる遊離塩素濃度としては、0.03~3mg/L、特に0.1~1mg/L程度である。 In the present invention, the water to be treated which is supplied to such a membrane separation device and subjected to membrane separation is water to be treated containing free chlorine. Such free chlorine-containing treated water includes sterilization of microorganisms by adding a free chlorine agent to treated water containing microorganisms and other pollutants such as natural water, industrial water, wastewater, and wastewater treated water. Treated water containing residual chlorine, that is, treated water that does not remove residual chlorine by sterilizing microorganisms by adding free chlorine agent, but originally contains free chlorine such as tap water Water to be treated may be used. As a free chlorine agent to be added for sterilization of water to be treated containing the above-mentioned contaminants, chlorine gas, chlorine dioxide, hypochlorous acid or a salt thereof is generally used as a disinfectant, disinfectant, oxidant, etc. What is there. The concentration of free chlorine contained in the water to be treated containing free chlorine is about 0.03 to 3 mg / L, particularly about 0.1 to 1 mg / L.
 本発明において、遊離塩素、結合塩素および全塩素は、JIS K 0400-33-10:1999に示されており、N,N-ジエチル-1,4-フェニレンジアミンを用いるDPD法によりClの濃度として測定される。遊離塩素は次亜塩素酸、次亜塩素酸イオンまたは溶存塩素の形で存在する塩素とされている。結合塩素はクロロアミンおよび有機クロロアミンの形で存在する塩素とされており、上記遊離塩素に含まれないが、DPD法により測定される塩素とされている。全塩素は遊離塩素、結合塩素または両者の形で存在する塩素とされている。 In the present invention, free chlorine, combined chlorine and total chlorine are shown in JIS K 0400-33-10: 1999, and the concentration of Cl 2 is determined by the DPD method using N, N-diethyl-1,4-phenylenediamine. As measured. Free chlorine is regarded as chlorine existing in the form of hypochlorous acid, hypochlorite ions or dissolved chlorine. Bound chlorine is chlorine existing in the form of chloroamine and organic chloroamine, and is not included in the free chlorine, but is chlorine measured by the DPD method. Total chlorine is considered to be free chlorine, bound chlorine, or chlorine present in both forms.
 本発明において、上記の遊離塩素を含有する被処理水に、スルファミン酸、結合塩素型スルファミン酸およびそれらの塩から選ばれる1種以上のスルファミン酸系化合物を添加して膜分離する。スルファミン酸系化合物の添加により、透過膜の劣化を引き起こす遊離塩素が、安定な結合塩素剤であるモノクロロスルファミン酸に転換される。モノクロロスルファミン酸のような結合塩素剤は、酸化力が弱いため膜劣化を引き起こすことがなく、また優れたスライム防止効果を有する。 In the present invention, one or more sulfamic acid compounds selected from sulfamic acid, combined chlorine-type sulfamic acid and salts thereof are added to the water to be treated containing free chlorine, and membrane separation is performed. By the addition of the sulfamic acid compound, free chlorine that causes deterioration of the permeable membrane is converted to monochlorosulfuramic acid, which is a stable bound chlorine agent. A bonded chlorinating agent such as monochlororosulmic acid does not cause film deterioration because of its weak oxidizing power and has an excellent anti-slime effect.
 スルファミン酸系化合物に含まれるスルファミン酸は、式〔1〕、
NSOH・・・〔1〕
 (式〔1〕中、R、Rはそれぞれ独立にHまたは炭素数1~6の炭化水素基である。)
 で表されるアミド硫酸である。このようなスルファミン酸としては、R、RがそれぞれHである狭義のスルファミン酸が好ましいが、N-メチルスルファミン酸、N,N-ジメチルスルファミン酸、N-フェニルスルファミン酸なども使用できる。
The sulfamic acid contained in the sulfamic acid compound has the formula [1],
R 1 R 2 NSO 3 H ... [1]
(In the formula [1], R 1 and R 2 are each independently H or a hydrocarbon group having 1 to 6 carbon atoms.)
It is an amidosulfuric acid represented by As such sulfamic acid, sulfamic acid in a narrow sense where R 1 and R 2 are each H is preferable, but N-methylsulfamic acid, N, N-dimethylsulfamic acid, N-phenylsulfamic acid, and the like can also be used.
 スルファミン酸系化合物に含まれる結合塩素型スルファミン酸は、上記式〔1〕で表されるスルファミン酸と、遊離塩素剤とから構成される結合塩素剤であり、遊離塩素剤の反応量は任意に変えられるが、モノクロロスルファミン酸を含むものが好ましい。遊離塩素剤としては、塩素ガス、二酸化塩素、次亜塩素酸またはその塩など、上記被処理水に添加するものが用いられる。 The bound chlorine type sulfamic acid contained in the sulfamic acid-based compound is a bound chlorine agent composed of the sulfamic acid represented by the above formula [1] and a free chlorine agent, and the reaction amount of the free chlorine agent is arbitrarily determined. Although it can be changed, those containing monochlororosulmic acid are preferred. As the free chlorine agent, those added to the water to be treated such as chlorine gas, chlorine dioxide, hypochlorous acid or a salt thereof are used.
 これらを含むスルファミン酸系化合物としては、上記のスルファミン酸または結合塩素型スルファミン酸を遊離(粉末状)の酸の状態で用いても良く、またナトリウム塩、カリウム塩等のアルカリ金属塩などの塩であっても良い。 As the sulfamic acid-based compound containing these, the above-mentioned sulfamic acid or bound chlorine type sulfamic acid may be used in a free (powdered) acid state, or a salt such as an alkali metal salt such as sodium salt or potassium salt. It may be.
 好ましい結合塩素型スルファミン酸としては、本特許出願人の先願であるWO2011/125762に記載のもの、すなわち水溶液製剤中のスルファミン酸と塩素系酸化剤との含有割合がCl/N(モル比)で0.45~0.6、好ましくは0.45~0.55であり、アルカリと塩素系酸化剤との含有割合が、Cl/アルカリ金属(モル比)で0.3~0.4、好ましくは0.30~0.36であり、水溶液製剤中の遊離塩素濃度が全塩素濃度の2重量%以下であるものが好ましい。水溶液製剤は、pHが13以上、水溶液製剤中のアルカリとスルファミン酸との含有割合が、N/アルカリ金属(モル比)で0.5~0.7とするのが好ましい。上記のCl/N(モル比)は、前記JIS K 0400-33-10:1999により測定される塩素系酸化剤のClのモル数と、Nにより構成されるスルファミン酸のモル数との比に相当する。またN/アルカリ金属(モル比)は、上記スルファミン酸のモル数と、アルカリ金属水酸化物により構成されるアルカリのモル数との比に相当する。 Preferred bound chlorinated sulfamic acids are those described in WO 2011/125762, which is the prior application of the present applicant, that is, the content ratio of sulfamic acid and chlorine-based oxidizing agent in the aqueous solution preparation is Cl / N (molar ratio). 0.45 to 0.6, preferably 0.45 to 0.55, and the content ratio of alkali and chlorine-based oxidant is 0.3 to 0.4 in terms of Cl / alkali metal (molar ratio). It is preferably 0.30 to 0.36, and the free chlorine concentration in the aqueous preparation is preferably 2% by weight or less of the total chlorine concentration. The aqueous solution preparation preferably has a pH of 13 or more, and the content ratio of alkali and sulfamic acid in the aqueous solution preparation is 0.5 to 0.7 in terms of N / alkali metal (molar ratio). The Cl / N (molar ratio) is a ratio of the number of moles of Cl 2 of the chlorinated oxidant measured according to JIS K 0400-33-10: 1999 and the number of moles of sulfamic acid composed of N. It corresponds to. N / alkali metal (molar ratio) corresponds to the ratio between the number of moles of the sulfamic acid and the number of moles of alkali constituted by the alkali metal hydroxide.
 本発明において、遊離塩素を含有する被処理水に添加するスルファミン酸系化合物の添加量は、被処理水に含まれる遊離塩素を結合塩素に変えるのに必要な量である。この量は被処理水に含まれる遊離塩素の量、その他により変わるが、一般的にはスルファミン酸として10~1000mg/L、好ましくは50~500mg/L、結合塩素型スルファミン酸の場合は全塩素として1~100mg/L、好ましくは5~20mg/Lとすることができる。スルファミン酸系化合物の添加量が多くても、被処理水中の結合塩素が多くなるが、遊離塩素は少なくなる。 In the present invention, the amount of the sulfamic acid compound added to the water to be treated containing free chlorine is an amount necessary to convert the free chlorine contained in the water to be treated into bound chlorine. This amount varies depending on the amount of free chlorine contained in the water to be treated and others, but generally 10 to 1000 mg / L, preferably 50 to 500 mg / L, as sulfamic acid, and in the case of bound chlorine type sulfamic acid, total chlorine 1 to 100 mg / L, preferably 5 to 20 mg / L. Even if the amount of the sulfamic acid compound added is large, the amount of bound chlorine in the water to be treated increases, but the amount of free chlorine decreases.
 遊離塩素を含有する被処理水に添加するスルファミン酸系化合物としては、スルファミン酸またはその塩でも良いが、結合塩素型スルファミン酸またはそれらの塩を用いる方が、残留遊離塩素との反応が速く、遊離塩素を結合塩素に転換し易いので好ましい。結合塩素型スルファミン酸の場合、Cl/N(モル比)やCl/アルカリ金属(モル比)が前記範囲内のものを用いることにより、被処理水中の遊離塩素を結合塩素に変えることができるので好ましい。 The sulfamic acid compound to be added to the water to be treated containing free chlorine may be sulfamic acid or a salt thereof, but the reaction with residual free chlorine is faster when combined chlorinated sulfamic acid or a salt thereof is used, It is preferable because free chlorine can be easily converted into bound chlorine. In the case of bound chlorine type sulfamic acid, by using Cl / N (molar ratio) or Cl / alkali metal (molar ratio) within the above range, free chlorine in the water to be treated can be changed to bound chlorine. preferable.
 本発明では、遊離塩素を含有する被処理水を、透過膜を備えた膜分離装置に供給して膜分離する際、被処理水にスルファミン酸、結合塩素型スルファミン酸およびそれらの塩から選ばれる1種以上のスルファミン酸系化合物を添加して、被処理水に含まれる遊離塩素を結合塩素に転換した後、膜分離装置に供給して膜分離する。これにより遊離塩素濃度を低くするとともに、全塩素濃度を高くすることができ、耐塩素性の低い透過膜においても、透過膜の劣化による除去率や脱塩率の低下を引き起こすことなく、微生物の増殖に基づくスライム付着による透過膜の汚染を防止することができる。 In the present invention, when water to be treated containing free chlorine is supplied to a membrane separator equipped with a permeable membrane for membrane separation, the water to be treated is selected from sulfamic acid, bound chlorine type sulfamic acid and salts thereof. One or more sulfamic acid-based compounds are added to convert free chlorine contained in the water to be treated into bound chlorine, which is then supplied to a membrane separator for membrane separation. As a result, the free chlorine concentration can be lowered and the total chlorine concentration can be increased. Even in a permeation membrane with low chlorine resistance, microorganisms can be removed without causing a reduction in removal rate or desalination rate due to deterioration of the permeation membrane. Contamination of the permeable membrane due to adhesion of slime based on growth can be prevented.
 遊離塩素を含有する被処理水として、汚染物を含む被処理水に、遊離塩素剤を添加して微生物の殺菌を行った後の、残留塩素を含む水を被処理水とする場合、遊離塩素剤を添加して微生物の殺菌を行い、残留塩素を除去しない状態の被処理水にスルファミン酸系化合物を添加して、被処理水に含まれる遊離塩素を結合塩素に転換することができる。この場合、殺菌により消費されなかった残留塩素を除去しない状態でも、遊離塩素はスルファミン酸系化合物と反応して結合塩素に転換するため、被処理水の遊離塩素濃度は低くなる。 When water to be treated is treated with water containing residual chlorine after the treatment of microorganisms by adding a free chlorine agent to the water to be treated containing contaminants, the free chlorine An agent is added to sterilize microorganisms, and a sulfamic acid compound can be added to the water to be treated in a state where residual chlorine is not removed, so that free chlorine contained in the water to be treated can be converted into bound chlorine. In this case, even in a state where residual chlorine that has not been consumed by sterilization is not removed, free chlorine reacts with the sulfamic acid compound and is converted to bound chlorine, so that the concentration of free chlorine in the water to be treated becomes low.
 被処理水にスルファミン酸系化合物を添加する位置(場所)は、透過膜と接触する前であればよいが、スルファミン酸系化合物と残留遊離塩素との反応が完了するように、透過膜と接触するまでに時間的な余裕を持って添加するのが好ましい。この場合、結合塩素型スルファミン酸の結合塩素は、ろ過装置や活性炭による除去が少ないので、これらの前の段階で添加してもよい。 The position (place) where the sulfamic acid compound is added to the water to be treated may be before contact with the permeable membrane, but it is in contact with the permeable membrane so that the reaction between the sulfamic acid compound and residual free chlorine is completed. It is preferable to add it with a time margin until it is done. In this case, since the bonded chlorine of the combined chlorine type sulfamic acid is little removed by a filtration device or activated carbon, it may be added at the previous stage.
 本発明では、膜分離装置の直前で被処理水の遊離塩素濃度が0.4mg/L以下、好ましくは0.3mg/L以下になるように、スルファミン酸系化合物を添加するのが好ましい。このためには膜分離装置の前の位置で、被処理水の遊離塩素濃度を連続的にまたは定期的に測定し、被処理水の遊離塩素濃度が0.4mg/L以下、好ましくは0.3mg/L以下になるように、スルファミン酸系化合物の添加量を調整することができる。この場合、被処理水の全塩素濃度が1~100mg/L、好ましくは5~20mg/Lになるように、スルファミン酸系化合物の添加量を調整するのが好ましい。 In the present invention, it is preferable to add the sulfamic acid compound so that the free chlorine concentration of the water to be treated is 0.4 mg / L or less, preferably 0.3 mg / L or less immediately before the membrane separator. For this purpose, the free chlorine concentration of the water to be treated is continuously or periodically measured at a position in front of the membrane separation device, and the free chlorine concentration of the water to be treated is 0.4 mg / L or less, preferably 0.8. The amount of sulfamic acid compound added can be adjusted to 3 mg / L or less. In this case, it is preferable to adjust the addition amount of the sulfamic acid-based compound so that the total chlorine concentration of the water to be treated is 1 to 100 mg / L, preferably 5 to 20 mg / L.
 スルファミン酸系化合物の添加により被処理水の遊離塩素濃度を上記値に調整できない場合は、重亜硫酸ナトリウム等の還元剤を被処理水に添加して、遊離塩素濃度を上記値に調整することができる。このためには膜分離装置の前の位置で、被処理水の遊離塩素濃度を連続的にまたは定期的に測定し、被処理水の遊離塩素濃度が0.4mg/L以下、好ましくは0.3mg/L以下になるように、重亜硫酸ナトリウムを添加することができる。 If the free chlorine concentration of the treated water cannot be adjusted to the above value by adding a sulfamic acid compound, a reducing agent such as sodium bisulfite can be added to the treated water to adjust the free chlorine concentration to the above value. it can. For this purpose, the free chlorine concentration of the water to be treated is continuously or periodically measured at a position in front of the membrane separation device, and the free chlorine concentration of the water to be treated is 0.4 mg / L or less, preferably 0.8. Sodium bisulfite can be added so that it may be 3 mg / L or less.
 遊離塩素を含有する被処理水にスルファミン酸系化合物を添加すると、被処理水に含まれる遊離塩素はスルファミン酸系化合物と反応して結合塩素に転換され、結合塩素型スルファミン酸が生成する。結合塩素型スルファミン酸は、酸化力が弱く、膜劣化を引き起こすことはないが、優れたスライム防止効果を有する。このため透過膜の閉塞によるフラックス(透過流束)の低下、あるいは膜劣化による分離率(脱塩率)の低下が防止される。 When a sulfamic acid compound is added to the water to be treated containing free chlorine, the free chlorine contained in the water to be treated reacts with the sulfamic acid compound to be converted into bonded chlorine, and bonded chlorine type sulfamic acid is generated. Bound chlorine type sulfamic acid has a weak oxidizing power and does not cause film deterioration, but has an excellent anti-slime effect. For this reason, the fall of the flux (permeation flux) by the obstruction | occlusion of a permeable membrane, or the fall of the isolation | separation rate (desalting rate) by membrane deterioration is prevented.
 本発明では、遊離塩素を含有する被処理水にスルファミン酸系化合物を添加することにより、被処理水に含まれる遊離塩素を減少させて結合塩素に転換し、これにより透過膜の劣化を防止するとともに、スライムの生成を防止することができるので、被処理水の殺菌、消毒等には従来通り安価な遊離塩素剤を使用できる。被処理水の殺菌、消毒等に遊離塩素剤を使用した場合でも、残留塩素を除去する必要はなく、遊離塩素を含有する被処理水にスルファミン酸系化合物を添加することにより、遊離塩素濃度を低くして膜の劣化を防止でき、しかも結合塩素によりスライムによる膜の閉塞を防止することができる。そして本発明で用いるスルファミン酸系化合物の量は、殺菌、消毒後に供給される被処理水中に残留する遊離塩素を結合塩素に転換するのに必要な量であればよいので、少ない薬剤量と簡単な操作により、遊離塩素を効率よく結合塩素に転換して、膜分離を行うことができる。 In the present invention, by adding a sulfamic acid compound to the water to be treated containing free chlorine, the free chlorine contained in the water to be treated is reduced and converted to bound chlorine, thereby preventing the deterioration of the permeable membrane. At the same time, since slime can be prevented from being produced, free chlorine agents that are inexpensive as before can be used for sterilization, disinfection, etc. of water to be treated. Even when a free chlorine agent is used for sterilization, disinfection, etc. of treated water, it is not necessary to remove residual chlorine, and by adding a sulfamic acid compound to the treated water containing free chlorine, the free chlorine concentration can be reduced. The film can be lowered to prevent the film from being deteriorated, and the bonded chlorine can prevent the film from being blocked by the slime. The amount of the sulfamic acid compound used in the present invention may be an amount necessary for converting free chlorine remaining in the water to be treated supplied after sterilization and disinfection into bound chlorine, so that a small amount of drug and simple By a simple operation, free chlorine can be efficiently converted into bound chlorine, and membrane separation can be performed.
 本発明によれば、遊離塩素を含有する被処理水を、透過膜を備えた膜分離装置に供給して膜分離する際、スルファミン酸、結合塩素型スルファミン酸およびそれらの塩から選ばれる1種以上のスルファミン酸系化合物を被処理水に添加して、被処理水に含まれる遊離塩素を結合塩素に転換した後膜分離することにより、少ない薬剤量と簡単な操作により、遊離塩素濃度を低くするとともに、全塩素濃度を高くし、これにより耐塩素性の低い透過膜においても、透過膜の劣化による除去率や脱塩率の低下を引き起こすことなく、微生物の増殖に基づくスライム付着による透過膜の汚染を防止し、長期にわたり効率良く膜分離を行うことができる。 According to the present invention, when water to be treated containing free chlorine is supplied to a membrane separator equipped with a permeable membrane for membrane separation, one kind selected from sulfamic acid, bound chlorine type sulfamic acid and salts thereof By adding the above sulfamic acid compounds to the water to be treated, converting the free chlorine contained in the water to be treated into bound chlorine, and separating the membrane, the free chlorine concentration can be reduced with a small amount of chemicals and simple operation. At the same time, the permeation membrane with slime adhesion based on the growth of microorganisms without increasing the removal rate and desalination rate due to the deterioration of the permeation membrane even in the permeation membrane with low chlorine resistance by increasing the total chlorine concentration Thus, membrane separation can be performed efficiently over a long period of time.
実施形態の膜分離方法を示すフロー図である。It is a flowchart which shows the membrane separation method of embodiment.
 以下、本発明の実施形態を図面により説明する。図1は実施形態の膜分離方法を示し、1はろ過装置、2は活性炭処理装置、3は保安フィルタ、4はRO膜分離装置、5はスルファミン酸系化合物槽、6は還元剤槽、7は制御装置である。ろ過装置1は砂、アンスラサイト等のろ材充填層を通してろ過し、SS、コロイド等を除去するように構成されている。活性炭処理装置2は活性炭充填層を通して通水し、有機物、色度等を除去するように構成されている。RO膜分離装置4はRO膜モジュール4aにより濃縮液室4bと透過液室4cに区画され、RO膜分離するように構成されている。制御装置7は検出器Cの遊離塩素検出信号により、ポンプP1、P2を制御するように構成されている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a membrane separation method according to an embodiment. 1 is a filtration device, 2 is an activated carbon treatment device, 3 is a safety filter, 4 is an RO membrane separation device, 5 is a sulfamic acid-based compound tank, 6 is a reducing agent tank, 7 Is a control device. The filtration device 1 is configured to filter through a filter medium packed bed such as sand and anthracite to remove SS, colloid, and the like. The activated carbon treatment apparatus 2 is configured to pass water through the activated carbon packed bed and remove organic substances, chromaticity and the like. The RO membrane separation device 4 is divided into a concentrated solution chamber 4b and a permeate chamber 4c by an RO membrane module 4a, and is configured to perform RO membrane separation. The control device 7 is configured to control the pumps P1 and P2 based on the free chlorine detection signal from the detector C.
 上記の装置による膜分離方法は以下のように行われる。まず遊離塩素を含有する被処理水を被処理水路L1より供給する際、制御装置7からの指令によりポンプP1を制御して、スルファミン酸系化合物槽5からラインL2を通してスルファミン酸系化合物を添加する。被処理水路L1より供給する被処理水としては、汚染物を含む被処理水に、遊離塩素剤を添加して微生物の殺菌を行い、残留塩素を除去しない状態の残留塩素を含む水が用いられる。このような残留塩素を含む被処理水にスルファミン酸系化合物を添加することにより、被処理水中の遊離塩素とスルファミン酸系化合物が反応して、遊離塩素が結合塩素に転換される。その後被処理水はろ過装置1でろ過し、ラインL3を通して活性炭処理装置2で活性炭処理し、ラインL4を通して保安フィルタ3を経て、ラインL5からRO膜分離装置4に供給してRO膜分離が行われる。 The membrane separation method using the above apparatus is performed as follows. First, when water to be treated containing free chlorine is supplied from the water channel L1, the pump P1 is controlled by a command from the control device 7, and the sulfamic acid compound is added from the sulfamic acid compound tank 5 through the line L2. . As the treated water supplied from the treated water channel L1, water containing residual chlorine in a state in which a free chlorine agent is added to the treated water containing contaminants to sterilize microorganisms and residual chlorine is not removed is used. . By adding the sulfamic acid compound to the water to be treated containing such residual chlorine, the free chlorine and the sulfamic acid compound in the water to be treated react to convert the free chlorine into bound chlorine. Thereafter, the water to be treated is filtered by the filtration device 1, treated with activated carbon by the activated carbon treatment device 2 through the line L 3, passed through the safety filter 3 through the line L 4, and supplied to the RO membrane separation device 4 from the line L 5 to perform RO membrane separation. Is called.
 この間ラインL5に設けられた検出器Cにより、保安フィルタ3出口の被処理水中の遊離塩素濃度を検出し、その検出信号を制御装置7に送る。制御装置7は遊離塩素検出信号を受け、遊離塩素濃度が0.4mg/L以下になるように、ポンプP1を制御する。このようにポンプP1の制御によりスルファミン酸系化合物の添加量を調整しても、遊離塩素濃度が0.4mg/Lを超える場合は、検出器Cの遊離塩素検出信号により、遊離塩素濃度が0.4mg/L以下になるように、制御装置7がポンプP2を制御し、還元剤槽6からラインL6を通して重亜硫酸ナトリウムを添加する。 During this time, the detector C provided in the line L5 detects the free chlorine concentration in the water to be treated at the outlet of the safety filter 3 and sends the detection signal to the control device 7. The control device 7 receives the free chlorine detection signal and controls the pump P1 so that the free chlorine concentration is 0.4 mg / L or less. Thus, even if the amount of the sulfamic acid compound added is adjusted by controlling the pump P1, if the free chlorine concentration exceeds 0.4 mg / L, the free chlorine concentration is 0 by the free chlorine detection signal from the detector C. The control device 7 controls the pump P2 so as to be 4 mg / L or less, and sodium bisulfite is added from the reducing agent tank 6 through the line L6.
 これにより被処理水中の遊離塩素は除去され、被処理水は結合塩素を含む状態でラインL5からRO膜分離装置4の濃縮液室4bに供給され、RO膜モジュール4aによりRO膜分離される。そして透過液は透過液室4cからラインL7を通して膜分離処理液として取出され、濃縮液は濃縮液室4bからラインL8を通して取出される。RO膜分離装置4に供給される被処理水は遊離塩素を含まないので、RO膜モジュール4aが損傷されることは防止されるが、結合塩素を含むためRO膜モジュール4aにスライムが生成することが防止され、RO膜の閉塞によるフラックス(透過流束)の低下、あるいは分離率(脱塩率)の低下が防止される。 Thus, free chlorine in the water to be treated is removed, and the water to be treated is supplied from the line L5 to the concentrated liquid chamber 4b of the RO membrane separation device 4 in a state containing bound chlorine, and RO membrane separation is performed by the RO membrane module 4a. The permeate is taken out from the permeate chamber 4c through the line L7 as a membrane separation treatment solution, and the concentrate is taken out from the concentrate chamber 4b through the line L8. Since the treated water supplied to the RO membrane separation device 4 does not contain free chlorine, the RO membrane module 4a is prevented from being damaged, but since it contains bound chlorine, slime is generated in the RO membrane module 4a. This prevents a decrease in flux (permeation flux) or a decrease in separation rate (desalting rate) due to the blockage of the RO membrane.
 図1では膜分離装置としてRO膜分離装置4の例を示しているが、UF膜、MF膜などの他の透過膜を用いる膜分離装置にも同様に適用できる。また図1では、ろ過装置1および活性炭処理装置2の前でスルファミン酸系化合物を添加しているが、これらの後に、特に活性炭処理装置2の後に添加するようにしてもよい。この場合でもSBS(重亜硫酸ナトリウム)を添加する場合は、その添加前にスルファミン酸系化合物を添加する必要がある。また図1の活性炭処理装置2、還元剤槽6、ポンプP2などは省略される場合がある。 Although FIG. 1 shows an example of the RO membrane separation device 4 as the membrane separation device, the present invention can be similarly applied to a membrane separation device using other permeable membranes such as a UF membrane and an MF membrane. In FIG. 1, the sulfamic acid-based compound is added before the filtration device 1 and the activated carbon treatment device 2, but may be added after these, particularly after the activated carbon treatment device 2. Even in this case, when SBS (sodium bisulfite) is added, it is necessary to add a sulfamic acid compound before the addition. Moreover, the activated carbon treatment apparatus 2, the reducing agent tank 6, the pump P2, etc. of FIG. 1 may be omitted.
 以下、本発明の実施例および比較例について説明する。各例中、%は特に表示しない限り重量%である。 Hereinafter, examples and comparative examples of the present invention will be described. In each example,% is% by weight unless otherwise indicated.
〔実施例1~7および比較例1~3〕:
 図1の構成のRO膜分離装置を用い、被処理水として次亜塩素酸ナトリウムを添加し遊離塩素濃度1.0mg/Lに調製して殺菌した排水処理水に、スルファミン酸系化合物および/または重亜硫酸ナトリウム(SBS)を添加し、1ヵ月間通水して膜分離を行った。RO膜としては、DOW Chemical社製の芳香族ポリアミド製のRO膜TW-30(商品名)を使用した。
[Examples 1 to 7 and Comparative Examples 1 to 3]
The sulfamic acid-based compound and / or the wastewater treated water prepared by adding sodium hypochlorite as the treated water to a free chlorine concentration of 1.0 mg / L and sterilized using the RO membrane separation apparatus having the configuration shown in FIG. Sodium bisulfite (SBS) was added, and membrane separation was performed by passing water for 1 month. As the RO membrane, RO membrane TW-30 (trade name) made of aromatic polyamide manufactured by DOW Chemical was used.
 被処理水は排水処理水に次亜塩素酸ナトリウムを遊離塩素濃度として1.0mg/Lとなるように添加して調製した。また、スルファミン酸系化合物は、ろ過装置1の前で添加し、SBSは保安フィルタ3の前で添加した。スルファミン酸系化合物としては、スルファミン酸または結合塩素型スルファミン酸を用いた。そのうち結合塩素型スルファミン酸としては、次亜塩素酸ナトリウム2%(有効塩素濃度として)、スルファミン酸8%、および水酸化ナトリウム1%を合むpH13の水溶液を用いた。 The treated water was prepared by adding sodium hypochlorite to the wastewater treated water so that the free chlorine concentration was 1.0 mg / L. Further, the sulfamic acid compound was added in front of the filtration device 1, and SBS was added in front of the safety filter 3. As the sulfamic acid compound, sulfamic acid or bound chlorine type sulfamic acid was used. Among them, as the combined chlorine-type sulfamic acid, an aqueous solution having a pH of 13 containing sodium hypochlorite 2% (as effective chlorine concentration), sulfamic acid 8%, and sodium hydroxide 1% was used.
 遊離塩素をモニタリングするために、検出器C(ORP計)をRO膜分離装置4の直前に設置し、遊離塩素が所定濃度以下となるようにスルファミン酸系化合物の添加量、またはSBSの添加量をコントロールした。表1には添加濃度の平均値を示した。 In order to monitor free chlorine, a detector C (ORP meter) is installed immediately before the RO membrane separation device 4, and the amount of sulfamic acid compound added or the amount of SBS added so that the free chlorine is below a predetermined concentration. Was controlled. Table 1 shows the average value of the additive concentration.
 スライムの付着状況は、1ヵ月の通水におけるフラックス比(対初期値)および試験後の膜の外観で評価した。外観での評価は、付着なしを○、付着ありを×と評価した。フラックス比の評価は、初期のフラックスに対する最終フラックスの比が0.95~1.00である場合は○、0.90~0.95は△、~0.90は×のように評価した。RO膜の劣化状況は脱塩率で判断し、99.5%~100%の場合は○、97%~99.5%では△、~97%は×と評価した。これらの結果を表1に示す。表1中、スルファミン酸系化合物の添加量(mg/L)は、スルファミン酸の場合はスルファミン酸の全重量基準で表示され、結合塩素型スルファミン酸の場合は全塩素の重量基準で表示されている。 The adhesion state of slime was evaluated based on the flux ratio (relative to the initial value) in water flow for one month and the appearance of the film after the test. The appearance was evaluated as “Good” when there was no adhesion and “No” when there was adhesion. In the evaluation of the flux ratio, when the ratio of the final flux to the initial flux is 0.95 to 1.00, the evaluation is as follows: ○, 0.90 to 0.95 is Δ, and ˜0.90 is ×. The deterioration of the RO membrane was judged based on the desalination rate. The case of 99.5% to 100% was evaluated as ◯, the range of 97% to 99.5% was evaluated as △, and the range of −97% was evaluated as ×. These results are shown in Table 1. In Table 1, the addition amount (mg / L) of the sulfamic acid compound is displayed on the basis of the total weight of sulfamic acid in the case of sulfamic acid, and on the basis of the weight of total chlorine in the case of combined chlorine type sulfamic acid. Yes.
[規則26に基づく補充 12.04.2012] 
Figure WO-DOC-TABLE-1
[Supplement under rule 26 12.04.2012]
Figure WO-DOC-TABLE-1
〔比較例1〕;
 比較例1は、スルファミン酸系化合物および重亜硫酸ナトリウムを添加せず、遊離塩素を含む被処理水をそのまま無処理でRO膜分離した例であり、表1ではスライムの付着状況は○、RO膜の劣化状況は×と評価されている。このため遊離塩素が存在すると、膜モジュール内のスライムは抑制できるが、膜の劣化により脱塩率が低下することが分かる。
[Comparative Example 1];
Comparative Example 1 is an example in which the sulfamic acid-based compound and sodium bisulfite were not added and the water to be treated containing free chlorine was separated as it was without RO treatment. The deterioration status of is evaluated as x. Therefore, when free chlorine is present, slime in the membrane module can be suppressed, but it can be seen that the desalination rate decreases due to membrane deterioration.
〔比較例2〕;
 比較例2は、スルファミン酸系化合物および重亜硫酸ナトリウムを添加せず、遊離塩素を含む被処理水を活性炭処理してRO膜分離した例であり、スライムの付着状況は×、RO膜の劣化状況は△と評価されている。このため活性炭処理すると、被処理水に含まれる遊離塩素は除去されてスライム付着が顕著になり、膜劣化によるものではないが、付着物による濃度分極で脱塩率が低下することが分かる。
[Comparative Example 2];
Comparative Example 2 is an example in which RO membranes were separated by subjecting water to be treated containing free chlorine to activated carbon without adding sulfamic acid compounds and sodium bisulfite. Is rated △. For this reason, when activated carbon treatment is performed, free chlorine contained in the water to be treated is removed, and slime adhesion becomes remarkable, and although it is not due to membrane deterioration, it is understood that the desalination rate decreases due to concentration polarization due to deposits.
〔比較例3〕;
 比較例3は、スルファミン酸系化合物を添加せず、遊離塩素を含む被処理水に重亜硫酸ナトリウムを添加し還元処理してRO膜分離した例であり、スライムの付着状況は×、RO膜の劣化状況は△と評価されている。このためSBSで遊離塩素を分解除去した場合も、比較例2の活性炭処理と同様の結果が得られることが分かる。
[Comparative Example 3];
Comparative Example 3 is an example in which sodium bisulfite was added to water to be treated containing free chlorine without reducing the sulfamic acid-based compound, and the RO membrane was separated by reduction treatment. The deterioration status is evaluated as △. Therefore, it can be seen that the same result as that of the activated carbon treatment of Comparative Example 2 can be obtained even when free chlorine is decomposed and removed by SBS.
〔実施例1〕;
 実施例1は被処理水に結合塩素型スルファミン酸を1mg/L添加し、重亜硫酸ナトリウムを添加しないでRO膜分離した例であり、遊離塩素が低下し、結合塩素(全塩素)が増加して、スライムの付着状況は○と評価された。しかし、遊離塩素が0.6mg/L検出されており、膜劣化による脱塩率の低下がみられた。
[Example 1];
Example 1 is an example in which 1 mg / L of combined chlorine-type sulfamic acid was added to the water to be treated, and RO membrane separation was performed without adding sodium bisulfite. Free chlorine decreased and combined chlorine (total chlorine) increased. The slime adhesion status was evaluated as ◯. However, 0.6 mg / L of free chlorine was detected, and a decrease in the desalination rate due to membrane deterioration was observed.
〔実施例2〕;
 実施例2は実施例1において、被処理水に結合塩素型スルファミン酸を2mg/L添加し、重亜硫酸ナトリウムを添加しないでRO膜分離した例であり、遊離塩素は0.4mg/Lに低下し、スライム付着によるフラックスの低下はなく、膜劣化による脱塩率の低下は少なかった。
[Example 2];
Example 2 is an example in which 2 mg / L of combined chlorine-type sulfamic acid is added to the water to be treated, and RO membrane separation is performed without adding sodium bisulfite, and free chlorine is reduced to 0.4 mg / L. However, there was no decrease in flux due to adhesion of slime, and there was little decrease in desalination rate due to membrane deterioration.
〔実施例3〕;
 実施例3は実施例1において、被処理水に結合塩素型スルファミン酸を5mg/L添加し、重亜硫酸ナトリウムを添加しないでRO膜分離した例であり、遊離塩素は0.3mg/Lに低下し、スライム付着によるフラックスの低下はなく、膜劣化による脱塩率の低下はなかった。
[Example 3];
Example 3 is an example in which 5 mg / L of combined chlorine-type sulfamic acid was added to the water to be treated, and RO membrane separation was performed without adding sodium bisulfite, and free chlorine decreased to 0.3 mg / L. However, there was no decrease in flux due to adhesion of slime, and there was no decrease in desalination rate due to film deterioration.
〔実施例4〕;
 実施例4は実施例1において、被処理水に結合塩素型スルファミン酸を10mg/L添加し、重亜硫酸ナトリウムを添加しないでRO膜分離した例であり、実施例3と同等の結果が得られた。
[Example 4];
Example 4 is an example in which 10 mg / L of combined chlorine-type sulfamic acid was added to the water to be treated in Example 1, and RO membrane separation was performed without adding sodium bisulfite, and the same result as Example 3 was obtained. It was.
〔実施例5〕;
 実施例5は実施例3において、被処理水に結合塩素型スルファミン酸を5mg/L添加し、重亜硫酸ナトリウムを1.0mg/L添加してRO膜分離した例であり、遊離塩素は検出されず、実施例3、4と同等の結果が得られた。このためSBSを制御して遊離塩素を低下させた場合も、膜劣化は防止され、スライム付着も防止できることが分かる。
[Example 5];
Example 5 is an example in which 5 mg / L of combined chlorine-type sulfamic acid was added to water to be treated and 1.0 mg / L of sodium bisulfite was added to the water to be treated, and RO membrane separation was performed. Free chlorine was detected. As a result, the same results as in Examples 3 and 4 were obtained. For this reason, it can be seen that even when SBS is controlled to reduce free chlorine, film deterioration is prevented and slime adhesion can also be prevented.
〔実施例6〕;
 実施例6は実施例3において、被処理水に結合塩素型スルファミン酸を5mg/L添加し、重亜硫酸ナトリウムを添加せず、活性炭処理してRO膜分離した例であり、遊離塩素は検出されず、実施例3、4と同等の結果が得られた。このため活性炭で遊離塩素を低下させた場合も、膜劣化は防止され、スライム付着も防止できることが分かる。
[Example 6];
Example 6 is an example in which 5 mg / L of combined chlorine-type sulfamic acid is added to the water to be treated and no sodium bisulfite is added, activated carbon treatment is performed, and RO membrane separation is performed. Free chlorine is detected. As a result, the same results as in Examples 3 and 4 were obtained. Therefore, it can be seen that even when free chlorine is reduced by activated carbon, film deterioration is prevented and slime adhesion can be prevented.
〔実施例7〕;
 実施例7は被処理水にスルファミン酸を100mg/L添加し、SBSを添加しないでRO膜分離した例であり、実施例と同等の結果が得られた。このためスルファミン酸を添加すると、遊離塩素が低下して0.3mg/Lとなり、スライム付着によるフラックスの低下はなく、膜劣化による脱塩率の低下もないことがわかる。
[Example 7];
In Example 7, 100 mg / L of sulfamic acid was added to the water to be treated, and RO membranes were separated without adding SBS. The same results as in Example were obtained. Therefore, it can be seen that when sulfamic acid is added, free chlorine is reduced to 0.3 mg / L, there is no decrease in flux due to slime adhesion, and there is no decrease in desalination rate due to membrane degradation.
 上記実施例および比較例の結果より、遊離塩素を含む被処理水にスルファミン酸系化合物、特に結合塩素型スルファミン酸を添加して膜分離することにより、遊離塩素を低下させ、全塩素を増加させることができ、これによりスライム付着によるフラックスの低下、および膜劣化による脱塩率の低下を防止して、膜分離できることが分かる。この場合、遊離塩素が0.4mg/L以下、特に0.3mg/L以下に低下するように、スルファミン酸系化合物およびSBSの添加量を制御することにより、スライム付着によるフラックスの低下、および膜劣化による脱塩率の低下を防止する効果が高いことが分かる。 From the results of the above Examples and Comparative Examples, by adding a sulfamic acid compound, particularly bound chlorine type sulfamic acid, to the water to be treated containing free chlorine, the free chlorine is decreased and the total chlorine is increased by membrane separation. Thus, it can be seen that membrane separation can be achieved by preventing a decrease in flux due to slime adhesion and a decrease in desalination rate due to membrane degradation. In this case, by controlling the addition amount of the sulfamic acid compound and SBS so that the free chlorine is reduced to 0.4 mg / L or less, particularly 0.3 mg / L or less, the flux decreases due to slime adhesion, and the film It turns out that the effect which prevents the fall of the desalination rate by deterioration is high.
 本発明は、遊離塩素を含有する被処理水を、逆浸透膜などの透過膜を備えた膜分離装置に供給して膜分離する方法、特に膜分離装置の給水として、遊離塩素剤を添加して微生物の殺菌を行い、残留塩素を除去しない状態の遊離塩素を含有する被処理水にスルファミン酸化合物を含む結合塩素系酸化剤を添加し、スライムによる膜の閉塞を防止して、膜分離するようにした膜分離方法に利用可能である。 The present invention is a method for supplying water to be treated containing free chlorine to a membrane separation apparatus equipped with a permeable membrane such as a reverse osmosis membrane, and in particular, adding a free chlorine agent as water supply for the membrane separation apparatus. Sterilize microorganisms, add bound chlorine-based oxidant containing sulfamic acid compound to water to be treated containing free chlorine without removing residual chlorine, and prevent membrane clogging by slime to separate membrane It can be used for the membrane separation method.
 1: ろ過装置、2: 活性炭処理装置、3: 保安フィルタ、4: RO膜分離装置、4a: RO膜モジュール、4b: 濃縮液室、4c: 透過液室、5: スルファミン酸系化合物槽、6: 還元剤槽、7: 制御装置、
 C: 検出器、L1: 被処理水路、L2~L8: ライン、P1,P2: ポンプ。
1: Filtration device, 2: Activated carbon treatment device, 3: Security filter, 4: RO membrane separation device, 4a: RO membrane module, 4b: Concentrated liquid chamber, 4c: Permeate chamber, 5: Sulfamic acid compound tank, 6 : Reducing agent tank, 7: control device,
C: Detector, L1: Channel to be treated, L2 to L8: Line, P1, P2: Pump.

Claims (7)

  1.  透過膜を備えた膜分離装置に被処理水を供給して膜分離する方法であって、
     遊離塩素を含有する被処理水にスルファミン酸、結合塩素型スルファミン酸およびそれらの塩から選ばれる1種以上のスルファミン酸系化合物を添加して、被処理水に含まれる遊離塩素を結合塩素に転換した後、
     被処理水を膜分離装置に供給して膜分離することを特徴とする膜分離方法。
    A method for supplying membranes to a membrane separator equipped with a permeable membrane for membrane separation,
    One or more sulfamic acid compounds selected from sulfamic acid, bound chlorine-type sulfamic acid and their salts are added to the treated water containing free chlorine to convert the free chlorine contained in the treated water into bound chlorine After
    A membrane separation method characterized in that the water to be treated is supplied to a membrane separation device for membrane separation.
  2.  被処理水に遊離塩素剤を添加して殺菌した後、
     遊離塩素を含有する被処理水にスルファミン酸、結合塩素型スルファミン酸およびそれらの塩から選ばれる1種以上のスルファミン酸系化合物を添加して、被処理水に含まれる遊離塩素を結合塩素に転換した後、
     被処理水を膜分離装置に供給して膜分離する請求項1記載の方法。
    After adding free chlorine agent to treated water and sterilizing,
    One or more sulfamic acid compounds selected from sulfamic acid, bound chlorine-type sulfamic acid and their salts are added to the treated water containing free chlorine to convert the free chlorine contained in the treated water into bound chlorine After
    The method according to claim 1, wherein the water to be treated is supplied to a membrane separator for membrane separation.
  3.  被処理水にさらに重亜硫酸ナトリウムを添加し、遊離塩素濃度を低下させた後、膜分離装置に供給して膜分離する請求項1または2記載の方法。 The method according to claim 1 or 2, wherein sodium bisulfite is further added to the water to be treated to lower the free chlorine concentration, and then the membrane is supplied to a membrane separation device for membrane separation.
  4.  スルファミン酸系化合物添加後の被処理水の遊離塩素濃度を連続的にまたは定期的に測定し、
     被処理水の遊離塩素濃度が0.4mg/L以下になるように、スルファミン酸系化合物の添加量を調整する請求項1ないし3のいずれかに記載の方法。
    Measure the free chlorine concentration of treated water after sulfamic acid compound addition continuously or periodically,
    The method according to any one of claims 1 to 3, wherein the amount of the sulfamic acid compound added is adjusted so that the concentration of free chlorine in the water to be treated is 0.4 mg / L or less.
  5.  被処理水の全塩素濃度が1~100mg/Lになるように、スルファミン酸系化合物の添加量を調整する請求項1ないし4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the amount of the sulfamic acid compound added is adjusted so that the total chlorine concentration of the water to be treated is 1 to 100 mg / L.
  6.  被処理水の遊離塩素濃度を連続的にまたは定期的に測定し、
     遊離塩素濃度が0.4mg/L以下になるように、重亜硫酸ナトリウムを添加する請求項1ないし5のいずれかに記載の方法。
    Measure the free chlorine concentration of treated water continuously or periodically,
    The method according to any one of claims 1 to 5, wherein sodium bisulfite is added so that the free chlorine concentration is 0.4 mg / L or less.
  7.  透過膜が逆浸透膜である請求項1ないし6のいずれかに記載の方法。 The method according to any one of claims 1 to 6, wherein the permeable membrane is a reverse osmosis membrane.
PCT/JP2012/058314 2011-03-30 2012-03-29 Membrane-separation method WO2012133620A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012516245A JP5998929B2 (en) 2011-03-30 2012-03-29 Membrane separation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011073989 2011-03-30
JP2011-073989 2011-03-30

Publications (1)

Publication Number Publication Date
WO2012133620A1 true WO2012133620A1 (en) 2012-10-04

Family

ID=46931322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058314 WO2012133620A1 (en) 2011-03-30 2012-03-29 Membrane-separation method

Country Status (2)

Country Link
JP (1) JP5998929B2 (en)
WO (1) WO2012133620A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014147872A (en) * 2013-01-31 2014-08-21 Kurita Water Ind Ltd Pure water manufacturing apparatus and method for operating the same
JP2014188473A (en) * 2013-03-27 2014-10-06 Kobelco Eco-Solutions Co Ltd Water treatment method
WO2015174136A1 (en) * 2014-05-12 2015-11-19 栗田工業株式会社 Method for processing free chlorine-containing waste water
WO2018193907A1 (en) * 2017-04-19 2018-10-25 栗田工業株式会社 Water treatment method
WO2019031430A1 (en) * 2017-08-10 2019-02-14 栗田工業株式会社 Reverse osmosis treatment method and water treatment device
JP2020081939A (en) * 2018-11-20 2020-06-04 三浦工業株式会社 Water treatment system
WO2022191333A1 (en) * 2021-03-12 2022-09-15 栗田工業株式会社 Method for suppressing water system biofouling and water treatment device
JP7396124B2 (en) 2020-03-03 2023-12-12 三浦工業株式会社 water treatment system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432713B2 (en) * 1986-10-17 1992-06-01 Toray Industries
JP2010063998A (en) * 2008-09-10 2010-03-25 Japan Organo Co Ltd Slime preventive agent composition for separation membrane and membrane separation method
JP2010201313A (en) * 2009-03-02 2010-09-16 Kurita Water Ind Ltd Reverse osmosis membrane separation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432713B2 (en) * 1986-10-17 1992-06-01 Toray Industries
JP2010063998A (en) * 2008-09-10 2010-03-25 Japan Organo Co Ltd Slime preventive agent composition for separation membrane and membrane separation method
JP2010201313A (en) * 2009-03-02 2010-09-16 Kurita Water Ind Ltd Reverse osmosis membrane separation method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014147872A (en) * 2013-01-31 2014-08-21 Kurita Water Ind Ltd Pure water manufacturing apparatus and method for operating the same
JP2014188473A (en) * 2013-03-27 2014-10-06 Kobelco Eco-Solutions Co Ltd Water treatment method
WO2015174136A1 (en) * 2014-05-12 2015-11-19 栗田工業株式会社 Method for processing free chlorine-containing waste water
JP2015213880A (en) * 2014-05-12 2015-12-03 栗田工業株式会社 Method for treating free chlorine-containing waste water
WO2018193907A1 (en) * 2017-04-19 2018-10-25 栗田工業株式会社 Water treatment method
JP2018176116A (en) * 2017-04-19 2018-11-15 栗田工業株式会社 Water treatment method
WO2019031430A1 (en) * 2017-08-10 2019-02-14 栗田工業株式会社 Reverse osmosis treatment method and water treatment device
JPWO2019031430A1 (en) * 2017-08-10 2019-11-07 栗田工業株式会社 Reverse osmosis membrane treatment method and water treatment apparatus
JP2020081939A (en) * 2018-11-20 2020-06-04 三浦工業株式会社 Water treatment system
JP7180310B2 (en) 2018-11-20 2022-11-30 三浦工業株式会社 water treatment system
JP7396124B2 (en) 2020-03-03 2023-12-12 三浦工業株式会社 water treatment system
WO2022191333A1 (en) * 2021-03-12 2022-09-15 栗田工業株式会社 Method for suppressing water system biofouling and water treatment device
JP2022140158A (en) * 2021-03-12 2022-09-26 栗田工業株式会社 Method for suppressing water system biofouling, and water treatment device
JP7211444B2 (en) 2021-03-12 2023-01-24 栗田工業株式会社 Aqueous biofouling suppression method and water treatment device

Also Published As

Publication number Publication date
JP5998929B2 (en) 2016-09-28
JPWO2012133620A1 (en) 2014-07-28

Similar Documents

Publication Publication Date Title
JP5998929B2 (en) Membrane separation method
JP6616855B2 (en) Filtration treatment system and filtration treatment method
JP5099045B2 (en) Reverse osmosis membrane separation method
WO2009128328A1 (en) Method of operating reverse osmosis membrane module
TWI532525B (en) Combined chlorine agent, preparation method thereof, and use thereof
KR101671168B1 (en) Slime control agent for activated carbon, method of passing water through activated-carbon device, and method and apparatus for treating organic-containing water
JP5672383B2 (en) Membrane separation method
WO2000004986A1 (en) Method for inhibiting growth of bacteria or sterilizing around separating membrane
WO2011108478A1 (en) Water treatment method and process for producing ultrapure water
JP2010201312A (en) Membrane separation method
JP5807634B2 (en) Reverse osmosis membrane treatment method
JP2008238051A (en) Organic matter treatment method and organic matter treatment apparatus
JP7367181B2 (en) Water recovery system and water recovery method
JP2015186774A (en) Fresh water generation method and fresh water generator
JP7333865B2 (en) Water treatment method and water treatment equipment
JP2007090288A (en) Reverse osmosis membrane separation method and reverse osmosis membrane separation apparatus
JPH0957067A (en) Separation with reverse osmotic membrane and apparatus therefor
JPH07328392A (en) Treatment of reverse osmosis membrane separation apparatus
WO2019181998A1 (en) Water system orp monitor and/or control method, and water treatment method and device
JP2015186773A (en) Fresh water generation method and fresh water generator
JP7052461B2 (en) Operation control method of electric regeneration type deionization device and water treatment device
WO2023120351A1 (en) Method for suppressing microorganism contamination in water system
JP5604914B2 (en) Water treatment method and ultrapure water production method
JPH09893A (en) Method for treating raw water by means of membrane module
JP2020104038A (en) Water treatment system operation method and water treatment system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012516245

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765415

Country of ref document: EP

Kind code of ref document: A1