JP2008238051A - Organic matter treatment method and organic matter treatment apparatus - Google Patents

Organic matter treatment method and organic matter treatment apparatus Download PDF

Info

Publication number
JP2008238051A
JP2008238051A JP2007081924A JP2007081924A JP2008238051A JP 2008238051 A JP2008238051 A JP 2008238051A JP 2007081924 A JP2007081924 A JP 2007081924A JP 2007081924 A JP2007081924 A JP 2007081924A JP 2008238051 A JP2008238051 A JP 2008238051A
Authority
JP
Japan
Prior art keywords
membrane
water
organic matter
treated water
disinfectant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007081924A
Other languages
Japanese (ja)
Other versions
JP5050605B2 (en
Inventor
Nozomi Ikuno
望 育野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2007081924A priority Critical patent/JP5050605B2/en
Publication of JP2008238051A publication Critical patent/JP2008238051A/en
Application granted granted Critical
Publication of JP5050605B2 publication Critical patent/JP5050605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain treated water of high quality by efficiently reducing the concentration of TOC in water simultaneously with performing long-term stable treatment by suppressing bio-fouling caused in a recovery system and preventing the lowering of the flux of an RO membrane by reducing organic matter using an RO membrane separator after the hardness component of organic matter-containing wastewater containing a large amount of the hardness component discharged from an electronic device manufacturing factory and other various fields is reduced without using an ion exchange resin column. <P>SOLUTION: After a sterilant is added to organic matter-containing water, the organic matter-containing water is passed through a first RO membrane separator 2 having a hardness component removing function and oxidation resistance and, after alkali is added to first RO treated water to adjust the pH thereof to 9.5 or above, tile left sterilant is removed by an activated carbon column 4 and the first RO treated water is subsequently passed through a second RO membrane separator 5 to be treated. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、有機物含有水を逆浸透膜(RO膜)分離装置に通水することにより該水中の有機物を除去する有機物処理方法及び有機物処理装置に関する。詳しくは、電子デバイス製造工場等から排出される高濃度TOCないし低濃度TOC含有排水を、RO膜分離装置を用いて処理して処理水を回収する際、回収システムにおけるバイオファウリング並びにRO膜における有機物閉塞による透過流束(フラックス)低下を防止して、長期にわたり安定な処理を行うと同時に、水中TOC濃度を効率的に低減して高水質の処理水を得ることができる有機物含有排水の処理方法及び処理装置に関する。   The present invention relates to an organic matter treatment method and an organic matter treatment apparatus that remove organic matter in water by passing organic substance-containing water through a reverse osmosis membrane (RO membrane) separator. Specifically, when wastewater containing high-concentration TOC or low-concentration TOC discharged from an electronic device manufacturing factory or the like is treated with an RO membrane separation device to collect treated water, biofouling in the collection system and RO membrane Treatment of wastewater containing organic matter that prevents permeation flux (flux) reduction due to blockage of organic matter and performs stable treatment over a long period of time, and at the same time efficiently reduces the TOC concentration in water to obtain high-quality treated water The present invention relates to a method and a processing apparatus.

近年、環境基準・水質基準は厳しくなる傾向にあり、放流水についても高度に浄化することが望まれている。一方で、水不足解消の目的から、各種の排水を回収して再利用するためにも、高度な水処理が望まれている。   In recent years, environmental standards and water quality standards tend to be stricter, and it is desired that effluent water be highly purified. On the other hand, for the purpose of eliminating water shortage, advanced water treatment is desired in order to collect and reuse various wastewater.

このような状況において、RO膜分離処理は、水中の不純物(イオン類,有機物,微粒子など)を効果的に除去することが可能であることから、近年、多くの分野で使用されるようになってきた。例えば、半導体製造プロセスから排出されるアセトン,イソプロピルアルコールなどを含む有機物含有排水を回収して再利用する場合、これをまず生物処理してTOC成分を十分に除去した後にRO膜処理して浄化する方法が広く採用されている(例えば、特開2002−336886号公報)。   Under such circumstances, RO membrane separation treatment has been used in many fields in recent years because it can effectively remove impurities (ions, organic substances, fine particles, etc.) in water. I came. For example, when organic wastewater containing acetone, isopropyl alcohol, etc. discharged from the semiconductor manufacturing process is collected and reused, it is first biologically treated to sufficiently remove the TOC component and then purified by RO membrane treatment. A method is widely adopted (for example, JP-A-2002-336886).

しかしながら、近年、生物処理排水をRO膜分離装置に通水した場合、微生物の有機物分解により生成される生物代謝物により、RO膜分離装置の膜面が閉塞し、フラックスが低下するという問題が顕在化し始めるようになってきた。   However, in recent years, when biological treatment wastewater is passed through an RO membrane separation device, there is a problem that the membrane surface of the RO membrane separation device is blocked by the biological metabolite produced by the decomposition of organic matter of microorganisms and the flux is reduced. It has begun to become.

一方、生物処理を行わずに、有機物含有排水を直接、RO膜分離装置に通水すると、RO膜分離装置に流入するTOC濃度が高いため、RO膜分離装置内では微生物が繁殖しやすい環境となる。
そこで、RO膜分離装置内でのバイオファウリングを抑制する目的から、通常はスライムコントロール剤を多量に添加することが行われているが、スライムコントロール剤は高価であるため、より安価なバイオファウリング抑制方法が求められている。
また、電子デバイス製造工場排水からは、RO膜分離装置の膜面に付着してフラックスを低下させる恐れのある非イオン性界面活性剤が混入する場合があるため、このような非イオン性界面活性剤含有排水にはRO膜処理を適用することはできなかった。
On the other hand, when organic wastewater is directly passed through the RO membrane separator without performing biological treatment, the TOC concentration flowing into the RO membrane separator is high. Become.
Therefore, in order to suppress biofouling in the RO membrane separation device, a large amount of slime control agent is usually added, but since the slime control agent is expensive, cheaper biofouling is performed. There is a need for a ring suppression method.
In addition, non-ionic surfactants that may adhere to the membrane surface of the RO membrane separation device and reduce the flux may be mixed in the wastewater from the electronic device manufacturing factory. RO membrane treatment could not be applied to agent-containing wastewater.

生物処理排水のような有機物含有水を、RO膜処理する際に発生する問題を改善するために、有機物含有水にスケール分散剤を、原水カルシウム濃度の5倍量以上添加し、pHを9.5以上に調整した後、RO膜処理することにより、RO膜のフラックスの低下を低減し、処理水の安定供給を可能とするシステムが提案されている(特開2006−181397号公報)。   In order to improve the problems that occur when RO membrane treatment is performed on organic matter-containing water such as biological treatment wastewater, a scale dispersant is added to the organic matter-containing water at least 5 times the raw water calcium concentration, and the pH is 9. A system that reduces the decrease in the flux of the RO membrane by adjusting the RO membrane to 5 or more and enables stable supply of treated water has been proposed (Japanese Patent Laid-Open No. 2006-181397).

このシステムにおいては、原水中に硬度成分が多量に(例えば全硬度で10mg/L以上)存在する場合は、RO膜分離装置の前段に硬度除去手段としてイオン交換樹脂塔(例えば、カチオン交換樹脂塔、軟化塔)を設置する必要があるが、この場合、上記システムの原水中には有機物が存在するため、イオン交換樹脂塔内でスライムが繁殖しやすい状況となってしまう。しかも、塔内から剥離するバイオフィルムにより、後段に設置されるRO保安フィルター又はRO膜が閉塞するという問題が起こる。そのため、イオン交換樹脂塔の前段で殺菌処理が必要となるが、イオン交換樹脂塔の前段で殺菌剤を添加すると、イオン交換樹脂が殺菌剤により樹脂劣化を起こす可能性があることから殺菌剤を添加することができない。   In this system, when a large amount of hardness components are present in the raw water (for example, 10 mg / L or more in total hardness), an ion exchange resin tower (for example, a cation exchange resin tower) is used as a hardness removing means in the previous stage of the RO membrane separator. However, in this case, since organic substances are present in the raw water of the system, slime tends to propagate in the ion exchange resin tower. In addition, there is a problem that the RO security filter or the RO membrane installed in the subsequent stage is blocked by the biofilm peeled from the tower. Therefore, sterilization treatment is required in the front stage of the ion exchange resin tower, but if a bactericidal agent is added in the front stage of the ion exchange resin tower, the ion exchange resin may cause resin deterioration due to the bactericidal agent. Cannot be added.

このようなことから、上記システムでは、RO膜分離装置の前段で原水中の硬度成分を除去することが困難であった。
特開2002−336886号公報 特開2006−181397号公報
For this reason, in the above system, it is difficult to remove the hardness component in the raw water at the front stage of the RO membrane separator.
JP 2002-336886 A JP 2006-181397 A

本発明は、かかる従来の問題点を解決し、例えば電子デバイス製造工場、その他各種の分野から排出される、硬度成分を多量に(例えば全硬度で10〜20mg/L)含有した有機物含有排水を、イオン交換樹脂塔を用いることなく硬度成分を低減した後に、RO膜分離装置を用いて有機物を低減することにより、回収システム系内で起こるスライム繁殖(バイオファウリング)の抑制、並びにRO膜のフラックス低下を防止して、長期にわたり安定な処理を行うと同時に、水中TOC濃度を効率的に低減して高水質の処理水を得る方法及び装置を提供することを目的とする。   The present invention solves such a conventional problem, for example, an organic substance-containing wastewater containing a large amount of hardness components (for example, 10 to 20 mg / L in total hardness) discharged from an electronic device manufacturing factory and other various fields. After reducing the hardness component without using an ion exchange resin tower, organic substances are reduced by using an RO membrane separator, thereby suppressing slime reproduction (biofouling) that occurs in the recovery system system, and the RO membrane An object of the present invention is to provide a method and an apparatus for preventing a decrease in flux and performing a stable treatment over a long period of time, and at the same time, efficiently reducing the TOC concentration in water to obtain a high-quality treated water.

本発明は、有機物含有水中の硬度成分の除去方法について鋭意検討した結果、有機物含有水に殺菌剤を添加した後、硬度成分除去機能を有する耐酸化性のRO膜で処理することにより、硬度成分を効率的に除去することができ、この処理水をpH9.5以上のアルカリ性とし、また残存する殺菌剤を除去した後にRO膜で処理することにより、この後段のRO膜で有機物を効率的に除去することができることを見出し、本発明を完成させた。   As a result of earnestly examining the method for removing the hardness component in the organic substance-containing water, the present invention adds a bactericide to the organic substance-containing water and then treats it with an oxidation-resistant RO membrane having a hardness component removing function. This treatment water is made alkaline with a pH of 9.5 or more, and the remaining bactericides are removed and then treated with the RO membrane. It was found that it can be removed, and the present invention was completed.

即ち、本発明の有機物処理方法は、有機物含有水をRO膜分離装置に通水することにより該水中の有機物を除去する有機物処理方法において、有機物含有水に殺菌剤を添加する殺菌剤添加工程と、該殺菌剤添加工程を経た処理水を、硬度成分除去機能及び耐酸化性を有する第一のRO膜分離装置に通水する第一のRO膜処理工程と、該第一のRO膜処理工程を経た処理水にアルカリを添加してpHを9.5以上にするアルカリ添加工程と、該アルカリ添加工程を経た処理水中に残存する殺菌剤を除去する殺菌剤除去工程と、該殺菌剤除去工程を経た処理水をRO膜処理する第二のRO膜処理工程とを有することを特徴とする。   That is, the organic matter treatment method of the present invention includes a disinfectant addition step of adding a disinfectant to the organic matter-containing water in the organic matter treatment method of removing the organic matter in the water by passing the organic matter-containing water through the RO membrane separator. The first RO membrane treatment step for passing the treated water that has undergone the disinfectant addition step through the first RO membrane separation device having a hardness component removal function and oxidation resistance, and the first RO membrane treatment step An alkali addition step of adding alkali to the treated water that has undergone the treatment to bring the pH to 9.5 or higher, a bactericide removal step that removes the bactericide remaining in the treated water that has undergone the alkali addition step, and the bactericide removal step And a second RO membrane treatment step of treating the treated water with the RO membrane.

また、本発明の有機物処理装置は、有機物含有水をRO膜分離装置に通水することにより該水中の有機物を除去する有機物処理装置において、有機物含有水に殺菌剤を添加する殺菌剤添加手段と、該殺菌剤添加手段の処理水が通水される、硬度成分除去機能及び耐酸化性を有する第一のRO膜分離装置と、該第一のRO膜分離装置の処理水にアルカリを添加してpHを9.5以上にするアルカリ添加手段と、該アルカリ添加手段の処理水中に残存する殺菌剤を除去する殺菌剤除去手段と、該殺菌剤除去手段の処理水が通水される第二のRO膜分離装置とを有することを特徴とする。   The organic matter treatment apparatus of the present invention is an organic matter treatment apparatus that removes organic matter in the water by passing the organic matter-containing water through the RO membrane separation device, and a disinfectant addition means for adding a disinfectant to the organic matter-containing water. The first RO membrane separation device having a hardness component removal function and oxidation resistance through which the treated water of the disinfectant adding means is passed, and alkali is added to the treated water of the first RO membrane separation device The alkali addition means for setting the pH to 9.5 or higher, the bactericidal agent removal means for removing the bactericidal agent remaining in the treated water of the alkali addition means, and the treated water of the bactericidal agent removal means are passed through And an RO membrane separation apparatus.

本発明では、有機物含有水(原水)に殺菌剤を添加して、硬度成分除去機能を有する酸化性の第一のRO膜で、まず、原水中の硬度成分を除去する。一般的に、耐酸化性を示すRO膜、例えば、酢酸セルロース膜はカルシウム、マグネシウム等のスケール要因物質に対する除去性は高いが、有機物等の除去率は耐酸化性を示さないRO膜、例えば、ポリアミド系RO膜に比べて極端に低い。従って、本発明において、第一のRO膜により、原水中の硬度成分は排除されるものの、第一のRO膜の処理水(透過水、以下、「第1RO処理水」と称す場合がある。)中には、有機物が多量に存在することとなり、後段装置におけるスライム汚染を招く可能性がある。そこで、本発明では、第1RO処理水に水酸化ナトリウム等のアルカリ剤を添加してpH9.5以上に調整する。ここでpHを9.5以上に調整する理由は以下の通りである。
すなわち、微生物はアルカリ性域では生息することができない。そのため、pHを9.5以上に調整することによりN、P、微量金属、有機物等の栄養源は水中に存在するが、微生物は生息できない環境を作り出すことが可能となる。このため、pH9.5以上の水が通水される第二のRO膜等の後段装置におけるバイオファウリングは防止される。
また、RO膜のフラックスを低下させる恐れのある非イオン性界面活性剤はアルカリ性領域では膜面から脱着することが知られており、pHを9.5以上にすることによりこれらの成分の膜面への付着を抑制することが可能となる。
In the present invention, a bactericide is added to organic substance-containing water (raw water), and first, the hardness component in the raw water is removed with an oxidizing first RO membrane having a hardness component removing function. Generally, RO membranes that exhibit oxidation resistance, such as cellulose acetate membranes, have high removability to scale factor substances such as calcium and magnesium, but RO membranes that do not exhibit oxidation resistance, such as organic matter removal rate. Extremely low compared to polyamide RO membrane. Therefore, in the present invention, although the hardness component in the raw water is eliminated by the first RO membrane, the treated water of the first RO membrane (permeated water, hereinafter referred to as “first RO treated water”). ) Contains a large amount of organic matter, which may cause slime contamination in the subsequent apparatus. Therefore, in the present invention, an alkaline agent such as sodium hydroxide is added to the first RO treated water to adjust the pH to 9.5 or higher. The reason why the pH is adjusted to 9.5 or higher is as follows.
That is, microorganisms cannot live in the alkaline region. Therefore, by adjusting the pH to 9.5 or more, it is possible to create an environment in which nutrient sources such as N, P, trace metals, organic matter, etc. exist in water but microorganisms cannot live. For this reason, biofouling is prevented in a subsequent apparatus such as the second RO membrane through which water having a pH of 9.5 or higher is passed.
In addition, it is known that nonionic surfactants that may reduce the flux of the RO membrane are desorbed from the membrane surface in the alkaline region. By increasing the pH to 9.5 or more, the membrane surface of these components It becomes possible to suppress adhesion to the surface.

なお、第1RO処理水中に残留する殺菌剤は、第二のRO膜の前段で除去するため、このRO膜の殺菌剤による劣化は防止される。   In addition, since the disinfectant remaining in the first RO treated water is removed before the second RO membrane, deterioration of the RO membrane due to the disinfectant is prevented.

本発明によれば、電子デバイス製造工場、その他各種の分野から排出される、硬度成分を多量に、例えば全硬度で10〜20mg/L程度含有する有機物含有排水を、イオン交換樹脂塔を用いることなく硬度成分量を低減した後に、RO膜分離装置を用いて有機物を低減することにより、回収システム系内で起こるスライム繁殖(バイオファウリング)の抑制、並びにRO膜のフラックス低下を防止して、長期にわたり安定な処理を行うと同時に、水中TOC濃度を効率的に低減して高水質の処理水を得ることができる(請求項1,6)。   According to the present invention, an ion exchange resin tower is used for drainage containing organic matter containing a large amount of hardness components, for example, about 10 to 20 mg / L in total hardness, discharged from an electronic device manufacturing factory and other various fields. After reducing the amount of hardness component without reducing the organic matter using the RO membrane separator, it prevents the slime breeding (biofouling) that occurs in the recovery system system, and prevents the RO membrane flux from decreasing. At the same time as performing a stable treatment over a long period, high-quality treated water can be obtained by efficiently reducing the TOC concentration in water (claims 1 and 6).

本発明において、第一のRO膜処理におけるpH条件は、RO膜の加水分解による劣化を抑制すると共に、膜面におけるスケール生成を抑制する点、また、後述の図2に示す如く、カチオンの除去性の点からも、pH4〜6、特にpH4.5〜5程度が好ましい。従って、第一のRO膜処理に先立ち、原水にpH調整剤を添加してpHを4〜6に調整することが好ましい(請求項2,7)。   In the present invention, the pH condition in the first RO membrane treatment suppresses degradation due to hydrolysis of the RO membrane and suppresses scale formation on the membrane surface, and also removes cations as shown in FIG. 2 described later. From the viewpoint of properties, pH 4 to 6, particularly about pH 4.5 to 5 is preferable. Therefore, prior to the first RO membrane treatment, it is preferable to adjust the pH to 4 to 6 by adding a pH adjuster to the raw water (claims 2 and 7).

また、原水への殺菌剤の添加した後、原水中の懸濁物質を除去することが好ましい(請求項3,8)。   In addition, it is preferable to remove suspended substances in the raw water after adding the bactericide to the raw water (claims 3 and 8).

また、本発明で用いる第一のRO膜としては、耐殺菌剤性を有するものであれば特に限定はしないが、耐酸化性並びに耐汚染性に優れた酢酸セルロース膜を用いるのが、長期運転安定性の観点から好ましい(請求項4,9)。   In addition, the first RO membrane used in the present invention is not particularly limited as long as it has antibacterial resistance, but it is long-term operation to use a cellulose acetate membrane excellent in oxidation resistance and contamination resistance. It is preferable from the viewpoint of stability (claims 4 and 9).

また、本発明においては、第1RO処理水に、水中のカルシウムイオンの5重量倍以上のスケール防止剤を添加して、第二のRO膜に通水することが好ましい(請求項5,10)。
即ち、原水中の硬度成分濃度が高い場合(例えば、全硬度が20mg/L以上の場合)、第一のRO膜による硬度成分除去が不十分となり、第1RO処理水中に硬度成分(特にカルシウム)が多く残留する場合がある。第二のRO膜に通水される第1RO処理水中の硬度成分濃度が全硬度で5mg/L以上であると、後段でスケール障害を引き起こすことがあるので、このような場合にはスケール分散剤を添加することが好ましい。
ここで、第二のRO膜に通水される水中のカルシウムイオンの5重量倍以上のスケール防止剤を添加する理由は以下の通りである。
即ち、本発明では、第1RO処理水にアルカリを添加してpH9.5以上とするため、第二のRO膜に通水される水のpHは9.5以上となるが、そのような高pHのRO運転条件では極微量のカルシウムイオンの混入でも炭酸カルシウムなどのスケールが生成し、RO膜が直ちに閉塞してしまう。従って、このようなスケールによる膜面閉塞を抑制する目的からスケール防止剤を添加するのであるが、このスケール防止剤添加量がカルシウムイオン濃度の5倍量未満ではその添加効果は十分でないため、カルシウムイオン濃度の5倍量以上とする。
Moreover, in this invention, it is preferable to add the scale inhibitor 5 weight times or more of the calcium ion in water to 1st RO treated water, and to let water flow to a 2nd RO membrane. .
That is, when the hardness component concentration in the raw water is high (for example, when the total hardness is 20 mg / L or more), the hardness component removal by the first RO membrane becomes insufficient, and the hardness component (especially calcium) in the first RO treated water. May remain. If the hardness component concentration in the first RO treated water that is passed through the second RO membrane is 5 mg / L or more in total hardness, scale failure may occur in the latter stage. In such a case, the scale dispersant Is preferably added.
Here, the reason for adding a scale inhibitor at least 5 times the weight of calcium ions in water to be passed through the second RO membrane is as follows.
That is, in the present invention, since the alkali is added to the first RO treated water so as to have a pH of 9.5 or higher, the pH of the water passed through the second RO membrane is 9.5 or higher. Under the RO operating condition of pH, even if a very small amount of calcium ions is mixed, a scale such as calcium carbonate is generated and the RO membrane is immediately blocked. Accordingly, a scale inhibitor is added for the purpose of suppressing the clogging of the membrane surface due to such scale. However, if the added amount of the scale inhibitor is less than 5 times the calcium ion concentration, the addition effect is not sufficient. More than 5 times the ion concentration.

以下に図面を参照して本発明の有機物処理方法及び有機物処理装置の実施の形態を詳細に説明する。
図1は本発明の有機物処理方法及び有機物処理装置の実施の形態を示す系統図である。
Embodiments of an organic matter processing method and an organic matter processing apparatus according to the present invention will be described below in detail with reference to the drawings.
FIG. 1 is a system diagram showing an embodiment of an organic matter processing method and an organic matter processing apparatus of the present invention.

図1においては、原水タンク1内の有機物含有水(原水)に、殺菌剤及びpH調整剤を添加した後、第1RO膜分離装置2に通水する。   In FIG. 1, after adding a bactericidal agent and a pH adjuster to organic substance-containing water (raw water) in the raw water tank 1, the water is passed through the first RO membrane separator 2.

ここで、原水に添加する殺菌剤としては、次亜塩素酸(HClO)、次亜塩素酸ナトリウム(NaClO)、次亜塩素酸カリウム(KClO)、二酸化塩素(ClO)等の塩素系殺菌剤を好適に用いることができる。
これらの殺菌剤は1種を単独で用いても良く、2種以上を併用しても良い。
殺菌剤の添加量は、原水の水質にもよるが、通常、後段の第1RO膜分離装置2の処理水中に残留する遊離塩素濃度が0.3〜1mg−Cl/L程度となるように添加するのが好ましい。
Here, as bactericides to be added to raw water, chlorine-based bactericides such as hypochlorous acid (HClO), sodium hypochlorite (NaClO), potassium hypochlorite (KClO), chlorine dioxide (ClO 2 ), etc. Can be suitably used.
These bactericides may be used alone or in combination of two or more.
The amount of the bactericide added depends on the quality of the raw water, but usually the concentration of free chlorine remaining in the treated water of the first RO membrane separation device 2 in the subsequent stage is about 0.3 to 1 mg-Cl 2 / L. It is preferable to add.

また、後述の実験例で示されるように、第1RO膜分離装置2における硬度成分除去率は、第1RO膜分離装置2に通水される水(以下「第1RO給水」と称す場合がある。)のpHが4〜6、特に4.5〜5程度である場合に良好な結果が得られることから、原水には、必要に応じて、酸又はアルカリ等のpH調整剤を添加して、pH4〜6、好ましくはpH4.5〜5に調整する。   Further, as shown in an experimental example to be described later, the hardness component removal rate in the first RO membrane separation device 2 may be referred to as water that is passed through the first RO membrane separation device 2 (hereinafter referred to as “first RO water supply”). ) Is 4 to 6, particularly about 4.5 to 5, good results can be obtained. To the raw water, if necessary, a pH adjusting agent such as acid or alkali is added, Adjust to pH 4-6, preferably pH 4.5-5.

なお、殺菌剤及びpH調整剤は、どちらを先に添加しても良く、両者を同時に原水に添加しても良い。   Note that either the bactericide or the pH adjuster may be added first, or both may be added simultaneously to the raw water.

図1においては、後段の第2RO膜分離装置5の濃縮水が、原水タンク1に返送されて循環処理される。このように、比較的水質の良好な第2RO膜分離装置5の濃縮水を循環処理することにより、水回収率を高めることができる。   In FIG. 1, the concentrated water of the second RO membrane separation device 5 at the subsequent stage is returned to the raw water tank 1 and circulated. Thus, the water recovery rate can be increased by circulating the concentrated water of the second RO membrane separation device 5 having relatively good water quality.

原水タンク1でpH調整剤及び殺菌剤が添加された水は、第1RO膜分離装置2でRO膜処理され、濃縮水は系外へ排出され、透過水(第1RO処理水)は、処理水タンク3に送給される。   The water to which the pH adjusting agent and the bactericidal agent are added in the raw water tank 1 is subjected to RO membrane treatment in the first RO membrane separation device 2, the concentrated water is discharged out of the system, and the permeated water (first RO treated water) is treated water. It is fed to the tank 3.

本発明においては、この第1RO膜分離装置2のRO膜としては、硬度成分除去機能を有し、かつ耐酸化性の膜を用いる。このRO膜としては特に制限はないが、耐酸化性、耐汚染性に優れることから、酢酸セルロース膜を用いることが好ましい。   In the present invention, as the RO membrane of the first RO membrane separation device 2, an oxidation resistant membrane having a hardness component removing function is used. Although there is no restriction | limiting in particular as this RO membrane, It is preferable to use a cellulose acetate membrane from being excellent in oxidation resistance and contamination resistance.

この第1RO膜分離装置2では、硬度成分除去機能を有するRO膜により、原水中の硬度成分(カルシウム及びマグネシウム)が除去される。   In the first RO membrane separation device 2, the hardness components (calcium and magnesium) in the raw water are removed by the RO membrane having the hardness component removal function.

第1RO処理水は、水酸化ナトリウム、水酸化カリウム等のアルカリが添加されてpH9.5以上に調整された後、処理水タンク3を経て、活性炭塔4及び第2RO膜分離装置5に順次通水される。
ここで、活性炭塔4及び第2RO膜分離装置5に通水される水(以下「第2RO給水」と称す場合がある。)のpHが9.5よりも低いと、活性炭塔4、第2RO膜分離装置5等でのバイオファウリングを防止し得ない。従って、第1RO処理水はアルカリの添加によりpH9.5以上、好ましくはpH10.5〜11に調整される。
The first RO treated water is adjusted to pH 9.5 or higher by adding an alkali such as sodium hydroxide or potassium hydroxide, and then sequentially passed through the treated water tank 3 to the activated carbon tower 4 and the second RO membrane separator 5. Watered.
Here, when the pH of water (hereinafter sometimes referred to as “second RO feed water”) passed through the activated carbon tower 4 and the second RO membrane separation device 5 is lower than 9.5, the activated carbon tower 4 and the second RO Biofouling in the membrane separator 5 or the like cannot be prevented. Therefore, the first RO treated water is adjusted to pH 9.5 or more, preferably pH 10.5 to 11 by addition of alkali.

活性炭塔4では、第1RO処理水中に残留する殺菌剤が分解除去される。
なお、本発明において、殺菌剤除去手段としては殺菌剤を除去できるものであれば特に限定されず、亜硫酸水素ナトリウム(NaHSO)等の還元剤の添加、あるいは活性炭、活性炭フィルター等を用いることができる。
In the activated carbon tower 4, the disinfectant remaining in the first RO treated water is decomposed and removed.
In the present invention, the disinfectant removing means is not particularly limited as long as it can remove the disinfectant, and the addition of a reducing agent such as sodium hydrogen sulfite (NaHSO 3 ) or the use of activated carbon, activated carbon filter or the like. it can.

活性炭塔4で使用される活性炭種としては石炭系、椰子殻系など殺菌剤を除去できるものであれば何でも良く特に限定はしない。また、通水方法も上向流、下向流どちらでもよく、通水SVも特に限定するものでないが、好ましくは1〜40hr−1で通水する。 The activated carbon used in the activated carbon tower 4 is not particularly limited as long as it can remove the bactericide such as coal-based or coconut shell-based. Further, the water flow method may be either an upward flow or a downward flow, and the water flow SV is not particularly limited, but is preferably 1 to 40 hr −1 .

活性炭塔4で残留殺菌剤が除去された水は、pH9.5以上の条件で第2RO膜分離装置5に通水されることにより、TOCが除去される。
この第2RO膜分離装置5のRO膜としては、ポリエーテルアミド複合膜、ポリビニルアルコール複合膜、芳香族ポリアミド膜などの耐アルカリ性に優れるものであれば良く、特に限定されない。
The water from which the residual disinfectant has been removed by the activated carbon tower 4 is passed through the second RO membrane separation device 5 under the condition of pH 9.5 or higher, whereby the TOC is removed.
The RO membrane of the second RO membrane separation device 5 is not particularly limited as long as it has excellent alkali resistance, such as a polyetheramide composite membrane, a polyvinyl alcohol composite membrane, and an aromatic polyamide membrane.

第2RO膜分離装置5の濃縮水は原水タンク1に循環され、透過水(以下「第2RO処理水」と称す場合がある。)は、通常、酸を添加してpH4〜8に調整し、必要に応じて更に活性炭処理等を施した後、再利用又は放流される。ここで使用する酸としては、特に制限はなく、塩酸、硫酸などの鉱酸が挙げられる。   The concentrated water of the second RO membrane separation device 5 is circulated to the raw water tank 1, and the permeated water (hereinafter sometimes referred to as "second RO treated water") is usually adjusted to pH 4-8 by adding an acid, If necessary, the product is further treated with activated carbon and then reused or discharged. There is no restriction | limiting in particular as an acid used here, Mineral acids, such as hydrochloric acid and a sulfuric acid, are mentioned.

図1に示すように、原水に殺菌剤を添加すると共にpH4〜6にpH調整して第1RO膜分離装置2で処理し、次いで、pH9.5以上に調整した後、活性炭処理及びRO膜分離処理することにより、第2RO膜分離装置5におけるフラックスの低下を引き起こすことなく、また、活性炭塔4及びRO膜分離装置5のバイオファウリングを防止して、長期に亘り安定な処理を行って、TOCが高度に除去された高水質処理水を得ることができる。   As shown in FIG. 1, a bactericide is added to raw water and the pH is adjusted to 4 to 6 and treated with the first RO membrane separation device 2, and then adjusted to pH 9.5 or higher, and then activated carbon treatment and RO membrane separation are performed. By processing, without causing a decrease in the flux in the second RO membrane separation device 5, and preventing biofouling of the activated carbon tower 4 and the RO membrane separation device 5, performing a stable treatment over a long period of time, High quality treated water from which TOC has been removed can be obtained.

なお、図1は、本発明の実施の形態の一例を示すものであって、本発明はその要旨を超えない限り、何ら図示のものに限定されるものではない。
例えば、原水中の懸濁物質濃度が高い場合には、原水に殺菌剤を添加した後、凝集濾過処理等により、原水中の懸濁物質を除去することが好ましい。この場合、凝集濾過手段としては、圧力濾過、重力濾過、精密濾過、限外濾過、加圧浮上、沈殿など、原水中に含まれる懸濁物質を除去できるのであれば特に限定しない。
FIG. 1 shows an example of an embodiment of the present invention, and the present invention is not limited to the illustrated one as long as the gist thereof is not exceeded.
For example, when the concentration of suspended solids in the raw water is high, it is preferable to remove the suspended solids in the raw water by adding a bactericide to the raw water and then performing a coagulation filtration treatment or the like. In this case, the coagulation filtration means is not particularly limited as long as it can remove suspended substances contained in the raw water, such as pressure filtration, gravity filtration, microfiltration, ultrafiltration, pressurized flotation, and precipitation.

また、第1RO処理水に、スケール防止剤を添加した後第2RO膜分離装置5に通水しても良く、この場合、用いるスケール防止剤としては、アルカリ領域で解離して錯体を形成しやすいエチレンジアミン四酢酸(EDTA)やニトリロ三酢酸(NTA)などのキレート系スケール防止剤が好適に用いられるが、その他、(メタ)アクリル酸重合体及びその塩、マレイン酸重合体及びその塩などの低分子量ポリマー、エチレンジアミンテトラメチレンホスホン酸及びその塩、ヒドロキシエチリデンジホスホン酸及びその塩、ニトリロトリメチレンホスホン酸及びその塩、ホスホノブタントリカルボン酸及びその塩などのホスホン酸及びホスホン酸塩、ヘキサメタリン酸及びその塩、トリポリリン酸及びその塩などの無機重合リン酸及び無機重合リン酸塩などを使用することができる。これらは1種を単独で用いても良く、2種以上を併用しても良い。   Moreover, after adding a scale inhibitor to the first RO treated water, it may be passed through the second RO membrane separation device 5. In this case, the scale inhibitor used is likely to dissociate in the alkaline region and form a complex. Chelate scale inhibitors such as ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA) are preferably used, but other (meth) acrylic acid polymers and salts thereof, maleic acid polymers and salts thereof, etc. Molecular weight polymers, ethylenediaminetetramethylenephosphonic acid and its salts, hydroxyethylidene diphosphonic acid and its salts, nitrilotrimethylenephosphonic acid and its salts, phosphonobutanetricarboxylic acid and its salts, phosphonic acids and phosphonates, hexametaphosphoric acid and its Inorganic polymerized phosphoric acid and inorganic weight such as salt, tripolyphosphoric acid and its salt It can be used as phosphates. These may be used alone or in combination of two or more.

また、スケール防止剤の添加位置は第1RO膜分離装置2の後段であれば特に限定はしないが、殺菌剤除去手段として活性炭を用いる場合では、スケール防止剤が活性炭に吸着して、第2RO膜分離装置5におけるスケール分散効果が低下する恐れがあることから、殺菌剤除去手段の後段でスケール防止剤を添加することが好ましい。   Further, the addition position of the scale inhibitor is not particularly limited as long as it is the latter stage of the first RO membrane separation device 2, but when activated carbon is used as the disinfectant removing means, the scale inhibitor is adsorbed on the activated carbon, and the second RO membrane. Since the scale dispersion effect in the separation device 5 may be reduced, it is preferable to add a scale inhibitor after the disinfectant removing means.

第1RO処理水にスケール防止剤を添加する場合、スケール防止剤の添加量は、水中のカルシウムイオンに対して5重量倍以上、特に5〜50重量倍とすることが好ましい。スケール防止剤の添加量が少な過ぎると十分な添加効果が得られず、多過ぎる薬品コストに見合う効果は期待できない。   When a scale inhibitor is added to the first RO-treated water, the amount of the scale inhibitor added is preferably 5 times or more, particularly 5 to 50 times the weight of calcium ions in water. If the addition amount of the scale inhibitor is too small, a sufficient addition effect cannot be obtained, and an effect commensurate with an excessive chemical cost cannot be expected.

このような本発明の有機物処理方法及び有機物処理装置は、硬度成分を多量に含む水、例えば硬度成分濃度が全硬度で10〜20mg/Lで、また、有機物を含有するため系内でのバイオファウリングが起こり易い総合排水等の処理に好適である。   Such an organic matter treatment method and an organic matter treatment apparatus according to the present invention include water containing a large amount of hardness components, for example, the hardness component concentration is 10 to 20 mg / L in total hardness, and since it contains organic matter, It is suitable for the treatment of general waste water and the like where fouling is likely to occur.

以下に実験例、実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described in more detail with reference to experimental examples, examples and comparative examples.

<実験例1>
本発明において、第一のRO膜として好適に用いられる酢酸セルロース膜の好適pH条件を調べるために、後述の実施例1と同様にして処理して得られた凝集濾過処理水に、塩酸(HCl)又は水酸化ナトリウム(NaOH)を添加して、pH4〜8の範囲で異なるpHに調整して、実施例1と同様に、酢酸セルロース膜が装填されたRO膜分離装置に80L/hr、回収率75%で通水したときの、マグネシウム(Mg)及びナトリウム(Na)の除去率を調べ、pHとの関係を図2に示した。
図2より、酢酸セルロース膜によるRO膜処理では、給水pH4〜6、特にpH4.5〜5で運転することにより、優れた硬度成分除去率を達成することができることが分かる。なお、ここではマグネシウム除去率だけを例に挙げたが、第一のRO膜における硬度除去率はマグネシウムもカルシウムも同等である。
<Experimental example 1>
In the present invention, in order to investigate the preferred pH condition of the cellulose acetate membrane suitably used as the first RO membrane, hydrochloric acid (HCl) is added to the coagulation filtration treated water obtained in the same manner as in Example 1 described later. ) Or sodium hydroxide (NaOH) and adjusted to a different pH in the range of pH 4-8, and in the same manner as in Example 1, the RO membrane separator loaded with the cellulose acetate membrane was 80 L / hr, recovered. The removal rate of magnesium (Mg) and sodium (Na) when water was passed at a rate of 75% was examined, and the relationship with pH is shown in FIG.
From FIG. 2, it can be seen that in the RO membrane treatment with the cellulose acetate membrane, an excellent hardness component removal rate can be achieved by operating at a feed water pH of 4 to 6, particularly pH of 4.5 to 5. Here, only the magnesium removal rate is taken as an example, but the hardness removal rate in the first RO membrane is the same for both magnesium and calcium.

<実施例1>
TOC濃度10mg/L、カルシウム濃度5mg/Lの排水に、次亜塩素酸ナトリウム(NaClO)を遊離塩素として0.5mg−Cl/Lとなるよう添加した後、ポリ塩化アルミニウム(PAC)添加量20mg/L、pH6.5の条件で濾過器に通水して凝集濾過処理を行った。この凝集濾過処理水に塩酸(HCl)を添加してpH5に調整した後、酢酸セルロース膜が装填された第1RO膜分離装置に80L/hr、回収率75%の条件で通水した。この第1RO処理水からは遊離塩素0.5mg−Cl/L検出された。この第1RO処理水に水酸化ナトリウム(NaOH)を添加してpH10とした後、活性炭塔にSV20hr−1の条件で通水した。活性炭処理水は次いでポリアミド膜が装填された第2RO膜分離装置に60L/hr、回収率92%の条件(第2RO給水のpHは9.5)で通水した。なお、第1RO膜分離装置の前段には保安フィルターを設けた。
<Example 1>
After adding sodium hypochlorite (NaClO) as a free chlorine to 0.5 mg-Cl 2 / L to waste water with a TOC concentration of 10 mg / L and a calcium concentration of 5 mg / L, an addition amount of polyaluminum chloride (PAC) Aggregation filtration treatment was performed by passing water through a filter under the conditions of 20 mg / L and pH 6.5. After adjusting the pH to 5 by adding hydrochloric acid (HCl) to this coagulated filtration treated water, water was passed through the first RO membrane separator loaded with a cellulose acetate membrane at 80 L / hr and a recovery rate of 75%. Free chlorine 0.5 mg-Cl 2 / L was detected from the first RO-treated water. Sodium hydroxide (NaOH) was added to the first RO-treated water to adjust the pH to 10, and then water was passed through the activated carbon tower under the condition of SV20hr- 1 . The activated carbon-treated water was then passed through a second RO membrane separation apparatus loaded with a polyamide membrane under conditions of 60 L / hr and a recovery rate of 92% (the pH of the second RO feed water was 9.5). In addition, the safety filter was provided in the front | former stage of the 1st RO membrane separator.

<比較例1>
実施例1と同様に排水にNaClOを添加した後、同様に濾過器に通水して凝集濾過処理を行って得られた凝集濾過処理水を、活性炭塔にSV20hr−1の条件で通水して脱殺菌剤処理を行った後、軟化塔にSV16hr−1の条件で通水して脱カルシウム処理を施した。この軟化塔処理水にNaOHを添加してpHを9.5とした後、ポリアミド膜が充填されたRO膜分離装置に73L/hr、回収率75%の条件で通水した。なお、RO膜分離装置の前段には保安フィルターを設けた。
<Comparative Example 1>
In the same manner as in Example 1, NaClO was added to the waste water, and then the water was passed through a filter in the same manner, and the water subjected to the coagulation filtration was passed through the activated carbon tower under the condition of SV20hr- 1. After performing the desterilizing agent treatment, the decalcification treatment was performed by passing water through the softening tower under the condition of SV16hr- 1 . After NaOH was added to the softening tower treated water to adjust the pH to 9.5, water was passed through the RO membrane separator filled with the polyamide membrane under the conditions of 73 L / hr and a recovery rate of 75%. A safety filter was provided at the front stage of the RO membrane separator.

<比較例2,3>
実施例1において、第1RO処理水pHを6(比較例2)、又は8.5(比較例3)に調整したこと、即ち、第2RO給水のpHを6(比較例2)又は8.5(比較例3)としたこと以外は実施例1と同条件で処理を行った。
<Comparative Examples 2 and 3>
In Example 1, the first RO treated water pH was adjusted to 6 (Comparative Example 2) or 8.5 (Comparative Example 3), that is, the pH of the second RO feed water was 6 (Comparative Example 2) or 8.5. The treatment was performed under the same conditions as in Example 1 except that (Comparative Example 3) was used.

<生菌数>
実施例1及び比較例1〜3の処理における、各ポイントでの生菌数を調べ、結果を表1に示した。
<Viable count>
The number of viable bacteria at each point in the treatment of Example 1 and Comparative Examples 1 to 3 was examined, and the results are shown in Table 1.

Figure 2008238051
Figure 2008238051

表1より次のことが明らかである。
実施例1においては、全測定ポイントにおいて生菌数が観測されないのに対し、比較例1においては活性炭塔処理水で10個/ml、軟化塔処理水で10個/mlとスライムが繁殖している。また、比較例2,3においては第2RO膜処理工程以降で10個/ml程度の生菌が観測されており、脱殺菌剤処理手段としての活性炭塔がスライム繁殖の温床となっていることが明らかとなった。
From Table 1, the following is clear.
In Example 1, while the number of viable cells is not observed at all measurement points, 10 5 cells / ml with activated charcoal column treatment water in Comparative Example 1, 106 at the softening column treated water / ml and slime breeding is doing. Further, it has been observed viable cells 10 about 4 cells / ml at the 2RO membrane treatment steps later, the activated carbon column as a de fungicides processing means has become a breeding ground for slime breeding in Comparative Examples 2 and 3 Became clear.

<保安フィルターの差圧>
実施例1の処理において、第1RO膜分離装置の前段に設けた保安フィルターと、比較例1の処理において、RO膜分離装置の前段に設けた保安フィルターの差圧の経日変化を調べ、結果を図3に示した。
図3より明らかなように、実施例1においては保安フィルターの差圧上昇は観測されていない。
一方、比較例1では通水7日で差圧が約0.2MPaに到達しており、保安フィルター交換頻度は1回/週と頻繁に交換しなければならない状況であった。また、閉塞した保安フィルターからはスライムの付着が観測された。
<Differential pressure of security filter>
In the process of Example 1, the change over time of the differential pressure between the safety filter provided in the previous stage of the first RO membrane separation apparatus and the safety filter provided in the previous stage of the RO membrane separation apparatus in the process of Comparative Example 1 was examined. Is shown in FIG.
As is apparent from FIG. 3, in Example 1, no increase in the differential pressure of the safety filter was observed.
On the other hand, in Comparative Example 1, the differential pressure reached about 0.2 MPa in 7 days of water flow, and the safety filter replacement frequency had to be frequently changed once / week. Also, slime adhesion was observed from the blocked security filter.

<第2RO膜の差圧>
実施例1及び比較例2,3の処理における第2RO膜分離装置のRO膜の差圧の経日変化を調べ、結果を図4に示した。
図4より明らかなように、実施例1においては第2RO膜の差圧上昇は観測されていない。一方、比較例2,3においては通水1ヶ月で0.3MPa程度の差圧が生じた。
<Differential pressure of the second RO membrane>
Changes over time in the differential pressure of the RO membrane of the second RO membrane separation apparatus in the processing of Example 1 and Comparative Examples 2 and 3 were examined, and the results are shown in FIG.
As is clear from FIG. 4, in Example 1, an increase in the differential pressure of the second RO membrane is not observed. On the other hand, in Comparative Examples 2 and 3, a differential pressure of about 0.3 MPa occurred in one month of water flow.

<処理水質>
実施例1及び比較例1〜3で得られた処理水の水質(TOC)は、表2に示す通りであった。
<Processed water quality>
The water quality (TOC) of the treated water obtained in Example 1 and Comparative Examples 1 to 3 was as shown in Table 2.

Figure 2008238051
Figure 2008238051

表2より、処理水の水質については、実施例1と比較例1〜3で大きな差異はないことが分かる。   From Table 2, it turns out that there is no big difference in Example 1 and Comparative Examples 1-3 about the quality of the treated water.

<考察>
以上の結果から、本発明によれば、硬度成分を多量に含む有機物含有排水であっても、イオン交換樹脂塔を用いることなく硬度成分を低減した後に、RO膜分離装置を用いて有機物を低減することにより、回収システム系内で起こるスライム繁殖(バイオファウリング)の抑制、並びにRO膜のフラックス低下を防止して、長期にわたり安定な処理を行うと同時に、水中TOC濃度を効率的に低減して高水質の処理水を得ることができることが分かる。
<Discussion>
From the above results, according to the present invention, even in the organic matter-containing wastewater containing a large amount of hardness component, after reducing the hardness component without using the ion exchange resin tower, the organic matter is reduced using the RO membrane separator. By doing so, it prevents the slime breeding (biofouling) that occurs in the recovery system and prevents the RO membrane flux from decreasing, and at the same time performs stable treatment at the same time, and effectively reduces the TOC concentration in water. It can be seen that high quality treated water can be obtained.

本発明の有機物処理方法及び有機物処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the organic substance processing method and organic substance processing apparatus of this invention. 実験例1の第1RO給水のpHとMg,Na除去率との関係を示すグラフである。It is a graph which shows the relationship between the pH of 1st RO water supply of Experimental example 1, and Mg and Na removal rate. 実施例1と比較例1の保安フィルターの差圧の経日変化を示すグラフである。It is a graph which shows the time-dependent change of the differential pressure | voltage of the safety filter of Example 1 and Comparative Example 1. 実施例1と比較例2,3の第2RO膜の差圧の経日変化を示すグラフである。It is a graph which shows the daily change of the differential pressure | voltage of the 2nd RO membrane of Example 1 and Comparative Examples 2 and 3. FIG.

符号の説明Explanation of symbols

1 原水タンク
2 第1RO膜分離装置
3 処理水タンク
4 活性炭塔
5 第2RO膜分離装置
1 Raw Water Tank 2 First RO Membrane Separator 3 Treated Water Tank 4 Activated Carbon Tower 5 Second RO Membrane Separator

Claims (10)

有機物含有水をRO膜分離装置に通水することにより該水中の有機物を除去する有機物処理方法において、
有機物含有水に殺菌剤を添加する殺菌剤添加工程と、
該殺菌剤添加工程を経た処理水を、硬度成分除去機能及び耐酸化性を有する第一のRO膜分離装置に通水する第一のRO膜処理工程と、
該第一のRO膜処理工程を経た処理水にアルカリを添加してpHを9.5以上にするアルカリ添加工程と、
該アルカリ添加工程を経た処理水中に残存する殺菌剤を除去する殺菌剤除去工程と、
該殺菌剤除去工程を経た処理水をRO膜処理する第二のRO膜処理工程と
を有することを特徴とする有機物処理方法。
In the organic matter processing method of removing organic matter in the water by passing the organic matter-containing water through the RO membrane separator,
A bactericidal agent addition step of adding a bactericidal agent to water containing organic matter,
A first RO membrane treatment step of passing the treated water that has undergone the disinfectant addition step through a first RO membrane separation device having a hardness component removal function and oxidation resistance;
An alkali addition step of adding an alkali to the treated water that has undergone the first RO membrane treatment step to bring the pH to 9.5 or higher;
A disinfectant removing step for removing a disinfectant remaining in the treated water that has undergone the alkali addition step;
A second RO membrane treatment step of treating the treated water that has undergone the disinfectant removal step with an RO membrane treatment method.
請求項1において、第一のRO膜処理工程の前段に、有機物含有水にpH調整剤を添加してpHを4〜6に調整するpH調整工程を有することを特徴とする有機物処理方法。   2. The organic matter treatment method according to claim 1, further comprising a pH adjustment step of adjusting the pH to 4 to 6 by adding a pH adjuster to the organic matter-containing water before the first RO membrane treatment step. 請求項1又は2において、殺菌剤添加工程の後段に、有機物含有水中の懸濁物質を除去する懸濁物質除去工程を有することを特徴とする有機物処理方法。   3. The organic matter treatment method according to claim 1 or 2, further comprising a suspended matter removing step of removing suspended matter in the organic matter-containing water after the disinfectant adding step. 請求項1乃至3のいずれか1項において、第一のRO膜分離装置のRO膜が酢酸セルロース膜であることを特徴とする有機物処理方法。   4. The organic material treatment method according to claim 1, wherein the RO membrane of the first RO membrane separation device is a cellulose acetate membrane. 請求項1乃至4のいずれか1項において、第一のRO膜処理工程を経た処理水に、該処理水中のカルシウムイオンの5重量倍以上のスケール防止剤を添加するスケール防止剤添加工程を有し、スケール防止剤が添加された水が第二のRO膜処理工程で処理されることを特徴とする有機物処理方法。   5. The scale inhibitor addition step according to claim 1, wherein a scale inhibitor is added to the treated water that has undergone the first RO membrane treatment step at least 5 times the amount of calcium ions in the treated water. And the organic substance processing method characterized by processing the water to which the scale inhibitor was added in a 2nd RO membrane processing process. 有機物含有水をRO膜分離装置に通水することにより該水中の有機物を除去する有機物処理装置において、
有機物含有水に殺菌剤を添加する殺菌剤添加手段と、
該殺菌剤添加手段の処理水が通水される、硬度成分除去機能及び耐酸化性を有する第一のRO膜分離装置と、
該第一のRO膜分離装置の処理水にアルカリを添加してpHを9.5以上にするアルカリ添加手段と、
該アルカリ添加手段の処理水中に残存する殺菌剤を除去する殺菌剤除去手段と、
該殺菌剤除去手段の処理水が通水される第二のRO膜分離装置と
を有することを特徴とする有機物処理装置。
In an organic matter processing apparatus that removes organic matter in the water by passing the organic substance-containing water through the RO membrane separator,
A disinfectant addition means for adding a disinfectant to water containing organic matter,
A first RO membrane separation device having hardness component removal function and oxidation resistance, through which treated water of the disinfectant addition means is passed;
An alkali addition means for adding an alkali to the treated water of the first RO membrane separation device to bring the pH to 9.5 or higher;
A bactericidal agent removing means for removing a bactericidal agent remaining in the treated water of the alkali adding means;
An organic matter processing apparatus comprising: a second RO membrane separation device through which treated water of the disinfectant removing means is passed.
請求項6において、第一のRO膜処理手段の前段に、有機物含有水にpH調整剤を添加してpHを4〜6に調整するpH調整手段を有することを特徴とする有機物処理装置。   7. The organic substance processing apparatus according to claim 6, further comprising a pH adjusting means for adjusting the pH to 4 to 6 by adding a pH adjusting agent to the organic substance-containing water before the first RO membrane processing means. 請求項6又は7において、殺菌剤添加手段の後段に、有機物含有水中の懸濁物質を除去する懸濁物質除去手段を有することを特徴とする有機物処理装置。   8. The organic matter processing apparatus according to claim 6 or 7, further comprising a suspended substance removing unit that removes suspended matter in the organic substance-containing water after the disinfectant adding unit. 請求項6乃至8のいずれか1項において、第一のRO膜分離装置のRO膜が酢酸セルロース膜であることを特徴とする有機物処理装置。   9. The organic matter processing apparatus according to claim 6, wherein the RO membrane of the first RO membrane separation device is a cellulose acetate membrane. 請求項6乃至9のいずれか1項において、第一のRO膜分離装置の処理水に、該処理水中のカルシウムイオンの5重量倍以上のスケール防止剤を添加するスケール防止剤添加手段を有し、スケール防止剤が添加された水が第二のRO膜分離装置で処理されることを特徴とする有機物処理装置。   In any 1 item | term of the Claims 6 thru | or 9, It has a scale inhibitor addition means to add the scale inhibitor more than 5 weight times of the calcium ion in this treated water to the treated water of a 1st RO membrane separator. An organic substance processing apparatus, wherein water to which a scale inhibitor is added is processed by a second RO membrane separation apparatus.
JP2007081924A 2007-03-27 2007-03-27 Organic substance processing method and organic substance processing apparatus Active JP5050605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007081924A JP5050605B2 (en) 2007-03-27 2007-03-27 Organic substance processing method and organic substance processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007081924A JP5050605B2 (en) 2007-03-27 2007-03-27 Organic substance processing method and organic substance processing apparatus

Publications (2)

Publication Number Publication Date
JP2008238051A true JP2008238051A (en) 2008-10-09
JP5050605B2 JP5050605B2 (en) 2012-10-17

Family

ID=39910026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007081924A Active JP5050605B2 (en) 2007-03-27 2007-03-27 Organic substance processing method and organic substance processing apparatus

Country Status (1)

Country Link
JP (1) JP5050605B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032610A1 (en) 2008-09-17 2010-03-25 シャープ株式会社 Antireflection film and method for manufacturing same
JP2013220384A (en) * 2012-04-17 2013-10-28 Kurita Water Ind Ltd Method and apparatus for treating reverse osmosis membrane
WO2014129383A1 (en) * 2013-02-25 2014-08-28 三菱重工業株式会社 Water treatment system
WO2015186260A1 (en) * 2014-06-06 2015-12-10 三浦工業株式会社 Waste water treatment method and waste water treatment system
JP5852199B1 (en) * 2014-09-12 2016-02-03 旭金属工業株式会社 Drainage treatment apparatus and method for osmotic water washing containing fluorescent solution and developer generated in penetrant inspection
WO2020195894A1 (en) * 2019-03-28 2020-10-01 栗田工業株式会社 Water treatment apparatus and water treatment method
CN113371895A (en) * 2021-07-05 2021-09-10 中石化石油工程技术服务有限公司 Process method and system for resourceful treatment of oil and gas field produced water
KR102589925B1 (en) * 2022-07-29 2023-10-17 삼성엔지니어링 주식회사 Method and apparatus for reusing wastewater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102132462B1 (en) 2016-02-18 2020-08-05 오르가노 코포레이션 Water treatment system and water treatment method using reverse osmosis membrane

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336890A (en) * 1986-07-28 1988-02-17 Kurita Water Ind Ltd Apparatus for producing high-purity water
JPH11244850A (en) * 1998-03-06 1999-09-14 Toray Ind Inc Water producing method and producing device
JP2006015236A (en) * 2004-07-01 2006-01-19 Toray Ind Inc Apparatus and method for preparing regenerated water
JP2006075667A (en) * 2004-09-07 2006-03-23 Toray Ind Inc Operation method of semipermeable membrane apparatus and semipermeable membrane apparatus
JP2006181397A (en) * 2004-08-10 2006-07-13 Kurita Water Ind Ltd Organic substance and oxidizing agent-containing wastewater treatment method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6336890A (en) * 1986-07-28 1988-02-17 Kurita Water Ind Ltd Apparatus for producing high-purity water
JPH11244850A (en) * 1998-03-06 1999-09-14 Toray Ind Inc Water producing method and producing device
JP2006015236A (en) * 2004-07-01 2006-01-19 Toray Ind Inc Apparatus and method for preparing regenerated water
JP2006181397A (en) * 2004-08-10 2006-07-13 Kurita Water Ind Ltd Organic substance and oxidizing agent-containing wastewater treatment method and apparatus
JP2006075667A (en) * 2004-09-07 2006-03-23 Toray Ind Inc Operation method of semipermeable membrane apparatus and semipermeable membrane apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032610A1 (en) 2008-09-17 2010-03-25 シャープ株式会社 Antireflection film and method for manufacturing same
JP2013220384A (en) * 2012-04-17 2013-10-28 Kurita Water Ind Ltd Method and apparatus for treating reverse osmosis membrane
WO2014129383A1 (en) * 2013-02-25 2014-08-28 三菱重工業株式会社 Water treatment system
JP2014161795A (en) * 2013-02-25 2014-09-08 Mitsubishi Heavy Ind Ltd Water treatment system
WO2015186260A1 (en) * 2014-06-06 2015-12-10 三浦工業株式会社 Waste water treatment method and waste water treatment system
JP5852199B1 (en) * 2014-09-12 2016-02-03 旭金属工業株式会社 Drainage treatment apparatus and method for osmotic water washing containing fluorescent solution and developer generated in penetrant inspection
WO2020195894A1 (en) * 2019-03-28 2020-10-01 栗田工業株式会社 Water treatment apparatus and water treatment method
JP2020157273A (en) * 2019-03-28 2020-10-01 栗田工業株式会社 Water treatment apparatus and water treatment method
CN113371895A (en) * 2021-07-05 2021-09-10 中石化石油工程技术服务有限公司 Process method and system for resourceful treatment of oil and gas field produced water
KR102589925B1 (en) * 2022-07-29 2023-10-17 삼성엔지니어링 주식회사 Method and apparatus for reusing wastewater
US11945744B2 (en) 2022-07-29 2024-04-02 Samsung Engineering Co., Ltd. Method and apparatus for reusing wastewater

Also Published As

Publication number Publication date
JP5050605B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5050605B2 (en) Organic substance processing method and organic substance processing apparatus
KR101464022B1 (en) Method and apparatus for treating water containing organic matter
KR101671168B1 (en) Slime control agent for activated carbon, method of passing water through activated-carbon device, and method and apparatus for treating organic-containing water
JP5757089B2 (en) Method and apparatus for treating water containing organic matter
JP2007253115A (en) Organic matter-containing wastewater treatment method and apparatus
WO2012133620A1 (en) Membrane-separation method
JP4496795B2 (en) Method and apparatus for treating wastewater containing organic matter
JP3788145B2 (en) Water treatment method and water treatment apparatus
JP2011189242A (en) Water treatment system
JP2011050843A (en) Method of and system for desalinating water to be treated
JP2009000591A (en) Water treatment method of organic matter-containing wastewater
JP2011031146A (en) Water treatment system
WO2020195217A1 (en) Method and device for treating water containing calcium and organic matter
JP6540154B2 (en) Reverse osmosis membrane cleaning method
JP2007244930A (en) Treatment method and treatment apparatus for organic substance-containing waste water
JP4899565B2 (en) Water treatment apparatus and water treatment method
JP2006281174A (en) Method, apparatus and system for recycling wastewater
JP2006095425A (en) Method for purifying biological treatment water-containing water of waste water and apparatus for purifying the same
JP5135697B2 (en) Surfactant-containing wastewater treatment method
JP3906855B2 (en) Method and apparatus for treating wastewater containing organic matter and oxidizing agent
JP6106943B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment apparatus
JP2010137209A (en) Water treatment method
KR101098679B1 (en) Method of treating waste water containing organic substance and treating apparatus
JP2005081269A (en) Treatment method and treatment apparatus for organic substance-containing wastewater
JP2015196104A (en) Pretreatment method of activated carbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

R150 Certificate of patent or registration of utility model

Ref document number: 5050605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3