JP2013220384A - Method and apparatus for treating reverse osmosis membrane - Google Patents

Method and apparatus for treating reverse osmosis membrane Download PDF

Info

Publication number
JP2013220384A
JP2013220384A JP2012093500A JP2012093500A JP2013220384A JP 2013220384 A JP2013220384 A JP 2013220384A JP 2012093500 A JP2012093500 A JP 2012093500A JP 2012093500 A JP2012093500 A JP 2012093500A JP 2013220384 A JP2013220384 A JP 2013220384A
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
water
chelating agent
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012093500A
Other languages
Japanese (ja)
Other versions
JP6106943B2 (en
Inventor
Nobutoki Arai
伸説 新井
Tetsuya Aoki
哲也 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2012093500A priority Critical patent/JP6106943B2/en
Priority to PCT/JP2013/061302 priority patent/WO2013157549A1/en
Priority to TW102113545A priority patent/TW201402198A/en
Publication of JP2013220384A publication Critical patent/JP2013220384A/en
Application granted granted Critical
Publication of JP6106943B2 publication Critical patent/JP6106943B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/683Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of complex-forming compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/12Addition of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH

Abstract

PROBLEM TO BE SOLVED: To provide a method of treating a reverse osmosis membrane which can avoid scale obstacles under neutral to alkaline conditions of target water.SOLUTION: A chelating agent is added intermittently or continuously to target water of reverse osmosis membrane treatment, while the amount of the chelating agent added is increased intermittently. In the operation, the pH of the target water is ≥7, preferably ≥9. A scale preventive agent, together with the chelating agent, is added to the target water, if necessary.

Description

本発明は、逆浸透膜を使用した水処理方法及び水処理装置に関する。より詳しくは、逆浸透膜処理におけるスケール障害回避技術に関する。   The present invention relates to a water treatment method and a water treatment apparatus using a reverse osmosis membrane. More specifically, the present invention relates to a technique for avoiding scale failure in reverse osmosis membrane processing.

近年、環境基準や水質基準は益々厳しくなる傾向にあり、河川などへの放流水についても高度処理による浄化が求められている。一方、水不足解消の目的から、各種排水については、放流せずに回収し、再利用する動きが高まっている。このような状況の下、より高度な水処理技術が望まれており、特に、逆浸透膜(Reverse Osmosis Membrane:RO膜)処理は、水中のイオン類、有機物及び微粒子などの不純物を効果的に除去できることから、様々な分野で利用されている(例えば、特許文献1〜3参照。)。   In recent years, environmental standards and water quality standards tend to be stricter, and purification by advanced treatment is required for discharged water to rivers and the like. On the other hand, for the purpose of eliminating water shortage, various types of wastewater are being collected and reused without being discharged. Under such circumstances, more advanced water treatment technology is desired. In particular, reverse osmosis membrane (RO) treatment effectively removes impurities such as ions, organic substances and fine particles in water. Since it can be removed, it is used in various fields (see, for example, Patent Documents 1 to 3).

例えば、特許文献1には、現像工程で発生する排水を、逆浸透膜装置などで処理し、得られた処理水を再度現像工程で利用する回収再利用方法が開示されている。また、特許文献2には、生物処理と逆浸透膜処理とを組み合わせることにより原水中の有機物を効率的に除去し、有機物濃度が極めて低い高純度な超純水を得る超純水製造方法が開示されている。更に、電子デバイス製造工場などから排出されるアセトンやイソプロピルアルコールなどの有機物を高濃度に含有する排水、並びに特許文献3に記載されているような化石燃料を湿式洗浄した際に排出されるセレン類、フッ素類及びホウ素類などを含有する排水の処理にも、逆浸透膜処理が適用されている。   For example, Patent Document 1 discloses a recovery and reuse method in which wastewater generated in the development process is treated with a reverse osmosis membrane device and the obtained treated water is used again in the development process. Patent Document 2 discloses an ultrapure water production method that efficiently removes organic matter in raw water by combining biological treatment and reverse osmosis membrane treatment to obtain highly pure ultrapure water having a very low concentration of organic matter. It is disclosed. Furthermore, wastewater containing high concentrations of organic substances such as acetone and isopropyl alcohol discharged from electronic device manufacturing factories and the like, and selenium discharged when wet cleaning fossil fuel as described in Patent Document 3 Reverse osmosis membrane treatment is also applied to treatment of wastewater containing fluorines and borons.

しかしながら、特許文献2,3に記載されているような生物処理後の排水を逆浸透膜処理装置に通水する処理方法は、微生物による有機物分解で生成された代謝物により逆浸透膜の膜面が閉塞され、フラックスが低下することがある。一方、生物処理を行わずに有機物を含有する排水などを直接逆浸透膜処理装置に通水すると、装置内で微生物が繁殖しやすくなる。このため、従来の逆浸透膜処理においては、有機物を含有する排水を処理する際は、スライムコントロール剤を多量に添加することにより、微生物の繁殖を抑制している。   However, the treatment method of passing wastewater after biological treatment as described in Patent Documents 2 and 3 to the reverse osmosis membrane treatment apparatus is based on the membrane surface of the reverse osmosis membrane due to metabolites generated by the decomposition of organic matter by microorganisms. May be blocked and the flux may decrease. On the other hand, when wastewater containing organic matter is directly passed through the reverse osmosis membrane treatment apparatus without performing biological treatment, microorganisms easily propagate in the apparatus. For this reason, in the conventional reverse osmosis membrane treatment, when treating waste water containing organic matter, the growth of microorganisms is suppressed by adding a large amount of a slime control agent.

また、スライムコントロール剤は高価であることから、現在、逆浸透膜装置に通水する被処理水をpH9以上に調整することで、微生物の繁殖を抑制する方法も採用されている(例えば特許文献4,5参照)。これら特許文献4,5に記載の処理方法では、スケール防止剤添加の前、後又は同時にアルカリを添加してpHを9.5以上に調整した有機物含有排水を、逆浸透膜処理装置に導入して分離処理を行っている。   In addition, since the slime control agent is expensive, a method of suppressing the growth of microorganisms by adjusting the water to be treated to pass through the reverse osmosis membrane apparatus to pH 9 or higher is currently employed (for example, patent document). 4, 5). In the treatment methods described in Patent Documents 4 and 5, organic matter-containing wastewater whose pH is adjusted to 9.5 or more by adding alkali before, after or simultaneously with the addition of the scale inhibitor is introduced into the reverse osmosis membrane treatment apparatus. Separation process.

微生物は、アルカリ性域では生息することができないため、特許文献4,5に記載の処理方法を適用することにより、栄養源を残したままで微生物が生息できない環境を作り出すことができ、高価なスライムコントロール剤の添加を必要とすることなく、微生物が繁殖することで発生するバイオファウリング(スライム障害)を防止することが可能となる。加えて、特許文献4,5に記載の処理方法では、非イオン界面活性剤などの有機物が逆浸透膜面に吸着することで発生するフラックス(透過流束)の低下や、炭酸カルシウムなど無機成分が析出することで発生するスケール障害も防止することができるため、安定して逆浸透膜処理することができる。   Since microorganisms cannot live in alkaline areas, the treatment method described in Patent Documents 4 and 5 can be applied to create an environment in which microorganisms cannot live without leaving a nutrient source, and an expensive slime control. It is possible to prevent biofouling (slime damage) that occurs due to the propagation of microorganisms without the need to add an agent. In addition, in the treatment methods described in Patent Documents 4 and 5, a decrease in flux (permeation flux) generated when an organic substance such as a nonionic surfactant is adsorbed on the reverse osmosis membrane surface, or an inorganic component such as calcium carbonate. Since the scale failure caused by the precipitation can be prevented, the reverse osmosis membrane treatment can be stably performed.

また、従来、スケールの発生を抑制するため、被処理水のpHを9以上に調整すると共に、側鎖にカルボキシル基を有する重合体を有効成分とするスケール分散剤を添加する純水の製造方法も提案されている(特許文献6参照)。更に、塩酸に比べて腐食性が低く、揮発性もなくかつ安価な硫酸を、原水に間欠的に添加することで、逆浸透膜を一時的にpH4以下の酸性条件にして殺菌処理する技術も提案されている(特許文献7参照)。   Moreover, conventionally, in order to suppress the generation of scale, the pH of the water to be treated is adjusted to 9 or more, and a method for producing pure water by adding a scale dispersant containing a polymer having a carboxyl group in the side chain as an active ingredient Has also been proposed (see Patent Document 6). Furthermore, there is also a technology for temporarily sterilizing a reverse osmosis membrane under acidic conditions of pH 4 or less by intermittently adding sulfuric acid, which is less corrosive than hydrochloric acid, non-volatile and inexpensive, to raw water. It has been proposed (see Patent Document 7).

特開2001−276825号公報JP 2001-276825 A 特開2002−210335号公報JP 2002-210335 A 特開2011−200848号公報JP 2011-200848 特開2005−169372号公報JP 2005-169372 A 特開2007−253115号公報JP 2007-253115 A 特開2005−118712号公報JP 2005-118712 A 特開2000−300966号公報Japanese Patent Laid-Open No. 2000-300966

逆浸透膜を用いた脱塩処理は、一般に、水回収率が90%未満で実施される濃縮処理である。即ち、逆浸透膜処理では、被処理水量の90%程度は逆浸透膜を透過し、脱塩された処理水として得られるが、10%程度は排除した塩類が濃縮された凝縮水をして排出される。この逆浸透膜処理において、スケールの生成自体を抑制するためには、透過水にリークした分を除き、順次濃縮されていく被処理水中に含まれる全てのスケール生成成分にスケール防止剤を作用させなければならず、多量のスケール防止剤が必要となる。   The desalting treatment using a reverse osmosis membrane is generally a concentration treatment performed at a water recovery rate of less than 90%. That is, in the reverse osmosis membrane treatment, about 90% of the amount of water to be treated permeates through the reverse osmosis membrane and is obtained as desalted treated water, but about 10% is condensed water in which the excluded salts are concentrated. Discharged. In this reverse osmosis membrane treatment, in order to suppress the generation of scale itself, a scale inhibitor is allowed to act on all scale-generating components contained in the water to be treated that are sequentially concentrated except for the amount leaked into the permeate. And a large amount of scale inhibitor is required.

例えば、前述した特許文献4,5に記載された処理方法では、スケール障害を防止するためには、カルシウムイオン濃度の5質量倍以上と、スケール防止剤を多量に添加する必要がある。このため、これら従来の処理方法には、スケール防止剤にコストがかかり、運転コストの増加を招くという問題点がある。また、被処理水にスケール防止剤を多量に添加すると、逆浸透膜処理後の濃縮水にスケール防止剤が濃縮され、その後の排水処理における負荷が増大するという問題や、放流水が及ぼす環境負荷が増大するといった問題も生じる。   For example, in the treatment methods described in Patent Documents 4 and 5 described above, it is necessary to add a large amount of a scale inhibitor and at least 5 mass times the calcium ion concentration in order to prevent scale failure. For this reason, these conventional processing methods have a problem that the scale inhibitor is costly and increases the operating cost. In addition, when a large amount of scale inhibitor is added to the water to be treated, the scale inhibitor is concentrated in the concentrated water after reverse osmosis membrane treatment, increasing the load in the subsequent wastewater treatment, and the environmental impact of the discharged water There is also a problem that increases.

一方、特許文献6に記載の処理方法は、被処理水におけるスケール生成成分の濃度が極々低濃度の場合には有効と考えられるが、それよりもスケール生成成分濃度が高い被処理水については、脱炭酸処理やイオン交換処理との併用なくしては、十分なスケール防止効果が得られないものと推定される。また、特許文献7に記載の方法は、被処理水(原水)にCa、Ba及びSrなどが含有されていると、硫酸カルシウム、硫酸バリウム及び硫酸ストロンチウムなどのスケールが発生するため、被処理水に硫酸を添加する際は、併せてスケール防止剤を添加する必要がある。   On the other hand, the treatment method described in Patent Document 6 is considered effective when the concentration of the scale generation component in the water to be treated is extremely low, but for the water to be treated having a higher concentration of the scale generation component than that, It is presumed that a sufficient scale prevention effect cannot be obtained without the combined use with decarboxylation treatment or ion exchange treatment. Further, in the method described in Patent Document 7, when Ca, Ba, Sr, and the like are contained in the water to be treated (raw water), scales such as calcium sulfate, barium sulfate, and strontium sulfate are generated. When adding sulfuric acid, it is necessary to add a scale inhibitor.

そこで、本発明は、被処理水が中性からアルカリ性の条件において、スケール障害を回避することができる逆浸透膜処理方法及び逆浸透膜処理装置を提供することを主目的とする。   Therefore, the main object of the present invention is to provide a reverse osmosis membrane treatment method and a reverse osmosis membrane treatment apparatus capable of avoiding scale failure under conditions where the water to be treated is neutral to alkaline.

本発明者は、逆浸透膜(RO膜)処理において、スケール障害を防止する有効な方法について、鋭意実験研究を行った結果、被処理水にキレート剤を間欠的に添加すると、スケール防止剤を常時添加する場合に比べて、より少ない添加量で、同等以上の性能が得られることを見出し、本発明に至った。   As a result of earnest experimental research on an effective method for preventing scale failure in reverse osmosis membrane (RO membrane) treatment, the present inventors added a chelating agent intermittently to the water to be treated. As compared with the case where it is constantly added, it has been found that the same or better performance can be obtained with a smaller addition amount, and the present invention has been achieved.

即ち、本発明に係る逆浸透膜処理方法は、pH7以上の中性からアルカリ性の被処理水に対して、キレート剤を間欠的に添加するか、又はキレート剤を連続的に添加し、その添加量を間欠的に増量する。
本発明の逆浸透膜処理方法では、被処理水にキレート剤を間欠的添加するか又は被処理水へのキレート剤添加量を間欠的に増加しているため、生成したスケールを、キレート作用によって溶解及び/又は剥離することが可能である。
前記キレート剤としては、例えば、エチレンジアミン四酢酸及びその塩、グルコン酸及びその塩からなる群から選択される少なくとも1種の化合物を使用することができる。
また、前記被処理水には、キレート剤の他に、スケール防止剤を添加してもよい。その場合、スケール防止剤としては、例えばリン酸系のスケール防止剤やポリマー系のスケール防止剤を使用することができる。
更に、被処理水のpHは9以上であることが好ましい。
That is, the reverse osmosis membrane treatment method according to the present invention adds a chelating agent intermittently to a neutral to alkaline treated water of pH 7 or higher, or continuously adds a chelating agent, and the addition Increase the amount intermittently.
In the reverse osmosis membrane treatment method of the present invention, the chelating agent is intermittently added to the water to be treated or the amount of the chelating agent added to the water to be treated is intermittently increased. It can be dissolved and / or peeled off.
As the chelating agent, for example, at least one compound selected from the group consisting of ethylenediaminetetraacetic acid and its salt, gluconic acid and its salt can be used.
In addition to the chelating agent, a scale inhibitor may be added to the water to be treated. In this case, as the scale inhibitor, for example, a phosphate scale inhibitor or a polymer scale inhibitor can be used.
Furthermore, the pH of the water to be treated is preferably 9 or higher.

本発明に係る逆浸透膜処理装置は、被処理水を透過水と濃縮水に分離する逆浸透膜と、前記被処理水にキレート剤を添加するキレート剤添加部と、前記被処理水にキレート剤を間欠的に添加するか、又は前記被処理水にキレート剤を連続的に添加してその添加量を間欠的に増量するように、前記キレート剤添加部を制御する制御部とを、少なくとも備えるものである。   A reverse osmosis membrane treatment apparatus according to the present invention includes a reverse osmosis membrane that separates water to be treated into permeate and concentrated water, a chelating agent addition unit that adds a chelating agent to the water to be treated, and a chelate to the water to be treated. A controller for controlling the chelating agent addition unit so that the chelating agent is added intermittently or the chelating agent is continuously added to the water to be treated to increase the amount of the addition intermittently, It is to be prepared.

本発明によれば、被処理水に間欠的にキレート剤を添加するか又は被処理水へのキレート剤添加量を間欠的に増加しているため、被処理水が中性からアルカリ性の条件であっても、スケール障害を効果的に回避することができる。   According to the present invention, since the chelating agent is intermittently added to the water to be treated or the amount of the chelating agent added to the water to be treated is intermittently increased, the water to be treated is in a neutral to alkaline condition. Even if it exists, a scale failure can be avoided effectively.

本発明の実施形態の逆浸透膜処理方法を適用した逆浸透膜処理装置の構成例を示す図である。It is a figure which shows the structural example of the reverse osmosis membrane processing apparatus to which the reverse osmosis membrane processing method of embodiment of this invention is applied. 本発明の第1実施例における連続通水試験の結果を示す図である。It is a figure which shows the result of the continuous water flow test in 1st Example of this invention. 本発明の第2実施例における連続通水試験の結果を示す図である。It is a figure which shows the result of the continuous water flow test in 2nd Example of this invention.

以下、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。   Hereinafter, embodiments for carrying out the present invention will be described in detail. Note that the present invention is not limited to the embodiments described below.

本発明の実施形態に係る逆浸透膜処理方法は、被処理水にキレート剤を間欠的に添加するか、又は被処理水にキレート剤を連続的に添加し、その添加量を間欠的に増量することで、逆浸透膜処理を行いつつ、逆浸透膜表面に形成された炭酸塩や水酸化物などのスケールを溶解及び/又は剥離させる。即ち、本実施形態の逆浸透膜処理方法においては、スケール生成を抑制することでスケール障害を回避するのではなく、一部スケールが生成し、スケール障害が起こりつつある状態から膜性能を回復させることにより、安定した逆浸透膜処理を確保する。   In the reverse osmosis membrane treatment method according to the embodiment of the present invention, the chelating agent is intermittently added to the water to be treated, or the chelating agent is continuously added to the water to be treated, and the amount added is intermittently increased. Thus, scales such as carbonates and hydroxides formed on the reverse osmosis membrane surface are dissolved and / or peeled off while performing the reverse osmosis membrane treatment. That is, in the reverse osmosis membrane treatment method of this embodiment, rather than avoiding scale failure by suppressing scale generation, partial scale is generated and membrane performance is recovered from a state where scale failure is occurring. This ensures a stable reverse osmosis membrane treatment.

従来、逆浸透膜にスケール障害が発生した場合の性能回復方法としては、薬品洗浄が一般的である。しかしながら、薬品洗浄によりスケールを溶解及び/又は除去する場合、逆浸透膜の1次側(被処理水側)を薬液で置換すると共に、系に薬液を循環させるか又は膜を薬液に浸漬する必要がある。そして、これらの操作を行う際は、逆浸透膜処理を停止しなければならず、引き続き処理を行うには代替機を準備しなければならない。これに対して、本実施形態の逆浸透膜処理方法は、逆浸透膜処理を停止することなく、生成したスケールを溶解及び/除去し、逆浸透膜の性能を回復させることが可能である。   Conventionally, chemical cleaning is generally used as a performance recovery method when a scale failure occurs in a reverse osmosis membrane. However, when the scale is dissolved and / or removed by chemical cleaning, it is necessary to replace the primary side (treated water side) of the reverse osmosis membrane with a chemical solution and circulate the chemical solution in the system or immerse the membrane in the chemical solution. There is. And when performing these operations, the reverse osmosis membrane treatment must be stopped, and an alternative machine must be prepared to continue the treatment. On the other hand, the reverse osmosis membrane treatment method of the present embodiment can dissolve and / or remove the generated scale without stopping the reverse osmosis membrane treatment and restore the performance of the reverse osmosis membrane.

[被処理水のpH]
本実施形態の逆浸透膜処理方法では、硫酸添加などによる被処理水の酸性化は行わない。即ち、本実施形態の逆浸透膜処理方法における被処理水は、pH7以上の中性からアルカリ性である。また、被処理水のpHは9以上であることが好ましく、これにより、スケール障害の回避だけでなく、バイオファウリング(スライム障害)も防止することが可能となる。なお、被処理水のpHの調整方法は、特に限定されるものではなく、水酸化ナトリウムなどの公知のアルカリ剤を用いて行うことができる。
[PH of water to be treated]
In the reverse osmosis membrane treatment method of this embodiment, the water to be treated is not acidified by adding sulfuric acid or the like. That is, the water to be treated in the reverse osmosis membrane treatment method of the present embodiment is neutral to alkaline at pH 7 or higher. Moreover, it is preferable that the pH of to-be-processed water is 9 or more, and it becomes possible not only to avoid a scale failure but also to prevent biofouling (slime failure). In addition, the adjustment method of pH of to-be-processed water is not specifically limited, It can carry out using well-known alkaline agents, such as sodium hydroxide.

[キレート剤]
本実施形態の逆浸透膜処理方法で使用するキレート剤は、特に限定されるものではないが、例えばニトリロ三酢酸(NTA)、ヒドロキシエチルエチレンジアミン三酢酸(HEDTA)、エチレンジアミン四酢酸(EDTA)、ジエチレントリアミン五酢酸(DTPA)、トリエチレンテトラアミン六酢酸(TTHA)、クエン酸、シュウ酸、グルコン酸又はこれらの塩などを使用することができる。なお、これらのキレート剤は、単独で使用することもできるが、2種以上を組み合わせて使用してもよい。
[Chelating agent]
The chelating agent used in the reverse osmosis membrane treatment method of the present embodiment is not particularly limited. For example, nitrilotriacetic acid (NTA), hydroxyethylethylenediaminetriacetic acid (HEDTA), ethylenediaminetetraacetic acid (EDTA), diethylenetriamine Pentaacetic acid (DTPA), triethylenetetraamine hexaacetic acid (TTHA), citric acid, oxalic acid, gluconic acid, or a salt thereof can be used. In addition, although these chelating agents can also be used independently, you may use it in combination of 2 or more type.

特に、被処理水のpHが9以上の場合には、エチレンジアミン四酢酸又はその塩、グルコン酸又はその塩を使用することが好ましい。これらのキレート剤は、逆浸透膜で生成したスケール成分と反応し、ゲル化したり、再溶解しにくい析出物となる可能性が低く、間欠的に高濃度で添加する場合でも、逆浸透膜の性能を悪化させるリスクが少ない。一方、クエン酸やシュウ酸は、アルカリ性の条件下では十分な効果が発揮されないため、被処理水のpHが9以上の場合には、これらの化合物は不適である。   In particular, when the pH of the water to be treated is 9 or more, it is preferable to use ethylenediaminetetraacetic acid or a salt thereof, gluconic acid or a salt thereof. These chelating agents react with the scale components generated in the reverse osmosis membrane and are unlikely to become a gel or precipitate that is difficult to re-dissolve. There is little risk of deteriorating performance. On the other hand, citric acid and oxalic acid do not exhibit sufficient effects under alkaline conditions, and therefore these compounds are unsuitable when the pH of the water to be treated is 9 or more.

[キレート剤の添加条件]
本実施形態の逆浸透膜処理方法において、キレート剤の添加頻度又は増量頻度は、特に限定されるものではなく、被処理水中のスケール成分濃度や逆浸透膜処理の運転条件に応じて適宜設定することができるが、1回あたり2〜12時間の添加又は増量を、1回/日〜1回/週程度行うことが好ましい。これにより、逆浸透膜処理を停止して行う一般的な薬品洗浄に比べて、低濃度かつ短時間の処理で、逆浸透膜の性能回復効果を得ることができる。
[Chelating agent addition conditions]
In the reverse osmosis membrane treatment method of the present embodiment, the addition frequency or increase frequency of the chelating agent is not particularly limited, and is appropriately set according to the scale component concentration in the water to be treated and the operating conditions of the reverse osmosis membrane treatment. However, it is preferable to perform addition or increase for 2 to 12 hours per time, about once / day to once / week. As a result, the performance recovery effect of the reverse osmosis membrane can be obtained with a low concentration and a short time treatment as compared with general chemical cleaning performed by stopping the reverse osmosis membrane treatment.

本実施形態の逆浸透膜処理方法では、キレート剤の常時添加はせず、常時添加する場合でも少量の添加に抑えるため、逆浸透膜処理により生じる濃縮水や逆浸透膜面でスケールが生成する。そして、逆浸透膜面のスケールは、生成時はアモルファス状で溶解・剥離しやすい状態であるが、逆浸透膜処理の運転を継続に伴い成長し、より強固なものとなっていくと予想される。   In the reverse osmosis membrane treatment method of the present embodiment, the chelating agent is not always added, and even when always added, scale is generated on the concentrated water and reverse osmosis membrane surface generated by the reverse osmosis membrane treatment in order to suppress the addition to a small amount. . The scale of the reverse osmosis membrane surface is amorphous at the time of generation and is easily dissolved and peeled, but it is expected to grow and become stronger as the operation of the reverse osmosis membrane treatment continues. The

実際、スケール生成当初は、低濃度薬液による短時間の簡易洗浄で、スケール生成以前の状態まで逆浸透膜の性能を回復することが可能であるが、スケール障害が進行した状態では、より高濃度の薬液で長時間洗浄を行う必要があり、そのような洗浄を行っても、元の状態に回復できないこともある。一方、1回/日〜1回/週の頻度で、1回あたり2〜12時間、被処理水にキレート剤を添加するか、又は被処理水に添加しているキレート剤の量を増量することにより、逆浸透膜面に生成したスケールが強固なものとなる前に溶解及び/又は剥離することができる。   In fact, at the beginning of scale generation, it is possible to restore the performance of the reverse osmosis membrane to the state before scale generation by simple cleaning with a low concentration chemical solution in a short time. It is necessary to perform cleaning for a long time with this chemical solution, and even if such cleaning is performed, the original state may not be recovered. On the other hand, at a frequency of once / day to once / week, add a chelating agent to the water to be treated for 2 to 12 hours, or increase the amount of the chelating agent added to the water to be treated. By this, it can melt | dissolve and / or peel before the scale produced | generated on the reverse osmosis membrane surface becomes strong.

また、被処理水に添加するキレート剤の量も特に限定されるものではないが、本実施形態の逆浸透膜処理方法では、既に生成しているスケールを再溶解して差圧を回復させるため、間欠添加時又は間欠増量時における被処理水のキレート剤濃度を比較的高濃度とする。具体的には、被処理水中の濃度が10mg/L以上になるようにキレート剤を間欠的に添加するか、又は、常時添加時の濃度の2倍以上となるようにキレート剤を間欠的に増量することが好ましい。   Further, the amount of the chelating agent added to the water to be treated is not particularly limited, but in the reverse osmosis membrane treatment method of the present embodiment, the already generated scale is redissolved to restore the differential pressure. The concentration of the chelating agent in the water to be treated during intermittent addition or intermittent increase is set to a relatively high concentration. Specifically, the chelating agent is intermittently added so that the concentration in the water to be treated is 10 mg / L or more, or the chelating agent is intermittently added so that the concentration is constantly twice or more of the concentration at the time of addition. It is preferable to increase the amount.

前述したように、本実施形態の逆浸透膜処理方法では、濃縮水中や逆浸透膜面にスケールが生成している状態で、被処理水にキレート剤を添加したり、キレート剤の添加量を増量する。この場合、キレート剤は、濃縮水中のスケール成分にも作用するが、より高濃度で存在している逆浸透膜面のスケール成分に優先的に作用する。そして、少量のキレート剤を常時添加し、間欠的に添加量を増加して被処理水中のキレート剤濃度を高濃度にすると、キレート剤とスケール成分との反応効率が高まり、スケール障害の回避効果が向上する。   As described above, in the reverse osmosis membrane treatment method of the present embodiment, a chelating agent is added to the water to be treated or the amount of the chelating agent is added in a state where scale is generated on the concentrated water or the reverse osmosis membrane surface. Increase the amount. In this case, the chelating agent acts on the scale component in the concentrated water, but preferentially acts on the scale component on the reverse osmosis membrane surface present at a higher concentration. When a small amount of chelating agent is constantly added and the amount added is increased intermittently to increase the concentration of the chelating agent in the water to be treated, the reaction efficiency between the chelating agent and the scale components increases, and the scale obstacle avoidance effect Will improve.

このように、本実施形態の逆浸透膜処理方法では、キレート剤の添加頻度及び添加濃度を調節することにより、スケール防止剤やキレート剤を一定量常時添加する場合よりも、少量の添加で、同等以上のスケール障害回避効果を得ることが可能である。   Thus, in the reverse osmosis membrane treatment method of the present embodiment, by adjusting the addition frequency and concentration of the chelating agent, it is possible to add a small amount of the scale inhibitor and the chelating agent in a smaller amount than when always adding a constant amount, It is possible to obtain a scale obstacle avoidance effect equal to or greater than that.

[スケール防止剤]
また、本実施形態の逆浸透膜処理方法では、必要に応じて、被処理水に、スケール防止剤を添加することができる。なお、一般には、前述した「キレート剤」も「スケール防止剤」として扱われることがあるが、本発明においては、「キレート剤」と「スケール防止剤」とを明確に区別するため、ここでいう「スケール防止剤」には、金属イオンとキレート錯体を形成するものは含まないこととする。
[Scale inhibitor]
Moreover, in the reverse osmosis membrane treatment method of this embodiment, a scale inhibitor can be added to the water to be treated as necessary. In general, the above-mentioned “chelating agent” may also be treated as a “scale inhibitor”. However, in the present invention, in order to clearly distinguish between “chelate” and “scale inhibitor”, The “scale inhibitor” does not include those that form a chelate complex with a metal ion.

また、本実施形態の逆浸透膜処理方法で使用するスケール防止剤は、特に限定されるものではないが、pH7以上被処理水においても優れたスケール防止効果が得られることから、1−ヒドロキシエチリデン−1,1−ジホスホン酸(HEDP)及び2−ホスホノブタン−1,2,4−トリカルボン酸(PBTC)などのリン酸系スケール防止剤、又はアクリル酸及び2−アクリルアミド−2−メチルプロパンスルホン酸(AMPS)などのポリマー系スケール防止剤が好適である。なお、これらのスケール防止剤は、単独で使用することもできるが、2種以上を組み合わせて使用してもよい。   In addition, the scale inhibitor used in the reverse osmosis membrane treatment method of the present embodiment is not particularly limited, but an excellent scale prevention effect can be obtained even in water to be treated with a pH of 7 or higher, so 1-hydroxyethylidene. Phosphoric acid scale inhibitors such as -1,1-diphosphonic acid (HEDP) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC), or acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid ( Polymeric scale inhibitors such as AMPS are preferred. In addition, although these scale inhibitors can also be used independently, you may use it in combination of 2 or more type.

ただし、被処理水のpHが9以上の場合には、ヘキサメタリン酸ナトリウムなどのように、アルカリ性の条件下で分解して正リン酸を生成するものは、不適である。なお、スケール防止剤は、キレート剤と同様に間欠的に添加することもできるが、被処理水に対して、常に、特定量添加されていることが好ましい。   However, when the pH of the water to be treated is 9 or more, a substance that decomposes under alkaline conditions to produce normal phosphoric acid such as sodium hexametaphosphate is not suitable. The scale inhibitor can be added intermittently in the same manner as the chelating agent, but it is preferable that a specific amount is always added to the water to be treated.

[逆浸透膜処理装置]
図1は本実施形態の逆浸透膜処理方法を適用した逆浸透膜処理装置の構成例を示す図である。本実施形態の逆浸透膜処理方法は、図1に示すように、被処理水にキレート剤を添加するキレート剤添加部2と、キレート剤添加部2を制御する制御部4を備える逆浸透膜処理装置により実施することができる。
[Reverse osmosis membrane treatment equipment]
FIG. 1 is a diagram illustrating a configuration example of a reverse osmosis membrane treatment apparatus to which the reverse osmosis membrane treatment method of the present embodiment is applied. As shown in FIG. 1, the reverse osmosis membrane treatment method of the present embodiment includes a chelating agent addition unit 2 that adds a chelating agent to water to be treated and a control unit 4 that controls the chelating agent addition unit 2. It can be implemented by a processing device.

この逆浸透膜処理装置では、キレート剤添加部2は、被処理水が貯留されるタンク1と逆浸透膜5とを連結する流路に設けられている。また、制御部4は、キレート剤添加部2におけるキレート剤の添加量、添加時間及び添加頻度などを制御する。具体的には、被処理水にキレート剤が常時添加されていない場合は、被処理水にキレート剤が間欠的に添加されるように、また、被処理水にキレート剤が常時添加されている場合は、その添加量が間欠的に増量されるように、キレート剤添加部2を制御する。   In this reverse osmosis membrane treatment apparatus, the chelating agent addition unit 2 is provided in a flow path that connects the tank 1 in which treated water is stored and the reverse osmosis membrane 5. In addition, the control unit 4 controls the addition amount, addition time, addition frequency, and the like of the chelating agent in the chelating agent addition unit 2. Specifically, when the chelating agent is not constantly added to the treated water, the chelating agent is constantly added to the treated water so that the chelating agent is intermittently added to the treated water. In the case, the chelating agent addition unit 2 is controlled so that the addition amount is intermittently increased.

また、逆浸透膜処理装置には、必要に応じて、被処理水にスケール防止剤を添加するスケール防止剤添加部3を設けることができる。このスケール防止剤添加部3によるスケール防止剤の添加量、添加時間及び添加頻度などは、独立制御することもできるが、キレート剤添加部2と併せて、制御部4により制御してもよい。更に、逆浸透膜処理装置には、必要に応じて、キレート剤添加部2及びスケール防止剤添加部3よりも後段に、被処理水のpHを調整するためのpH調整部(図示せず)を設けることもできる。   Moreover, the reverse osmosis membrane treatment apparatus can be provided with a scale inhibitor addition unit 3 for adding a scale inhibitor to the water to be treated as necessary. The addition amount, addition time, and addition frequency of the scale inhibitor by the scale inhibitor addition unit 3 can be controlled independently, but may be controlled by the control unit 4 together with the chelating agent addition unit 2. Further, in the reverse osmosis membrane treatment apparatus, if necessary, a pH adjusting unit (not shown) for adjusting the pH of the water to be treated downstream of the chelating agent adding unit 2 and the scale inhibitor adding unit 3. Can also be provided.

以上詳述したように、本実施形態の逆浸透膜処理方法では、pHが7以上の被処理水に対して、キレート剤を間欠的に添加するか、又はキレート剤を連続的に添加しつつその添加量を間欠的に増量しているため、膜面に生成したスケールをキレート作用により、容易に溶解し、剥離することができる。その結果、逆浸透膜処理におけるスケール障害の発生を、効果的に回避することができる。   As described above in detail, in the reverse osmosis membrane treatment method of the present embodiment, a chelating agent is intermittently added to the water to be treated having a pH of 7 or more, or the chelating agent is continuously added. Since the amount added is intermittently increased, the scale generated on the film surface can be easily dissolved and peeled off by the chelating action. As a result, the occurrence of scale failure in the reverse osmosis membrane treatment can be effectively avoided.

逆浸透膜処理において、スケール防止剤を用いてスケールの生成自体を抑制する従来のスケール障害回避方法では、被処理水の水質の変動も考慮し、安定した処理を行うため、多量のスケール防止剤を添加する必要があったが、本実施形態の逆浸透膜処理方法では、少量のキレート剤添加で、効率的にスケール障害を回避することができる。また、本実施形態の逆浸透膜処理方法は、従来の薬品洗浄のように、逆浸透膜処理を停止したり、代替機を用意する必要がなく、意図的ではないスケール障害が発生した場合でも、逆浸透膜処理を停止させずに膜性能を回復させることが可能である。   In the reverse osmosis membrane treatment, the conventional scale failure avoidance method that suppresses the generation of scale itself by using a scale inhibitor makes stable treatment taking into account fluctuations in the quality of the water to be treated. However, in the reverse osmosis membrane treatment method of the present embodiment, scale obstacles can be efficiently avoided with the addition of a small amount of chelating agent. In addition, the reverse osmosis membrane treatment method of the present embodiment does not need to stop the reverse osmosis membrane treatment or prepare an alternative machine like conventional chemical cleaning, and even when an unintentional scale failure occurs. It is possible to restore the membrane performance without stopping the reverse osmosis membrane treatment.

以下、本発明の実施例及び比較例を挙げて、本発明の効果について具体的に説明する。   Hereinafter, the effects of the present invention will be specifically described with reference to Examples and Comparative Examples of the present invention.

(第1実施例)
第1実施例では、約1ヶ月間の連続通水試験を実施し、被処理水にキレート剤を間欠的に添加した場合(実施例1)と、一定量を常時添加した場合(比較例1,2)とで、逆浸透膜処理における安定性を比較した。図2は第1実施例における連続通水試験の結果を示す図である。
(First embodiment)
In the first example, a continuous water flow test for about one month was performed, and a case where a chelating agent was intermittently added to the water to be treated (Example 1) and a case where a constant amount was constantly added (Comparative Example 1). , 2) and the stability in reverse osmosis membrane treatment were compared. FIG. 2 is a diagram showing the results of a continuous water flow test in the first example.

<実施例1>
原水には、カルシウム濃度が約0.1mg/L、Mアルカリ度が約50mg/L(as CaCO)、鉄濃度が約0.1mg/Lの模擬排水を用いた。そして、粒状活性炭(栗田工業株式会社製 クリコールWG160)を充填した活性炭濾過器により、原水から残留塩素を除去し、被処理水とした。
<Example 1>
As the raw water, simulated waste water having a calcium concentration of about 0.1 mg / L, an M alkalinity of about 50 mg / L (as CaCO 3 ), and an iron concentration of about 0.1 mg / L was used. And the residual chlorine was removed from raw | natural water with the activated carbon filter filled with granular activated carbon (Kurita Kogyo Co., Ltd. cricol WG160), and it was set as the to-be-processed water.

次に、水酸化ナトリウムにより被処理水のpHを10〜10.5に調整し、これを逆浸透膜(日東電工株式会社製 ES20)に供給して、逆浸透膜処理を行った。逆浸透膜処理は、水温25℃程度、水回収率85%の条件で、透過流束が0.7m/m・dの定透過流束運転で実施した。 Next, the pH of the water to be treated was adjusted to 10 to 10.5 with sodium hydroxide, and this was supplied to a reverse osmosis membrane (ES20 manufactured by Nitto Denko Corporation) to perform a reverse osmosis membrane treatment. The reverse osmosis membrane treatment was performed in a constant permeation flux operation with a permeation flux of 0.7 m 3 / m 2 · d under conditions of a water temperature of about 25 ° C. and a water recovery rate of 85%.

そして、被処理水に対して、キレート剤としてエチレンジアミン四酢酸四ナトリウムを、被処理水の濃度が10mg/Lとなるように、1回/7日の頻度で、1回あたり6時間の添加した。なお、図2では、キレート剤添加時点を矢印で示している。この連続通水試験を、約1ヶ月間行い、逆浸透膜間差圧(浸透圧0、25℃換算)の経時変化を確認した。その結果、図2に示すように、逆浸透膜間差圧は0.5MPa以下を維持していた。   Then, ethylenediaminetetraacetic acid tetrasodium as a chelating agent was added to the water to be treated at a frequency of 1/7 days so that the concentration of the water to be treated was 10 mg / L. . In addition, in FIG. 2, the chelating agent addition time is shown by the arrow. This continuous water flow test was conducted for about one month, and the change with time of the reverse osmosis differential pressure (osmotic pressure 0, converted to 25 ° C.) was confirmed. As a result, as shown in FIG. 2, the reverse osmosis differential pressure was maintained at 0.5 MPa or less.

<比較例1>
被処理水に対して、キレート剤としてエチレンジアミン四酢酸四ナトリウムを、被処理水の濃度が1mg/Lとなるように常時添加した以外は、前述した実施例1と同様の条件で連続通水試験を実施した。その結果、図2に示すように、逆浸透膜間差圧は、試験開始から3週間目で0.6MPaを超え、安定した性能は得られなかった。なお、比較例1におけるキレート剤使用量は、実施例1の使用量の2.8倍であった。
<Comparative Example 1>
Continuous water flow test under the same conditions as in Example 1 above, except that ethylenediaminetetraacetic acid tetrasodium as a chelating agent was constantly added to the water to be treated so that the concentration of the water to be treated was 1 mg / L. Carried out. As a result, as shown in FIG. 2, the reverse osmosis differential pressure exceeded 0.6 MPa in the third week from the start of the test, and stable performance was not obtained. The amount of chelating agent used in Comparative Example 1 was 2.8 times the amount used in Example 1.

<比較例2>
被処理水に対して、キレート剤としてエチレンジアミン四酢酸四ナトリウムを、被処理水の濃度が5mg/Lとなるように常時添加した以外は、前述した実施例1と同様の条件で連続通水試験を実施した。その結果、図2に示すように、約1ヶ月間の連続通水試験において、逆浸透膜間差圧は0.5MPa以下を維持しており、安定した性能が得られた。ただし、比較例2におけるキレート剤使用量は、実施例の使用量の14倍であった。
<Comparative example 2>
Continuous water flow test under the same conditions as in Example 1 above, except that ethylenediaminetetraacetic acid tetrasodium as a chelating agent was always added to the water to be treated so that the concentration of the water to be treated was 5 mg / L. Carried out. As a result, as shown in FIG. 2, in the continuous water flow test for about one month, the differential pressure between reverse osmosis membranes was maintained at 0.5 MPa or less, and stable performance was obtained. However, the amount of chelating agent used in Comparative Example 2 was 14 times the amount used in Examples.

(第2実施例)
第2実施例では、約1ヶ月間の連続通水試験を実施し、被処理水にスケール防止剤を常時添加すると共に、キレート剤を間欠的に添加した場合(実施例2)と、スケール剤及びキレート剤の両方を常時添加した場合(比較例3)とで、逆浸透膜処理における安定性を比較した。図3は第2実施例における連続通水試験の結果を示す図である。
(Second embodiment)
In the second example, a continuous water flow test for about one month was carried out, the scale inhibitor was constantly added to the water to be treated, and the chelating agent was added intermittently (Example 2). The stability in the reverse osmosis membrane treatment was compared between the case where both the chelating agent and the chelating agent were constantly added (Comparative Example 3). FIG. 3 is a diagram showing the results of a continuous water flow test in the second example.

<実施例2>
原水には、カルシウム濃度が約1mg/L、Mアルカリ度が約100mg/L(as CaCO)、鉄、銅、ニッケル及び亜鉛の濃度がそれぞれ約0.1mg/Lの模擬排水を用いた。そして、粒状活性炭(栗田工業株式会社製 クリコールWG160)を充填した活性炭濾過器により、原水から残留塩素を除去し、被処理水とした。
<Example 2>
As the raw water, simulated waste water having a calcium concentration of about 1 mg / L, an M alkalinity of about 100 mg / L (as CaCO 3 ), and iron, copper, nickel, and zinc concentrations of about 0.1 mg / L was used. And the residual chlorine was removed from raw | natural water with the activated carbon filter filled with granular activated carbon (Kurita Kogyo Co., Ltd. cricol WG160), and it was set as the to-be-processed water.

次に、水酸化ナトリウムにより被処理水のpHを10〜10.5に調整し、これを逆浸透膜(日東電工株式会社製 ES20)に供給して、逆浸透膜処理を行った。逆浸透膜処理は、水温25℃程度、水回収率85%の条件で、透過流束が0.7m/m・dの定透過流束運転で実施した。 Next, the pH of the water to be treated was adjusted to 10 to 10.5 with sodium hydroxide, and this was supplied to a reverse osmosis membrane (ES20 manufactured by Nitto Denko Corporation) to perform a reverse osmosis membrane treatment. The reverse osmosis membrane treatment was performed in a constant permeation flux operation with a permeation flux of 0.7 m 3 / m 2 · d under conditions of a water temperature of about 25 ° C. and a water recovery rate of 85%.

そして、被処理水に対して、スケール防止剤として、Byhibit AM(Lanxess社製 PBTC50質量%含有)を、被処理水の濃度が1mg/Lとなるように、常時添加した。また、キレート剤として、グルコン酸ナトリウムを、被処理水の濃度が1.5mg/Lとなるように常時添加すると共に、エチレンジアミン四酢酸四ナトリウムを、被処理水の濃度が20mg/Lとなるように、1回/7日の頻度で、1回あたり6時間の添加した。なお、図3では、エチレンジアミン四酢酸四ナトリウムの添加時点を矢印で示している。   Then, Byhibit AM (containing 50% by mass of PBTC manufactured by Lanxess) as a scale inhibitor was constantly added to the water to be treated so that the concentration of the water to be treated was 1 mg / L. Further, sodium gluconate is constantly added as a chelating agent so that the concentration of the water to be treated is 1.5 mg / L, and tetrasodium ethylenediaminetetraacetate is added so that the concentration of the water to be treated is 20 mg / L. Was added at a frequency of once every 7 days for 6 hours. In addition, in FIG. 3, the addition time of ethylenediaminetetraacetic acid tetrasodium is shown by the arrow.

この連続通水試験を、約1ヶ月間行い、逆浸透膜間差圧(浸透圧0、25℃換算)の経時変化を確認した。その結果、図3に示すように、逆浸透膜間差圧は0.4MPa以下を維持することができた。   This continuous water flow test was conducted for about one month, and the change with time of the reverse osmosis differential pressure (osmotic pressure 0, converted to 25 ° C.) was confirmed. As a result, as shown in FIG. 3, the reverse osmosis differential pressure could be maintained at 0.4 MPa or less.

<比較例3>
被処理水に対して、エチレンジアミン四酢酸四ナトリウムを、間欠添加ではなく、被処理水の濃度が5mg/Lとなるように常時添加した以外は、前述した実施例2と同様の条件で連続通水試験を実施した。その結果、図3に示すように、1ヶ月間の間に逆浸透膜間差圧が0.5MPaを超え、安定した性能は得られなかった。なお、比較例3におけるエチレンジアミン四酢酸四ナトリウム使用量は、実施例2の使用量の7倍であった。
<Comparative Example 3>
To the water to be treated, ethylenediaminetetraacetic acid tetrasodium was not continuously added but continuously added so that the concentration of the water to be treated was 5 mg / L. A water test was performed. As a result, as shown in FIG. 3, the reverse osmosis differential pressure exceeded 0.5 MPa during one month, and stable performance was not obtained. In addition, the amount of ethylenediaminetetraacetic acid tetrasodium used in Comparative Example 3 was 7 times the amount used in Example 2.

前述したように、実施例1,2の逆浸透膜処理方法は、1ヶ月間の連続通水試験において、逆浸透膜間差圧を0.5MPa以下(Δ0.1MPa/月以下)を維持する安定運転が可能であった。この結果は、逆浸透膜処理を停止することなく、また、逆浸透膜透過水を連続的に得ながら、逆浸透膜の性能を回復できる有効な技術であることを示している。   As described above, the reverse osmosis membrane treatment methods of Examples 1 and 2 maintain the reverse osmosis membrane differential pressure of 0.5 MPa or less (Δ0.1 MPa / month or less) in a continuous water flow test for one month. Stable operation was possible. This result indicates that the reverse osmosis membrane treatment can be recovered without stopping the reverse osmosis membrane treatment, and the reverse osmosis membrane performance can be recovered continuously.

これに対して、比較例1,3の逆浸透膜処理方法は、実施例1,2に比べて、キレート剤やスケール防止剤を多量に使用しているにも関わらず、安定した性能が得られなかった。一方、安定性能が得られた比較例2の逆浸透膜処理方法においても、安定性能を得るためには実施例1に比べて、多量のキレート剤が必要であった。   On the other hand, the reverse osmosis membrane treatment methods of Comparative Examples 1 and 3 have stable performance compared to Examples 1 and 2 despite the use of a large amount of chelating agents and scale inhibitors. I couldn't. On the other hand, in the reverse osmosis membrane treatment method of Comparative Example 2 in which stable performance was obtained, a larger amount of chelating agent was required than in Example 1 in order to obtain stable performance.

以上の結果から、本発明の逆浸透膜処理方法によれば、より少量のキレート剤で安定した膜性能が得られるため、薬品洗浄などの逆浸透膜の性能回復処理を実施することなく、安定した逆浸透膜処理を長期間に亘って実施することが可能であり、キレート剤に起因する運転コストも低減可能であることが確認された。   From the above results, according to the reverse osmosis membrane treatment method of the present invention, stable membrane performance can be obtained with a smaller amount of chelating agent, so that it is stable without performing reverse osmosis membrane performance recovery treatment such as chemical cleaning. It was confirmed that the reverse osmosis membrane treatment can be carried out over a long period of time, and the operating cost due to the chelating agent can be reduced.

1 タンク
2 キレート剤添加部
3 スケール防止剤添加部
4 制御部
5 逆浸透膜
DESCRIPTION OF SYMBOLS 1 Tank 2 Chelating agent addition part 3 Scale inhibitor addition part 4 Control part 5 Reverse osmosis membrane

Claims (7)

pH7以上の中性からアルカリ性の被処理水に対して、キレート剤を間欠的に添加するか、又はキレート剤を連続的に添加し、その添加量を間欠的に増量する逆浸透膜処理方法。   A reverse osmosis membrane treatment method in which a chelating agent is intermittently added to neutral to alkaline treated water having a pH of 7 or more, or a chelating agent is continuously added, and the amount added is intermittently increased. 前記キレート剤が、エチレンジアミン四酢酸又はその塩及びグルコン酸又はその塩からなる群から選択される少なくとも1種の化合物であることを特徴とする請求項1に記載の逆浸透膜処理方法。   The reverse osmosis membrane treatment method according to claim 1, wherein the chelating agent is at least one compound selected from the group consisting of ethylenediaminetetraacetic acid or a salt thereof and gluconic acid or a salt thereof. 前記被処理水に、更に、スケール防止剤を添加することを特徴とする請求項1又は2に記載の逆浸透膜処理方法。   The reverse osmosis membrane treatment method according to claim 1, wherein a scale inhibitor is further added to the water to be treated. 前記スケール防止剤が、リン酸系又はポリマー系であることを特徴とする請求項3に記載の逆浸透膜処理方法。   The reverse osmosis membrane treatment method according to claim 3, wherein the scale inhibitor is phosphoric acid type or polymer type. 被処理水のpHが9以上であることを特徴とする請求項1〜4のいずれか1項に記載の逆浸透膜処理方法。   The reverse osmosis membrane treatment method according to any one of claims 1 to 4, wherein the pH of the water to be treated is 9 or more. 前記キレート防止剤を、1回/日〜1回/週の頻度で添加又は増量することを特徴とする請求項1〜5のいずれか1項に記載の逆浸透膜処理方法。   6. The reverse osmosis membrane treatment method according to any one of claims 1 to 5, wherein the chelating inhibitor is added or increased at a frequency of once / day to once / week. 被処理水を透過水と濃縮水に分離する逆浸透膜と、
前記被処理水にキレート剤を添加するキレート剤添加部と、
前記被処理水にキレート剤を間欠的に添加するか、又は前記被処理水にキレート剤を連続的に添加してその添加量を間欠的に増量するように、前記キレート剤添加部を制御する制御部と、
を有する逆浸透膜処理装置。
A reverse osmosis membrane for separating treated water into permeate and concentrated water;
A chelating agent addition unit for adding a chelating agent to the water to be treated;
The chelating agent addition unit is controlled so that the chelating agent is intermittently added to the water to be treated, or the chelating agent is continuously added to the water to be treated to increase the amount of the addition intermittently. A control unit;
A reverse osmosis membrane treatment apparatus.
JP2012093500A 2012-04-17 2012-04-17 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment apparatus Expired - Fee Related JP6106943B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012093500A JP6106943B2 (en) 2012-04-17 2012-04-17 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment apparatus
PCT/JP2013/061302 WO2013157549A1 (en) 2012-04-17 2013-04-16 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment device
TW102113545A TW201402198A (en) 2012-04-17 2013-04-17 Processing method of reverse osmosis membrane and processing device of reverse osmosis membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012093500A JP6106943B2 (en) 2012-04-17 2012-04-17 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment apparatus

Publications (2)

Publication Number Publication Date
JP2013220384A true JP2013220384A (en) 2013-10-28
JP6106943B2 JP6106943B2 (en) 2017-04-05

Family

ID=49383505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012093500A Expired - Fee Related JP6106943B2 (en) 2012-04-17 2012-04-17 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment apparatus

Country Status (3)

Country Link
JP (1) JP6106943B2 (en)
TW (1) TW201402198A (en)
WO (1) WO2013157549A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3329984A4 (en) * 2015-07-27 2019-03-13 Kurita Water Industries Ltd. Reverse osmosis membrane cleaning agent, cleaning liquid, and cleaning method
JP7407750B2 (en) 2020-09-09 2024-01-04 栗田工業株式会社 How to operate desalination equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5888365B2 (en) * 2014-05-19 2016-03-22 栗田工業株式会社 Concentration adjustment method for cooling water treatment chemical in circulating cooling water system, cooling drain water recovery method and water treatment equipment

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07328391A (en) * 1994-06-10 1995-12-19 Toray Ind Inc Treatment of reverse osmosis membrane separation apparatus
JPH10503414A (en) * 1994-04-06 1998-03-31 ゼノン、エンバイロンメンタル、インコーポレーテッド Reverse osmosis for water treatment enhanced by microfiltration
JPH1110150A (en) * 1997-06-24 1999-01-19 Kurita Water Ind Ltd Pure water preparation process
JP2000202445A (en) * 1999-01-13 2000-07-25 Kurita Water Ind Ltd Treatment of recovered water containing fluoride ion in semiconductor production process
JP2000300966A (en) * 1999-02-17 2000-10-31 Toray Ind Inc Membrane sterilization method and membrane separation device
JP2001038359A (en) * 1999-07-28 2001-02-13 Japan Organo Co Ltd Deionized water production and device therefor
JP2005111413A (en) * 2003-10-09 2005-04-28 Nippon Paint Co Ltd Recovery method for waste water of washing water in phosphate chemical treatment
JP2005118712A (en) * 2003-10-17 2005-05-12 Nomura Micro Sci Co Ltd Pure water manufacturing method
JP2006122787A (en) * 2004-10-27 2006-05-18 Kobelco Eco-Solutions Co Ltd Seawater desalting method
JP2008086849A (en) * 2006-09-29 2008-04-17 Toray Ind Inc Water treatment method and apparatus
JP2008238051A (en) * 2007-03-27 2008-10-09 Kurita Water Ind Ltd Organic matter treatment method and organic matter treatment apparatus
JP2010000455A (en) * 2008-06-20 2010-01-07 Japan Organo Co Ltd Supply control method and supply control apparatus for scale inhibitor
WO2010082491A1 (en) * 2009-01-14 2010-07-22 栗田工業株式会社 Inhibitor and method for preventing silica-based scale

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10503414A (en) * 1994-04-06 1998-03-31 ゼノン、エンバイロンメンタル、インコーポレーテッド Reverse osmosis for water treatment enhanced by microfiltration
JPH07328391A (en) * 1994-06-10 1995-12-19 Toray Ind Inc Treatment of reverse osmosis membrane separation apparatus
JPH1110150A (en) * 1997-06-24 1999-01-19 Kurita Water Ind Ltd Pure water preparation process
JP2000202445A (en) * 1999-01-13 2000-07-25 Kurita Water Ind Ltd Treatment of recovered water containing fluoride ion in semiconductor production process
JP2000300966A (en) * 1999-02-17 2000-10-31 Toray Ind Inc Membrane sterilization method and membrane separation device
JP2001038359A (en) * 1999-07-28 2001-02-13 Japan Organo Co Ltd Deionized water production and device therefor
JP2005111413A (en) * 2003-10-09 2005-04-28 Nippon Paint Co Ltd Recovery method for waste water of washing water in phosphate chemical treatment
JP2005118712A (en) * 2003-10-17 2005-05-12 Nomura Micro Sci Co Ltd Pure water manufacturing method
JP2006122787A (en) * 2004-10-27 2006-05-18 Kobelco Eco-Solutions Co Ltd Seawater desalting method
JP2008086849A (en) * 2006-09-29 2008-04-17 Toray Ind Inc Water treatment method and apparatus
JP2008238051A (en) * 2007-03-27 2008-10-09 Kurita Water Ind Ltd Organic matter treatment method and organic matter treatment apparatus
JP2010000455A (en) * 2008-06-20 2010-01-07 Japan Organo Co Ltd Supply control method and supply control apparatus for scale inhibitor
WO2010082491A1 (en) * 2009-01-14 2010-07-22 栗田工業株式会社 Inhibitor and method for preventing silica-based scale

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3329984A4 (en) * 2015-07-27 2019-03-13 Kurita Water Industries Ltd. Reverse osmosis membrane cleaning agent, cleaning liquid, and cleaning method
JP7407750B2 (en) 2020-09-09 2024-01-04 栗田工業株式会社 How to operate desalination equipment

Also Published As

Publication number Publication date
TW201402198A (en) 2014-01-16
JP6106943B2 (en) 2017-04-05
WO2013157549A1 (en) 2013-10-24

Similar Documents

Publication Publication Date Title
JP5757089B2 (en) Method and apparatus for treating water containing organic matter
KR101464022B1 (en) Method and apparatus for treating water containing organic matter
AU2008233867B2 (en) Cleaning agent for separation membrane, process for preparing the cleaning agent, and cleaning method
KR101671168B1 (en) Slime control agent for activated carbon, method of passing water through activated-carbon device, and method and apparatus for treating organic-containing water
JP2007253115A (en) Organic matter-containing wastewater treatment method and apparatus
JP2014014738A (en) Method and apparatus for treating organic wastewater
EP1424311A1 (en) Method of multi-stage reverse osmosis treatment
JP5050605B2 (en) Organic substance processing method and organic substance processing apparatus
JP4496795B2 (en) Method and apparatus for treating wastewater containing organic matter
JP6106943B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment apparatus
JP2018143919A (en) Device and method for treating fluorine-containing water, and membrane filtration system
JP2007244930A (en) Treatment method and treatment apparatus for organic substance-containing waste water
JP4899565B2 (en) Water treatment apparatus and water treatment method
JP3906855B2 (en) Method and apparatus for treating wastewater containing organic matter and oxidizing agent
CN102553453A (en) Scale inhibitor for reverse osmosis membrane
JP2018130717A (en) Processing method and system for treatment of desulfurization waste water
JP2007260494A (en) Surfactant-containing waste water treatment method
KR101098679B1 (en) Method of treating waste water containing organic substance and treating apparatus
JP2014180586A (en) Method for preventing generation of scale in reverse osmosis membrane treatment and scale inhibitor for reverse osmosis membrane treatment
JP2005246158A (en) Method and system for desalinating seawater
JP2001104955A (en) Pure water making method
JP2013119071A (en) Scale generation prevention method in reverse osmotic membrane treatment and reverse osmotic membrane-treating scale prevention agent
JP3729260B2 (en) Water treatment method using reverse osmosis membrane
JP5300896B2 (en) Water treatment equipment
JP2016107216A (en) Apparatus and method for treating waste water containing peracetic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R150 Certificate of patent or registration of utility model

Ref document number: 6106943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees