JP2001104955A - Pure water making method - Google Patents

Pure water making method

Info

Publication number
JP2001104955A
JP2001104955A JP28975399A JP28975399A JP2001104955A JP 2001104955 A JP2001104955 A JP 2001104955A JP 28975399 A JP28975399 A JP 28975399A JP 28975399 A JP28975399 A JP 28975399A JP 2001104955 A JP2001104955 A JP 2001104955A
Authority
JP
Japan
Prior art keywords
water
membrane separation
ion
membrane
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28975399A
Other languages
Japanese (ja)
Inventor
Motomu Koizumi
求 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP28975399A priority Critical patent/JP2001104955A/en
Publication of JP2001104955A publication Critical patent/JP2001104955A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily and efficiently make pure water by RO membrane separation treatment from raw water consisting of Ca ion-containing water such as industrial water and F ion-containing water such as waste water from an electronic part producing process without requiring complicated pretreatment while preventing the formation of CaF2 scale. SOLUTION: Ca ion-containing water and F ion-containing water are mixed and the mixed water is adjusted to pH 6 or less to be passed through an RO membrane separator 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は純水の製造方法に係
り、特に、工業用水等のカルシウム(Ca)イオン含有
水と電子部品製造排水等のフッ素(F)イオン含有水と
を原水として純水を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing pure water, and more particularly to a method for purifying water containing calcium (Ca) ions such as industrial water and water containing fluorine (F) ions such as waste water for producing electronic parts as raw water. It relates to a method for producing water.

【0002】[0002]

【従来の技術】半導体や液晶表示板等の電子部品製造工
程等に使用される超純水は、一般に膜分離及びイオン交
換からなる一次純水製造工程と、紫外線酸化、混床式イ
オン交換及び限外濾過からなる二次純水製造工程(サブ
システムとも呼ばれる)とを経て製造される。このよう
な超純水製造工程には、電子部品製造排水、即ち、当該
電子部品製造工程から排出された使用済超純水が回収さ
れて原水として供給され、原水の不足分を補うために、
水道水(市水)、地下水(井戸水)、河川水などの工業
用水が補給水として供給されている。
2. Description of the Related Art Ultrapure water used in the production process of electronic parts such as semiconductors and liquid crystal display panels generally comprises a primary pure water production process consisting of membrane separation and ion exchange, ultraviolet oxidation, mixed-bed ion exchange, and the like. It is manufactured through a secondary pure water manufacturing process (also called a subsystem) consisting of ultrafiltration. In such ultrapure water production process, electronic component production wastewater, that is, used ultrapure water discharged from the electronic component production process is collected and supplied as raw water, in order to compensate for the shortage of raw water,
Industrial water, such as tap water (city water), groundwater (well water), and river water, is supplied as makeup water.

【0003】この場合、工業用水及び電子部品製造排水
を混合すると工業用水中のCaイオンと電子部品製造排
水中のFイオンとが反応して、フッ化カルシウム(Ca
)のコロイドが生成し、膜分離装置において濃縮さ
れることによりスケール化する。即ち、CaFは溶解
度積KSP=[Ca2+][F]=10−10と著し
く小さく、膜分離処理で濃縮されるとCaFが析出し
てスケール化する。CaFスケールが分離膜に付着す
ると、薬品洗浄を行っても容易に性能が回復せず、処理
水量が低下するとともに、膜面濃縮上昇により、処理水
質が低下する。このため、従来においては、工業用水と
電子部品製造排水とは混合せずに、別々の一次純水製造
工程で処理した後、二次純水製造工程に送給して処理し
ているために、処理装置及び処理操作が複雑になるとい
う欠点があった。
In this case, when industrial water and wastewater for producing electronic parts are mixed, Ca ions in the industrial water and F ions in the wastewater for producing electronic parts react to form calcium fluoride (Ca).
A colloid of F 2 ) is produced and scaled by concentration in a membrane separator. That is, CaF 2 has a remarkably small solubility product K SP = [Ca 2+ ] [F ] = 10 −10, and when concentrated by membrane separation treatment, CaF 2 precipitates and is scaled. When the CaF 2 scale adheres to the separation membrane, the performance does not easily recover even with chemical cleaning, and the amount of treated water decreases, and the quality of treated water decreases due to an increase in membrane surface concentration. For this reason, conventionally, industrial water and electronic component production wastewater are not mixed, but are treated in separate primary pure water production processes and then sent to a secondary pure water production process for treatment. However, there is a disadvantage that the processing apparatus and the processing operation are complicated.

【0004】この問題を解決し、電子部品製造排水と工
業用水とを混合して処理する純水製造技術として、電子
部品製造排水をアニオン交換樹脂で処理してFイオンを
除去し、工業用水をカチオン交換樹脂で処理してCaイ
オンを除去し、その後両処理水を混合した後、逆浸透
(RO)膜分離装置で脱イオン処理する方法が提案され
ている(特開平7−39871号公報,同10−272
465号公報)。
[0004] As a pure water production technology for solving this problem and mixing and treating the electronic component production wastewater and industrial water, the electronic component production wastewater is treated with an anion exchange resin to remove F ions, and the industrial water is removed. A method has been proposed in which a Ca ion is removed by treating with a cation exchange resin, and then both treated waters are mixed and then deionized with a reverse osmosis (RO) membrane separator (Japanese Patent Laid-Open No. 7-39871, 10-272
465).

【0005】このように原水中のFイオン及びCaイオ
ンを予め除去した後混合することにより、RO膜分離装
置でのCaFスケールの生成は防止され、長期に亘り
安定な処理を行える。
[0005] By mixing after removing the F ions and Ca ions in the raw water in advance, generation of CaF 2 scale in the RO membrane separation apparatus is prevented, and stable treatment can be performed for a long period of time.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、原水を
それぞれイオン交換樹脂で処理する方法でも、それぞれ
の処理系統を設ける必要があり、また、イオン交換樹脂
の再生の問題もあることから、このようなイオン交換処
理を行うことなく、より簡単な方法でCaFスケール
の生成を抑制して安定したRO膜分離処理を行える純水
製造法の開発が望まれている。
However, even in the method of treating raw water with each ion exchange resin, it is necessary to provide respective treatment systems, and there is a problem of regeneration of the ion exchange resin. It is desired to develop a pure water production method capable of performing a stable RO membrane separation treatment by suppressing the generation of CaF 2 scale by a simpler method without performing an ion exchange treatment.

【0007】なお、キレート剤や分散剤を添加すること
によりCaFスケールの生成をある程度防止できる
が、キレート剤で十分な効果を得るためには、多量に添
加する必要があり、また、分散剤では効果が不安定であ
り、スケール生成を確実に防止することができない。
Although the addition of a chelating agent or a dispersing agent can prevent the formation of CaF 2 scale to some extent, in order to obtain a sufficient effect with the chelating agent, it is necessary to add a large amount. In this case, the effect is unstable, and the generation of scale cannot be reliably prevented.

【0008】本発明は、上記従来の実情に鑑みてなされ
たものであり、工業用水等のCaイオン含有水と電子部
品製造排水等のFイオン含有水とを原水として、煩雑な
前処理を必要とすることなくCaFスケールの生成を
防止して、RO膜分離処理により容易かつ効率的に純水
を製造する方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional circumstances, and requires a complicated pretreatment using water containing Ca ions such as industrial water and water containing F ions such as wastewater for manufacturing electronic components as raw water. An object of the present invention is to provide a method for easily and efficiently producing pure water by RO membrane separation treatment while preventing the generation of CaF 2 scale without reducing the water content.

【0009】[0009]

【課題を解決するための手段】本発明の純水の製造方法
は、カルシウムイオン含有水とフッ素イオン含有水とを
原水として純水を製造する方法において、該カルシウム
イオン含有水とフッ素イオン含有水とを混合し、pHを
6以下に調整した後逆浸透膜分離装置に通水することを
特徴とする。
The method for producing pure water according to the present invention is directed to a method for producing pure water using water containing calcium ions and water containing fluorine ions as raw water. And adjusting the pH to 6 or less, and then passing the water through a reverse osmosis membrane separation device.

【0010】RO膜によるFイオンの除去率はpHに依
存し、pH6以下であれば除去率96%以下、特にpH
5.5以下であれば90%以下になる。
[0010] The removal rate of F ions by the RO membrane depends on the pH.
If it is 5.5 or less, it becomes 90% or less.

【0011】本発明では、Caイオン含有水とFイオン
含有水とを混合してRO膜分離処理するに当たり、pH
6以下とすることで、RO膜でのFイオンの除去率を低
く抑え、Caイオンのみを除去し、Fイオンを透過水側
に透過させてFイオンの濃縮を防止する。これにより、
濃縮水側では、Caイオンは濃縮されるが、Fイオンは
殆ど濃縮されないために、CaFスケールの生成は防
止される。
In the present invention, when mixing RO water containing Ca ions and water containing F ions and performing RO membrane separation treatment, pH
By setting the ratio to 6 or less, the removal rate of F ions in the RO membrane is suppressed low, only Ca ions are removed, and F ions are transmitted to the permeated water side to prevent F ions from being concentrated. This allows
On the concentrated water side, Ca ions are concentrated, but F ions are hardly concentrated, so that the generation of CaF 2 scale is prevented.

【0012】このRO膜分離装置は、Caイオンの除去
を目的としており、他の塩類の除去は必要とされないこ
とから、低圧力で運転することができ、膜フラックスの
低下の少ない、ナトリウム(Na)イオン除去率が98
%以下の低脱塩率のRO膜を用いるのが好ましい。この
ような低脱塩率のRO膜を用いることにより、Fイオン
の除去率は更に低減し、Fイオンの濃縮がより一層防止
されるため、CaFスケールの生成を確実に防止する
ことができる。
This RO membrane separation apparatus is intended to remove Ca ions and does not require removal of other salts. Therefore, the RO membrane separation apparatus can be operated at a low pressure and has a small decrease in membrane flux. ) Ion removal rate is 98
%, It is preferable to use an RO membrane having a low desalination ratio of not more than 10%. By using the RO membrane having such a low desalting rate, the removal rate of F ions is further reduced and the concentration of F ions is further prevented, so that the generation of CaF 2 scale can be surely prevented. .

【0013】RO膜分離装置でCaイオンを除去した透
過水は、pH6〜10に調整した後、更にRO膜分離装
置及び/又は電気再生式脱イオン装置に通水して脱イオ
ン処理することにより高純度の純水を得ることができ
る。
The permeated water from which Ca ions have been removed by the RO membrane separator is adjusted to pH 6 to 10, and then passed through an RO membrane separator and / or an electric regeneration type deionizer to be deionized. High-purity pure water can be obtained.

【0014】[0014]

【発明の実施の形態】以下に図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0015】図1は本発明の純水の製造方法の実施の形
態を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of the method for producing pure water of the present invention.

【0016】本発明において、原水とするCaイオン含
有水は、水道水(市水)、地下水(井戸水)、河川水な
どの工業用水である。また、Fイオン含有水は、半導体
製造排水、液晶製造排水等の電子部品製造排水である。
In the present invention, the Ca ion-containing water used as raw water is industrial water such as tap water (city water), ground water (well water), river water and the like. Further, the F ion-containing water is electronic component production wastewater such as semiconductor production wastewater and liquid crystal production wastewater.

【0017】本発明では、これらのCaイオン含有水及
びFイオン含有水を必要に応じてそれぞれ除濁装置や有
機物分解装置で前処理した後混合し、pH調整を行って
RO膜分離処理する。この除濁、有機物分解処理は、C
aイオン含有水とFイオン含有水との混合後に行っても
良い。なお、Caイオン含有水とFイオン含有水との混
合割合には特に制限はない。
In the present invention, the Ca ion-containing water and the F ion-containing water are pretreated, if necessary, by a turbidizer or an organic matter decomposer, and then mixed, followed by pH adjustment and RO membrane separation treatment. This turbidity and organic matter decomposition treatment is C
It may be performed after mixing the a-ion-containing water and the F-ion-containing water. The mixing ratio of the Ca ion-containing water and the F ion-containing water is not particularly limited.

【0018】Caイオン含有水とFイオン含有水との混
合水はpH6以下に調整してRO膜分離装置1に通水す
る。この混合水のpHが6を超えるとFイオンがRO膜
を透過せず、Caイオン及びFイオンが共に濃縮されて
CaFスケールが生成する。この混合水のpHが過度
に低いとCaやNaイオン等の除去率が低下すると共
に、装置の構成材料の腐食の問題が生じることから、p
Hは3〜6、特に4〜5に調整するのが好ましい。この
混合水のpH調整には、塩酸、硫酸等の鉱酸を用いるの
が好ましいが、これらに限定されるものではない。
The mixed water of Ca ion-containing water and F ion-containing water is adjusted to pH 6 or less and passed through the RO membrane separation device 1. When the pH of the mixed water exceeds 6, F ions do not permeate the RO membrane, and both Ca ions and F ions are concentrated to form CaF 2 scale. If the pH of the mixed water is excessively low, the removal rate of Ca, Na ions, and the like decreases, and a problem of corrosion of constituent materials of the apparatus occurs.
H is preferably adjusted to 3 to 6, particularly 4 to 5. For the pH adjustment of the mixed water, it is preferable to use a mineral acid such as hydrochloric acid or sulfuric acid, but it is not limited to these.

【0019】RO膜分離装置1のRO膜としては、低圧
力で運転することができ、膜フラックス低下の問題が少
なく、また、Fイオンを透過させてその濃縮を防止する
点から、Na除去率98%以下の低脱塩率のRO膜を用
いるのが好ましく、このようなRO膜としては、Na除
去率50〜98%のルーズRO膜と称されるもの、具体
的には、日東電工社製NTR−7250、同729H
F、東レ社製SU−500等を用いることができる。
The RO membrane of the RO membrane separation apparatus 1 can be operated at a low pressure, has a low problem of membrane flux reduction, and has a high Na removal rate because it allows F ions to permeate and prevent its concentration. It is preferable to use an RO film having a low desalination rate of 98% or less, and such an RO film is a so-called loose RO film having a Na removal rate of 50 to 98%, specifically, Nitto Denko Corporation NTR-7250, 729H
F, SU-500 manufactured by Toray Industries, Inc. or the like can be used.

【0020】このRO膜分離装置1におけるRO膜分離
処理は、必要に応じて濃縮水の一部を循環処理し、水回
収率70〜90%程度で行うのが好ましい。
The RO membrane separation treatment in the RO membrane separation apparatus 1 is preferably performed at a water recovery rate of about 70 to 90% by circulating a part of the concentrated water as necessary.

【0021】なお、RO膜分離装置1におけるスケール
生成をより一層確実に防止するために、RO膜分離装置
1の給水には、必要に応じて分散剤やキレート剤を添加
しても良い。分散剤としては、Ca塩の分散効果のある
ものであれば良く、特に制限はないが、ホスホン酸、ア
クリル酸、重合リン酸系分散剤等が好ましく、通常の場
合1〜5ppm程度添加される。また、キレート剤とし
ては、Ca又はFとキレート作用のあるものであれば良
く、特に制限はないが、エチレンジアミン四酢酸ナトリ
ウム等が好適に用いられ、通常の場合10〜30ppm
程度添加される。
In order to more reliably prevent the formation of scale in the RO membrane separation device 1, a dispersant or a chelating agent may be added to the feed water of the RO membrane separation device 1 if necessary. The dispersant is not particularly limited as long as it has a dispersing effect of Ca salt, but phosphonic acid, acrylic acid, polymerized phosphoric acid-based dispersant and the like are preferable, and usually about 1 to 5 ppm is added. . The chelating agent is not particularly limited as long as it has a chelating effect with Ca or F, and sodium ethylenediaminetetraacetate or the like is suitably used, and usually 10 to 30 ppm
To some extent.

【0022】また、このRO膜分離装置1の前段又は後
段に脱炭酸装置を設け、脱炭酸処理しても良い。この脱
炭酸装置としては、被処理水と空気とを充填物に通して
向流接触させる脱炭酸塔や、膜脱気装置、真空脱気装
置、窒素脱気装置、加温脱気装置等の通常純水の製造に
使用されるものを用いることができる。この脱炭酸装置
の給水のpHは4〜5.5に調整するのが好ましい。
A decarbonation device may be provided before or after the RO membrane separation device 1 to perform a decarbonation treatment. Examples of the decarbonation device include a decarbonation tower in which water to be treated and air are brought into countercurrent contact with each other through a packing, a membrane deaerator, a vacuum deaerator, a nitrogen deaerator, a heated deaerator, and the like. What is usually used for the production of pure water can be used. It is preferable to adjust the pH of the feed water of this decarbonation device to 4 to 5.5.

【0023】RO膜分離装置1の透過水は、Caイオン
は除去されているが、Fイオンやその他のイオンが含有
されているため、これを更にRO膜分離装置又は電気再
生式脱イオン装置等の脱イオン装置2で脱イオン処理す
る。この脱イオン装置2としてRO膜分離装置を用いる
場合、このRO膜分離装置のRO膜には、Na除去率9
8%以上、特に99%以上の高脱塩率のRO膜を用いる
のが好ましく、具体的には、日東電工社製ES−20、
同NTR−759、東レ社製SU−700、同SUL−
10等を用いることができる。このRO膜分離装置の給
水のpHが低過ぎると、Fイオンを除去できず、pHが
高過ぎると脱塩性能の低下、炭酸カルシウム等のスケー
ル生成の問題を生じるため、水酸化ナトリウムや水酸化
カリウム等のアルカリ剤の添加によりpH6〜10、特
にpH7〜8に調整するのが好ましい。
The permeated water of the RO membrane separation apparatus 1 has Ca ions removed therefrom, but contains F ions and other ions, so that it can be further added to an RO membrane separation apparatus or an electric regeneration type deionization apparatus. Is deionized by the deionization apparatus 2 described above. When an RO membrane separator is used as the deionizer 2, the RO membrane of the RO membrane separator has a Na removal rate of 9%.
It is preferable to use a RO membrane having a high desalination rate of 8% or more, particularly 99% or more. Specifically, ES-20 manufactured by Nitto Denko Corporation,
NTR-759, SU-700 manufactured by Toray, SUL-
10 or the like can be used. If the pH of the feed water of the RO membrane separation device is too low, F ions cannot be removed, and if the pH is too high, problems such as a decrease in desalination performance and scale formation such as calcium carbonate may occur. The pH is preferably adjusted to 6 to 10, particularly 7 to 8, by adding an alkali agent such as potassium.

【0024】また、脱イオン装置2として電気再生式脱
イオン装置を用いる場合、市販されている一般的な電気
再生式脱イオン装置を用いることができ、その給水のp
H条件も上記のRO膜分離装置を用いる場合と同様であ
る。ただし、電気再生式脱イオン装置では、フッ酸の生
成による電極の腐食の問題があるため、脱イオン装置2
としては、電気再生式脱イオン装置よりもRO膜分離装
置を用いるのが有利である。
When an electric regeneration type deionization apparatus is used as the deionization apparatus 2, a commercially available general electric regeneration type deionization apparatus can be used.
The H condition is also the same as in the case where the above RO membrane separation apparatus is used. However, in the electric regeneration type deionization apparatus, there is a problem of electrode corrosion due to generation of hydrofluoric acid.
It is more advantageous to use a RO membrane separation device than an electric regeneration type deionization device.

【0025】[0025]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0026】実施例1 市水を限外濾過膜分離装置で除濁した水(Ca:16p
pm,pH:7.4,導電率:130μS/cm)をC
aイオン含有水とし、純水にフッ酸と水酸化ナトリウム
を添加した模擬排水(F:10ppm,pH:5.0,
導電率:25μS/cm)をFイオン含有水とし、市水
100L/hr,模擬排水300L/hrで混合した水
(Ca:4ppm,F:7.5ppm,pH:6.4,
導電率:61μS/cm)にHClを添加してpH5.
0に調整し、RO膜分離処理した。
Example 1 Water (Ca: 16p) in which city water was turbidized by an ultrafiltration membrane separator
pm, pH: 7.4, conductivity: 130 μS / cm)
Simulated wastewater containing hydrofluoric acid and sodium hydroxide added to pure water (F: 10 ppm, pH: 5.0,
Conductivity: 25 μS / cm) was used as F ion-containing water, and water (Ca: 4 ppm, F: 7.5 ppm, pH: 6.4) mixed with city water 100 L / hr and simulated wastewater 300 L / hr.
(Conductivity: 61 μS / cm) by adding HCl to pH5.
It was adjusted to 0 and the RO membrane separation treatment was performed.

【0027】RO膜分離装置のRO膜としては、Na除
去率97%の日東電工社製NTR−729HR(2.5
インチ)を用い、圧力12kg/cm(=1.2MP
a)で通水し、水回収率80%となるように濃縮水の一
部を循環処理した。
As the RO membrane of the RO membrane separation apparatus, NTR-729HR (2.5%, manufactured by Nitto Denko Corporation) having a Na removal rate of 97% was used.
Inch) and a pressure of 12 kg / cm 2 (= 1.2MP)
Water was passed in a), and a part of the concentrated water was circulated so that the water recovery rate was 80%.

【0028】このときの透過水のF濃度を調べてF除去
率を求め、結果を表1に示した。また、30日間運転を
継続した後の膜フラックス維持率(30日後の膜フラッ
クス/運転開始時の膜フラックス)を求め、結果を表1
に併記した。
At this time, the F concentration of the permeated water was examined to determine the F removal rate, and the results are shown in Table 1. Further, the film flux maintenance rate after the operation was continued for 30 days (film flux after 30 days / film flux at the start of operation) was determined.
It was also described in.

【0029】実施例2 RO膜としてNa除去率99%の日東電工社製NTR−
759HF(2.5インチ)を用い、圧力15kg/c
(≒1.5MPa)で通水したこと以外は実施例1
と同様に処理を行い、F除去率と膜フラックス維持率を
調べ、結果を表1に示した。
Example 2 NTR-produced by Nitto Denko with a Na removal rate of 99% was used as the RO film.
759HF (2.5 inch), pressure 15kg / c
Example 1 except that water was passed at m 2 (≒ 1.5 MPa).
, And the F removal rate and the film flux retention rate were examined. The results are shown in Table 1.

【0030】比較例1 pH調整を行わず、pH6.4の混合水をそのままRO
膜分離装置に通水したこと以外は実施例1と同様に処理
を行い、F除去率と膜フラックス維持率を調べ、結果を
表1に示した。
Comparative Example 1 A mixture of pH 6.4 and RO
The same treatment as in Example 1 was performed except that water was passed through the membrane separator, and the F removal rate and the membrane flux retention rate were examined. The results are shown in Table 1.

【0031】比較例2 pH調整を行わず、pH6.4の混合水をそのままRO
膜分離装置に通水したこと以外は実施例2と同様に処理
を行い、F除去率と膜フラックス維持率を調べ、結果を
表1に示した。
Comparative Example 2 The pH-adjusted mixed water of pH 6.4 was directly used for RO
The same treatment as in Example 2 was performed except that water was passed through the membrane separator, and the F removal rate and the membrane flux retention rate were examined. The results are shown in Table 1.

【0032】[0032]

【表1】 [Table 1]

【0033】表1より、RO膜分離装置の給水のpHを
6以下とすることにより、F除去率が低下し、Fイオン
の濃縮及びCaFスケールの生成が防止されるため、
膜フラックスを長期に亘り高く維持することができるこ
とがわかる。また、実施例1,2を比較すると、Na除
去率98%以下のRO膜を用いたほうが、より好ましい
結果が得られることがわかる。
From Table 1, it can be seen that by setting the pH of the feed water of the RO membrane separation device to 6 or less, the F removal rate is reduced, and the concentration of F ions and the formation of CaF 2 scale are prevented.
It can be seen that the film flux can be kept high for a long time. Comparing Examples 1 and 2, it can be seen that more favorable results can be obtained by using an RO film having a Na removal rate of 98% or less.

【0034】なお、比較例2において、30日間運転を
継続した後にRO膜分離装置を解体してRO膜面をED
X分析したところ、CaとFが検出され、CaFスケ
ールが生成していることが確認された。
In Comparative Example 2, after the operation was continued for 30 days, the RO membrane separation device was disassembled and the RO membrane surface was subjected to ED.
As a result of X analysis, Ca and F were detected, and it was confirmed that CaF 2 scale was generated.

【0035】実施例3,4 実施例1,2で得られたRO膜分離装置の透過水にそれ
ぞれNaOHを添加してpH8に調整し、RO膜として
日東電工社製NTR−759HR(2.5インチ)を用
いた2段目のRO膜分離装置に圧力15kgf/cm
(=15MPa)、水回収率90%で通水して処理し、
各RO膜分離装置の透過水のF濃度と導電率を調べ、結
果を表2に示した。
Examples 3 and 4 NaOH was added to the permeated water of the RO membrane separation apparatus obtained in Examples 1 and 2 to adjust the pH to 8, and NTR-759HR (2.5 Nitto Denko Corporation) was used as the RO membrane. 15 kgf / cm 2 at the second stage RO membrane separation device using
(= 15MPa), treated by passing water at a water recovery rate of 90%,
The F concentration and conductivity of the permeated water of each RO membrane separation device were examined, and the results are shown in Table 2.

【0036】比較例3 2段目のRO膜分離装置の給水のpH調整を行わず、p
H5.3の1段目のRO膜分離装置の透過水をそのまま
通水したこと以外は実施例4と同様に処理を行い、各R
O膜分離装置の透過水のF濃度と導電率を調べ、結果を
表2に示した。
Comparative Example 3 The pH of the feed water of the second stage RO membrane separation device was not adjusted, and p
The same treatment as in Example 4 was performed except that the permeated water of the first-stage RO membrane separation device of H5.3 was passed as it was, and each R was separated.
The F concentration and conductivity of the permeated water of the O membrane separator were examined, and the results are shown in Table 2.

【0037】[0037]

【表2】 [Table 2]

【0038】表2より明らかなように、1段目のRO膜
分離装置の透過水をpH調整して更にRO膜分離処理す
ることにより、高純度の純水を得ることができる。
As is clear from Table 2, high-purity pure water can be obtained by adjusting the pH of the permeated water of the first-stage RO membrane separation apparatus and further subjecting the permeated water to RO membrane separation treatment.

【0039】[0039]

【発明の効果】以上詳述した通り、本発明の純水の製造
方法によれば、工業用水等のCaイオン含有水と電子部
品製造排水等のFイオン含有水とを原水として、煩雑な
前処理を必要とすることなくCaFスケールの生成を
防止して、RO膜分離処理により容易かつ効率的に純水
を製造することができる。
As described in detail above, according to the method for producing pure water of the present invention, water containing Ca ions such as industrial water and water containing F ions such as waste water for producing electronic parts are used as raw water, which is a complicated process. The generation of CaF 2 scale can be prevented without the need for treatment, and pure water can be easily and efficiently produced by RO membrane separation treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の純水の製造方法の実施の形態を示す系
統図である。
FIG. 1 is a system diagram showing an embodiment of a method for producing pure water of the present invention.

【符号の説明】[Explanation of symbols]

1 RO膜分離装置 2 脱イオン装置 1 RO membrane separation device 2 Deionization device

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年10月26日(1999.10.
26)
[Submission date] October 26, 1999 (1999.10.
26)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Correction target item name] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0027】RO膜分離装置のRO膜としては、Na除
去率97%の日東電工社製NTR−729H(2.5
インチ)を用い、圧力12kg/cm(=1.2MP
a)で通水し、水回収率80%となるように濃縮水の一
部を循環処理した。
As the RO membrane of the RO membrane separation apparatus, NTR-729H F (2.5%, manufactured by Nitto Denko Corporation) having a Na removal rate of 97% was used.
Inch) and a pressure of 12 kg / cm 2 (= 1.2MP)
Water was passed in a), and a part of the concentrated water was circulated so that the water recovery rate was 80%.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Correction target item name] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0029】実施例2 RO膜としてNa除去率99%の日東電工社製NTR−
759H(2.5インチ)を用い、圧力15kg/c
(≒1.5MPa)で通水したこと以外は実施例1
と同様に処理を行い、F除去率と膜フラックス維持率を
調べ、結果を表1に示した。
Example 2 NTR-produced by Nitto Denko with a Na removal rate of 99% was used as the RO film.
759H R (2.5 inch), pressure 15kg / c
Example 1 except that water was passed at m 2 (≒ 1.5 MPa).
, And the F removal rate and the film flux retention rate were examined. The results are shown in Table 1.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA03 GA04 GA05 KA02 KA03 KA52 KA55 KA57 KA63 KB14 KB30 KD03 KD27 KD30 KE02P KE05P KE07P KE12P KE13P KE15R KE19P KE30P MB06 PA01 PB04 PB05 PB06 PB08 PB27 PB28 PC03  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D006 GA03 GA04 GA05 KA02 KA03 KA52 KA55 KA57 KA63 KB14 KB30 KD03 KD27 KD30 KE02P KE05P KE07P KE12P KE13P KE15R KE19P KE30P MB06 PA01 PB04 PB05P06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 カルシウムイオン含有水とフッ素イオン
含有水とを原水として純水を製造する方法において、該
カルシウムイオン含有水とフッ素イオン含有水とを混合
し、pHを6以下に調整した後、逆浸透膜分離装置に通
水することを特徴とする純水の製造方法。
1. A method for producing pure water using calcium ion-containing water and fluorine ion-containing water as raw water, wherein the calcium ion-containing water and the fluorine ion-containing water are mixed and the pH is adjusted to 6 or less. A method for producing pure water, comprising passing water through a reverse osmosis membrane separation device.
【請求項2】 請求項1において、該逆浸透膜分離装置
がナトリウムイオン除去率98%以下の逆浸透膜を使用
した逆浸透膜分離装置であることを特徴とする純水の製
造方法。
2. The method according to claim 1, wherein said reverse osmosis membrane separation device is a reverse osmosis membrane separation device using a reverse osmosis membrane having a sodium ion removal rate of 98% or less.
【請求項3】 請求項1又は2において、該逆浸透膜分
離装置の透過水をpH6〜10に調整した後、逆浸透膜
分離装置及び/又は電気再生式脱イオン装置に通水する
ことを特徴とする純水の製造方法。
3. The method according to claim 1, wherein the permeated water of the reverse osmosis membrane separator is adjusted to pH 6 to 10 and then passed through a reverse osmosis membrane separator and / or an electric regeneration type deionizer. Characteristic pure water production method.
JP28975399A 1999-10-12 1999-10-12 Pure water making method Pending JP2001104955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28975399A JP2001104955A (en) 1999-10-12 1999-10-12 Pure water making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28975399A JP2001104955A (en) 1999-10-12 1999-10-12 Pure water making method

Publications (1)

Publication Number Publication Date
JP2001104955A true JP2001104955A (en) 2001-04-17

Family

ID=17747324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28975399A Pending JP2001104955A (en) 1999-10-12 1999-10-12 Pure water making method

Country Status (1)

Country Link
JP (1) JP2001104955A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103260A (en) * 2001-09-28 2003-04-08 Nomura Micro Sci Co Ltd Method for processing wastewater containing fluoride
JP2011031146A (en) * 2009-07-30 2011-02-17 Miura Co Ltd Water treatment system
JP2013123673A (en) * 2011-12-14 2013-06-24 Sasakura Engineering Co Ltd Method for treating hydrofluoric acid wastewater
JP2014213264A (en) * 2013-04-25 2014-11-17 栗田工業株式会社 Method and device for treating fluoride-containing water
CN110510774A (en) * 2019-09-04 2019-11-29 煤科集团杭州环保研究院有限公司 A kind of processing method and system of the fluorine-containing mine water of high salinity
WO2023234047A1 (en) * 2022-06-02 2023-12-07 栗田工業株式会社 Treatment method for fluorine- and aluminum-containing water

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003103260A (en) * 2001-09-28 2003-04-08 Nomura Micro Sci Co Ltd Method for processing wastewater containing fluoride
JP2011031146A (en) * 2009-07-30 2011-02-17 Miura Co Ltd Water treatment system
JP2013123673A (en) * 2011-12-14 2013-06-24 Sasakura Engineering Co Ltd Method for treating hydrofluoric acid wastewater
JP2014213264A (en) * 2013-04-25 2014-11-17 栗田工業株式会社 Method and device for treating fluoride-containing water
CN110510774A (en) * 2019-09-04 2019-11-29 煤科集团杭州环保研究院有限公司 A kind of processing method and system of the fluorine-containing mine water of high salinity
WO2023234047A1 (en) * 2022-06-02 2023-12-07 栗田工業株式会社 Treatment method for fluorine- and aluminum-containing water
JP7400878B1 (en) 2022-06-02 2023-12-19 栗田工業株式会社 Treatment method for water containing fluorine and aluminum

Similar Documents

Publication Publication Date Title
JP2008223115A (en) Method for treating salt water
US20030173296A1 (en) High recovery reverse osmosis process and apparatus
WO2015198438A1 (en) Method and device for treating fluoride-containing water
JPH11244853A (en) Production of pure water
JP5692278B2 (en) Method and apparatus for treating fluoride-containing water
TWI613153B (en) Treatment device for ammonia-containing wastewater and treatment method for ammonia-containing wastewater
JP3788145B2 (en) Water treatment method and water treatment apparatus
JP3137831B2 (en) Membrane processing equipment
JP3656458B2 (en) Pure water production method
JP2001104955A (en) Pure water making method
JP2000051665A (en) Desalination method
JP2000015257A (en) Apparatus and method for making high purity water
WO2021215099A1 (en) Waste water treatment method, ultrapure water production method, and waste water treatment apparatus
WO2013157549A1 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment device
JP3081079B2 (en) Decarbonation equipment and pure water production equipment incorporating the equipment
WO2002026362A1 (en) High recovery reverse osmosis process and apparatus
JP2000202445A (en) Treatment of recovered water containing fluoride ion in semiconductor production process
JPH11267645A (en) Production of pure water
JPH11114576A (en) Deionized water producing device
JP3622407B2 (en) Water treatment method
JP3885319B2 (en) Pure water production equipment
JP3259557B2 (en) How to remove organic matter
JPH10272465A (en) Pure water making apparatus
JP3444214B2 (en) Reverse osmosis membrane desalting method
JP2001246385A (en) Treatment process of water containing fluorine