JPH10272465A - Pure water making apparatus - Google Patents

Pure water making apparatus

Info

Publication number
JPH10272465A
JPH10272465A JP7783097A JP7783097A JPH10272465A JP H10272465 A JPH10272465 A JP H10272465A JP 7783097 A JP7783097 A JP 7783097A JP 7783097 A JP7783097 A JP 7783097A JP H10272465 A JPH10272465 A JP H10272465A
Authority
JP
Japan
Prior art keywords
water
treatment
treatment system
concentrated
industrial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7783097A
Other languages
Japanese (ja)
Inventor
Motomu Koizumi
求 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP7783097A priority Critical patent/JPH10272465A/en
Publication of JPH10272465A publication Critical patent/JPH10272465A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable recovery and reuse to improve a water recovery rate by mixing an industrial water treating system for decationization treatment and a waste electronic member manufacturing water treating system for deanionization treatment, installing a reverse osmosis membrane separator in a deionization device, and returning the concentrated water thereof to the waste electronic member manufacturing water treating system. SOLUTION: In an industrial water treating system A, after industrial water is subjected to cation exchange treatment in a cation exchange column 1, decarboxylation treatment is made in a decarboxylation column 2. On the other hand, in a waste electronic member manufacturing water treating system B, after waste electronic member manufacturing water and concentrated water of a reverse osmosis(RO) membrane separator 5 are treated in an active carlbon column 3, anion exchange treatment is made in an anion exchange column 4. These acidic and alkaline treated water are mixed and subjected to deionization treatment in the RO membrane separator 5. Concentrated water of the RO separator 5 is mainly anion-concentrated water. Therefore, this concentrated water is subjected to anion exchange treatment in the waste electronic member manufacturing water treating system B, allowing it to have reusable quality.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、工業用水と電子部
材製造排水を原水として純水を製造するための純水製造
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pure water producing apparatus for producing pure water using industrial water and electronic component production waste water as raw water.

【0002】[0002]

【従来の技術】半導体や液晶表示板等の電子部材製造工
程等に使用される超純水は、一般に膜分離及びイオン交
換からなる一次純水製造工程と、紫外線酸化、混床式イ
オン交換及び限外濾過からなる二次純水製造工程(サブ
システムとも呼ばれる)とを経て製造される。このよう
な超純水製造工程には、電子部材製造排水、即ち、当該
電子部材製造工程から排出された使用済超純水が回収さ
れて原水として供給され、原水の不足分を補うために、
水道水、地下水、河川水などの工業用水が補給水として
供給されている。
2. Description of the Related Art Ultrapure water used in a process for manufacturing electronic members such as semiconductors and liquid crystal display panels generally includes a primary pure water manufacturing process including membrane separation and ion exchange, ultraviolet oxidation, mixed-bed ion exchange, and the like. It is manufactured through a secondary pure water manufacturing process (also called a subsystem) consisting of ultrafiltration. In such ultrapure water production process, electronic component production wastewater, that is, used ultrapure water discharged from the electronic component production process is collected and supplied as raw water, and in order to compensate for the shortage of raw water,
Industrial water such as tap water, groundwater, and river water is supplied as makeup water.

【0003】この場合、電子部材製造排水と工業用水と
は水質が異なることから、各々別の処理工程で処理して
一次純水とした後、二次純水製造工程で処理されていた
ために、処理装置及び処理操作が複雑になるという欠点
があった。
[0003] In this case, since the water quality of the electronic component production wastewater and the industrial water is different, they are treated in separate treatment steps to obtain primary pure water and then treated in the secondary pure water production step. There is a disadvantage that the processing device and the processing operation are complicated.

【0004】即ち、工業用水及び電子部材製造排水を混
合すると工業用水中のカルシウムイオンやマグネシウム
イオンと電子部材製造排水中のフッ素イオンとが反応し
て、フッ化カルシウム等のコロイドが生成し、膜分離装
置においてスケール化する。そしてフッ化カルシウム等
が分離膜に付着すると、薬品洗浄を行っても容易に性能
が回復せず、処理水量が低下するとともに、付着物が少
しずつ溶出して、処理水質が低下する。このため、従来
においては、工業用水と電子部材製造排水とを混合せ
ず、別々の一次純水製造工程で処理した後、二次純水製
造工程に送給していた。
That is, when industrial water and wastewater for manufacturing electronic components are mixed, calcium ions and magnesium ions in the industrial water react with fluorine ions in the wastewater for manufacturing electronic components, and colloids such as calcium fluoride are formed. Scale in the separator. When calcium fluoride or the like adheres to the separation membrane, the performance is not easily recovered even by chemical cleaning, and the amount of treated water is reduced, and the adhered substances are gradually eluted, and the quality of treated water is reduced. For this reason, conventionally, industrial water and wastewater for producing electronic components were not mixed, but were treated in separate primary pure water production steps and then fed to a secondary pure water production step.

【0005】本発明者は、この問題を解決し、半導体製
造排水と工業用水とを混合して処理することができる純
水製造装置として、先に「工業用水を脱カチオンするカ
チオン交換装置を有する工業用水処理系と、半導体製造
排水を脱アニオンするアニオン交換装置を有する半導体
製造排水処理系と、前記工業用水処理系および半導体製
造排水処理系の処理水を混合して混合原水とする混合装
置と、前記混合原水を脱イオンする脱イオン装置を有す
る混合原水処理系とを含むことを特徴とする純水製造装
置。」を開発し、本出願人より特許出願した(特開平7
−39871号公報)。
The inventor of the present invention has previously disclosed a "cation exchange apparatus for decationizing industrial water" as a pure water production apparatus which can solve this problem and mix and treat semiconductor production wastewater and industrial water. An industrial water treatment system, a semiconductor production wastewater treatment system having an anion exchange device for deanionizing semiconductor production wastewater, and a mixing device for mixing the treated water of the industrial water treatment system and the semiconductor production wastewater treatment system to obtain a mixed raw water. And a mixed water treatment system having a deionization device for deionizing the mixed raw water. "
-39871).

【0006】この純水製造装置では、工業用水処理系に
工業用水を供給し、カチオン交換装置で脱カチオン処理
してカルシウムイオン等の硬度成分を除去する。こうし
て得られる工業用水処理系の処理水はpH3.5〜4.
5の酸性水となる。一方、半導体製造排水処理系に半導
体製造排水を導入し、アニオン交換装置でアニオン交換
処理して酸を除去する。このときフッ素イオンも同時に
除去される。こうして得られる半導体製造排水処理系の
処理水はpH9〜10と高くなり、pH変動幅も小さく
なる。このため混合装置で、工業用水処理系で硬度成分
を除去した酸性の処理水と、半導体製造排水処理系でフ
ッ素イオンを除去したアルカリ性の処理水とを混合する
ことにより、中性に近いpH5〜7の混合原水が得ら
れ、pHの変動幅も小さくなると共に、フッ化カルシウ
ム等のスケールの生成も防止される。
[0006] In this pure water production apparatus, industrial water is supplied to an industrial water treatment system, and a cation exchanger is used to remove cations to remove hardness components such as calcium ions. The treated water of the industrial water treatment system thus obtained has a pH of 3.5 to 4.
It becomes acidic water of 5. On the other hand, semiconductor production wastewater is introduced into a semiconductor production wastewater treatment system, and anion exchange treatment is performed with an anion exchange device to remove acids. At this time, fluorine ions are also removed at the same time. The treated water of the semiconductor manufacturing wastewater treatment system thus obtained has a high pH of 9 to 10, and the pH fluctuation width is small. For this reason, by mixing the acidic treated water from which the hardness component has been removed in the industrial water treatment system and the alkaline treated water from which fluorine ions have been removed in the semiconductor manufacturing wastewater treatment system, the pH of the mixture is almost neutral, by a mixing device. As a result, the mixed raw water of No. 7 is obtained, the fluctuation range of the pH is reduced, and the formation of scale such as calcium fluoride is prevented.

【0007】従って、この混合水を脱イオン処理するこ
とにより、スケール生成の問題もなく、また、中和によ
るpH制御を不要ないし軽減した上で、容易に純水の製
造を行うことができる。
[0007] Therefore, by deionizing the mixed water, pure water can be easily produced without problems of scale generation and without or reducing pH control by neutralization.

【0008】[0008]

【発明が解決しようとする課題】上記特開平7−398
71号公報記載の純水製造装置では、脱イオン装置とし
て逆浸透(RO)膜分離装置が好適であるとされ、実施
例においてもRO膜分離装置が用いられているが、RO
膜分離装置の濃縮水は回収せずに系外へ排出しているた
め、水回収率が制限されるという不具合がある。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. Hei 7-398.
In the pure water production apparatus described in Japanese Patent Publication No. 71, a reverse osmosis (RO) membrane separation apparatus is considered to be suitable as a deionization apparatus, and the RO membrane separation apparatus is used in the embodiments.
Since the concentrated water of the membrane separation device is discharged out of the system without being recovered, there is a problem that the water recovery rate is limited.

【0009】即ち、RO膜分離装置の濃縮水は、給水
(RO膜分離装置の被処理水)の4〜6倍に濃縮されて
おり、SiO2 濃度や生菌数の増大でスケール析出やス
ライム汚染等の恐れがある。仮りにこれを回収して再利
用しようとすると更に処理設備を増設して濃縮水の処理
を行うことが必要となる。例えば、このRO膜分離装置
の濃縮水を処理するRO膜分離装置を設け、濃縮水を更
にRO膜分離装置で処理してSiO2 や生菌を除去し、
得られた透過水を処理系統に戻すなどの処理が必要とな
る。このため、特開平7−39871号公報記載の純水
製造装置においては、RO膜分離装置の濃縮水を回収、
再利用することなく、系外へ排出している。
[0009] That is, RO membrane concentration water separation device, water supply are concentrated 4-6 fold (RO membrane treated water separator), scale deposits and slime of SiO 2 concentration and increase in viable cell count There is a risk of contamination. If this is to be recovered and reused, it is necessary to further increase the processing equipment and to process the concentrated water. For example, an RO membrane separator for treating the concentrated water of the RO membrane separator is provided, and the concentrated water is further treated with the RO membrane separator to remove SiO 2 and viable bacteria,
Processing such as returning the obtained permeated water to the processing system is required. For this reason, in the pure water production apparatus described in JP-A-7-39871, the concentrated water of the RO membrane separation apparatus is recovered,
It is discharged outside the system without reuse.

【0010】本発明は上記特開平7−39871号公報
記載の純水製造装置の問題点を解決し、RO膜分離装置
の濃縮水を回収、再利用可能とすることで水回収率を高
めた純水製造装置を提供することを目的とする。
The present invention solves the problem of the pure water production apparatus described in Japanese Patent Application Laid-Open No. 7-39871, and improves the water recovery rate by recovering and reusing the concentrated water of the RO membrane separation apparatus. It is an object to provide a pure water production device.

【0011】[0011]

【課題を解決するための手段】本発明の純水製造装置
は、工業用水を脱カチオン処理するカチオン交換装置を
備える工業用水処理系と、電子部材製造排水を脱アニオ
ン処理するアニオン交換装置を備える電子部材製造排水
処理系と、前記工業用水処理系の処理水と電子部材製造
排水処理系の処理水とを混合し、該混合水を脱イオン処
理する脱イオン装置とを備える純水製造装置において、
該脱イオン装置は逆浸透膜分離装置を含み、該逆浸透膜
分離装置の濃縮水を前記電子部材製造排水処理系に返送
する手段を有することを特徴とする。
The pure water production apparatus of the present invention comprises an industrial water treatment system having a cation exchange device for decationizing industrial water, and an anion exchange device for deanionizing waste water for producing electronic components. An electronic member production wastewater treatment system, and a pure water production apparatus comprising: a deionization device for mixing treated water of the industrial water treatment system and treated water of the electronic member production wastewater treatment system and deionizing the mixed water. ,
The deionization device includes a reverse osmosis membrane separation device, and has means for returning concentrated water of the reverse osmosis membrane separation device to the electronic component manufacturing wastewater treatment system.

【0012】工業用水は一般にアニオンとカチオンとを
同程度の濃度で含有し、従って、この工業用水をカチオ
ン交換処理して得られる水はアニオンを含むものとな
る。一方、電子部材製造排水はアニオンを含むがカチオ
ンの割合は少なく、従って、電子部材製造排水をアニオ
ン交換して得られる水と、工業用水をカチオン交換処理
して得られる水とを混合し、これをRO膜で濃縮した濃
縮水は、アニオンが濃縮された水となる。従って、この
アニオンが濃縮されたRO膜分離装置の濃縮水を電子部
材製造排水処理系でアニオン交換処理することにより、
再利用可能な水質に高めることができる。
Industrial water generally contains anions and cations at approximately the same concentration. Therefore, water obtained by subjecting this industrial water to a cation exchange treatment contains anions. On the other hand, the electronic component production wastewater contains anions, but the proportion of cations is low. Therefore, water obtained by anion exchange of the electronic component production wastewater and water obtained by cation exchange treatment of industrial water are mixed. Is concentrated by an RO membrane, the anion is concentrated water. Therefore, by performing the anion exchange treatment on the concentrated water of the RO membrane separation device in which the anions are concentrated in the electronic member production wastewater treatment system,
Water quality can be increased to reusable.

【0013】しかも、アニオン交換樹脂には、SiO2
や生菌の除去作用があるため、SiO2 や生菌が濃縮さ
れたRO膜分離装置の濃縮水を電子部材製造排水系に返
送してアニオン交換装置で処理することにより、濃縮水
中のSiO2 や生菌を除去することができる。このた
め、別途濃縮水の処理設備を増設することなく、スケー
ル生成やスライム汚染等の問題を防止して、RO膜分離
装置の濃縮水を回収、再利用することが可能となり、水
回収率が向上する。
Further, the anion exchange resin includes SiO 2
Because of the removal action of and viable bacteria, by which to return the concentrated water of the RO membrane separation apparatus SiO 2 and viable cells were concentrated to an electronic member manufacturing waste water system is treated with an anion exchange device, the concentrate water SiO 2 And viable bacteria can be removed. For this reason, it is possible to collect and reuse the concentrated water of the RO membrane separation device while preventing problems such as scale generation and slime contamination without adding a separate concentrated water treatment facility. improves.

【0014】[0014]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0015】図1は本発明の純水製造装置の実施の形態
を示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a pure water producing apparatus according to the present invention.

【0016】工業用水処理系Aにおいては、工業用水を
カチオン交換塔1でカチオン交換処理した後、脱炭酸塔
2で脱炭酸処理する。
In the industrial water treatment system A, the industrial water is subjected to a cation exchange treatment in the cation exchange tower 1 and then to a decarbonation treatment in the decarbonation tower 2.

【0017】この工業用水としては、水道水、地下水、
河川水など、一般に純水製造の原水として用いられるも
のを、そのまま、或いは、必要に応じて凝集沈殿処理等
のSS除去のために前処理を行って用いることができ
る。このような工業用水は、一般に、全カチオン(T−
C)及び全アニオン(T−A)を共に100〜200p
pm−CaCO3 ずつ含有し、SiO2 20〜30pp
m程度である。
As the industrial water, tap water, groundwater,
Water that is generally used as raw water for producing pure water, such as river water, can be used as it is or after being subjected to a pretreatment for SS removal such as a coagulation sedimentation treatment, if necessary. Such industrial water generally contains all cations (T-
C) and all anions (TA) are 100-200 p.
pm-CaCO 3 each, SiO 2 20-30 pp
m.

【0018】工業用水を処理するカチオン交換塔1のカ
チオン交換樹脂はNa形でも良いが望ましくはH形であ
り、H形の強酸性カチオン交換樹脂又は弱酸性カチオン
交換樹脂、好ましくは中性塩分解能力を有する強酸性カ
チオン交換樹脂が用いられる。このカチオン交換塔1の
通水条件には特に制限はないが、通水SV=10〜30
hr-1程度が好ましい。
The cation exchange resin of the cation exchange tower 1 for treating industrial water may be of the Na type, but is preferably of the H type. The H type strongly acidic cation exchange resin or weakly acidic cation exchange resin, preferably neutral salt decomposition A strong acidic cation exchange resin having the ability is used. There are no particular restrictions on the water flow conditions in the cation exchange column 1, but water flow SV = 10-30.
hr- 1 is preferred.

【0019】カチオン交換塔1の流出水は次いで脱炭酸
塔2で脱炭酸処理される。この脱炭酸塔2は必ずしも必
要とされないが、脱炭酸処理を行うことにより、より水
質を高めることができ好ましい。
The effluent from the cation exchange column 1 is then decarbonated in a decarbonation column 2. Although the decarbonation tower 2 is not necessarily required, it is preferable to perform the decarbonation treatment because the water quality can be further improved.

【0020】脱炭酸塔2は、脱炭酸可能な装置であれば
良く、気液接触式、真空式など任意の形式のものが使用
できる。気液接触式の場合、G/L比(N−m3
3 )5〜20の範囲で処理するのが好ましい。
The decarbonation tower 2 may be any device capable of decarbonation, and may be of any type such as a gas-liquid contact type or a vacuum type. In the case of the gas-liquid contact type, the G / L ratio (N-m 3 /
m 3 ) It is preferred to process in the range of 5 to 20.

【0021】このように工業用水をカチオン交換処理
し、硬度成分を除去して得られる工業用水処理系の処理
水は、通常の場合、pH3.5〜4.5の酸性水であ
る。
The treated water of the industrial water treatment system obtained by subjecting the industrial water to the cation exchange treatment and removing the hardness component is usually acidic water having a pH of 3.5 to 4.5.

【0022】一方、電子部材製造排水処理系Bにおいて
は、電子部材製造排水及び後述のRO膜分離装置5の濃
縮水を活性炭塔3で処理した後、アニオン交換塔4でア
ニオン交換処理する。
On the other hand, in the electronic member production wastewater treatment system B, after the electronic member production wastewater and the concentrated water of the RO membrane separation device 5 described below are treated in the activated carbon tower 3, anion exchange treatment is performed in the anion exchange tower 4.

【0023】電子部材製造排水は、半導体製造工程や液
晶表示板製造工程等の電子部材製造工程から排出される
使用済超純水の回収水であり、通常、pH:3〜5,T
−C:10〜30ppm−CaCO3 ,T−A:100
〜200ppm−CaCO3と、鉱酸(H2 SO4 ,H
NO3 ,HCl)の割合が高く、カチオン類の割合の少
ない水である。
The electronic component manufacturing wastewater is recovered water of used ultrapure water discharged from an electronic component manufacturing process such as a semiconductor manufacturing process or a liquid crystal display panel manufacturing process.
-C: 10~30ppm-CaCO 3, T -A: 100
~ 200 ppm-CaCO 3 and mineral acid (H 2 SO 4 , H
NO 3 , HCl) and a low proportion of cations.

【0024】この電子部材製造排水処理系Bにおいて、
活性炭塔3は必須ではないが、活性炭塔3を設けて有機
物や固形物を除去することによりアニオン交換塔4のア
ニオン交換樹脂を保護することができ、好ましい。
In the electronic member manufacturing wastewater treatment system B,
The activated carbon tower 3 is not essential, but it is preferable because the activated carbon tower 3 is provided to remove an organic substance and a solid substance so that the anion exchange resin of the anion exchange tower 4 can be protected.

【0025】この活性炭塔3の処理条件は特に制限され
ないが、一般的には通水SV=5〜20hr-1程度とす
るのが好適である。
Although the treatment conditions of the activated carbon tower 3 are not particularly limited, it is generally preferable that the water passing SV is about 5 to 20 hr -1 .

【0026】活性炭塔3の流出水は次いでアニオン交換
塔4でアニオン交換処理される。このアニオン交換塔4
のアニオン交換樹脂としては、OH形であれば良く、バ
イエル社製「MP64」のような弱塩基性アニオン交換
樹脂でも、バイエル社製「MP500」のような強塩基
性アニオン交換樹脂でも良い。このアニオン交換塔4の
通水条件には特に制限はないが、通水SV=10〜30
hr-1程度とするのが好ましい。
The effluent from the activated carbon tower 3 is then subjected to an anion exchange treatment in an anion exchange tower 4. This anion exchange tower 4
The anion exchange resin may be an OH type, and may be a weakly basic anion exchange resin such as "MP64" manufactured by Bayer or a strongly basic anion exchange resin such as "MP500" manufactured by Bayer. There are no particular restrictions on the water flow conditions of the anion exchange column 4, but water flow SV = 10-30.
It is preferably about hr -1 .

【0027】このように電子部材製造排水及び後工程の
RO膜分離装置5の濃縮水(以下「返送濃縮水」と称す
る場合がある。)をアニオン交換処理して得られる電子
部材製造排水処理系の処理水は、通常の場合、pH8.
5〜10のアルカリ性の水である。
As described above, an electronic member production wastewater treatment system obtained by anion-exchange treatment of the electronic member production wastewater and the concentrated water of the RO membrane separation device 5 (hereinafter sometimes referred to as “recycled concentrated water”) in the subsequent step. The treated water is usually pH 8.
5-10 alkaline water.

【0028】工業用水処理系Aからの酸性の処理水と電
子部材製造排水処理系Bのアルカリ性の処理水とは混合
してRO膜分離装置5で脱イオン処理する。このRO膜
分離装置5の給水のpHは特に制限はないがpH7〜9
であることが好ましく、従って、工業用水処理水と電子
部材製造排水処理水との混合水のpHがこの範囲を外れ
る場合には、必要に応じて酸又はアルカリのpH調整剤
を添加してpH調整するのが好ましい。
The acidic treated water from the industrial water treatment system A and the alkaline treated water from the electronic component manufacturing wastewater treatment system B are mixed and deionized by the RO membrane separation apparatus 5. The pH of the feed water of the RO membrane separation device 5 is not particularly limited, but may be pH 7-9.
Therefore, if the pH of the mixed water of the industrial water treatment water and the electronic component production wastewater treatment is outside this range, an acid or alkali pH adjuster may be added as necessary to adjust the pH. Adjustment is preferred.

【0029】RO膜分離装置5のRO膜の種類には特に
制限はなく、膜の型式としても、スパイラル型、チュー
ブラー型、ホローファイバ型など、任意のものを用いる
ことができる。
The type of the RO membrane of the RO membrane separation apparatus 5 is not particularly limited, and any type of membrane such as a spiral type, a tubular type, and a hollow fiber type can be used.

【0030】RO膜分離装置5の透過水は処理水(純
水)として系外へ排出され、二次純水製造工程へ送給さ
れ、更に高度処理される。
The permeated water of the RO membrane separation device 5 is discharged out of the system as treated water (pure water), sent to a secondary pure water production step, and subjected to further advanced treatment.

【0031】一方、濃縮水は、電子部材製造排水処理系
Bに返送され、電子部材製造排水と共に活性炭塔3及び
アニオン交換塔4で処理される。
On the other hand, the concentrated water is returned to the electronic component production wastewater treatment system B, and is treated in the activated carbon tower 3 and the anion exchange tower 4 together with the electronic component production wastewater.

【0032】このRO膜分離装置5の濃縮水は、カチオ
ン及びアニオンを含む工業用水からカチオンを除去した
工業用水処理水と、アニオンを含みカチオンを殆ど含ま
ない電子部材製造排水からアニオンを除去した電子部材
製造排水処理水とを混合した水をRO膜で濃縮して得ら
れるものであるため、主にアニオンが濃縮された水であ
る。従って、この濃縮水を電子部材製造排水処理系Bで
アニオン交換処理することにより、再利用可能な水質に
することができる。しかも、アニオン交換樹脂には、S
iO2 や生菌の除去作用もあるため、これらが濃縮され
ることによるスケール生成やスライム汚染も防止され
る。
The concentrated water of the RO membrane separation device 5 is an industrial water treatment water obtained by removing cations from industrial water containing cations and anions, and an electron water obtained by removing anions from an electronic member production wastewater containing anions and containing almost no cations. Since it is obtained by condensing water mixed with component manufacturing wastewater treatment water with an RO membrane, the water is mainly anion-concentrated water. Therefore, the concentrated water is subjected to anion exchange treatment in the electronic component manufacturing wastewater treatment system B, whereby the water quality can be made reusable. Moreover, the anion exchange resin contains S
Since it also has an action of removing iO 2 and viable bacteria, scale concentration and slime contamination due to their concentration are prevented.

【0033】本発明において、電子部材製造排水処理系
Bに返送するRO膜分離装置5の濃縮水の割合が多過ぎ
ると処理水質の低下やスケール生成、スライム汚染等の
トラブルを発生することとなる。従って、電子部材製造
排水処理系Bに返送する濃縮水の割合は、電子部材製造
排水処理系Bに導入される電子部材製造排水と返送濃縮
水との合量に対する電子部材製造排水の割合が50%以
上となるような量とするのが好ましい。従って、電子部
材製造排水量に対して発生する濃縮水量が多い場合に
は、濃縮水の一部を返送し、残部を系外に排出する。
In the present invention, if the ratio of the concentrated water of the RO membrane separation device 5 returned to the wastewater treatment system B for manufacturing electronic components is too large, problems such as deterioration of treated water quality, scale formation, and slime contamination will occur. . Therefore, the ratio of the concentrated water returned to the electronic component production wastewater treatment system B is 50% of the total amount of the electronic component production wastewater and the return concentrated water introduced into the electronic component production wastewater treatment system B. % Is preferable. Therefore, when the amount of concentrated water generated is large relative to the amount of wastewater for manufacturing electronic components, a part of the concentrated water is returned and the remaining part is discharged out of the system.

【0034】なお、図1は、本発明の実施の形態の一例
を示すものであって、本発明は何ら図示の方法に限定さ
れるものではない。
FIG. 1 shows an example of an embodiment of the present invention, and the present invention is not limited to the illustrated method.

【0035】例えば、脱イオン装置としてのRO膜分離
装置は、2以上を直列に配置して多段RO膜分離処理を
行って、処理水質を高めることも有効である。また、こ
のRO膜分離装置の前段にMF(精密濾過)膜分離装置
やUF(限外濾過)膜分離装置を設けたり、RO膜分離
装置の後段にイオン交換装置を設けても良い。また、工
業用水処理系Aの処理水と電子部材製造排水処理系Bの
処理水を混合する混合槽や、電子部材製造排水と返送濃
縮水とを混合する混合槽を設けても良い。
For example, it is also effective to increase the quality of treated water by arranging two or more RO membrane separators in series as a deionizer and performing a multi-stage RO membrane separation process. Further, an MF (microfiltration) membrane separator or a UF (ultrafiltration) membrane separator may be provided in a stage preceding the RO membrane separator, or an ion exchanger may be provided in a stage subsequent to the RO membrane separator. Further, a mixing tank for mixing the treated water of the industrial water treatment system A and the treated water of the electronic member production wastewater treatment system B, or a mixing tank for mixing the electronic member production wastewater and the return concentrated water may be provided.

【0036】[0036]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0037】説明の便宜上、まず比較例を挙げる。For convenience of explanation, a comparative example will be described first.

【0038】比較例1 図1に示す純水製造装置により純水の製造を行った(た
だし、RO膜分離装置の濃縮水の返送は行わず、濃縮水
は全量系外へ排出することとする。)。
Comparative Example 1 Pure water was produced by the pure water production apparatus shown in FIG. 1 (however, the concentrated water was not returned to the RO membrane separation apparatus, and the entire concentrated water was discharged outside the system). .).

【0039】工業用水処理系では、厚木市水をまずカチ
オン交換塔(バイエル社製H形強酸性カチオン交換樹脂
「SP112」30L充填)1に500L/hrで通水
した後(SV=17hr-1)、脱炭酸塔2でG/L比2
0で空気と向流接触させて脱炭酸処理した。得られた工
業用水処理水の水質は表1に示す通りである。
In the industrial water treatment system, Atsugi-shi water is first passed through a cation exchange tower (filled with 30 L of H-type strongly acidic cation exchange resin “SP112” manufactured by Bayer) at 500 L / hr (SV = 17 hr −1). ), G / L ratio 2 in the decarbonation tower 2
At 0, the mixture was brought into countercurrent contact with air for decarboxylation. The quality of the obtained industrial water treatment water is as shown in Table 1.

【0040】一方、電子部材製造排水処理系では、半導
体製造排水を模擬して、純水にHF,HNO3 ,H2
4 ,NaOH及びNH4 Fを添加した水(pH=3.
5〜4,T−C=10ppm−CaCO3 ,T−A=1
00ppm−CaCO3 )を活性炭塔(活性炭30L充
填)3及びアニオン交換塔(三菱化学社製OH形弱塩基
性アニオン交換樹脂「ダイヤイオンWA−30」20L
充填)4に順次通水して処理した(活性炭塔3のSV=
17hr-1,アニオン交換塔4の通水SV=25h
-1)。得られた電子部材製造排水処理水の水質は表1
に示す通りである。
On the other hand, in the electronic member manufacturing wastewater treatment system, HF, HNO 3 , H 2 S is added to pure water by simulating semiconductor manufacturing wastewater.
Water to which O 4 , NaOH and NH 4 F are added (pH = 3.
5-4, TC = 10 ppm-CaCO 3 , TA = 1
00 ppm-CaCO 3 ) in an activated carbon tower (filled with 30 L of activated carbon) 3 and an anion exchange tower (OH type weakly basic anion exchange resin “Diaion WA-30” 20 L, manufactured by Mitsubishi Chemical Corporation)
(Activated carbon tower 3 = SV)
17 hr -1 , water flow SV of the anion exchange column 4 = 25 h
r -1 ). The quality of the obtained electronic component manufacturing wastewater is shown in Table 1.
As shown in FIG.

【0041】この工業用水処理水と電子部材製造排水処
理水とを同容量比で混合し(混合水のpHは7.1)、
RO膜分離装置5で処理した。このRO膜分離装置5に
は、日東電工社製低圧RO膜「NTR−759HR」4
インチ3本シリーズを用い、15kg/cm2 の給水圧
で給水し、水回収率80%でRO膜分離処理し、濃縮水
は系外へ排出した。
The treated water for industrial use and the treated water for producing electronic components were mixed at the same volume ratio (the pH of the mixed water was 7.1).
The treatment was performed by the RO membrane separation apparatus 5. The RO membrane separation device 5 includes a low-pressure RO membrane “NTR-759HR” 4 manufactured by Nitto Denko Corporation.
Water was supplied at a feed pressure of 15 kg / cm 2 using a series of three inches, and RO membrane separation treatment was performed at a water recovery rate of 80%, and the concentrated water was discharged out of the system.

【0042】得られた濃縮水の水質及び透過水(純水)
の導電率は表2に示す通りであった。
Water quality and permeated water (pure water) of the obtained concentrated water
Was as shown in Table 2.

【0043】実施例1 比較例1において、RO膜分離装置5の濃縮水のうちの
3/4、即ち、RO膜分離装置5の給水のうちの15%
を電子部材製造排水処理系Aの活性炭塔3の入口側に戻
し、残る5%のみを系外へ排出したこと以外は同様にし
て処理を行った。
Example 1 In Comparative Example 1, 3/4 of the concentrated water of the RO membrane separation device 5, that is, 15% of the feed water of the RO membrane separation device 5,
Was returned to the inlet side of the activated carbon tower 3 of the electronic member production wastewater treatment system A, and the same treatment was performed except that only the remaining 5% was discharged outside the system.

【0044】この実施例では、RO膜分離装置5におい
て、水回収率80%で透過水を得、濃縮水のうち、給水
の15%に相当する分を回収、再利用するため、合計の
水回収率は95%となる。
In this embodiment, in the RO membrane separation apparatus 5, permeated water is obtained at a water recovery rate of 80%, and a portion corresponding to 15% of the feedwater of the concentrated water is recovered and reused. The recovery rate is 95%.

【0045】工業用水処理水及び電子部材製造排水処理
水の水質、RO膜分離装置で得られた濃縮水の水質及び
透過水(純水)の導電率は表1,2に示す通りであり、
本発明によれば、純水の水質を低下させることなく、ま
た、処理設備を増設させることなく単に濃縮水の返送ラ
インを設けるのみで水回収率を高めることができること
がわかる。
The water quality of the industrial water treatment water and the electronic component production wastewater treatment water, the quality of the concentrated water obtained by the RO membrane separator, and the conductivity of the permeated water (pure water) are as shown in Tables 1 and 2.
According to the present invention, it can be seen that the water recovery rate can be increased by merely providing a concentrated water return line without lowering the quality of pure water and without increasing the number of treatment facilities.

【0046】なお、実施例1において、20日間運転を
継続したがスケール生成やスライム汚染の問題は全くな
かった。
In Example 1, the operation was continued for 20 days, but there was no problem of scale formation or slime contamination.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【表2】 [Table 2]

【0049】比較例2 RO膜分離装置5の濃縮水をRO膜分離装置5の入口側
に直接返送したこと以外は実施例1と同様にして処理を
行ったところ、表1に示すような結果となり、RO膜分
離装置の透過水(純水)の導電率は4〜5μS/cmで
あったが、15日運転を経過したところ、スケール生成
で膜分離処理が不可能になった。
Comparative Example 2 The same treatment as in Example 1 was carried out except that the concentrated water of the RO membrane separator 5 was directly returned to the inlet side of the RO membrane separator 5, and the results shown in Table 1 were obtained. The conductivity of the permeated water (pure water) of the RO membrane separation apparatus was 4 to 5 μS / cm, but after 15 days of operation, scale separation was impossible due to scale formation.

【0050】比較例3比較例2において、別途RO膜分
離装置(前記低圧RO膜)を増設し、RO膜分離装置5
の濃縮水をこの新たに設けたRO膜分離装置で処理して
得られる透過水を返送したこと以外は同様にして行った
ところ、得られた透過水(純水)の導電率は1〜2μm
/cmと良好で、スケール等による運転障害もなかった
が、この比較例では、RO膜分離装置の増設及び運転の
ためのコストの問題があった。
COMPARATIVE EXAMPLE 3 In Comparative Example 2, an additional RO membrane separation device (the low-pressure RO membrane) was additionally provided.
Was processed in the same manner except that the permeated water obtained by treating the concentrated water of the above with the newly provided RO membrane separation apparatus was returned. The conductivity of the obtained permeated water (pure water) was 1 to 2 μm.
/ Cm, and there was no operation trouble due to scale or the like, but in this comparative example, there was a problem of cost for adding and operating the RO membrane separation device.

【0051】[0051]

【発明の効果】以上詳述した通り、本発明の純水製造装
置によれば、脱イオン処理のためのRO膜分離装置の濃
縮水を、別途処理設備の増設を必要とすることなく、ま
た、処理水の水質や処理水量を落とすことなく、回収、
再利用することができる。このため、水回収率が向上
し、電子部材製造分野で大量に使用される超純水の水コ
ストの低減を図ることができる。
As described above in detail, according to the pure water production apparatus of the present invention, the concentrated water of the RO membrane separation apparatus for the deionization treatment can be used without requiring additional treatment equipment. , Without reducing the quality and quantity of treated water,
Can be reused. For this reason, the water recovery rate is improved, and the cost of ultrapure water used in large quantities in the electronic component manufacturing field can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の純水製造装置の実施の形態を示す系統
図である。
FIG. 1 is a system diagram showing an embodiment of a pure water production apparatus of the present invention.

【符号の説明】[Explanation of symbols]

A 工業用水処理系 B 電子部材製造排水処理系 1 カチオン交換塔 2 脱炭酸塔 3 活性炭塔 4 アニオン交換塔 5 RO膜分離装置 A Industrial water treatment system B Electronic component production wastewater treatment system 1 Cation exchange tower 2 Decarbonation tower 3 Activated carbon tower 4 Anion exchange tower 5 RO membrane separation device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 工業用水を脱カチオン処理するカチオン
交換装置を備える工業用水処理系と、 電子部材製造排水を脱アニオン処理するアニオン交換装
置を備える電子部材製造排水処理系と、 前記工業用水処理系の処理水と電子部材製造排水処理系
の処理水とを混合し、該混合水を脱イオン処理する脱イ
オン装置とを備える純水製造装置において、 該脱イオン装置は逆浸透膜分離装置を含み、 該逆浸透膜分離装置の濃縮水を前記電子部材製造排水処
理系に返送する手段を有することを特徴とする純水製造
装置。
1. An industrial water treatment system including a cation exchange device for decationizing industrial water, an electronic member production wastewater treatment system including an anion exchange device for deionizing an electronic member production wastewater, and the industrial water treatment system A deionization apparatus for mixing the treated water with the treated water of an electronic component production wastewater treatment system and deionizing the mixed water, wherein the deionization apparatus includes a reverse osmosis membrane separation apparatus. And a means for returning the concentrated water of the reverse osmosis membrane separation device to the wastewater treatment system for manufacturing electronic components.
JP7783097A 1997-03-28 1997-03-28 Pure water making apparatus Pending JPH10272465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7783097A JPH10272465A (en) 1997-03-28 1997-03-28 Pure water making apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7783097A JPH10272465A (en) 1997-03-28 1997-03-28 Pure water making apparatus

Publications (1)

Publication Number Publication Date
JPH10272465A true JPH10272465A (en) 1998-10-13

Family

ID=13644968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7783097A Pending JPH10272465A (en) 1997-03-28 1997-03-28 Pure water making apparatus

Country Status (1)

Country Link
JP (1) JPH10272465A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031255A (en) * 2001-07-18 2003-01-31 Matsushita Electric Ind Co Ltd Fuel cell power generation device and feeding method of condensate to water storage tank
JP2006181397A (en) * 2004-08-10 2006-07-13 Kurita Water Ind Ltd Organic substance and oxidizing agent-containing wastewater treatment method and apparatus
JP2007061683A (en) * 2005-08-29 2007-03-15 Kurita Water Ind Ltd Method and apparatus for treating water
CN101885519A (en) * 2010-07-09 2010-11-17 大连交通大学 Embedded water purifier and application method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031255A (en) * 2001-07-18 2003-01-31 Matsushita Electric Ind Co Ltd Fuel cell power generation device and feeding method of condensate to water storage tank
JP2006181397A (en) * 2004-08-10 2006-07-13 Kurita Water Ind Ltd Organic substance and oxidizing agent-containing wastewater treatment method and apparatus
JP2007061683A (en) * 2005-08-29 2007-03-15 Kurita Water Ind Ltd Method and apparatus for treating water
CN101885519A (en) * 2010-07-09 2010-11-17 大连交通大学 Embedded water purifier and application method thereof

Similar Documents

Publication Publication Date Title
CN1625433B (en) Method and apparatus for treatment of fluid by reverse osmosis process under acidic conditions
KR100361799B1 (en) Method and apparatus for regenerating photoresist developing waste liquid
US5352345A (en) Ion exchange resin regenerant waste recovery and recycling via bipolar membranes
JP5135749B2 (en) Method and apparatus for recovering phosphoric acid from phosphoric acid-containing water
CN108689522B (en) Method for treating and recycling mixed acid wastewater in photovoltaic industry
JP5862167B2 (en) Water recovery device for closed system space
JPH11190907A (en) Regenerating method of photoresist developer waste liquid
KR101433104B1 (en) Process and equipment for the recovery of phosphoric acid from phosphoric acid-containing water
JPH11244853A (en) Production of pure water
JP3656458B2 (en) Pure water production method
JP3413883B2 (en) Pure water production equipment
JP2002192152A (en) Method and apparatus for water treatment
JP2000051665A (en) Desalination method
JP3200314B2 (en) Organic wastewater treatment equipment
JP2000015257A (en) Apparatus and method for making high purity water
JPH10272465A (en) Pure water making apparatus
JP2000070933A (en) Production of pure water
JP2001191080A (en) Electric deionizing device and electric deionizing treatment method using the same
JP3081079B2 (en) Decarbonation equipment and pure water production equipment incorporating the equipment
JP6924300B1 (en) Wastewater treatment method, ultrapure water production method and wastewater treatment equipment
JP2001104955A (en) Pure water making method
JP2000126766A (en) Treatment of tetraalkylammonium ion-containing liquid
JP4277491B2 (en) Circulation utilization system of fluorine aqueous solution or hydrofluoric acid aqueous solution and its circulation utilization method
JP3259557B2 (en) How to remove organic matter
JP7261711B2 (en) Ultrapure water production system and ultrapure water production method