JP2006181397A - Organic substance and oxidizing agent-containing wastewater treatment method and apparatus - Google Patents

Organic substance and oxidizing agent-containing wastewater treatment method and apparatus Download PDF

Info

Publication number
JP2006181397A
JP2006181397A JP2004232977A JP2004232977A JP2006181397A JP 2006181397 A JP2006181397 A JP 2006181397A JP 2004232977 A JP2004232977 A JP 2004232977A JP 2004232977 A JP2004232977 A JP 2004232977A JP 2006181397 A JP2006181397 A JP 2006181397A
Authority
JP
Japan
Prior art keywords
activated carbon
wastewater
membrane
organic matter
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004232977A
Other languages
Japanese (ja)
Other versions
JP3906855B2 (en
Inventor
Nozomi Ikuno
望 育野
Koichi Nagata
浩一 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004232977A priority Critical patent/JP3906855B2/en
Priority to KR1020067011801A priority patent/KR101098679B1/en
Priority to PCT/JP2004/015688 priority patent/WO2005049501A1/en
Priority to CN2009101488098A priority patent/CN101597097B/en
Priority to TW093132778A priority patent/TW200517343A/en
Publication of JP2006181397A publication Critical patent/JP2006181397A/en
Application granted granted Critical
Publication of JP3906855B2 publication Critical patent/JP3906855B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain high quality treated water by performing a stable treatment for a long time and efficiently reducing TOC concentration in water by preventing a deterioration of flux due to adhesion of organic substances to a membrane surface in an RO membrane separator and biofouling in an activated carbon column and the RO membrane separator when treating/recovering wastewater containing high-concentration or low-concentration organic substances with the RO membrane separator and oxidizing agents discharged from an electron device manufacturing plant or other various fields. <P>SOLUTION: After an antiscaling agent is added to the wastewater containing organic substances and oxidizing agents in a weight ≥5 times the concentration of calcium in the wastewater, and alkali is added thereto to adjust pH to ≥9.5, the wastewater is passed through the activated carbon column 1 and the RO membrane separator 3. The adjustment of the pH of the AC water treated with the activated carbon to ≥9.5 prevents the biofouling in the activated carbon column 1 and the RO membrane separator 3, and prevents the adhesion of nonionic surfactants to an RO membrane surface to prevent the deterioration of flux. Addition of the antiscaling agent inhibits the clogging of the RO membrane surface due to calcium carbonate scale under a high pH condition. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子デバイス製造工場等から排出される高濃度ないし低濃度有機物(TOC)と酸化剤とを含有する排水を活性炭塔及び逆浸透(RO)膜分離装置を用いて処理・回収する際、RO膜分離装置内での有機物の膜面付着によるフラックスの低下や、活性炭塔やRO膜分離装置内でのバイオファウリングを防止して長期にわたり安定な処理を行うと同時に、水中TOC濃度を効率的に低減して高水質の処理水を得る有機物及び酸化剤含有排水の処理方法及び処理装置に関する。   The present invention is to treat and collect wastewater containing high-concentration or low-concentration organic matter (TOC) and an oxidant discharged from an electronic device manufacturing factory using an activated carbon tower and a reverse osmosis (RO) membrane separator. The TOC concentration in the water is reduced at the same time as stable treatment over a long period of time by preventing flux reduction due to organic membrane adhesion in the RO membrane separator and bio-fouling in the activated carbon tower and RO membrane separator. The present invention relates to a method and an apparatus for treating organic matter and oxidant-containing wastewater that efficiently reduce to obtain treated water of high quality.

近年、環境基準ないし水質基準は益々厳しくなる傾向にあり、放流水についても高度に浄化することが望まれている。一方で、水不足解消の目的から、各種の排水を回収して再利用するためにも、高度な水処理技術の開発が望まれている。   In recent years, environmental standards and water quality standards tend to be stricter, and it is desired to purify discharged water to a high degree. On the other hand, for the purpose of eliminating water shortage, development of advanced water treatment technology is also desired in order to collect and reuse various wastewater.

このような状況において、RO膜分離処理は水中の不純物(イオン類、有機物、微粒子など)を効果的に除去することが可能であることから、近年、多くの分野で使用されるようになってきた。例えば、半導体製造プロセスから排出されるアセトン、イソプロピルアルコールなどを含む高濃度TOCあるいは低濃度TOC含有排水を回収して再利用する場合、これをまず生物処理してTOC成分を除去し生物処理水をRO膜処理して浄化する方法が広く採用されている(例えば、特開2002−336886号公報)。   Under such circumstances, RO membrane separation treatment can effectively remove impurities (ions, organic substances, fine particles, etc.) in water, and has recently been used in many fields. It was. For example, when recovering and recycling wastewater containing high-concentration TOC or low-concentration TOC containing acetone, isopropyl alcohol, etc. discharged from the semiconductor manufacturing process, this is first biologically treated to remove the TOC component, A method of purifying by RO membrane treatment is widely adopted (for example, JP-A-2002-336886).

しかしながら、近年、生物処理排水をRO膜分離装置に通水した場合、微生物による有機物分解で生成される生物代謝物により、RO膜の膜面が閉塞され、フラックスが低下するという問題が顕在化し始めるようになってきた。   However, in recent years, when biological treatment wastewater is passed through the RO membrane separation device, the problem that the membrane surface of the RO membrane is clogged and the flux decreases due to biological metabolites generated by the decomposition of organic matter by microorganisms begins to become apparent. It has become like this.

一方、生物処理を用いず、これらのTOC含有排水を直接RO膜分離装置に通水した場合には、RO膜分離装置に流入するTOC濃度が高いため、RO膜分離装置内では微生物が繁殖しやすい環境となる。そこでRO膜分離装置内でのバイオファウリングを抑制する目的から、通常はTOC含有排水にスライムコントロール剤を多量に添加することが行われているが、スライムコントロール剤は高価であるため、より安価なバイオファウリング抑制方法が求められている。   On the other hand, when these TOC-containing wastewater is directly passed through the RO membrane separator without using biological treatment, the TOC concentration flowing into the RO membrane separator is high, so that microorganisms propagate in the RO membrane separator. Easy environment. Therefore, for the purpose of suppressing biofouling in the RO membrane separation apparatus, a large amount of slime control agent is usually added to TOC-containing wastewater. However, since the slime control agent is expensive, it is cheaper. There is a need for a new biofouling suppression method.

また、電子デバイス製造工場から排出される排水には、RO膜分離装置の膜面に付着し、フラックスを低下させる恐れのある非イオン性界面活性剤が混入する場合があるため、従来、このような非イオン性界面活性剤含有排水には、RO膜分離処理を適用することはできなかった。   In addition, the wastewater discharged from the electronic device manufacturing factory may be mixed with a nonionic surfactant that may adhere to the membrane surface of the RO membrane separator and reduce the flux. RO membrane separation treatment could not be applied to such nonionic surfactant-containing wastewater.

ところで、これらの排水中には上述した有機物以外にも過酸化水素などの酸化剤が含まれている場合があり、この場合においては、更に次のような問題があった。即ち、排水中に酸化剤が含まれている場合、酸化剤によるRO膜の酸化劣化を防止する目的から、一般的にRO膜分離装置の前段に活性炭塔が設置されるが、これらの排水中には低濃度ないし高濃度の有機物も含まれているため、活性炭塔内は微生物の温床となりやすく、活性炭塔内のバイオファウリングで、菌体リークによる活性炭処理水SDI値の上昇又は活性炭塔内差圧の上昇といった装置の運転に支障をきたすトラブルが頻発する。
特開2002−336886号公報
By the way, these wastewaters may contain an oxidizing agent such as hydrogen peroxide in addition to the organic substances described above. In this case, there are the following problems. That is, when an oxidant is contained in the wastewater, an activated carbon tower is generally installed in front of the RO membrane separator for the purpose of preventing oxidative degradation of the RO membrane due to the oxidant. Since organic substances of low or high concentration are included in the activated carbon tower, the activated carbon tower is likely to become a hotbed of microorganisms, and biofouling in the activated carbon tower causes an increase in the SDI value of the activated carbon treated water due to cell leakage or in the activated carbon tower. Troubles that hinder the operation of the device, such as an increase in differential pressure, occur frequently.
JP 2002-336886 A

本発明は、上記従来の問題点を解決し、電子デバイス製造工場、その他各種の分野から排出される高濃度ないし低濃度有機物と酸化剤とを含有する排水を活性炭塔とRO膜分離装置を用いて処理・回収する際、RO膜分離装置内での有機物の膜面付着によるフラックスの低下、活性炭塔及びRO膜分離装置内でのバイオファウリングを防止して長期にわたり安定な処理を行うと同時に、水中TOC濃度を効率的に低減して高水質の処理水を得る有機物及び酸化剤含有排水の処理方法及び処理装置を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, uses an activated carbon tower and an RO membrane separator to discharge wastewater containing high-concentration or low-concentration organic substances and oxidants discharged from electronic device manufacturing factories and other various fields. At the same time, it is possible to perform stable treatment over a long period of time by preventing flux reduction due to organic membrane adhesion in the RO membrane separator and biofouling in the activated carbon tower and RO membrane separator. An object of the present invention is to provide a treatment method and a treatment apparatus for organic matter and oxidant-containing waste water that efficiently reduce the TOC concentration in water to obtain high-quality treated water.

本発明の有機物及び酸化剤含有排水の処理方法は、有機物及び酸化剤含有排水を活性炭で処理する活性炭処理工程と、活性炭処理工程を経た該排水を逆浸透膜分離処理する膜分離工程とを備えてなる有機物及び酸化剤含有排水の処理方法において、前記活性炭処理工程よりも前の段階において、排水にアルカリを添加してpHを9.5以上に調整するpH調整工程と、前記膜分離工程よりも前の段階において、排水に該排水中のカルシウムイオンの5重量倍以上のスケール防止剤を添加するスケール防止剤添加工程とを有することを特徴とする。   The method for treating organic matter and oxidant-containing wastewater of the present invention comprises an activated carbon treatment step for treating organic matter and oxidant-containing wastewater with activated carbon, and a membrane separation step for subjecting the wastewater that has undergone the activated carbon treatment step to reverse osmosis membrane separation treatment. The organic substance and the oxidizing agent-containing wastewater treatment method, wherein the pH is adjusted to 9.5 or more by adding alkali to the wastewater before the activated carbon treatment step, and the membrane separation step. In the previous stage, the method further comprises a scale inhibitor addition step of adding to the drainage a scale inhibitor at least 5 times the weight of calcium ions in the wastewater.

本発明の有機物及び酸化剤含有排水の処理装置は、有機物及び酸化剤含有排水を活性炭で処理する活性炭処理手段と、活性炭処理手段を経た該排水を逆浸透膜分離処理する膜分離手段とを備えてなる有機物及び酸化剤含有排水の処理装置において、前記活性炭処理手段によりも前段に設けられた、排水にアルカリを添加してpHを9.5以上に調整するpH調整手段と、前記膜分離手段よりも前段に設けられた、排水に該排水中のカルシウムイオンの5重量倍以上のスケール防止剤を添加するスケール防止剤添加手段とを有することを特徴とする。   The apparatus for treating wastewater containing organic matter and oxidant of the present invention comprises activated carbon treatment means for treating wastewater containing organic matter and oxidant with activated carbon, and membrane separation means for subjecting the wastewater passed through the activated carbon treatment means to reverse osmosis membrane separation treatment. In the wastewater treatment apparatus containing organic matter and oxidant, the pH adjusting means provided in the previous stage by the activated carbon treatment means to adjust the pH to 9.5 or more by adding alkali to the wastewater, and the membrane separation means And a scale inhibitor addition means for adding a scale inhibitor more than 5 times the weight of calcium ions in the wastewater to the wastewater.

なお、本発明において、スケール防止剤の添加量は、当該スケール防止剤がナトリウム塩等の塩である場合も、酸の形で換算した値である。
以下において、RO膜分離処理に供する被処理水を「RO給水」と称し、活性炭処理に供する被処理水を「AC給水」と称す場合がある。
In the present invention, the amount of the scale inhibitor added is a value converted in the form of an acid even when the scale inhibitor is a salt such as a sodium salt.
In the following, water to be treated for RO membrane separation treatment may be referred to as “RO feed water”, and water to be treated for activated carbon treatment may be referred to as “AC feed water”.

本発明においては、AC給水をpH9.5以上に調整し、また、RO給水に所定量のスケール防止剤を添加する。   In the present invention, the AC water supply is adjusted to pH 9.5 or higher, and a predetermined amount of scale inhibitor is added to the RO water supply.

本発明において、AC給水のpHを9.5以上に調整する理由は以下の通りである。
即ち、微生物はアルカリ性域では生息することができない。そのため、AC給水のpHを9.5以上調整することにより、栄養源はあるが微生物が生息できない環境を作り出すことが可能となり、活性炭塔内での微生物の繁殖を抑制することが可能となる。活性炭処理によるpH低下はないことから、この活性炭塔から流出する活性炭処理水のpHもpH9.5以上のアルカリ性であり、従ってこのようなアルカリ性の活性炭処理水をRO給水とすることにより、RO膜分離装置においても同様に微生物の繁殖を抑制することができ、従来のような高価なスライムコントロール剤の添加を必要とすることなく、RO膜分離装置でのバイオファウリングを防止することができる。
In the present invention, the reason for adjusting the pH of the AC feed water to 9.5 or higher is as follows.
That is, microorganisms cannot live in the alkaline region. Therefore, by adjusting the pH of the AC water supply to 9.5 or more, it is possible to create an environment where there are nutrient sources but microorganisms cannot live, and it is possible to suppress the growth of microorganisms in the activated carbon tower. Since there is no pH drop due to the activated carbon treatment, the pH of the activated carbon treated water flowing out from the activated carbon tower is also alkaline with a pH of 9.5 or higher. Therefore, by using such alkaline activated carbon treated water as the RO feed water, the RO membrane can be obtained. Similarly, in the separation apparatus, the growth of microorganisms can be suppressed, and biofouling in the RO membrane separation apparatus can be prevented without requiring the addition of a conventional expensive slime control agent.

また、膜フラックスを低下させる恐れのある非イオン性界面活性剤はアルカリ性領域では膜面から脱着することが知られており、RO給水のpHを9.5以上にすることによりRO膜面へのこれらの成分の付着を抑制することが可能となる。   In addition, it is known that nonionic surfactants that may decrease the membrane flux are desorbed from the membrane surface in the alkaline region. By increasing the pH of the RO feed water to 9.5 or higher, It becomes possible to suppress adhesion of these components.

また、RO給水に、RO給水中のカルシウムイオンの5重量倍以上スケール防止剤を添加する理由は以下の通りである。   Moreover, the reason for adding a scale inhibitor 5 times or more times the calcium ion in RO water supply to RO water supply is as follows.

即ち、電子デバイス製造工場等から排出されるTOC含有排水中には稀にスケールの元となるカルシウムイオンなどが混入する場合がある。本発明では、AC給水のpHを9.5以上とすることによりRO給水のpHも9.5以上となるが、そのような高pHのRO運転条件では極微量のカルシウムイオンの混入でも炭酸カルシウムなどのスケールが生成し、RO膜が直ちに閉塞してしまう。本発明にあっては、このようなスケールによる膜面閉塞を抑制する目的からRO給水にスケール防止剤を添加するのであるが、このスケール防止剤添加量がカルシウムイオン濃度の5倍量未満ではその添加効果は十分でないため、カルシウムイオン濃度の5倍量以上とする。   That is, in some cases, calcium ions or the like that are the basis of the scale are mixed in the TOC-containing wastewater discharged from an electronic device manufacturing factory or the like. In the present invention, when the pH of the AC feed water is 9.5 or more, the pH of the RO feed water is also 9.5 or more. Under such high pH RO operation conditions, calcium carbonate may be mixed even with a trace amount of calcium ions. Such a scale is generated, and the RO membrane is immediately blocked. In the present invention, a scale inhibitor is added to the RO water supply for the purpose of suppressing the membrane surface blockage due to the scale. However, if the amount of the scale inhibitor added is less than 5 times the calcium ion concentration, Since the effect of addition is not sufficient, the amount is not less than 5 times the calcium ion concentration.

本発明においては、より効率的な処理を行うために、次のような条件を採用することが好ましい。
(1) AC給水pHは好ましくは10.5以上、特に10.5〜12とする。
(2) スケール防止剤の添加量はカルシウムイオン濃度の5〜50倍量とする。
In the present invention, it is preferable to employ the following conditions in order to perform more efficient processing.
(1) The pH of the AC feed water is preferably 10.5 or more, particularly 10.5 to 12.
(2) The amount of scale inhibitor added is 5 to 50 times the calcium ion concentration.

本発明の有機物及び酸化剤含有排水の処理方法及び処理装置によれば、電子デバイス製造工場、その他各種の分野から排出される高濃度ないし低濃度有機物と酸化剤とを含有する排水を活性炭塔とRO膜分離装置を用いて処理・回収する際、RO膜分離装置内での有機物の膜面付着によるフラックスの低下、活性炭塔及びRO膜分離装置におけるバイオファウリングを防止して長期にわたり安定な処理を行うと同時に、水中TOC濃度を効率的に低減して高水質の処理水を得ることができる。   According to the method and apparatus for treating wastewater containing organic matter and oxidant of the present invention, wastewater containing high or low concentration organic matter and oxidant discharged from an electronic device manufacturing factory and other various fields is treated with an activated carbon tower. When processing and collecting using RO membrane separator, stable treatment over a long period of time by preventing decrease in flux due to organic membrane adhesion in RO membrane separator, biofouling in activated carbon tower and RO membrane separator At the same time, high-quality treated water can be obtained by efficiently reducing the TOC concentration in water.

以下に図面を参照して本発明の有機物含有排水の処理方法及び処理装置の実施の形態を詳細に説明する。
図1は本発明の有機物含有排水の処理方法及び処理装置の実施の形態を示す系統図である。
DESCRIPTION OF EMBODIMENTS Embodiments of a method and apparatus for treating organic matter-containing wastewater according to the present invention will be described in detail below with reference to the drawings.
FIG. 1 is a system diagram showing an embodiment of the method and apparatus for treating wastewater containing organic matter according to the present invention.

本発明においては、有機物及び酸化剤含有排水を活性炭処理、次いでRO膜分離処理するに当たり、活性炭処理に供されるAC給水にアルカリを添加してpH9.5以上に調整し、また、RO膜分離処理されるRO給水に所定量のスケール防止剤を添加することができれば良く、各処理手順としては、次の(1)〜(4)のような態様が挙げられる。
(1) スケール防止剤添加→pH調整→活性炭処理→RO膜分離処理
(2) pH調整→スケール防止剤添加→活性炭処理→RO膜分離処理
(3) pH調整→活性炭処理→スケール防止剤添加→RO膜分離処理
(4) スケール防止剤添加及びpH調整→活性炭処理→RO膜分離処理
In the present invention, when an organic substance and an oxidizing agent-containing wastewater are treated with activated carbon and then subjected to RO membrane separation, the pH is adjusted to 9.5 or higher by adding alkali to AC water supplied to the activated carbon treatment, and RO membrane separation. It is sufficient if a predetermined amount of scale inhibitor can be added to the RO water to be treated. Examples of each treatment procedure include the following aspects (1) to (4).
(1) Addition of scale inhibitor → pH adjustment → Activated carbon treatment → RO membrane separation treatment
(2) pH adjustment → Addition of scale inhibitor → Activated carbon treatment → RO membrane separation treatment
(3) pH adjustment → Activated carbon treatment → Addition of scale inhibitor → RO membrane separation treatment
(4) Addition of scale inhibitor and pH adjustment → activated carbon treatment → RO membrane separation treatment

図1は、上記(1)の態様で処理を行う場合を示すが、上記(2)又は(3)又は(4)の態様も採用し得ることは言うまでもない。また、図1では活性炭処理手段として活性炭塔を示しているが、活性炭処理手段は活性炭塔に何ら限定されず、排水に活性炭を接触させて、排水中の酸化剤を除去することができるものであれば良い。   Although FIG. 1 shows a case where the processing is performed in the above-described mode (1), it is needless to say that the above-described mode (2), (3), or (4) can also be adopted. Moreover, although the activated carbon tower is shown in FIG. 1 as the activated carbon treatment means, the activated carbon treatment means is not limited to the activated carbon tower, and the activated carbon can be brought into contact with the waste water to remove the oxidizing agent in the waste water. I need it.

図1では、原水(有機物及び酸化剤含有排水)にスケール防止剤を添加した後、アルカリを添加してpHを9.5以上とし、その後、活性炭塔1に通水し、活性炭処理水をタンク2を経てRO膜分離装置3に導入してRO膜分離処理をする。   In FIG. 1, after adding a scale inhibitor to raw water (drainage containing organic matter and oxidizing agent), an alkali is added to adjust the pH to 9.5 or higher, and then water is passed through the activated carbon tower 1 to store activated carbon treated water in a tank. 2 is introduced into the RO membrane separation apparatus 3 to perform RO membrane separation processing.

原水に添加するスケール防止剤としては、アルカリ領域で解離して金属イオンと錯体を形成し易いエチレンジアミン四酢酸(EDTA)やニトリロ三酢酸(NTA)などキレート系スケール防止剤が好適に用いられるが、その他、(メタ)アクリル酸重合体及びその塩、マレイン酸重合体及びその塩などの低分子量ポリマー、エチレンジアミンテトラメチレンホスホン酸及びその塩、ヒドロキシエチリデンジホスホン酸及びその塩、ニトリロトリメチレンホスホン酸及びその塩、ホスホノブタントリカルボン酸及びその塩などのホスホン酸及びホスホン酸塩、ヘキサメタリン酸及びその塩、トリポリリン酸及びその塩などの無機重合リン酸及び無機重合リン酸塩などを使用することができる。   As the scale inhibitor to be added to the raw water, chelate-based scale inhibitors such as ethylenediaminetetraacetic acid (EDTA) and nitrilotriacetic acid (NTA), which easily dissociate in the alkaline region and form a complex with metal ions, are preferably used. Other low molecular weight polymers such as (meth) acrylic acid polymer and salts thereof, maleic acid polymer and salts thereof, ethylenediaminetetramethylenephosphonic acid and salts thereof, hydroxyethylidene diphosphonic acid and salts thereof, nitrilotrimethylenephosphonic acid and salts thereof Phosphonic acids and phosphonates such as salts, phosphonobutanetricarboxylic acid and salts thereof, hexametaphosphoric acid and salts thereof, inorganic polymer phosphoric acid and inorganic polymer phosphate such as tripolyphosphoric acid and salts thereof, and the like can be used.

本発明において、スケール防止剤の添加量は、原水(スケール防止剤が添加される水)中のカルシウムイオン濃度の5重量倍以上とする。スケール防止剤の添加量が原水中のカルシウムイオン濃度の5重量倍未満では、スケール防止剤の添加効果を十分に得ることができない。スケール防止剤は過度に多量に添加しても薬剤コストの面で好ましくないことから、原水中のカルシウムイオン濃度の5〜50重量倍とすることが好ましい。   In the present invention, the addition amount of the scale inhibitor is at least 5 times the calcium ion concentration in the raw water (water to which the scale inhibitor is added). If the addition amount of the scale inhibitor is less than 5 times the calcium ion concentration in the raw water, the effect of adding the scale inhibitor cannot be sufficiently obtained. Even if the scale inhibitor is added in an excessively large amount, it is not preferable in terms of drug cost. Therefore, the scale inhibitor is preferably 5 to 50 times the calcium ion concentration in the raw water.

スケール防止剤を添加した原水は、次いでアルカリ剤を添加してpH9.5以上、好ましくは10以上、より好ましくは10.5〜12、例えばpH10.5〜11に調整して活性炭塔1に導入する。ここで使用するアルカリ剤としては水酸化ナトリウム、水酸化カリウムなど、原水のpHを9.5以上に調整できる無機物系アルカリ剤であれば良く、特に限定されない。   The raw water to which the scale inhibitor is added is then introduced into the activated carbon tower 1 by adding an alkali agent to adjust the pH to 9.5 or higher, preferably 10 or higher, more preferably 10.5 to 12, for example, pH 10.5 to 11. To do. The alkaline agent used here is not particularly limited as long as it is an inorganic alkaline agent that can adjust the pH of raw water to 9.5 or higher, such as sodium hydroxide and potassium hydroxide.

活性炭塔1で使用される活性炭種としては石炭系、椰子殻系など酸化剤を除去できるものであれば何でも良く特に限定はしない。また、通水方法も上向流、下向流どちらでもよく、通水SVも特に限定するものでないが、好ましくは1〜40hr−1で通水する。 The activated carbon used in the activated carbon tower 1 is not particularly limited as long as it can remove the oxidizing agent such as coal or coconut shell. Further, the water flow method may be either an upward flow or a downward flow, and the water flow SV is not particularly limited, but is preferably 1 to 40 hr −1 .

活性炭塔1で酸化剤が除去された活性炭処理水は、次いでタンク2を経てポンプPによりRO膜分離装置3に導入される。   The activated carbon treated water from which the oxidizing agent has been removed in the activated carbon tower 1 is then introduced into the RO membrane separation device 3 by the pump P through the tank 2.

RO膜分離装置のRO膜としては耐アルカリ性を有するもの、例えば、ポリエーテルアミド複合膜、ポリビニルアルコール複合膜、芳香族ポリアミド膜などが挙げられるが、1500mg/Lの食塩水を1.47MPa、25℃、pH7の条件でRO膜分離処理した時の塩排除率(以下、単に「塩排除率」と称す。)が95%以上の脱塩性能を有するポリビニルアルコール系の低ファウリング用RO膜を用いても良い。このような低ファウリング用RO膜を用いることが好ましい理由は以下の通りである。   Examples of the RO membrane of the RO membrane separator include those having alkali resistance, such as a polyetheramide composite membrane, a polyvinyl alcohol composite membrane, an aromatic polyamide membrane, and the like, but 1500 mg / L of saline is 1.47 MPa, 25 A polyvinyl alcohol-based low fouling RO membrane having a salt rejection rate of 95% or more when the RO membrane separation treatment is performed at a temperature of 7 ° C. and a pH of 7 (hereinafter, simply referred to as “salt exclusion rate”). It may be used. The reason why it is preferable to use such a low fouling RO membrane is as follows.

即ち、上記低ファウリング用RO膜は通常用いられる芳香族ポリアミド膜と比較して、膜表面の荷電性をなくし、親水性を向上させているため、耐汚染性において非常に優れている。しかしながら、非イオン性界面活性剤を多量に含む水に対してはその耐汚染性効果は低減し、経時によりフラックスは低下してしまう。   That is, the low-fouling RO membrane is superior in contamination resistance because it eliminates the chargeability of the membrane surface and improves the hydrophilicity as compared with a commonly used aromatic polyamide membrane. However, with respect to water containing a large amount of nonionic surfactant, its antifouling effect is reduced, and the flux decreases with time.

一方、本発明では、RO給水のpHを9.5以上に調整することにより、RO膜フラックスを低下させる恐れのある非イオン性界面活性剤は膜面から脱着するため、通常用いられる芳香族系ポリアミド膜を使用した場合であっても、極端なフラックスの低下を抑制することは可能である。しかし、RO給水中の非イオン性界面活性剤濃度が高い場合にはその効果も低減し、長期的にはフラックスは低下してしまう。RO膜分離装置の前段で活性炭処理を行うことにより、上述のような界面活性剤によるフラックスの低下の問題が軽減されるが、長時間処理を継続することにより、やはり、フラックスは低下してくる。   On the other hand, in the present invention, by adjusting the pH of the RO water supply to 9.5 or higher, the nonionic surfactant that may lower the RO membrane flux is desorbed from the membrane surface, so that an aromatic system that is usually used is used. Even when a polyamide film is used, it is possible to suppress an extreme decrease in flux. However, when the nonionic surfactant concentration in the RO water supply is high, the effect is also reduced, and the flux is lowered in the long term. By performing the activated carbon treatment in the front stage of the RO membrane separation device, the problem of the flux decrease due to the surfactant as described above is reduced, but the flux also decreases by continuing the treatment for a long time. .

そこで、本発明においては、このような問題点を解決するために、上記特定の脱塩性能を有するポリビニルアルコール系の低ファウリング用RO膜と、RO給水のpHを9.5以上として通水する条件とを組み合わせることにより、高濃度の非イオン性界面活性剤を含むRO給水に対してもフラックス低下を起こすことなく長期にわたり安定した運転を行うようにしても良い。   Therefore, in the present invention, in order to solve such problems, the polyvinyl alcohol-based RO membrane for low fouling having the specific desalting performance and the RO water supply with a pH of 9.5 or more are passed through. In combination with the above conditions, it is possible to perform stable operation over a long period of time without causing a decrease in flux even for RO feedwater containing a high concentration of nonionic surfactant.

RO膜は、スパイラル型、中空糸型、管状型等、いかなる型式のものであっても良い。   The RO membrane may be of any type such as a spiral type, a hollow fiber type, and a tubular type.

なお、RO膜分離装置2の濃縮水は必要に応じて酸を添加してpH中性に調整した後、系外へ排出される。また、RO膜分離装置2の透過水は、次いで酸を添加してpH4〜8に調整し、必要に応じて更に活性炭処理等を施した後、再利用又は放流される。ここで使用する酸としては、特に制限はなく、塩酸、硫酸などの鉱酸が挙げられる。   The concentrated water of the RO membrane separation device 2 is discharged to the outside of the system after adjusting to pH neutrality by adding an acid as necessary. Further, the permeated water of the RO membrane separation device 2 is then reused or discharged after adding an acid to adjust the pH to 4 to 8, further subjecting to activated carbon treatment as necessary. There is no restriction | limiting in particular as an acid used here, Mineral acids, such as hydrochloric acid and a sulfuric acid, are mentioned.

図1に示すように、原水に所定量のスケール防止剤を添加すると共に、pH9.5以上に調整した後、活性炭処理及びRO膜分離処理することにより、RO膜分離装置におけるフラックスの低下を引き起こすことなく、また、活性炭塔及びRO膜分離装置のバイオファウリングを防止して、長期に亘り安定な処理を行って、TOCが高度に除去された高水質処理水を得ることができる。   As shown in FIG. 1, a predetermined amount of scale inhibitor is added to the raw water, and after adjusting to pH 9.5 or higher, the activated carbon treatment and the RO membrane separation treatment cause a decrease in flux in the RO membrane separation device. In addition, biofouling of the activated carbon tower and the RO membrane separator can be prevented, and stable treatment can be performed for a long period of time to obtain high-quality treated water from which TOC is highly removed.

なお、図1は、前述の如く、本発明の実施の形態の一例を示すものであって、本発明はその要旨を超えない限り、何ら図示のものに限定されるものではない。図1では、原水にスケール防止剤を添加した後、アルカリを添加してpH調整を行うが、原水にアルカリを添加してpH調整を行った後スケール防止剤を添加しても良く、また、pH調整とスケール防止剤の添加とを同時に行っても良い。また、RO膜分離装置による処理は一段処理に限らず、2段以上の多段処理であっても良い。また、電子デバイス製造工場から排出されるTOC含有排水等では、基本的にはスケールの原因となるカルシウムイオンなどが混入するケースは少ないが、原水中にカルシウムイオンなどが混入し、RO給水のカルシウムイオン濃度が高い場合は、カチオン交換塔でカチオン交換処理を行って、カルシウムを除去しても良い。この場合には、スケール防止剤添加量を削減するために、スケール防止剤の添加に先立ち、カチオン交換処理を行うことが好ましい。更に、pH調整やスケール防止剤の添加のための混合槽を設けても良い。   FIG. 1 shows an example of an embodiment of the present invention as described above, and the present invention is not limited to the illustrated one as long as it does not exceed the gist thereof. In FIG. 1, after adding the scale inhibitor to the raw water, the alkali is added to adjust the pH, but after adding the alkali to the raw water and adjusting the pH, the scale inhibitor may be added. You may perform pH adjustment and the addition of a scale inhibitor simultaneously. Further, the process by the RO membrane separation apparatus is not limited to a single stage process, and may be a multistage process having two or more stages. In addition, in TOC-containing wastewater discharged from electronic device manufacturing factories, there are few cases where calcium ions, etc., which cause scales are basically mixed, but calcium ions, etc. are mixed in raw water, and calcium in RO water supply When the ion concentration is high, calcium may be removed by cation exchange treatment in a cation exchange tower. In this case, in order to reduce the amount of the scale inhibitor added, it is preferable to perform a cation exchange treatment prior to the addition of the scale inhibitor. Furthermore, you may provide the mixing tank for pH adjustment and the addition of a scale inhibitor.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

実施例1
非イオン系界面活性剤を含む電子デバイス製造工場排水(pH7.2,TOC10mg,カルシウムイオン濃度1mg/L,酸化剤(過酸化水素)含有量:30mg/L)を原水として、原水にスケール防止剤としてエチレンジアミン四酢酸ナトリウム塩10mg/Lを添加した後、NaOHを添加してpH10.5とし、活性炭塔(クラレケミカル製活性炭「KW10−32」を充填)にSV10hr−1で通水し、その活性炭処理水をRO膜分離装置(日東電工製低圧芳香族ポリアミド型RO膜「NTR−759」)で回収率90%の条件でRO膜分離処理を行った。
Example 1
Electronic device manufacturing factory waste water containing nonionic surfactant (pH 7.2, TOC 10 mg, calcium ion concentration 1 mg / L, oxidizing agent (hydrogen peroxide) content: 30 mg / L) as raw water, and scale inhibitor in raw water After adding 10 mg / L of ethylenediaminetetraacetic acid sodium salt, the pH is adjusted to 10.5 by adding NaOH, and the activated carbon is passed through an activated carbon tower (filled with Kuraray Chemical's activated carbon “KW10-32”) with SV10hr −1. The treated water was subjected to RO membrane separation treatment with an RO membrane separator (low pressure aromatic polyamide RO membrane “NTR-759” manufactured by Nitto Denko Corporation) under the condition of a recovery rate of 90%.

このときの活性炭処理水中の生菌水とRO膜分離装置の膜フラックス(25℃,1.47MPa)の経時変化を調べ、結果を図2,3に示した。   The changes over time in the viable water in the activated carbon-treated water and the membrane flux (25 ° C., 1.47 MPa) of the RO membrane separator at this time were examined, and the results are shown in FIGS.

なお、RO透過水のTOC濃度は50μg/Lで、TOCを高度に除去することができた。   The TOC concentration of RO permeated water was 50 μg / L, and TOC could be removed to a high degree.

比較例1
原水にNaOHを添加せず、AC給水のpHを7.2としたこと以外は実施例1と同条件で処理を行い、活性炭処理水中の生菌水とRO膜分離装置の膜フラックスの経時変化をそれぞれ図2,3に示した。
Comparative Example 1
Treatment with the same conditions as in Example 1 except that NaOH is not added to the raw water and the pH of the AC feed water is 7.2, and the time-dependent changes in the viable bacterial water in the activated carbon treated water and the membrane flux of the RO membrane separator Are shown in FIGS.

図2,3より次のことが明らかである。
実施例1の活性炭処理水中からは生菌が観測されなかったのに対し、比較例1の活性炭処理水中からは通水開始500時間後にはすでに10個/mLの生菌のリークが観測された。
また、実施例1においては通水開始から500時間後でもフラックスの低下は観測されなかったのに対し、比較例1では通水開始から300時間は活性炭のもつ有機物吸着作用により膜フラックスの低下はみられなかったが、300時間を過ぎた頃から極端にフラックスの低下が見られた。
The following is clear from FIGS.
The activated carbon treated water of Example 1 while the viable cells was observed, already 10 4 cells / mL of live bacteria leakage was observed in the water passing start after 500 hours from the activated carbon treatment water of Comparative Example 1 It was.
Further, in Example 1, no decrease in flux was observed even after 500 hours from the start of water flow, whereas in Comparative Example 1, the decrease in membrane flux was due to the organic substance adsorption action of activated carbon for 300 hours from the start of water flow. Although it was not observed, the flux decreased extremely after about 300 hours.

実施例2、比較例2〜4
AC給水のpHを9.5(実施例2)、9.2(比較例2)、9(比較例3)、又は8.5(比較例4)としたこと以外は実施例1と同条件で処理を行い、RO膜分離装置の膜フラックスの経時変化を調べ、結果を図4に示した。
Example 2 and Comparative Examples 2 to 4
The same conditions as in Example 1 except that the pH of the AC water supply was 9.5 (Example 2), 9.2 (Comparative Example 2), 9 (Comparative Example 3), or 8.5 (Comparative Example 4). Then, the change over time in the membrane flux of the RO membrane separator was examined, and the results are shown in FIG.

図4より、AC給水のpHを9.5以上とすることにより、RO給水のpHも9.5以上となり、非イオン性界面活性剤の膜面付着及び微生物の増殖によるバイオファウリングを抑え、RO膜分離装置の膜フラックスの低下を抑制できることが分かる。   From FIG. 4, by setting the pH of the AC water supply to 9.5 or higher, the pH of the RO water supply also becomes 9.5 or higher, suppressing biofouling due to film surface adhesion of nonionic surfactants and growth of microorganisms, It turns out that the fall of the membrane flux of RO membrane separator can be suppressed.

実施例3、比較例5,6
スケール防止剤の添加量を5mg/L(実施例3)、3mg/L(比較例5)、又は1mg/L(比較例6)としたこと以外は実施例1と同条件で処理を行い、RO膜分離装置の膜フラックスの経時変化を調べ、結果を図5に示した。なお、図5には、スケール防止剤の添加量を10mg/Lとした実施例1の結果も併記した。
Example 3 and Comparative Examples 5 and 6
The treatment was performed under the same conditions as in Example 1 except that the addition amount of the scale inhibitor was 5 mg / L (Example 3), 3 mg / L (Comparative Example 5), or 1 mg / L (Comparative Example 6). The change over time in the membrane flux of the RO membrane separator was examined, and the results are shown in FIG. In addition, in FIG. 5, the result of Example 1 which made the addition amount of the scale inhibitor 10 mg / L was also written together.

図5より、スケール防止剤の添加量をカルシウムイオン濃度の5重量倍以上とすることにより、RO膜分離装置の膜フラックスの低下を抑制できることが分かる。このとき、膜フラックスが低下したRO膜分離装置のRO膜面を調査したところ、炭酸カルシウムのスケールが付着していることが確認された。   From FIG. 5, it can be seen that the decrease in the membrane flux of the RO membrane separation device can be suppressed by setting the addition amount of the scale inhibitor to 5 times or more the calcium ion concentration. At this time, when the RO membrane surface of the RO membrane separation apparatus in which the membrane flux decreased was investigated, it was confirmed that the calcium carbonate scale was adhered.

本発明は、電子デバイス製造分野、半導体製造分野、その他の各種産業分野で排出される高濃度ないし低濃度TOC及び酸化剤含有排水の放流、又は回収・再利用のための水処理に有効に適用される。   INDUSTRIAL APPLICABILITY The present invention is effectively applied to water treatment for discharging, collecting or reusing wastewater containing high or low concentration TOC and oxidant discharged in the electronic device manufacturing field, semiconductor manufacturing field, and other various industrial fields. Is done.

本発明の有機物及び酸化剤含有排水の処理方法及び処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing method and processing apparatus of the organic substance and oxidizing agent containing waste_water | drain of this invention. 実施例1及び比較例1における活性炭処理水の生菌数の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the viable cell count of the activated carbon treatment water in Example 1 and Comparative Example 1. 実施例1及び比較例1におけるRO膜分離装置の膜フラックスの経時変化を示すグラフである。It is a graph which shows the time-dependent change of the membrane flux of the RO membrane separator in Example 1 and Comparative Example 1. 実施例2及び比較例2〜4におけるRO膜分離装置の膜フラックスの経時変化を示すグラフである。It is a graph which shows the time-dependent change of the membrane flux of the RO membrane separator in Example 2 and Comparative Examples 2-4. 実施例1,3及び比較例5,6におけるRO膜分離装置の膜フラックスの経時変化を示すグラフである。It is a graph which shows the time-dependent change of the membrane flux of the RO membrane separation apparatus in Examples 1 and 3 and Comparative Examples 5 and 6.

符号の説明Explanation of symbols

1 活性炭塔
2 タンク
3 RO膜分離装置
1 Activated carbon tower 2 Tank 3 RO membrane separator

Claims (7)

有機物及び酸化剤含有排水を活性炭で処理する活性炭処理工程と、活性炭処理工程を経た該排水を逆浸透膜分離処理する膜分離工程とを備えてなる有機物及び酸化剤含有排水の処理方法において、
前記活性炭処理工程よりも前の段階において、排水にアルカリを添加してpHを9.5以上に調整するpH調整工程と、
前記膜分離工程よりも前の段階において、排水に該排水中のカルシウムイオンの5重量倍以上のスケール防止剤を添加するスケール防止剤添加工程と
を有することを特徴とする有機物及び酸化剤含有排水の処理方法。
In a method for treating organic matter and oxidant-containing wastewater, comprising an activated carbon treatment step of treating organic matter and oxidant-containing wastewater with activated carbon, and a membrane separation step of subjecting the wastewater that has undergone the activated carbon treatment step to reverse osmosis membrane separation treatment,
In the stage prior to the activated carbon treatment step, a pH adjustment step of adjusting the pH to 9.5 or more by adding alkali to the waste water;
An organic matter and oxidizing agent-containing wastewater characterized by having a scale inhibitor addition step of adding a scale inhibitor at least 5 times the weight of calcium ions in the wastewater to the wastewater before the membrane separation step Processing method.
請求項1において、該スケール防止剤添加工程、該pH調整工程、該活性炭処理工程及び該膜分離工程の順で排水処理することを特徴とする有機物及び酸化剤含有排水の処理方法。   The method for treating organic matter and oxidizing agent-containing wastewater according to claim 1, wherein wastewater treatment is performed in the order of the scale inhibitor addition step, the pH adjustment step, the activated carbon treatment step, and the membrane separation step. 請求項1又は2において、該スケール防止剤添加工程において、該排水に、該排水中のカルシウムイオンの5〜50重量倍のスケール防止剤を添加することを特徴とする有機物及び酸化剤含有排水の処理方法。   3. The organic matter and oxidizing agent-containing wastewater according to claim 1, wherein in the scale inhibitor addition step, a scale inhibitor that is 5 to 50 times the calcium ion in the wastewater is added to the wastewater. Processing method. 請求項1ないし3のいずれか1項において、該pH調整工程において、pHを10.5〜12に調整することを特徴とする有機物及び酸化剤含有排水の処理方法。   4. The method for treating organic matter and oxidizing agent-containing wastewater according to claim 1, wherein the pH is adjusted to 10.5 to 12 in the pH adjustment step. 有機物及び酸化剤含有排水を活性炭で処理する活性炭処理手段と、活性炭処理手段を経た該排水を逆浸透膜分離処理する膜分離手段とを備えてなる有機物及び酸化剤含有排水の処理装置において、
前記活性炭処理手段によりも前段に設けられた、排水にアルカリを添加してpHを9.5以上に調整するpH調整手段と、
前記膜分離手段よりも前段に設けられた、排水に該排水中のカルシウムイオンの5重量倍以上のスケール防止剤を添加するスケール防止剤添加手段と
を有することを特徴とする有機物及び酸化剤含有排水の処理装置。
In an apparatus for treating organic matter and oxidant-containing wastewater, comprising an activated carbon treatment means for treating organic matter and oxidant-containing wastewater with activated carbon, and a membrane separation means for reverse osmosis membrane separation treatment of the wastewater that has passed through the activated carbon treatment means,
PH adjusting means for adjusting the pH to 9.5 or more by adding alkali to the wastewater, which is provided in the previous stage than the activated carbon treatment means;
An organic substance and an oxidizing agent containing an anti-scalant adding means for adding to the waste water a scale inhibitor more than 5 times the weight of calcium ions in the waste water, which is provided before the membrane separation means Wastewater treatment equipment.
請求項5において、該スケール防止剤添加手段、該pH調整手段、該活性炭処理手段及び該膜分離手段がこの順で設けられていることを特徴とする有機物及び酸化剤含有排水の処理装置。   6. The apparatus for treating organic matter and oxidizing agent-containing wastewater according to claim 5, wherein the scale inhibitor addition means, the pH adjustment means, the activated carbon treatment means, and the membrane separation means are provided in this order. 請求項5又は6において、該活性炭処理手段が活性炭塔であることを特徴とする有機物及び酸化剤含有排水の処理装置。   The apparatus for treating wastewater containing organic matter and oxidizing agent according to claim 5 or 6, wherein the activated carbon treatment means is an activated carbon tower.
JP2004232977A 2003-11-18 2004-08-10 Method and apparatus for treating wastewater containing organic matter and oxidizing agent Expired - Fee Related JP3906855B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004232977A JP3906855B2 (en) 2004-08-10 2004-08-10 Method and apparatus for treating wastewater containing organic matter and oxidizing agent
KR1020067011801A KR101098679B1 (en) 2003-11-18 2004-10-22 Method of treating waste water containing organic substance and treating apparatus
PCT/JP2004/015688 WO2005049501A1 (en) 2003-11-18 2004-10-22 Method of treating waste water containing organic substance and treating apparatus
CN2009101488098A CN101597097B (en) 2003-11-18 2004-10-22 Method of treating waste water containing organic substance
TW093132778A TW200517343A (en) 2003-11-18 2004-10-28 Method of treating waste water containing organic substance and treating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004232977A JP3906855B2 (en) 2004-08-10 2004-08-10 Method and apparatus for treating wastewater containing organic matter and oxidizing agent

Publications (2)

Publication Number Publication Date
JP2006181397A true JP2006181397A (en) 2006-07-13
JP3906855B2 JP3906855B2 (en) 2007-04-18

Family

ID=36734887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232977A Expired - Fee Related JP3906855B2 (en) 2003-11-18 2004-08-10 Method and apparatus for treating wastewater containing organic matter and oxidizing agent

Country Status (1)

Country Link
JP (1) JP3906855B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238051A (en) * 2007-03-27 2008-10-09 Kurita Water Ind Ltd Organic matter treatment method and organic matter treatment apparatus
JP2010029757A (en) * 2008-07-25 2010-02-12 Miura Co Ltd Membrane filtration system, and operating method of membrane filtration system
WO2012114953A1 (en) * 2011-02-24 2012-08-30 栗田工業株式会社 Antiscalant and scale inhibition method for reverse osmosis membranes
KR101464022B1 (en) * 2007-08-29 2014-11-20 쿠리타 고교 가부시키가이샤 Method and apparatus for treating water containing organic matter
JP2016107216A (en) * 2014-12-08 2016-06-20 栗田工業株式会社 Apparatus and method for treating waste water containing peracetic acid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5608988B2 (en) 2009-02-27 2014-10-22 栗田工業株式会社 Slime control agent for activated carbon, method of passing water to activated carbon device, method of treating water containing organic matter, and treatment device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110795A (en) * 1985-11-06 1987-05-21 Kurita Water Ind Ltd Device for producing high-purity water
JPH07144189A (en) * 1993-11-26 1995-06-06 Unitika Ltd Treatment of hydrogen peroxide-containing waste water
JPH08173978A (en) * 1994-12-28 1996-07-09 Kurita Water Ind Ltd Method for removing organic substance
JPH09891A (en) * 1995-06-21 1997-01-07 Nitto Denko Corp Method for treating raw water using membrane module
JPH10244280A (en) * 1997-03-03 1998-09-14 Japan Organo Co Ltd Removal device for organic substance in water
JPH10272465A (en) * 1997-03-28 1998-10-13 Kurita Water Ind Ltd Pure water making apparatus
JPH1157753A (en) * 1997-08-19 1999-03-02 Japan Organo Co Ltd Removing method of toc component and device therefor
JP2001269544A (en) * 1994-12-02 2001-10-02 Toray Ind Inc Membrane separation device and method for separating highly concentrated solution
JP2002186835A (en) * 2000-12-20 2002-07-02 Japan Organo Co Ltd Operation method for reverse osmosis membrane device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62110795A (en) * 1985-11-06 1987-05-21 Kurita Water Ind Ltd Device for producing high-purity water
JPH07144189A (en) * 1993-11-26 1995-06-06 Unitika Ltd Treatment of hydrogen peroxide-containing waste water
JP2001269544A (en) * 1994-12-02 2001-10-02 Toray Ind Inc Membrane separation device and method for separating highly concentrated solution
JPH08173978A (en) * 1994-12-28 1996-07-09 Kurita Water Ind Ltd Method for removing organic substance
JPH09891A (en) * 1995-06-21 1997-01-07 Nitto Denko Corp Method for treating raw water using membrane module
JPH10244280A (en) * 1997-03-03 1998-09-14 Japan Organo Co Ltd Removal device for organic substance in water
JPH10272465A (en) * 1997-03-28 1998-10-13 Kurita Water Ind Ltd Pure water making apparatus
JPH1157753A (en) * 1997-08-19 1999-03-02 Japan Organo Co Ltd Removing method of toc component and device therefor
JP2002186835A (en) * 2000-12-20 2002-07-02 Japan Organo Co Ltd Operation method for reverse osmosis membrane device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008238051A (en) * 2007-03-27 2008-10-09 Kurita Water Ind Ltd Organic matter treatment method and organic matter treatment apparatus
KR101464022B1 (en) * 2007-08-29 2014-11-20 쿠리타 고교 가부시키가이샤 Method and apparatus for treating water containing organic matter
JP2010029757A (en) * 2008-07-25 2010-02-12 Miura Co Ltd Membrane filtration system, and operating method of membrane filtration system
WO2012114953A1 (en) * 2011-02-24 2012-08-30 栗田工業株式会社 Antiscalant and scale inhibition method for reverse osmosis membranes
JPWO2012114953A1 (en) * 2011-02-24 2014-07-07 栗田工業株式会社 Reverse osmosis membrane scale inhibitor and scale prevention method
JP5884730B2 (en) * 2011-02-24 2016-03-15 栗田工業株式会社 Reverse osmosis membrane scale inhibitor and scale prevention method
JP2016107216A (en) * 2014-12-08 2016-06-20 栗田工業株式会社 Apparatus and method for treating waste water containing peracetic acid

Also Published As

Publication number Publication date
JP3906855B2 (en) 2007-04-18

Similar Documents

Publication Publication Date Title
JP5757089B2 (en) Method and apparatus for treating water containing organic matter
KR101464022B1 (en) Method and apparatus for treating water containing organic matter
KR101671168B1 (en) Slime control agent for activated carbon, method of passing water through activated-carbon device, and method and apparatus for treating organic-containing water
JP2007253115A (en) Organic matter-containing wastewater treatment method and apparatus
JP5050605B2 (en) Organic substance processing method and organic substance processing apparatus
JP4496795B2 (en) Method and apparatus for treating wastewater containing organic matter
JP6123840B2 (en) Organic wastewater treatment method
JP2006204977A (en) Method and apparatus for treating biologically treated water-containing water
JP3906855B2 (en) Method and apparatus for treating wastewater containing organic matter and oxidizing agent
JP4899565B2 (en) Water treatment apparatus and water treatment method
JP2007090249A (en) Method for cleaning membrane deaerator
JP2007244930A (en) Treatment method and treatment apparatus for organic substance-containing waste water
JP5135697B2 (en) Surfactant-containing wastewater treatment method
JP2006281174A (en) Method, apparatus and system for recycling wastewater
JP6106943B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment apparatus
KR101098679B1 (en) Method of treating waste water containing organic substance and treating apparatus
JP2009189943A (en) Water treatment method and apparatus
JP2005081269A (en) Treatment method and treatment apparatus for organic substance-containing wastewater
JP2017087211A (en) Organic wastewater treatment method
JP2014180586A (en) Method for preventing generation of scale in reverse osmosis membrane treatment and scale inhibitor for reverse osmosis membrane treatment
JP2005081268A (en) Treatment method and treatment apparatus for organic substance-containing wastewater
JP2013119071A (en) Scale generation prevention method in reverse osmotic membrane treatment and reverse osmotic membrane-treating scale prevention agent
JP2004025027A (en) Water treatment method using reverse osmosis membrane

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070108

R150 Certificate of patent or registration of utility model

Ref document number: 3906855

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees