JP2001246385A - Treatment process of water containing fluorine - Google Patents

Treatment process of water containing fluorine

Info

Publication number
JP2001246385A
JP2001246385A JP2000060829A JP2000060829A JP2001246385A JP 2001246385 A JP2001246385 A JP 2001246385A JP 2000060829 A JP2000060829 A JP 2000060829A JP 2000060829 A JP2000060829 A JP 2000060829A JP 2001246385 A JP2001246385 A JP 2001246385A
Authority
JP
Japan
Prior art keywords
compound
water
amount
fluorine
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000060829A
Other languages
Japanese (ja)
Other versions
JP4543482B2 (en
Inventor
Isamu Kato
勇 加藤
Kazuki Hayashi
一樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000060829A priority Critical patent/JP4543482B2/en
Publication of JP2001246385A publication Critical patent/JP2001246385A/en
Application granted granted Critical
Publication of JP4543482B2 publication Critical patent/JP4543482B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluorine-containing water treatment process which comprises adding a Ca compound to fluorine-containing water to precipitate and separate flourine as CaF2 and removing residual Ca2+ ion in the resulting water by cation-exchange resin and enables reduction in concentration of the residual Ca2+ ion by optimizing the amount of addition of the Ca compound without increasing the F- ion concentration in treated water by this CaF2 formation treatment and also reduction in regeneration frequency of the cation- exchange resin. SOLUTION: In this treatment process, when the equivalent amount of a calcium compound to the amount of ions in fluorine-containing water, which ions can be combined with calcium to form their respective hardly soluble salts, is A mg/L (expressed in terms of Ca), the amount of addition of the Ca compound to the fluorine-containing water is adjusted to A to (A-200) mg/L (expressed in terms of Ca).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はフッ素含有水にカル
シウム(Ca)化合物を添加してフッ素をフッ化カルシ
ウム(CaF)として沈殿分離した後、残留するCa
2+イオンをカチオン交換樹脂で除去する方法に係り、
特に、この方法において、Ca化合物の必要添加量を適
正化して、カチオン交換樹脂の再生頻度を低減するフッ
素含有水の処理方法に関する。
TECHNICAL FIELD The present invention relates to a calcium (Ca) compound added to water containing fluorine to precipitate and separate fluorine as calcium fluoride (CaF 2 ).
According to a method for removing 2+ ions with a cation exchange resin,
In particular, the present invention relates to a method for treating fluorine-containing water in which the required amount of a Ca compound is optimized and the frequency of regeneration of a cation exchange resin is reduced.

【0002】[0002]

【従来の技術】半導体部品製造におけるシリコンウェハ
製造工程から排出されるフッ素含有廃水等のフッ素含有
水の処理方法としては、フッ素含有水にCa化合物を添
加してCaFを生成させ、これを沈殿分離する方法
が、薬剤コストが安価であることから広く普及してい
る。また、特に、半導体製造廃水については、フッ素以
外にSO 2−,NO ,NH 等の無機塩を含有
することから、CaFを沈殿分離した後、これらSO
2−,NO ,NH 等の廃水由来の無機塩と、
残留するCa2+とFを分離して回収水として再利用
するために、図1に示す如く、原水槽1、原水にCa化
合物を添加する中和槽2、中和処理液を凝集処理する凝
集槽3、沈殿を生成させる沈殿槽4及び生成した沈殿を
固液分離する濾過器5を経てCaFの生成、分離を行
って得られた処理水(以下、この水を「CaF処理
水」と称す場合がある。)を、更に軟化塔(カチオン交
換樹脂塔)6及び逆浸透(RO)膜分離装置7に通水し
て処理することが行われている。なお、濾過器5の逆洗
排水、軟化塔6の再生廃液、RO膜分離装置7の濃縮水
は原水槽1に送給され、原水と共に処理される。
2. Description of the Related Art As a method for treating fluorine-containing water such as fluorine-containing wastewater discharged from a silicon wafer manufacturing process in the manufacture of semiconductor parts, a Ca compound is added to fluorine-containing water to generate CaF 2 and this is precipitated. Separation methods have become widespread due to the low drug cost. In particular, since semiconductor manufacturing wastewater contains inorganic salts such as SO 4 2− , NO 3 , and NH 4 + in addition to fluorine, CaF 2 is precipitated and separated,
4 2-, NO 3 -, and inorganic salts derived from wastewater NH 4 + or the like,
As shown in FIG. 1, a raw water tank 1, a neutralization tank 2 for adding a Ca compound to raw water, and a neutralization treatment liquid are subjected to a coagulation treatment in order to separate remaining Ca 2+ and F and reuse as recovered water. Processed water obtained by generating and separating CaF 2 through a flocculation tank 3, a settling tank 4 for generating a precipitate, and a filter 5 for solid-liquid separation of the generated precipitate (hereinafter, this water is referred to as “CaF 2 treated water”). ) May be further passed through a softening tower (cation exchange resin tower) 6 and a reverse osmosis (RO) membrane separation device 7 for treatment. The backwash drainage from the filter 5, the reclaimed waste liquid from the softening tower 6, and the concentrated water from the RO membrane separation device 7 are sent to the raw water tank 1 and processed together with the raw water.

【0003】即ち、半導体製造廃水からCaFの生
成、分離を行って得られたCaF処理水は、CaF
やCaSO等の析出塩を生成するスケール原因物質を
含有するため、これをそのままRO膜分離装置7に通水
して脱塩処理すると、これらのスケール原因物質がRO
膜分離装置7内で濃縮されてスケールとして析出し、R
O膜を閉塞させ、通水不可能となる。従って、このRO
膜の閉塞を防止するために、RO膜分離装置7の前段
で、予めこれらのスケール原因物質を十分に除去してお
く必要がある。この場合、Ca2+,SO 2−,F
等のスケール原因物質のすべてを除去する必要はなく、
CaFの生成防止のためにはCa2+とF のいずれ
か一方を除去すれば良く、CaSOの生成防止のため
にもCa2+とSO 2−のいずれか一方を除去すれば
良い。このため、図1に示す如く、RO膜分離装置7の
前段に軟化塔6を設け、カチオン交換樹脂でCa2+
除去することが一般に行われている。
[0003] That is, from the semiconductor manufacturing wastewater, CaF2Raw
CaF obtained by performing2The treated water is CaF2
And CaSO4Scale-causing substances that produce precipitated salts such as
Since it is contained, it is passed through the RO membrane separation device 7 as it is.
And then desalination treatment, these scale-causing substances become RO
It is concentrated in the membrane separation device 7 and deposited as scale, and R
The O membrane is closed, and water cannot be passed. Therefore, this RO
In order to prevent clogging of the membrane, the pre-stage of the RO membrane separation device 7
To remove these scale-causing substances in advance.
It is needed. In this case, Ca2+, SO4 2-, F
It is not necessary to remove all scale-causing substances such as
CaF2To prevent the formation of Ca2+And F Any of
Or one of them may be removed.4To prevent the generation of
Also Ca2+And SO4 2-If you remove one of
good. For this reason, as shown in FIG.
A softening tower 6 is provided in the preceding stage, and Ca is exchanged with a cation exchange resin.2+To
Removal is common.

【0004】ところで、このような処理プロセスにおい
て、回収水が一時的に余剰になる場合には、CaF
理水、即ち、濾過器5の濾過処理水をそのまま系外へ排
出して放流するため、このCaF処理水のF濃度に
ついては、排水基準である15mg/L以下にまで処理
する必要がある。Ca化合物の添加により、原水である
フッ素含有水中のFをこのように高度に除去するため
に、一般的には、 Ca2++2F→CaF の反応式に基いて、Ca化合物を原水中のFに対して
当量よりも過剰に添加することが行われており、従っ
て、従来において、Ca化合物の過剰添加でCaF
理水中に残留するCa2+濃度の指標は100〜300
mg/Lとされている。
By the way, in such a processing process,
If the recovered water temporarily becomes excessive, CaF2place
The water, ie, the filtered water from the filter 5 is discharged out of the system
This CaF2F of treated waterTo the concentration
For wastewater, treat it to the wastewater standard of 15 mg / L or less.
There is a need to. Raw water by adding Ca compound
F in fluorine-containing waterIn order to remove this highly
In general, Ca2++ 2F→ CaF2  Based on the reaction formula, the Ca compound is converted to FAgainst
It is added in excess of the equivalent amount.
Conventionally, CaF was added by excessive addition of Ca compound. 2place
Ca remaining in the water2+Index of concentration is 100 to 300
mg / L.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、100
〜300mg/LのCa2+イオンを含むCaF処理
水を軟化塔6に通水してカチオン交換樹脂で処理する
と、カルシウム化合物のイオン交換能が早期に飽和に達
し、2〜4サイクル/日の頻度でカチオン交換樹脂の再
生を行う必要が生じる。
SUMMARY OF THE INVENTION However, 100
When CaF 2 treated water containing ~ 300 mg / L Ca 2+ ion is passed through the softening tower 6 and treated with the cation exchange resin, the ion exchange capacity of the calcium compound reaches saturation early and 2 to 4 cycles / day It is necessary to frequently regenerate the cation exchange resin.

【0006】このように頻繁に再生を行うことは、装置
の保守管理、再生薬剤コスト、再生廃液の処理コスト、
軟化塔の稼動効率等の面において、工業的に著しく不利
である。一方で、前述の如くCa化合物添加量を減らす
ことは、CaF処理水中のF濃度を高める恐れがあ
ることから、Ca化合物添加量の適正化が求められる。
[0006] Frequent regeneration as described above requires maintenance and management of the apparatus, the cost of regenerating chemicals, the cost of treating waste liquid, and the like.
It is industrially very disadvantageous in terms of the operating efficiency of the softening tower. On the other hand, by reducing the Ca compound added amount as described above, F of CaF 2 treated water - since there is a possibility to increase the concentration, Ca compound addition amount of optimization is required.

【0007】本発明は上記従来の問題点を解決し、フッ
素含有水にCa化合物を添加してFをCaFとして沈
殿分離した後、残留するCa2+イオンをカチオン交換
樹脂で除去するに当たり、Ca化合物の添加量を適正化
して、CaF処理水中のF 濃度を高めることなく、
残留Ca2+濃度を低減し、カチオン交換樹脂の再生頻
度を低減することができるフッ素含有水の処理方法を提
供することを目的とする。
[0007] The present invention solves the above-mentioned conventional problems and solves the above problem.
F added to Ca-containing water by adding Ca compound2As sunk
After the separation,2+Cation exchange of ions
Optimum amount of Ca compound added when removing with resin
And CaF2F in treated water Without increasing the concentration
Residual Ca2+Reduces the concentration and reduces the frequency of regeneration of the cation exchange resin.
A method for treating fluorine-containing water that can reduce the
The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明のフッ素含有水の
処理方法は、フッ素含有水にカルシウム化合物を添加し
て生成したフッ化カルシウムを分離した後、残留するカ
ルシウムイオンをカチオン交換樹脂で除去する方法にお
いて、該フッ素含有水中のカルシウムと難溶性の塩を生
成するイオンの量に対して当量となるカルシウム化合物
量をAmg(as Ca)/Lとしたとき、該フッ素含
有水へのカルシウム化合物の添加量をAmg(as C
a)/L〜(A−200)mg(as Ca)/Lとす
ることを特徴とする。
According to the method for treating fluorine-containing water of the present invention, calcium fluoride formed by adding a calcium compound to fluorine-containing water is separated, and the remaining calcium ions are removed by a cation exchange resin. The amount of a calcium compound equivalent to the amount of ions that form a sparingly soluble salt with calcium in the fluorine-containing water is Amg (as Ca) / L, the calcium compound in the fluorine-containing water Amg (as C
a) / L to (A-200) mg (as Ca) / L.

【0009】前述の如く、従来においては、CaF
理水中のCa2+濃度は100〜300mg/Lである
が、この濃度が30mg/L或いはそれ以下であれば、
カルシウム化合物の再生頻度も従来の1/5程度とな
り、装置の保守管理は軽減され、再生薬剤コスト、再生
廃液処理コストの低減、軟化塔の稼動効率の向上が図れ
る。
As described above, conventionally, the Ca 2+ concentration in the CaF 2 treated water is 100 to 300 mg / L, but if this concentration is 30 mg / L or less,
The frequency of regenerating the calcium compound is also reduced to about 1/5 of the conventional frequency, so that the maintenance and management of the apparatus is reduced, the cost of regenerating chemicals, the cost of treating waste liquid, and the operation efficiency of the softening tower can be improved.

【0010】また、前述の如く、CaF処理水を放流
する場合において、CaF処理水中のF濃度は15
mg/L以下であることが必要となる。
As described above, when the CaF 2 treated water is discharged, the F - concentration in the CaF 2 treated water is 15%.
mg / L or less.

【0011】従って、本発明者らは、F濃度15mg
/L以下、Ca2+濃度30mg/L以下のCaF
理水を確実に得るべく鋭意検討を重ねた結果、原水であ
るフッ素含有水中に含まれるCa2+と難溶性の塩を生
成するイオンの量に対して当量となるCa化合物のCa
換算量をAmg/Lとしたとき、Ca化合物添加量をC
a換算量でAmg/L〜(A−200)mg/Lの範囲
とすれば、上記F濃度及びCa2+濃度を共に満足し
得ることを見出し、本発明を完成させた。(なお、本発
明において、原水としてのフッ素含有水とは、Ca化合
物が添加される水であって、フッ素含有水以外に、図1
に示す如く、後段の処理装置の再生液等が返送される処
理プロセスにあっては、中和槽2に流入する水を指
す。)。
Accordingly, the present inventors have determined that the F - concentration is 15 mg.
/ L or less, Ca 2+ concentration 30 mg / L or less of CaF 2 treated water intensive studies to obtain reliably a result, the amount of ions generated a Ca 2+ and sparingly soluble salt contained in the fluorine-containing water is raw water Ca equivalent of Ca compound
When the converted amount is Amg / L, the amount of the Ca compound added is C
The present inventors have found that, when the amount is in the range of Amg / L to (A-200) mg / L, the F - concentration and the Ca2 + concentration can be satisfied, and the present invention has been completed. (Note that, in the present invention, the fluorine-containing water as the raw water is water to which a Ca compound is added.
As shown in (2), in the processing process in which the regenerating solution or the like of the subsequent processing device is returned, it refers to water flowing into the neutralization tank 2. ).

【0012】即ち、原水中のFからCaFを効果的
に生成させてFを高度に除去するためには、原水中の
だけでなく、F以外のCa2+と難溶性塩を生成
する共存イオン(以下、このイオンを「難溶性塩生成イ
オン」と称す。)も考慮する必要があり、Ca化合物は
原水中のFに対してのみならず、原水中のF以外の
難溶性塩生成イオンに対しても必要となる。
That is, in order to effectively generate CaF 2 from F in raw water and to remove F to a high degree, not only F in raw water but also Ca 2+ other than F and a hardly soluble salt can be used. It is also necessary to consider the coexisting ions that form the compound (hereinafter, these ions are referred to as “poorly soluble salt-forming ions”), and the Ca compound not only reacts with F − in the raw water, but also with respect to F in the raw water. Is also required for the hardly soluble salt-forming ions.

【0013】このF以外の難溶性塩生成イオンとして
は、リン酸イオン(PO 3−)、硫酸イオン(SO
2−)、炭酸イオン(CO 2−)等が挙げられるが、
このような難溶性塩生成イオンがCaF処理水のフッ
素濃度に影響を及ぼす機構は次の様に推定される。
[0013] The F - The other sparingly soluble salt-forming ion, phosphate ion (PO 4 3-), sulfate ion (SO 4
2), carbonate ions (CO 3 2-) and others as mentioned,
The mechanism by which such poorly soluble salt forming ions affect the fluorine concentration of the CaF 2 treated water is presumed as follows.

【0014】即ち、例えばSO 2−の場合、CaSO
の溶解度は2000mg/L,CaFの溶解度は1
5mg/Lで、CaFの溶解度はCaSOの溶解度
に比べて格段に小さいことから、フッ素と当量のCa塩
が存在すれば、一般的にはCaFの生成反応がCaS
の生成反応に優先して起こるはずである。しかし、
実際にはCaFの沈殿生成と同時に、沈殿を生じない
CaSO(aq.)、いわゆる分子状のCaSO
生成し、Ca塩がSO 2−に固定されるため、Ca
2++2F→CaFの反応が阻害される。従って、
このような難溶性塩生成イオンと反応するCa化合物も
添加する必要がある。
That is, for example, in the case of SO 4 2- ,
The solubility of 4 was 2000 mg / L, and the solubility of CaF 2 was 1
At 5 mg / L, the solubility of CaF 2 is much lower than the solubility of CaSO 4. Therefore, if Ca salts equivalent to fluorine are present, the reaction of CaF 2 formation is generally CaS 2.
It should occur in preference to the O 4 formation reaction. But,
Actually, simultaneously with the precipitation of CaF 2 , CaSO 4 (aq.) Which does not cause precipitation, that is, so-called molecular CaSO 4 is generated, and the Ca salt is fixed to SO 4 2- ,
2+ + 2F - → reaction of CaF 2 is inhibited. Therefore,
It is also necessary to add a Ca compound that reacts with such poorly soluble salt-forming ions.

【0015】半導体製造廃水等のフッ素含有水にはこれ
らの難溶性塩生成イオンが含有されている上に、本出願
人が先に提案したように、フッ素含有水にCa化合物を
添加して処理するに当たり、処理水の水質の向上、Ca
の結晶化促進の目的で、フッ素含有水に硫酸及び/
又は硫酸塩を添加する場合もある(特願平11−146
822号、特願平11−218990号)。このような
場合には、当然、原水中にはF以外にSO 2−が存
在することとなる。
Fluorine-containing water, such as semiconductor manufacturing wastewater, contains these sparingly soluble salt-forming ions and, as previously proposed by the present applicant, is treated by adding a Ca compound to fluorine-containing water. In order to improve the quality of treated water, Ca
For the purposes of the crystallization accelerating F 2, sulfuric acid and a fluorine-containing water /
Alternatively, a sulfate may be added (Japanese Patent Application No. 11-146).
No. 822, Japanese Patent Application No. 11-218990). In such a case, of course, the raw water F - and thus the presence of SO 4 2-besides.

【0016】このような難溶性塩生成イオン、例えば、
SO 2−を考慮した場合、原水へのCa化合物の必要
添加量は、原水中のFとの反応でCaFを生成させ
るために必要なCa化合物量と原水中のSO 2−との
反応でCaSOを生成させるために必要なCa化合物
量との合計量よりもやや少ない程度が、前述のF:1
5mg/L以下、Ca2+:30mg/L以下のCaF
処理水を得るための理想的な添加量となる。
Such a sparingly soluble salt-forming ion, for example,
When SO 4 2- is considered, the required amount of the Ca compound to be added to the raw water is determined by the amount of the Ca compound required to generate CaF 2 by the reaction with F − in the raw water and the amount of the SO 4 2- in the raw water. Is slightly smaller than the total amount of the Ca compound and the amount of the Ca compound necessary for generating CaSO 4 by the reaction of the above-mentioned F : 1.
5 mg / L or less, Ca 2+ : 30 mg / L or less of CaF
2 It is an ideal addition amount for obtaining treated water.

【0017】しかして、前記Amg(as Ca)/L
〜(A−200)mg(as Ca)/Lの範囲であれ
ば、この理想的な添加量を実現することができる。
Thus, Amg (as Ca) / L
This ideal addition amount can be realized within the range of (A-200) mg (as Ca) / L.

【0018】[0018]

【発明の実施の形態】以下に本発明のフッ素含有水の処
理方法の実施の形態を詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the method for treating fluorine-containing water of the present invention will be described below in detail.

【0019】本発明においては、図1に示すようなプロ
セスで半導体製造廃水等のフッ素含有水にCa化合物を
添加してCaFを生成させるに当たり、添加するCa
化合物の量を、原水中の難溶性塩生成イオン量に対して
当量となるCa化合物のCa換算量Amg/L以下、
(A−200)mg/L以上とする。
In the present invention, when to generate a CaF 2 with the addition of Ca compound to the fluorine-containing water such as a semiconductor fabrication wastewater process as shown in FIG. 1, the addition of Ca
The amount of the compound is reduced to Ca equivalent amount of Ca compound, Amg / L or less, which is equivalent to the amount of the insoluble salt-forming ions in the raw water,
(A-200) mg / L or more.

【0020】このCa化合物添加量が(A−200)m
g(as Ca)/L未満では、Ca化合物が不足し
て、原水中のFを高度に除去し得ず、残留Fが増大
してF :15mg/L以下のCaF処理水を得るこ
とができない。逆に、Ca化合物添加量がAmg(as
Ca)/Lを超えると、Ca化合物が過剰となりす
ぎ、CaF処理水中のF濃度は低減するが、Ca
2+が大幅に増え、カチオン交換樹脂の再生頻度を高め
ることとなる。
When the amount of the Ca compound added is (A-200) m
If the amount is less than g (as Ca) / L, the Ca compound becomes insufficient.
And F in raw waterCannot be removed to a high degree and the residual FIncreases
Then F : CaF of 15 mg / L or less2Obtain treated water
I can't do that. Conversely, when the Ca compound addition amount is Amg (as
 If Ca) / L is exceeded, the Ca compound becomes excessive.
G, CaF2F in treated waterAlthough the concentration decreases, Ca
2+Greatly increase the frequency of cation exchange resin regeneration
The Rukoto.

【0021】なお、この難溶性塩生成イオンとは、一般
的には、Ca2+との反応で、溶解度積に基く溶解量が
700mg/L以下であるような難溶性塩を生成するも
のであり、原水中のF以外の難溶性塩生成イオンとし
ては、前述の如く、PO 、SO 2−、CO
2−等が挙げられることから、本発明では、原水中のF
濃度、PO 3−濃度、SO 2−濃度、CO 2−
濃度に基いて、下記式で算出されるAmg(as C
a)/Lの値に対してCa化合物の添加量はA〜(A−
200)mg(as Ca)/Lとなるようにする。
The poorly soluble salt forming ion is generally
Typically, Ca2+And the amount of dissolution based on the solubility product
It produces a poorly soluble salt of 700 mg / L or less.
And F in raw waterOther hardly soluble salt-forming ions
As mentioned earlier, PO4 3 , SO4 2-, CO3
2-In the present invention, F in raw water
Concentration, PO4 3-Concentration, SO4 2-Concentration, CO3 2-
Based on the concentration, Amg (as C
a) The amount of the Ca compound added to the value of / L is A to (A-
200) mg (as Ca) / L.

【0022】 A(mg/L)= (F濃度×Ca/2F)+(PO 3−濃度×3Ca/2PO) +(SO 2−濃度×Ca/SO)+(CO 2−濃度×Ca/CO) =(F濃度×40/38)+(PO 3−濃度×120/190) +(SO 2−濃度×40/96)+(CO 2−濃度×40/60) なお、前述の如く、硫酸及び/又は硫酸塩を添加する場
合のように、難溶性塩生成イオンが原水に添加される場
合には、原水中の難溶性塩生成イオンとして当然この添
加された難溶性塩生成イオンも含まれる。
A (mg / L) = (F concentration × Ca / 2F) + (PO 4 3- concentration × 3Ca / 2PO 4 ) + (SO 4 2- concentration × Ca / SO 4 ) + (CO 3 2 ) - concentration × Ca / CO 3) = ( F - concentration × 40/38) + (PO 4 3- concentration × 120/190) + (SO 4 2- concentration × 40/96) + (CO 3 2- concentration × 40/60) As described above, when a sparingly soluble salt-forming ion is added to raw water, as in the case of adding sulfuric acid and / or a sulfate, the sparingly soluble salt-forming ion in the raw water is naturally converted to this. The added sparingly soluble salt-forming ions are also included.

【0023】原水中に難溶性塩生成イオンが複数種類あ
る場合、すべての難溶性塩生成イオン量を測定してCa
塩添加量の算出に用いる必要はなく、主要な難溶性塩生
成イオン、即ち原水中の濃度が高い、例えば100pp
m以上の難溶性塩生成イオンの1種又は2種以上を選択
し、この難溶性塩生成イオン量を測定してCa塩添加量
を設定しても良い。
When there are a plurality of types of sparingly soluble salt-forming ions in the raw water, the amounts of all the sparingly soluble salt-forming ions are measured and Ca
It is not necessary to use for calculating the amount of added salt, and the concentration of the main sparingly soluble salt-forming ion, ie, the concentration in raw water is high, for example, 100 pp.
One or more of m or more hardly soluble salt forming ions may be selected, and the amount of the hardly soluble salt forming ions may be measured to set the Ca salt addition amount.

【0024】原水に添加するCa化合物としては、一般
に、安価な水酸化カルシウム(消石灰:Ca(O
H))が用いられているが、これに限らず、生石灰等
を用いても良い。また、塩化カルシウムや炭酸カルシウ
ムを水酸化ナトリウムと併用しても良い。
As the Ca compound to be added to raw water, generally, inexpensive calcium hydroxide (slaked lime: Ca (O
H) 2 ) is used, but the invention is not limited to this, and quick lime or the like may be used. Further, calcium chloride or calcium carbonate may be used in combination with sodium hydroxide.

【0025】このようなCa塩の添加でCaFが析出
するpH条件は、5〜10、好ましくは5.5〜7.5
であるため、Ca化合物として特にCa(OH)を添
加した場合、pHが高くなり過ぎ、このようなpH条件
に調整することができない場合には、硫酸、塩酸等の酸
を添加して適宜pH調整する必要がある。
The pH condition at which CaF 2 is precipitated by the addition of such a Ca salt is 5 to 10, preferably 5.5 to 7.5.
Therefore, particularly when Ca (OH) 2 is added as a Ca compound, the pH becomes too high, and when it is not possible to adjust to such a pH condition, an acid such as sulfuric acid, hydrochloric acid or the like is added and appropriately added. It is necessary to adjust the pH.

【0026】また、前述の如く、処理水の水質の向上、
CaFの結晶化促進の目的で、原水に硫酸及び/又は
硫酸塩を添加する場合、添加する硫酸や硫酸塩として
は、工業硫酸、硫酸ナトリウム等を用いることができ、
また、この硫酸源としてはSO 2−イオンを含有する
他の廃水、例えば、鋼板酸洗廃水、排煙脱硫廃水を用い
ることもできる。
As described above, the quality of the treated water can be improved,
CaF2Sulfuric acid and / or raw water for the purpose of promoting crystallization of
When adding sulfate, add sulfuric acid or sulfate
Can be used industrial sulfuric acid, sodium sulfate, etc.
The sulfuric acid source is SO 4 2-Contains ions
Using other wastewater, for example, steel plate pickling wastewater, flue gas desulfurization wastewater
You can also.

【0027】本発明の方法は、Ca化合物の添加により
CaFを生成させ、これを分離して得られるCaF
処理水を更にカチオン交換樹脂で処理する方法であれ
ば、どのような処理プロセスにも適用することができ
る。従って、図1に示す如く、軟化塔6の処理水を更に
RO膜分離装置7で処理するものに限らず、軟化塔6か
ら得られる軟化水をそのまま処理水とするものや、この
軟化水を更にアニオン交換樹脂に通水して脱塩水を得る
もの、或いは、軟化水を電気再生式連続脱塩装置で処理
して得た脱塩水を処理水とする処理プロセスであっても
良い。
According to the method of the present invention, CaF 2 is produced by adding a Ca compound, and CaF 2 obtained by separating CaF 2 is obtained.
The method can be applied to any treatment process as long as the treated water is further treated with a cation exchange resin. Therefore, as shown in FIG. 1, not only the treated water of the softening tower 6 is further treated by the RO membrane separation device 7, but also the softened water obtained from the softening tower 6 is directly used as treated water, Further, a method in which deionized water is obtained by passing water through an anion exchange resin, or a treatment process in which demineralized water obtained by treating softened water by an electric regeneration type continuous desalination apparatus is used as treated water may be used.

【0028】[0028]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0029】実施例1〜3、比較例1,2 F:2500mg/L,SO 2−:500mg/L
(as HSO)の人工廃液を原水とし、Ca(O
H)等のCa化合物を表1に示す量添加してpH6.
5〜7.0に調整し、30分反応させた後No.5Aの
濾紙で濾過して濾過処理水のF濃度とCa2+濃度を
測定し、結果を表1に示した。
Examples 1 to 3 and Comparative Examples 1 and 2 F : 2500 mg / L, SO 4 2− : 500 mg / L
The artificial waste liquid of (as H 2 SO 4 ) is used as raw water, and Ca (O 2 SO 4 )
H) Ca compounds such as 2 were added in the amounts shown in Table 1 to adjust the pH to 6.
It was adjusted to 5 to 7.0 and reacted for 30 minutes. F filtration to filtration treatment water in filter paper 5A - measuring the concentration and Ca 2+ concentration, and the results are shown in Table 1.

【0030】なお、表1において、当量Aとは、Ca化
合物を原水中のFとSO 2−との両方の合計に対し
て当量添加した場合であり、この場合には、Ca化合物
としてCa(OH)のみを添加して、pH6.5〜
7.0に調整した。
[0030] In Table 1, the equivalent of A, the Ca compound in the raw water F - and a case of adding an equivalent amount with respect to the sum of both the SO 4 2-, in this case, as a Ca compound By adding only Ca (OH) 2 , pH 6.5-
It was adjusted to 7.0.

【0031】この当量Aに対して、Ca化合物を不足さ
せる場合には、SO 2−に対応するCa(OH)
添加されないように、SO 2−源としてのHSO
をNaSOで置換して添加した。
When the Ca compound is insufficient with respect to this equivalent A, H 2 SO 4 as a SO 4 2− source is added so that Ca (OH) 2 corresponding to SO 4 2− is not added.
Was replaced with Na 2 SO 4 and added.

【0032】また、当量Aに対して、Ca化合物を過剰
とする場合には、SO 2−源としてHSOを使用
し、Ca(OH)の他に更に中性のCaClをCa
化合物として添加した。
When the Ca compound is excessive relative to the equivalent A, H 2 SO 4 is used as the SO 4 2− source, and neutral CaCl 2 is further added in addition to Ca (OH) 2. Ca
Added as compound.

【0033】[0033]

【表1】 [Table 1]

【0034】実施例4〜6、比較例3,4 F:5000mg/L,SO 2−:1000mg/
L(as HSO)の人工廃液を原水としたこと以
外はそれぞれ実施例1〜3及び比較例1,2と同様に処
理を行って、処理水のF濃度及びCa2+濃度を測定
し、結果を表2に示した。
Examples 4 to 6, Comparative Examples 3, 4 F : 5000 mg / L, SO 4 2− : 1000 mg / L
The treatment was performed in the same manner as in Examples 1 to 3 and Comparative Examples 1 and 2 except that the artificial waste liquid of L (as H 2 SO 4 ) was used as raw water, and the F concentration and the Ca 2+ concentration of the treated water were measured. The results are shown in Table 2.

【0035】[0035]

【表2】 [Table 2]

【0036】表1,2より、Ca化合物の添加量を当量
A〜(A−200)mg(as Ca)/Lとすること
により、F及びCa2+濃度が共に低い、高水質な処
理水を得ることができることがわかる。
As shown in Tables 1 and 2, by setting the amount of the Ca compound to be equivalent A to (A-200) mg (as Ca) / L, high-quality treated water having both low F and Ca 2+ concentrations. It can be seen that can be obtained.

【0037】[0037]

【発明の効果】以上詳述した通り、本発明のフッ素含有
水の処理方法によれば、フッ素含有水にCa化合物を添
加してFをCaFとして沈殿分離し、残留するCa
2+イオンをカチオン交換樹脂で除去するに当たり、C
a化合物の添加量を適正化して、CaF処理水中のF
濃度を高めることなく残留Ca2+濃度を低減するこ
とができる。このため、カチオン交換樹脂の再生頻度を
低減することができ、装置の保守管理の軽減、再生薬剤
コスト、再生廃液の処理コストの低減、軟化塔の稼動効
率の向上が図れ、工業的、経済的に極めて有利にフッ素
含有水の処理を行うことができる。
As described above in detail, according to the processing method of the fluorine-containing water of the present invention, by adding a Ca compound precipitates separated F as CaF 2 to a fluorine-containing water, residual Ca
In removing 2+ ions with a cation exchange resin, C
by optimizing the addition amount of a compound of CaF 2 treated water F
- it is possible to reduce residual Ca 2+ concentration without increasing the concentration. For this reason, the frequency of regeneration of the cation exchange resin can be reduced, and the maintenance and management of the apparatus can be reduced, the cost of regenerating chemicals, the processing cost of the regenerated waste liquid can be reduced, and the operating efficiency of the softening tower can be improved. The treatment of fluorine-containing water can be performed very advantageously.

【図面の簡単な説明】[Brief description of the drawings]

【図1】半導体製造廃水の一般的な処理プロセスを示す
系統図である。
FIG. 1 is a system diagram showing a general treatment process of semiconductor manufacturing wastewater.

【符号の説明】[Explanation of symbols]

1 原水槽 2 中和槽 3 凝集槽 4 沈殿槽 5 濾過器 6 軟化塔 7 RO膜分離装置 DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Neutralization tank 3 Coagulation tank 4 Sedimentation tank 5 Filter 6 Softening tower 7 RO membrane separation apparatus

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D015 BA19 BB01 BB02 CA17 DA24 EA04 EA13 EA32 FA02 FA22 4D025 AA09 AB19 BA08 BB01 CA10 DA10 4D038 AA08 AB41 BB08 BB18 4D062 BA19 BB01 BB02 CA17 DA24 EA04 EA13 EA32 FA02 FA22 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4D015 BA19 BB01 BB02 CA17 DA24 EA04 EA13 EA32 FA02 FA22 4D025 AA09 AB19 BA08 BB01 CA10 DA10 4D038 AA08 AB41 BB08 BB18 4D062 BA19 BB01 BB02 CA17 DA24 EA04 FA22 EA22

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 フッ素含有水にカルシウム化合物を添加
して生成したフッ化カルシウムを分離した後、残留する
カルシウムイオンをカチオン交換樹脂で除去する方法に
おいて、 該フッ素含有水中の、カルシウムと難溶性の塩を生成す
るイオンの量に対して当量となるカルシウム化合物量を
Amg(as Ca)/Lとしたとき、該フッ素含有水
へのカルシウム化合物の添加量をAmg(as Ca)
/L〜(A−200)mg(as Ca)/Lとするこ
とを特徴とするフッ素含有水の処理方法。
1. A method for removing calcium fluoride generated by adding a calcium compound to fluorine-containing water and removing remaining calcium ions with a cation exchange resin, comprising the steps of: Assuming that the amount of the calcium compound equivalent to the amount of the ions forming the salt is Amg (as Ca) / L, the amount of the calcium compound added to the fluorine-containing water is Amg (as Ca).
/ L to (A-200) mg (as Ca) / L.
JP2000060829A 2000-03-06 2000-03-06 Fluorine-containing water treatment method Expired - Fee Related JP4543482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000060829A JP4543482B2 (en) 2000-03-06 2000-03-06 Fluorine-containing water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000060829A JP4543482B2 (en) 2000-03-06 2000-03-06 Fluorine-containing water treatment method

Publications (2)

Publication Number Publication Date
JP2001246385A true JP2001246385A (en) 2001-09-11
JP4543482B2 JP4543482B2 (en) 2010-09-15

Family

ID=18581076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000060829A Expired - Fee Related JP4543482B2 (en) 2000-03-06 2000-03-06 Fluorine-containing water treatment method

Country Status (1)

Country Link
JP (1) JP4543482B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007131278A1 (en) * 2006-05-15 2007-11-22 Orica Australia Pty Ltd Process for treatment of water to reduce fluoride levels
WO2009107332A1 (en) * 2008-02-29 2009-09-03 三洋電機株式会社 Wastewater treatment apparatus and method of wastewater treatment
JP2012130833A (en) * 2010-12-20 2012-07-12 Hitachi Plant Technologies Ltd Treatment method for fluorine-containing waste water
JP2014213264A (en) * 2013-04-25 2014-11-17 栗田工業株式会社 Method and device for treating fluoride-containing water
CN104860436A (en) * 2015-03-31 2015-08-26 北京宝迪华禹科技发展有限公司 Treating agent and process for fluorine-containing waste water

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110590012B (en) * 2019-09-12 2020-09-22 南京大学 Resource utilization method of deep defluorination resin desorption solution

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096281A (en) * 1999-09-29 2001-04-10 Nippon Rensui Co Ltd Method of recovering desalted water from fluorine- containing waste water
JP2001212574A (en) * 2000-02-02 2001-08-07 Kurita Water Ind Ltd Method for treating fluorine-containing water

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097090A (en) * 1983-11-01 1985-05-30 Kurita Water Ind Ltd Treatment of water containing fluoride ion and sulfate ion
JP3396919B2 (en) * 1993-09-17 2003-04-14 栗田工業株式会社 Water recovery method from fluorine-containing water
JP3112613B2 (en) * 1994-03-30 2000-11-27 オルガノ株式会社 Treatment of wastewater containing fluorine and phosphorus
JP3378362B2 (en) * 1994-07-28 2003-02-17 株式会社東芝 Wastewater treatment method
JPH1057970A (en) * 1996-08-19 1998-03-03 Japan Organo Co Ltd Fluorine-containing waste water treating device and its treatment
JPH1085761A (en) * 1996-09-13 1998-04-07 Japan Organo Co Ltd Method and apparatus for treating drainage containing fluorine
JP3622407B2 (en) * 1997-03-04 2005-02-23 栗田工業株式会社 Water treatment method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096281A (en) * 1999-09-29 2001-04-10 Nippon Rensui Co Ltd Method of recovering desalted water from fluorine- containing waste water
JP2001212574A (en) * 2000-02-02 2001-08-07 Kurita Water Ind Ltd Method for treating fluorine-containing water

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007131278A1 (en) * 2006-05-15 2007-11-22 Orica Australia Pty Ltd Process for treatment of water to reduce fluoride levels
WO2009107332A1 (en) * 2008-02-29 2009-09-03 三洋電機株式会社 Wastewater treatment apparatus and method of wastewater treatment
JP2012130833A (en) * 2010-12-20 2012-07-12 Hitachi Plant Technologies Ltd Treatment method for fluorine-containing waste water
JP2014213264A (en) * 2013-04-25 2014-11-17 栗田工業株式会社 Method and device for treating fluoride-containing water
CN104860436A (en) * 2015-03-31 2015-08-26 北京宝迪华禹科技发展有限公司 Treating agent and process for fluorine-containing waste water

Also Published As

Publication number Publication date
JP4543482B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP2008073646A (en) Treatment method of fluorine-containing waste water
JP3112613B2 (en) Treatment of wastewater containing fluorine and phosphorus
JP2005193167A (en) Drainage purification method and purification method
JP4543482B2 (en) Fluorine-containing water treatment method
JP3334142B2 (en) Treatment method for fluorine-containing water
JP3240669B2 (en) Treatment of wastewater containing fluorine and silicon
JP4543481B2 (en) Method for treating water containing boron and fluorine
JP2503806B2 (en) Fluoride-containing water treatment method
JPH0747371A (en) Treatment of fluoride-containing water
JPS5924876B2 (en) How to treat boron-containing water
JP3399276B2 (en) Treatment method for fluorine-containing wastewater
JP2010017631A (en) Method and apparatus for treating phosphoric acid-containing water
JP2019051450A (en) Method and device of treating silica-containing water
JP3622407B2 (en) Water treatment method
JP4370745B2 (en) Method for treating fluorine-containing water containing phosphate ions
JP2923112B2 (en) Wastewater treatment method and apparatus for flue gas desulfurization equipment
JP3697800B2 (en) Wastewater treatment method
JP2678328B2 (en) Treatment method of monobasic acid waste liquid containing aluminum phosphate
JPH0490888A (en) Treatment of fluoride-containing solution
JP4021688B2 (en) Method and apparatus for treatment of wastewater containing fluorine and silicon
JPH01304096A (en) Water treatment
KR20080058077A (en) Method for treating wastewater including fluorine
JP3349637B2 (en) Fluorine-containing wastewater treatment apparatus and method
JPH06312190A (en) Treatment of waste water containing fluorine compound
JP2001219177A (en) Method and apparatus for treating fluorine-containing water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4543482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140709

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees