JP2005246158A - Method and system for desalinating seawater - Google Patents

Method and system for desalinating seawater Download PDF

Info

Publication number
JP2005246158A
JP2005246158A JP2004057241A JP2004057241A JP2005246158A JP 2005246158 A JP2005246158 A JP 2005246158A JP 2004057241 A JP2004057241 A JP 2004057241A JP 2004057241 A JP2004057241 A JP 2004057241A JP 2005246158 A JP2005246158 A JP 2005246158A
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
stage reverse
membrane device
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004057241A
Other languages
Japanese (ja)
Inventor
Kenji Takesaka
憲治 竹坂
Hiroyuki Mizuguchi
弘幸 水口
Nobutake Chiba
信武 千葉
Masanobu Noshita
昌伸 野下
Naoki Tada
直樹 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp, Kobelco Eco Solutions Co Ltd filed Critical Nitto Denko Corp
Priority to JP2004057241A priority Critical patent/JP2005246158A/en
Publication of JP2005246158A publication Critical patent/JP2005246158A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To maintain a high separation efficiency over a long period of time while suppressing the deterioration of a separation membrane to the minimum by preventing scale (containing carbonic acid salt) from being deposited/sedimented on a separation membrane surface of especially reverse osmosis membrane equipment of a second stage when desalinating the seawater at a high recovery rate using the reverse osmosis membrane equipment connected in two stages. <P>SOLUTION: In a method for desalinating seawater using the reverse osmosis membrane equipment connected in two stages serially, on the upstream of the reverse osmosis membrane equipment in the second stage, water penetrating the first reverse osmosis membrane equipment is subjected to scale dispersion injection and/or decarboxylation, and is subjected to alkali injection so that pH of the penetrating water becomes 9.2-9.7. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、逆浸透膜装置を用いて海水を淡水化する方法と装置の改良に関し、より詳細には、直列方向に2段に接続された逆浸透膜装置を用いて海水を処理して淡水化する際に、特に、処理水(透過水)中のホウ素濃度を水道法の水質基準濃度以下に効率よく低減できるように改善された方法と装置に関するものである。   The present invention relates to an improvement in a method and apparatus for desalinating seawater using a reverse osmosis membrane device, and more specifically, processing seawater using a reverse osmosis membrane device connected in two stages in a series direction to produce fresh water. In particular, the present invention relates to an improved method and apparatus so that the boron concentration in treated water (permeated water) can be efficiently reduced below the water quality standard concentration of the waterworks law.

逆浸透膜装置を用いた海水の淡水化法は、淡水が得られ難い離島や臨海地帯などで海水から塩分などを除去し、飲料に適した淡水を得る方法として広く利用されている。   Seawater desalination using a reverse osmosis membrane device is widely used as a method for removing salt from seawater and obtaining fresh water suitable for beverages in remote islands and coastal areas where it is difficult to obtain fresh water.

ところで、海水には通常4〜5mg/リットル程度のホウ素が含まれており、通常の逆浸透膜装置で処理された膜透過水には1〜2.5mg/リットル程度のホウ素が含まれてくる。このホウ素は、人体にとって必須の元素である反面、摂取量が多くなり過ぎると人体に悪影響を及ぼすことが確認されるに及び、水道法の改訂で飲料水中のホウ素濃度は1mg/リットル以下に規制されることとなった。   By the way, seawater usually contains about 4 to 5 mg / liter of boron, and membrane permeate treated with a normal reverse osmosis membrane device contains about 1 to 2.5 mg / liter of boron. . Although this boron is an essential element for the human body, it has been confirmed that adverse effects on the human body if too much is consumed, and the revision of the Water Supply Law regulates the boron concentration in drinking water to 1 mg / liter or less. It was to be done.

即ち、現在実用化されている逆浸透膜装置を用いた海水の淡水化によって得られる膜透過水は、現在の水道法の水質基準で定めるホウ素濃度を満たしていないものもあり、飲料水としての水質基準に合格させるには、該膜透過水を更に後処理してホウ素を除去し、ホウ素濃度を1mg/リットル以下に低減しなければならない。ただし、ホウ素をほとんど含まない陸水(例えば井戸水、河川・湖沼の水)を混合水として利用できる場合は、その陸水の利用状況に応じて、後処理でのホウ素除去率を決めればよい。そこで、膜透過水からホウ素を除去する方法についても幾つかの研究がなされており、例えば、キレート樹脂によってホウ素を捕捉除去する方法、或いは、膜透過水を更に低圧逆浸透装置にかけてホウ素濃度を基準値以下に低減する方法などが提案されている。   That is, some of the permeated water obtained by desalination of seawater using reverse osmosis membrane devices that are currently in practical use do not meet the boron concentration defined by the water quality standards of the current Waterworks Law. In order to pass water quality standards, the membrane permeate must be further post-treated to remove boron and reduce the boron concentration to 1 mg / liter or less. However, when land water (for example, well water, river / lake water) containing almost no boron can be used as mixed water, the boron removal rate in the post-treatment may be determined in accordance with the use state of the land water. Therefore, some studies have been made on methods for removing boron from membrane permeated water. For example, boron is captured and removed by a chelate resin, or the permeated water is further applied to a low-pressure reverse osmosis apparatus to measure the boron concentration. A method of reducing the value below the value has been proposed.

しかし上記の方法には、ホウ素をキレート捕捉したキレート樹脂を再生する際の再生排水処理の問題がある。従って工業的規模での実用性を考えると前記方法、即ち、第1段目の逆浸透膜装置で処理した膜透過水を、その下流側で更に低圧逆浸透膜装置にかけて処理することにより、ホウ素濃度を基準値以下に低減する方法が有効と考えられる。   However, the above-described method has a problem of reclaimed wastewater treatment when regenerating a chelate resin in which boron is chelated and captured. Therefore, considering the practicality on an industrial scale, the above-mentioned method, that is, by treating the membrane permeate treated with the first-stage reverse osmosis membrane device on the downstream side through the low-pressure reverse osmosis membrane device, boron is obtained. A method of reducing the concentration below the reference value is considered effective.

この種の方法をより具体的に説明すると、例えば、第1段目の逆浸透膜装置を通過した膜透過水をpH5.7以上に調整し、これを低圧で運転される第2段目の逆浸透膜装置で処理することによって、ホウ素含量を0.2ppmレベル以下に低減する方法が開示されている(特許文献1)。また逆浸透膜装置を用いて2段階で海水を処理する際に、第1段目逆浸透膜装置の透過水の一部を当該逆浸透膜装置の下流側透過水とし、残部透過水を当該逆浸透膜装置の上流側へ返送すると共に、第1段目逆浸透膜装置の供給側pH値を8以下とし、第2段目逆浸透膜装置の供給側pH値を8以上とすることによって、ホウ素含量を0.2ppm以下に低減する方法が開示されている(特許文献2)。   This type of method will be described more specifically. For example, the permeated water that has passed through the first-stage reverse osmosis membrane device is adjusted to pH 5.7 or higher, and this is operated at a low pressure. A method of reducing the boron content to a level of 0.2 ppm or less by treating with a reverse osmosis membrane device is disclosed (Patent Document 1). Further, when seawater is treated in two stages using a reverse osmosis membrane device, a part of the permeated water of the first-stage reverse osmosis membrane device is used as the downstream permeated water of the reverse osmosis membrane device and the remaining permeated water is used as the permeated water. By returning to the upstream side of the reverse osmosis membrane device, the supply side pH value of the first stage reverse osmosis membrane device is set to 8 or less, and the supply side pH value of the second stage reverse osmosis membrane device is set to 8 or more. A method for reducing the boron content to 0.2 ppm or less is disclosed (Patent Document 2).

そして、この方法で高レベルのホウ素除去効率を得るには、第2段目逆浸透膜装置の操作圧力を第1段目逆浸透膜装置の操作圧力よりも低くすると共に、第2段目逆浸透膜装置への供給水のpHを8〜10のアルカリ性に調整することが好ましいことを明らかにしている。   In order to obtain a high level of boron removal efficiency by this method, the operation pressure of the second-stage reverse osmosis membrane device is made lower than the operation pressure of the first-stage reverse osmosis membrane device, and the second-stage reverse osmosis membrane device is reversed. It has been clarified that it is preferable to adjust the pH of the water supplied to the osmotic membrane device to an alkalinity of 8 to 10.

また経済的な観点から高い回収率で運転することが望ましいが、第1段目逆浸透膜装置は、硫酸カルシウムの析出を防ぐには60%程度の回収率が限界である。一方、第2段目逆浸透膜装置は、なるべく高い回収率、一般的には60%以上、望ましくは80%以上で運転される。   Although it is desirable to operate at a high recovery rate from an economical point of view, the first-stage reverse osmosis membrane device has a limit of a recovery rate of about 60% to prevent precipitation of calcium sulfate. On the other hand, the second-stage reverse osmosis membrane device is operated at a recovery rate as high as possible, generally 60% or more, preferably 80% or more.

ところが、上記の様に第2段目逆浸透膜装置への供給水(即ち、第1段目逆浸透膜装置の透過水)を高pH域に調整し、且つ高回収率で運転した場合、第1段目逆浸透膜装置の透過水中に相当量含まれるカルシウム(約2.5mg/リットル)、マグネシウム、バリウムなどが透過水中に溶存する炭酸と反応し、不溶性のスケール(炭酸カルシウム、炭酸マグネシウム、炭酸バリウムなどの炭酸塩を含む)となって第2段目逆浸透膜装置の分離膜面に析出する現象が生じる。   However, when the water supplied to the second-stage reverse osmosis membrane device as described above (that is, the permeated water of the first-stage reverse osmosis membrane device) is adjusted to a high pH range and operated at a high recovery rate, Calcium (approximately 2.5 mg / liter), magnesium, barium, and the like contained in the permeated water of the first-stage reverse osmosis membrane device react with carbonic acid dissolved in the permeated water to form an insoluble scale (calcium carbonate, magnesium carbonate). , Including carbonates such as barium carbonate) and depositing on the separation membrane surface of the second-stage reverse osmosis membrane device.

そして、供給水のpHの高い状態でスケールが微量でも膜面に析出すると、膜の化学的劣化を引き起こす要因となることが発明者等の研究で明らかになっている。   In addition, the inventors have clarified that if the scale is deposited on the film surface even when a small amount of scale is present in a state where the pH of the feed water is high, it causes a chemical deterioration of the film.

尚、本発明者らは既に海水の淡水化処理法および装置(特許文献3)や、他段式逆浸透処理方法(特許文献4)を提案している。
特開平9−10766号公報 特開平11−10146号公報 特開2003−236541号公報 特開2003−71252号公報
The present inventors have already proposed a seawater desalination treatment method and apparatus (Patent Document 3) and another-stage reverse osmosis treatment method (Patent Document 4).
Japanese Patent Laid-Open No. 9-10766 Japanese Patent Laid-Open No. 11-10146 JP 2003-236541 A JP 2003-71252 A

本発明は上記の様な問題点に着目してなされたものであって、その目的は、直列方向に2段に接続された逆浸透膜装置を用いて海水を高回収率で淡水化する際に、特に第2段目逆浸透膜装置の分離膜面への炭酸カルシウムや炭酸マグネシウム、炭酸バリウムなどスケール成分の析出・堆積を防止し、長期間に亘って高レベルのホウ素除去効率を持続し得る様な方法と装置を提供することにある。更には分離膜の劣化を最小限に抑制しつつ、高レベルのホウ素除去効率を持続し得る様な方法を提供することである。   The present invention has been made paying attention to the above problems, and its purpose is to desalinate seawater with a high recovery rate using a reverse osmosis membrane device connected in two stages in a series direction. In particular, it prevents the deposition and deposition of scale components such as calcium carbonate, magnesium carbonate, and barium carbonate on the separation membrane surface of the second stage reverse osmosis membrane device, and maintains a high level of boron removal efficiency over a long period of time. It is to provide such a method and apparatus. It is another object of the present invention to provide a method capable of maintaining a high level of boron removal efficiency while minimizing the deterioration of the separation membrane.

本発明は、直列方向に2段に接続された逆浸透膜装置によって海水を淡水化処理する方法において、第2段目逆浸透膜装置の上流側で、第1段目逆浸透膜装置の透過水にスケール分散剤注入処理および/または脱炭酸処理を施すと共に、透過水のpHが9.2〜9.7となる様にアルカリ注入処理を施すことに要旨を有する海水の淡水化処理方法である。   The present invention relates to a method for desalinating seawater with a reverse osmosis membrane device connected in two stages in a series direction, and the permeation of the first stage reverse osmosis membrane device on the upstream side of the second stage reverse osmosis membrane device. A seawater desalination treatment method having the gist of subjecting water to scale dispersant injection treatment and / or decarboxylation treatment and alkali injection treatment so that the pH of the permeate becomes 9.2 to 9.7. is there.

本発明を実施するに際に、前記アルカリ注入処理において、アルカリ注入量を、アルカリ比例注入制御法またはPID制御法によって精密制御することが好ましい。   In carrying out the present invention, in the alkali injection process, it is preferable to precisely control the alkali injection amount by an alkali proportional injection control method or a PID control method.

また本発明は、直列方向に2段に接続された逆浸透膜装置によって海水を淡水化処理する装置において、第1段目逆浸透膜装置の下流側で、且つ第2段目逆浸透膜装置の上流側に、スケール分散剤注入処理装置および/または脱炭酸処理装置が設けられ、該いずれかの装置に続いてアルカリ注入装置が設けられているか、或いはアルカリ注入装置に続いてスケール発生防止装置が設けられていることに要旨を有する海水の淡水化処理装置である。   The present invention also relates to a device for desalinating seawater using a reverse osmosis membrane device connected in two stages in a series direction, and a second-stage reverse osmosis membrane device downstream of the first-stage reverse osmosis membrane device. Is provided with a scale dispersant injection treatment device and / or a decarboxylation treatment device, and an alkali injection device is provided following any of the devices, or a scale generation prevention device is provided following the alkali injection device. Is a seawater desalination apparatus having the gist of being provided.

本発明の方法及び装置によれば、海水を2段の逆浸透膜装置で淡水化処理する際に、特に第2段目逆浸透膜装置で生じる分離膜面へのスケール(炭酸塩を含む)の析出による分離膜の劣化を可及的に防止することができ、安定した操業性のもとでより清浄度の高い淡水を長期間に亘って効率よく得ることができる。特に本発明によれば、最近の水道法で厳しくなったホウ素濃度に関する水質基準も十分に満たす飲料水を長期間に亘って効率よく得ることができ、逆浸透膜装置を用いた淡水化技術の汎用化を一段と増進し得る。     According to the method and apparatus of the present invention, when seawater is desalinated with a two-stage reverse osmosis membrane apparatus, the scale (including carbonate) on the separation membrane surface generated particularly in the second-stage reverse osmosis membrane apparatus. As a result, it is possible to prevent deterioration of the separation membrane due to the precipitation of water as much as possible, and to obtain fresh water with a higher cleanliness efficiently over a long period of time under stable operability. In particular, according to the present invention, it is possible to efficiently obtain drinking water that sufficiently satisfies the water quality standard related to boron concentration, which has become stricter in recent water supply laws, over a long period of time, and a desalination technology using a reverse osmosis membrane device. Generalization can be further improved.

本発明者らは、既に提案している海水の淡水化処理方法および装置(前掲特許文献3)や多段式逆浸透処理方法(前掲特許文献4)を基に、逆浸透膜装置の分離膜面への炭酸カルシウムや炭酸マグネシウム等のスケール成分の析出を防止し、長期間に亘って高レベルのホウ素除去率を維持し得る技術について鋭意研究し、本発明に想到した。   The inventors of the present invention have proposed a separation membrane surface of a reverse osmosis membrane device based on the already proposed seawater desalination treatment method and apparatus (Patent Document 3) and the multistage reverse osmosis treatment method (Patent Document 4). The inventors of the present invention have intensively studied a technique capable of preventing the precipitation of scale components such as calcium carbonate and magnesium carbonate on the surface and maintaining a high level of boron removal rate over a long period of time, and have arrived at the present invention.

上記の様に本発明では、直列方向に接続された2段の逆浸透膜装置によって被処理海水を高回収率で淡水化処理する際に、第2段目逆浸透膜装置で生じる分離膜面へのスケール(炭酸カルシウムの如き炭酸塩を含む)の析出を防止することによって、第2段目逆浸透膜の劣化を防止し、長期間に亘って高レベルのホウ素除去効率を持続する。即ち、本発明の方法及び装置を採用することにより、長期間安定して高レベルの淡水化処理効率を持続可能にすると共に、逆浸透膜装置の寿命を延長して設備の保全やメンテナンス性を高めることができる。   As described above, in the present invention, the separation membrane surface generated in the second-stage reverse osmosis membrane device when the seawater to be treated is desalinated at a high recovery rate by the two-stage reverse osmosis membrane device connected in series. By preventing the deposition of scale (including carbonate such as calcium carbonate), the deterioration of the second stage reverse osmosis membrane is prevented, and a high level of boron removal efficiency is maintained over a long period of time. That is, by adopting the method and apparatus of the present invention, it is possible to maintain a high level of desalination treatment efficiency stably for a long period of time, and extend the life of the reverse osmosis membrane apparatus to improve the maintenance and maintainability of the equipment. Can be increased.

以下、代表的な実施形態を示す図面を参照しつつ、本発明をより具体的に説明するが、本発明はもとより下記図示例に限定されるわけではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能である。   Hereinafter, the present invention will be described more specifically with reference to the drawings showing typical embodiments. However, the present invention is not limited to the following illustrated examples, and may be adapted to the spirit described above and below. Of course, it is also possible to carry out by appropriately changing the range.

図1は、本発明に係る淡水化処理法と装置を例示するフロー図であり、図中、1は海水タンク、2は、海水中に含まれる浮遊夾雑物等を除去するための前処理装置、3は第1段目逆浸透膜装置、4は脱炭酸処理装置、5は中間タンク、6はアルカリ液槽(アルカリ注入装置)、7は第2段目逆浸透膜装置、P1〜P3はポンプを夫々示している。 FIG. 1 is a flow diagram illustrating a desalination treatment method and apparatus according to the present invention, in which 1 is a seawater tank and 2 is a pretreatment apparatus for removing floating contaminants and the like contained in seawater. 3 is a first-stage reverse osmosis membrane device, 4 is a decarbonation treatment device, 5 is an intermediate tank, 6 is an alkaline liquid tank (alkali injection device), 7 is a second-stage reverse osmosis membrane device, P 1 to P 3 indicates a pump, respectively.

この装置を用いて海水の淡水化を行うに当たっては、海水タンク1に溜められた海水を前処理装置2へ送り、海水中に含まれている浮遊夾雑物等を予め除去した後、ポンプP1によって所定の圧力で第1段目逆浸透膜装置3へ供給する。該第1段目逆浸透膜装置3では、内部に装着された逆浸透膜によって塩分が除去され、塩分濃度の高い非透過水と淡水化された透過水に分離され、非透過水はラインL1から排出される。 In the desalination of seawater using this apparatus, the seawater stored in the seawater tank 1 is sent to the pretreatment apparatus 2 and the floating impurities contained in the seawater are removed in advance, and then the pump P 1 Is supplied to the first-stage reverse osmosis membrane device 3 at a predetermined pressure. In the first-stage reverse osmosis membrane device 3, the salt content is removed by the reverse osmosis membrane mounted therein, and the permeated water is separated into non-permeated water having a high salt concentration and desalted permeated water. Discharged from 1 .

一方、透過水はラインL2によりスケール分散剤注入装置および/または脱炭酸装置(図1中4は脱炭酸処理装置を示す)へ送り、該脱炭酸装処理置4で脱炭酸処理を行って透過水中の全炭酸濃度を低減した後、ラインL3から中間タンク5へ送られる。このとき、好ましくはアルカリ液槽6から適量のアルカリ水溶液をポンプP2から供給することによって透過水のpHを調整する(尚、アルカリ水溶液は直接透過水に注入してもよい)。そして、ポンプP3で所定圧力に昇圧してから第2逆浸透膜装置7へ送り、透過水中に含まれる特にホウ素などを更に除去することによって、ホウ素濃度を低減する。好ましくは水道法の水質基準である1mg/リットル以下に低減する。 On the other hand, the permeated water is sent to the scale dispersant injection device and / or the decarbonation device (4 in FIG. 1 indicates a decarbonation treatment device) through the line L 2, and the decarbonation treatment device 4 performs the decarbonation treatment. After reducing the total carbonic acid concentration in the permeated water, it is sent from the line L 3 to the intermediate tank 5. At this time, the pH of the permeated water is preferably adjusted by supplying an appropriate amount of the aqueous alkaline solution from the alkaline liquid tank 6 from the pump P 2 (in addition, the alkaline aqueous solution may be directly injected into the permeated water). Then, the pressure is increased to a predetermined pressure by the pump P 3 and then sent to the second reverse osmosis membrane device 7 to further remove boron, particularly boron contained in the permeated water, thereby reducing the boron concentration. Preferably, it is reduced to 1 mg / liter or less which is the water quality standard of the Waterworks Law.

第2段目逆浸透膜装置7でホウ素の除去効率を高めるには、該逆浸透膜装置7に供給する透過液のpHが9.2以上となる様に調整することが推奨される。これは、透過液のpHを9.2以上に高めるとホウ酸が解離してイオン化し逆浸透膜で阻止し易くなるからである。より好ましくはpHを9.3以上とすることである。尚、本発明者らが研究した結果、透過液のpHが高くなる程、ホウ酸の解離度は高くなるものの、逆浸透膜が劣化し易くなって長期間に亘って十分な除去率が得られ難くなることを知った。したがって長期間に亘って逆浸透膜の劣化を抑制しつつ、ホウ素濃度を所定値(例えば1mg/リットル以下)に低減するには、第2段目逆浸透膜装置7に供給する透過液(供給液)のpHを9.7以下に調整することが好ましく、より好ましくはpHを9.6以下である。   In order to increase the boron removal efficiency in the second-stage reverse osmosis membrane device 7, it is recommended that the pH of the permeate supplied to the reverse osmosis membrane device 7 be adjusted to 9.2 or higher. This is because when the pH of the permeate is increased to 9.2 or higher, boric acid is dissociated and ionized, which is easily blocked by the reverse osmosis membrane. More preferably, the pH is 9.3 or more. As a result of the study by the present inventors, the higher the pH of the permeate, the higher the degree of dissociation of boric acid, but the reverse osmosis membrane tends to deteriorate and a sufficient removal rate can be obtained over a long period of time. I knew that it would be difficult to be. Therefore, in order to reduce the boron concentration to a predetermined value (for example, 1 mg / liter or less) while suppressing deterioration of the reverse osmosis membrane over a long period of time, the permeate (supply) supplied to the second-stage reverse osmosis membrane device 7 The pH of the liquid) is preferably adjusted to 9.7 or lower, more preferably 9.6 or lower.

ところで、ホウ素除去率を高めるため第2段目逆浸透膜装置への供給水(被処理水)のpHをアルカリ性に調整し、且つ高回収率で運転すると、第2段目逆浸透膜装置は、被処理水(第1段目逆浸透膜装置からの透過水)中に溶存している炭酸ガスとCaイオン、Mgイオン、Baイオンなどとの反応による炭酸塩の生成が進み易くなる。そのため、淡水化操作を進めると被処理水中の炭酸塩濃度が高まり、該炭酸塩濃度が飽和溶解度を超えると、該炭酸塩スケールが分離膜表面上に析出する。このスケール生成量は、通常、膜を目詰まりさせて透過水量の低下を招くほど多量とはならない。但し、被処理水のpHが高い場合は膜面に付着した微量のスケール分が触媒作用をして膜材質の化学的劣化を促進させる原因となる。   By the way, when the pH of the water supplied to the second-stage reverse osmosis membrane device (treated water) is adjusted to be alkaline in order to increase the boron removal rate and operated at a high recovery rate, the second-stage reverse osmosis membrane device is The production of carbonate by the reaction of carbon dioxide gas dissolved in the water to be treated (permeated water from the first-stage reverse osmosis membrane device) with Ca ions, Mg ions, Ba ions, etc. is facilitated. Therefore, when the desalination operation is advanced, the carbonate concentration in the water to be treated increases, and when the carbonate concentration exceeds the saturation solubility, the carbonate scale is deposited on the surface of the separation membrane. The amount of scale generated is not so large that it usually clogs the membrane and causes a reduction in the amount of permeate. However, when the pH of the water to be treated is high, a small amount of scale attached to the membrane surface catalyzes and promotes chemical deterioration of the membrane material.

そこで本発明では、第1段目逆浸透膜装置3と第2段目逆浸透膜装置7を結ぶラインにスケール分散剤注入処理装置および/または脱炭酸処理装置を設け、ここでスケール分散剤注入処理および/または脱炭酸処理を行う。スケール分散剤注入処理装置としては、被処理水にスケール分散剤を供給する装置(スケール分散剤供給装置)が例示されるが、これに限らない。また脱炭酸処理装置としては、脱炭酸塔などの脱炭酸装置が例示されるが、これに限らず、被処理液中のカルシウム濃度、及び第2段逆浸透膜装置での膜透過水回収率との関係において、スケールが析出しない程度まで炭酸ガス濃度を低減できる装置であればよい。   Accordingly, in the present invention, a scale dispersant injection treatment device and / or a decarboxylation treatment device is provided in a line connecting the first-stage reverse osmosis membrane device 3 and the second-stage reverse osmosis membrane device 7, and the scale dispersant injection is performed here. Treatment and / or decarboxylation treatment is performed. Examples of the scale dispersant injection treatment apparatus include an apparatus (scale dispersant supply apparatus) that supplies the scale dispersant to the water to be treated, but is not limited thereto. Examples of the decarboxylation device include a decarboxylation device such as a decarboxylation tower, but are not limited thereto, and the calcium concentration in the liquid to be treated and the membrane permeate recovery rate in the second-stage reverse osmosis membrane device. As long as the carbon dioxide concentration can be reduced to such an extent that no scale is deposited, any device may be used.

尚、海水中の炭酸濃度や淡水化装置全体の設備仕様などによっては、脱炭酸処理と、スケール分散剤注入処理を併用(いずれが先かは問わない)することが効果的である。勿論、スケール分散剤注入処理と脱炭酸処理はスケールの析出を抑制できるのであればいずれか一方のみの処理でもよい。   Depending on the concentration of carbonic acid in the seawater or the equipment specifications of the entire desalination apparatus, it is effective to use the decarboxylation treatment and the scale dispersant injection treatment in combination (whichever comes first). Of course, the scale dispersant injection treatment and the decarboxylation treatment may be either one as long as scale precipitation can be suppressed.

脱炭酸処理としては、脱炭酸装置4を設け、該脱炭酸装置4で被処理水を脱炭酸処理してから被処理液に含まれる炭酸ガス濃度を低減すればよい。即ち図1の例では、ラインL2から送られてくる膜透過水に、脱炭酸装置4で空気を吹き込んで気液接触させることにより、被処理水中の炭酸ガス濃度を低減する。そうすると、スケール発生源の1つである炭酸塩の生成源としての炭酸が減少することになる。その結果、分離膜面への炭酸塩スケールの析出が防止もしくは抑制され、従来技術で指摘したような問題を解消することができる。 As the decarboxylation treatment, a decarboxylation device 4 is provided, and the carbon dioxide gas concentration contained in the liquid to be treated may be reduced after the water to be treated is decarboxylated by the decarbonation device 4. That is, in the example of FIG. 1, the concentration of carbon dioxide in the water to be treated is reduced by blowing air into the membrane permeated water sent from the line L 2 and bringing it into gas-liquid contact. If it does so, the carbonic acid as a production source of the carbonate which is one of the scale generation sources will decrease. As a result, precipitation of carbonate scale on the separation membrane surface is prevented or suppressed, and the problems pointed out in the prior art can be solved.

なお図1の例の如く、空気吹き込みによって脱炭酸を行う場合、脱炭酸装置4ヘの吹き込みに先立って空気をアルカリスクラバーなどで予め処理し、空気中の炭酸ガス濃度を低減しておけば、脱炭酸装置4での脱炭酸効率を更に高めることができるので好ましい。また、脱炭酸効率を高めるための他の手段として、脱炭酸装置4内を減圧しながら被処理水を散布することも有効である。また被処理水中の炭酸ガスの飽和溶解度は、空気吹込みの他、酸素や窒素ガスの吹込みによっても減少するので、空気に代えてそれらのガスを脱炭酸用の気液接触ガスとして使用することも有効である。   In addition, when decarboxylation is performed by blowing air as in the example of FIG. 1, if the air is pretreated with an alkali scrubber or the like prior to blowing into the decarbonator 4, the carbon dioxide concentration in the air is reduced, This is preferable because the decarboxylation efficiency in the decarboxylation device 4 can be further increased. Further, as another means for increasing the decarboxylation efficiency, it is also effective to spray the water to be treated while reducing the pressure in the decarboxylation device 4. In addition, the saturation solubility of carbon dioxide in the water to be treated is reduced by blowing air or oxygen or nitrogen gas, so that these gases are used as gas-liquid contact gas for decarboxylation instead of air. It is also effective.

被処理水と脱炭酸用ガスを気液接触させる具体的な方法は特に制限されないが、一般的な方法としては、被処理水槽内に脱炭酸用ガスをバブリングさせる法、或いは、充填塔や棚段式の気液接触塔などを使用し、対向流方式で被処理水と気液接触させる方法などが例示される。   The specific method of bringing the water to be treated and the decarbonation gas into gas-liquid contact is not particularly limited, but as a general method, a method of bubbling the decarbonation gas into the water tank to be treated, or a packed tower or shelf Examples thereof include a method in which a staged gas-liquid contact tower or the like is used and gas-liquid contact with the water to be treated is performed in a counterflow manner.

そして、上記脱炭酸処理による炭酸塩の析出防止作用と逆浸透膜劣化抑制作用を実用規模で有効に発揮させるには、被処理水中の全炭酸濃度をCO2換算濃度で4mg/リットル以下、より好ましくは2mg/リットル程度に低減させるのがよく、それにより第2段目逆浸透膜装置の分離膜面への炭酸塩の析出を実質的に無くすことができることを確認している。尚、第2段目逆浸透膜装置を更に高い回収率で運転する場合には、被処理水中の全炭酸塩濃度を更に低くする必要がある。 In order to effectively exhibit the carbonate precipitation prevention effect and the reverse osmosis membrane deterioration inhibiting effect by the decarboxylation treatment on a practical scale, the total carbonate concentration in the water to be treated is 4 mg / liter or less in terms of CO 2 , It is preferably reduced to about 2 mg / liter, and it has been confirmed that precipitation of carbonate on the separation membrane surface of the second-stage reverse osmosis membrane device can be substantially eliminated. When operating the second stage reverse osmosis membrane device at a higher recovery rate, it is necessary to further reduce the total carbonate concentration in the water to be treated.

また、スケール分散剤注入処理として、第1段目逆浸透膜装置3と第2段目逆浸透膜装置7を結ぶラインで被処理水にスケール分散剤を添加し、第2段目逆浸透膜装置の分離膜面でのスケールの発生を抑制することも有効である。この方法を採用する場合は、例えば図2に示す如く透過水送給管路にスケール分散剤供給部を設け、これにスケール分散剤槽8からポンプP4を通してスケール分散剤を混入させればよく、これらスケール分散剤槽8とポンプP4がスケール分散剤添加手段を構成している。 In addition, as a scale dispersant injection treatment, a scale dispersant is added to the water to be treated through a line connecting the first-stage reverse osmosis membrane device 3 and the second-stage reverse osmosis membrane device 7, and the second-stage reverse osmosis membrane It is also effective to suppress the generation of scale on the separation membrane surface of the apparatus. In the case of adopting this method, for example, as shown in FIG. 2, a scale dispersant supply unit is provided in the permeate feed pipe, and the scale dispersant may be mixed into the permeate supply pipe through the pump P 4 from the scale dispersant tank 8. These scale dispersant tank 8 and pump P 4 constitute scale dispersant addition means.

スケール分散剤の種類は特に限定されないが、好ましいものとしては、例えばポリカルボン酸、ポリリン酸などを挙げることができる。ちなみに、ポリカルボン酸系のスケール分散剤は、例えばバイオラブ社から商品名「フロコン100」として市販されている。またポリリン酸系のスケール分散剤としては、例えばヘキサメタリン酸ソーダなどが挙げられる。これらのスケール分散剤を被処理水に対して1〜5mg/リットル程度添加すれば、第2段目逆浸透膜装置7の分離膜面でのスケールの発生を効果的に抑制できるので好ましい。   The type of the scale dispersant is not particularly limited, but preferred examples include polycarboxylic acid and polyphosphoric acid. Incidentally, a polycarboxylic acid-based scale dispersant is commercially available, for example, from Biolab under the trade name “Flocon 100”. Examples of the polyphosphate scale dispersant include sodium hexametaphosphate. It is preferable to add about 1 to 5 mg / liter of these scale dispersants with respect to the water to be treated because the generation of scale on the separation membrane surface of the second-stage reverse osmosis membrane device 7 can be effectively suppressed.

上記の様に本発明では、2段の逆浸透膜装置を用いて海水を高収率で淡水化する際に、第2段目逆浸透膜装置の分離膜面への炭酸塩の析出を、その上流側で脱炭酸処理することによって防止し、及び/又はスケール分散剤の添加によりスケールの発生を抑制し、更に第2段目逆浸透膜装置に供給する被処理水のpHを9.2〜9.7の範囲に制御するところに最大の特徴を有しており、それ以外の具体的な設備の構成や操業条件などは必要に応じて任意に変更できるが、2段の各逆浸透膜装置を接続して淡水化処理する際の好ましい条件を示すと次の通りである。   As described above, in the present invention, when seawater is desalinated with a high yield using a two-stage reverse osmosis membrane device, the precipitation of carbonate on the separation membrane surface of the second-stage reverse osmosis membrane device, It is prevented by decarboxylation on the upstream side and / or the generation of scale is suppressed by adding a scale dispersant, and the pH of the water to be treated supplied to the second-stage reverse osmosis membrane device is 9.2. It has the greatest feature in the control within the range of ~ 9.7, and other specific equipment configurations and operating conditions can be arbitrarily changed as necessary. The preferable conditions for the desalination treatment by connecting the membrane device are as follows.

即ち、第1段目逆浸透膜装置の好ましい操作条件は、回収率:40〜63%、被処理水pH:好ましくは5.0以上、より好ましくは6.0以上であって、好ましくは7.0以下、より好ましくは6.5以下、圧力;好ましくは4.0MPa以上、より好ましくは5.0MPa以上であって、好ましくは10.0MPa以下、より好ましくは8.3MPa以下、第2段目逆浸透膜装置の好ましい条件は、回収率:60〜90%、被処理水pH:好ましくは9.2以上、より好ましくは9.3以上であって、好ましくは9.7以下、より好ましくは9.6以下、圧力:0.5〜4.0MPaである。   That is, preferable operating conditions of the first stage reverse osmosis membrane device are: recovery rate: 40 to 63%, treated water pH: preferably 5.0 or more, more preferably 6.0 or more, preferably 7 0.0 or less, more preferably 6.5 or less, pressure; preferably 4.0 MPa or more, more preferably 5.0 MPa or more, preferably 10.0 MPa or less, more preferably 8.3 MPa or less, second stage Preferred conditions for the reverse osmosis membrane apparatus are: recovery rate: 60 to 90%, treated water pH: preferably 9.2 or more, more preferably 9.3 or more, preferably 9.7 or less, more preferably Is 9.6 or less, and the pressure is 0.5 to 4.0 MPa.

本発明では、アルカリ注入方法は特に限定されず、上記好適なpHとなる様に適宜アルカリ注入量を制御すればよい。また膜の化学的劣化紡糸の観点から、供給水のpHを必要以上に高くしないことが重要である。そのために望ましいpH範囲を精緻に制御することが必要である。特に第2段逆浸透膜装置への供給水は、第1段逆浸透膜装置の膜透過水であるため、溶存不純物量が極めて少なくpH緩衝能力がほとんどない。したがって第2段逆浸透膜装置への供給水に苛性ソーダのような強アルカリを注入してpHを調整する方法として、単純なON−OFF制御を行なうと、アルカリ注入によるpHの値の変動幅が極めて大きくなり、所定のpH制御幅に収めることが困難である。第2段供給水のpHが所定値より低くなった場合は、膜透過水のホウ素濃度が設定値(例えば1mg/L以下)よりも高くなることがある。また第2段供給水のpHが所定値よりも高くなった場合は、膜材質の化学的劣化が促進されることとなる。したがってpH緩衝能力の低い第2段供給水のpH制御方法としては、アルカリ注入を比例制御する方法やPID制御する方法が好適である。これら制御方法の場合、ON−OFF制御よりもより精緻にpH値を制御でき、所定のpH制御幅内に抑えることが可能となる。pH測定地点は特に限定されないが、第2段逆浸透膜装置への供給水が望ましい。またpH測定地点は、例えば第2段逆浸透膜装置から排出される濃縮液または透過液のいずれでもよい。これら測定されたpH値に基づいて第1段逆浸透膜装置の透過液に供給するアルカリ添加量を制御すればよい。   In the present invention, the alkali injection method is not particularly limited, and the alkali injection amount may be appropriately controlled so as to achieve the above-mentioned suitable pH. From the viewpoint of chemical degradation spinning of the membrane, it is important not to raise the pH of the feed water more than necessary. Therefore, it is necessary to precisely control the desired pH range. In particular, since the water supplied to the second-stage reverse osmosis membrane device is the membrane permeate of the first-stage reverse osmosis membrane device, the amount of dissolved impurities is extremely small and there is almost no pH buffering capacity. Therefore, as a method for adjusting pH by injecting strong alkali such as caustic soda into the water supplied to the second-stage reverse osmosis membrane device, if a simple ON-OFF control is performed, the fluctuation range of the pH value due to alkali injection is reduced. It becomes extremely large, and it is difficult to fit within a predetermined pH control range. When the pH of the second stage supply water is lower than a predetermined value, the boron concentration of the membrane permeated water may be higher than a set value (for example, 1 mg / L or less). In addition, when the pH of the second stage supply water is higher than a predetermined value, chemical deterioration of the membrane material is promoted. Therefore, as a pH control method of the second stage feed water having a low pH buffering capacity, a method of proportionally controlling alkali injection or a method of PID control is suitable. In the case of these control methods, the pH value can be controlled more precisely than the ON-OFF control, and can be suppressed within a predetermined pH control range. The pH measurement point is not particularly limited, but water supplied to the second-stage reverse osmosis membrane device is desirable. Further, the pH measurement point may be, for example, either a concentrated liquid or a permeated liquid discharged from the second-stage reverse osmosis membrane device. Based on these measured pH values, the amount of alkali added to the permeate of the first-stage reverse osmosis membrane device may be controlled.

アルカリ注入位置は第1段目逆浸透膜装置の下流側で、且つ第2段目逆浸透膜装置の上流側であれば特に限定されず、アルカリ注入処理後にスケール分散剤注入処理したり、その逆の順で処理してもよい。但し、第1段目逆浸透膜装置の透過液をアルカリ注入処理すると、炭酸ガス(例えば重炭酸や炭酸)が、イオン状態(例えば重炭酸イオンや炭酸イオン)になり、脱炭酸処理によって十分に脱炭酸できないことがある。したがって脱炭酸処理とアルカリ注入処理を行なう場合は、透過液を先に脱炭酸処理してからアルカリ注入処理することが望ましい。   The alkali injection position is not particularly limited as long as it is downstream of the first-stage reverse osmosis membrane device and upstream of the second-stage reverse osmosis membrane device. You may process in reverse order. However, when the permeate of the first-stage reverse osmosis membrane device is subjected to an alkali injection treatment, carbon dioxide gas (for example, bicarbonate or carbonate) becomes an ionic state (for example, bicarbonate ion or carbonate ion). Decarboxylation may not be possible. Therefore, when performing the decarboxylation treatment and the alkali injection treatment, it is desirable to first perform the alkali injection treatment after the permeate is decarboxylated first.

尚、上記本発明の様に、海水中の浮遊夾雑物を除去(前処理)した後、第1段目逆浸透膜装置で塩分を分離除去する場合、該逆浸透膜で海洋生物が繁殖するバイオファウリングが発生したり、逆浸透膜装置内で海洋生物が繁殖することがある。したがって操業条件によってはバイオファウリング等による装置汚染を防止するために、第1段目逆浸透膜装置に供給する海水に塩素系滅菌剤(例えば次亜塩素酸等)を添加することが望ましい。本発明では第1段目逆浸透膜としては三酢酸セルロースなどのセルロース系逆浸透膜やポリアミド系逆浸透膜など所望の脱塩率を有する逆浸透膜を使用することができるが、塩素系滅菌剤を添加した場合、該塩素によって第1段目逆浸透膜が劣化することがある。また第1段目逆浸透膜が塩素によって劣化しない場合であっても、透過液中に塩素が残留する場合には、該残留塩素によって第2段目逆浸透膜が劣化することがある。したがって塩素系滅菌剤を添加した場合、重亜硫酸ソーダなどの還元剤を第1段目逆浸透膜供給前の海水や、該逆浸透膜処理後の透過液に添加して塩素を除去しておくことが望ましい。   In addition, when the salt content is separated and removed by the first-stage reverse osmosis membrane apparatus after removing (pretreatment) floating contaminants in seawater as in the present invention, marine organisms propagate on the reverse osmosis membrane. Biofouling may occur and marine organisms may breed in the reverse osmosis membrane device. Therefore, depending on the operating conditions, it is desirable to add a chlorinated sterilant (for example, hypochlorous acid or the like) to the seawater supplied to the first-stage reverse osmosis membrane device in order to prevent device contamination due to biofouling or the like. In the present invention, as the first-stage reverse osmosis membrane, a reverse osmosis membrane having a desired desalination rate such as a cellulose reverse osmosis membrane such as cellulose triacetate or a polyamide reverse osmosis membrane can be used. When an agent is added, the first-stage reverse osmosis membrane may be deteriorated by the chlorine. Even if the first-stage reverse osmosis membrane is not deteriorated by chlorine, if the chlorine remains in the permeate, the second-stage reverse osmosis membrane may be deteriorated by the residual chlorine. Therefore, when a chlorine-based sterilant is added, a reducing agent such as sodium bisulfite is added to the seawater before the first-stage reverse osmosis membrane supply or the permeate after the reverse osmosis membrane treatment to remove chlorine. It is desirable.

また第2段目逆浸透膜処理に供給する被処理液中にスケールと共に高アルカリ条件下で過剰の還元剤(例えば重亜硫酸ソーダやチオ亜硫酸ソーダ)が存在すると、膜の化学的劣化が進行することを確認している。この様な場合、高pHによる膜劣化を防止すると共に高pHによるホウ素除去率の向上の両方を考慮して総合的に望ましい被処理液のpHを決定する必要がある。具体的には、第2段目逆浸透膜処理に供給する被処理液中のpHを9.2以上、好ましくは9.3以上であって、9.7以下、より好ましくは9.6以下となる様に制御することが望ましい。   In addition, if an excessive reducing agent (for example, sodium bisulfite or sodium thiosulfite) is present in the liquid to be treated for the second stage reverse osmosis membrane treatment under high alkaline conditions together with the scale, the chemical deterioration of the membrane proceeds. I have confirmed that. In such a case, it is necessary to determine the pH of the liquid to be treated comprehensively in consideration of both the prevention of the film deterioration due to the high pH and the improvement of the boron removal rate due to the high pH. Specifically, the pH of the liquid to be treated supplied to the second-stage reverse osmosis membrane treatment is 9.2 or more, preferably 9.3 or more, and is 9.7 or less, more preferably 9.6 or less. It is desirable to control so that

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

実施例1
図1に示したフロー図に準拠し、海水を第1段目逆浸透膜装置で処理した後、透過水を脱炭酸装置に通して空気と気液接触させることにより脱炭酸処理し、次いでpH調整してから第2段目逆浸透膜装置に通して処理することにより淡水化を行った。なお脱炭酸装置としては、気液接触促進用の充填材が充填された高さ2700mmの充填塔を使用し、上方から被処理水を流しながら塔底側から空気を吹き込み、対向流で気液接触させる方法を採用した。そして、脱炭酸装置での空気吹き込み量を種々変更し、該脱炭酸装置における入側と出側の処理水中の全炭酸濃度をTOC計によって測定すると共に、脱炭酸処理後の処理水にアルカリ水溶液(25%苛性ソーダ)を添加してpHを9.5に調整した(比例制御法で調整)して連続的に淡水化処理を行なった。6ヵ月後、第2段目逆浸透膜装置の分離膜面への炭酸塩スケールの付着状況をEDX(エネルギー分散型蛍光X線分析装置)で元素分析を行なって調べた。尚、原水(海水)の成分、第1段目及び第2段目逆浸透膜装置の操業条件などは下記の通りとした。
[原水(海水)中のホウ素濃度]
ホウ素濃度;4.55mg/リットル
[第1段目逆浸透膜装置の運転条件]
被処理水pH;6.0、温度;30℃、圧力;6.0MPa、回収率;40%
[第2段目逆浸透膜装置の運転条件]
被処理水pH;9.5、温度;30℃、圧力;1.0MPa、回収率;60%
Example 1
In accordance with the flow chart shown in FIG. 1, seawater is treated with a first-stage reverse osmosis membrane device, then decarboxylated by passing the permeated water through a decarboxylation device and bringing it into gas-liquid contact with air, and then pH After adjustment, the water was passed through a second-stage reverse osmosis membrane device to be desalinated. As the decarboxylation device, a packed tower with a height of 2700 mm filled with a filler for promoting gas-liquid contact is used, and air is blown from the tower bottom side while flowing water to be treated from above, and the gas-liquid is flown in a counterflow. The contact method was adopted. The air blowing amount in the decarbonation device is changed variously, and the total carbonic acid concentration in the treated water on the inlet side and the outlet side in the decarbonation device is measured with a TOC meter, and the alkaline water is added to the treated water after the decarbonation treatment. (25% caustic soda) was added to adjust the pH to 9.5 (adjusted by a proportional control method), and a desalination treatment was continuously performed. Six months later, the state of attachment of the carbonate scale to the separation membrane surface of the second-stage reverse osmosis membrane device was examined by elemental analysis using an EDX (energy dispersive X-ray fluorescence analyzer). The components of the raw water (seawater), the operating conditions of the first and second stage reverse osmosis membrane devices, etc. were as follows.
[Boron concentration in raw water (seawater)]
Boron concentration: 4.55 mg / liter [Operating conditions of the first stage reverse osmosis membrane device]
Water to be treated pH: 6.0, temperature: 30 ° C., pressure: 6.0 MPa, recovery rate: 40%
[Operating conditions of the second stage reverse osmosis membrane device]
Water to be treated pH: 9.5, temperature: 30 ° C., pressure: 1.0 MPa, recovery rate: 60%

実施例2
上記実施例1において、空気との気液接触による脱炭酸に代えて、第1段目逆浸透膜装置から得た透過水にスケール分散剤を添加する方法を採用し、同様の実験を行った。即ち、実施例1で用いたのと同じ海水を使用し、第1段目逆浸透膜装置により実施例1と同じ条件で処理した透過水に、スケール分散剤(フロコン100)を2.5ppm相当量注入すると共に、アルカリ水溶液(25%苛性ソーダ)を添加してpHを調整した(PID制御を採用)。これを第2段目逆浸透膜装置へ供給して連続的に淡水化処理を行った。
Example 2
In Example 1 described above, a method of adding a scale dispersant to the permeated water obtained from the first-stage reverse osmosis membrane device instead of decarboxylation by gas-liquid contact with air was performed, and a similar experiment was performed. . That is, the same seawater as used in Example 1 was used, and the scale dispersant (Flocon 100) was equivalent to 2.5 ppm in the permeate treated by the first-stage reverse osmosis membrane device under the same conditions as in Example 1. Along with the injection of an aqueous solution, an aqueous alkaline solution (25% sodium hydroxide) was added to adjust the pH (adopting PID control). This was supplied to the 2nd stage reverse osmosis membrane apparatus, and the desalination process was performed continuously.

比較例1
上記実施例1において、空気との気液接触による脱炭酸処理を省略して、同様の実験を行なった。即ち、実施例1で用いたのと同じ海水を使用し、第1段目逆浸透膜装置により実施例1と同じ条件で処理した透過水に、アルカリ水溶液(25%苛性ソーダ)を添加してpHを9.5に調整した。アルカリ水溶液の添加方法は、アルカリ水溶液添加位置より下流の第2段供給水配管に設置したセンサーにより計測したpHにより、アルカリ水溶液添加ポンプをON−OFF制御した。これを第2段目逆浸透膜装置へ供給して連続的に淡水化処理を行った。
Comparative Example 1
In Example 1 above, the same experiment was performed by omitting the decarboxylation treatment by gas-liquid contact with air. That is, the same seawater as used in Example 1 was used, and an aqueous alkaline solution (25% caustic soda) was added to the permeate treated under the same conditions as in Example 1 using the first-stage reverse osmosis membrane device to adjust the pH. Was adjusted to 9.5. The alkaline aqueous solution addition method controlled ON / OFF of the alkaline aqueous solution addition pump by the pH measured by the sensor installed in the 2nd stage supply water piping downstream from the alkaline aqueous solution addition position. This was supplied to the 2nd stage reverse osmosis membrane apparatus, and the desalination process was performed continuously.

[スケールの付着の有無]
EDX分析の結果、実施例1及び実施例2では、第2段目逆浸透膜装置の分離面でのスケールの析出は認められなかったが、比較例1では、微量のカルシウム系析出物が確認された。
[Presence or absence of scale adhesion]
As a result of EDX analysis, in Example 1 and Example 2, no precipitation of scale was observed on the separation surface of the second-stage reverse osmosis membrane device, but in Comparative Example 1, a trace amount of calcium-based precipitate was confirmed. It was done.

[供給水のpH制御の結果]
設定値 操業中のpH値 制御法
実施例1 9.5 9.45〜9.55 比例制御法
実施例2 9.5 9.45〜9.55 PID制御法
比較例1 9.5 9.2 〜10.0 ON−OFF制御法
[Results of pH control of feed water]
Set value pH value during operation Control method example 1 9.5 9.45 to 9.55 Proportional control method example 2 9.5 9.45 to 9.55 PID control method comparison example 1 9.5 9.2 ~ 10.0 ON-OFF control method

[結果]
実施例1及び実施例2の場合、6ヶ月以上の長期に亘って安定して淡水化処理を行なうことができた。これに対して比較例1の場合、pH範囲を所望の9.2〜9.7に制御できなかったため、6ヵ月後に低圧膜の塩分阻止率の低下が認められた。
[result]
In the case of Example 1 and Example 2, the desalination treatment could be performed stably over a long period of 6 months or more. On the other hand, in the case of Comparative Example 1, since the pH range could not be controlled to the desired 9.2 to 9.7, a decrease in the salinity inhibition rate of the low-pressure membrane was observed after 6 months.

運転開始後6ヶ月経過した時点で、下記表1に示す条件で各膜モジュールの性能試験を行なった。結果を表2に示す。   When 6 months passed from the start of operation, performance tests of each membrane module were performed under the conditions shown in Table 1 below. The results are shown in Table 2.

Figure 2005246158
Figure 2005246158

Figure 2005246158
Figure 2005246158

表2に示されている様に、実施例1及び実施例2の場合、長期間に亘って高レベルのホウ素阻止率を維持しているが、比較例1の場合、ホウ素阻止率が低下した。この実験結果からも、本発明例である実施例1、及び実施例2では、分離膜面へのスケール(炭酸塩を含む)の析出による分離膜の劣化を可及的に防止することができ、安定した操業性のもとでより清浄度の高い淡水を長期間に亘って効率よく得られることがわかる。   As shown in Table 2, in Examples 1 and 2, a high level of boron rejection was maintained over a long period of time, but in Comparative Example 1, the boron rejection was reduced. . From these experimental results, in Example 1 and Example 2, which are examples of the present invention, the deterioration of the separation membrane due to the deposition of scale (including carbonate) on the separation membrane surface can be prevented as much as possible. It can be seen that fresh water with higher cleanliness can be efficiently obtained over a long period of time under stable operability.

本発明では、上述の様に、比例制御やPID制御を含む精密制御により、pHが9.2〜9.7の範囲となる様に構成したが、実操業においては、次の精密制御の精度に留意して行なうことが必要である。即ち、この精密制御の場合、設定pH値に対する変動幅が±0.05であることが望ましい。したがって、pHを9.5に設定した場合、制御変動幅はpH9.45〜9.55である。尚、実施例1、2でも制御変動幅が設定値の±0.05の範囲内で制御されている。   In the present invention, as described above, the pH is in the range of 9.2 to 9.7 by the precision control including the proportional control and the PID control. It is necessary to keep this in mind. That is, in the case of this precise control, it is desirable that the fluctuation range with respect to the set pH value is ± 0.05. Therefore, when the pH is set to 9.5, the control fluctuation range is pH 9.45 to 9.55. In the first and second embodiments, the control fluctuation range is controlled within a range of ± 0.05 of the set value.

本発明の一実施例を示すフロー図である。It is a flowchart which shows one Example of this invention. 本発明の他の実施例を示すフロー図である。It is a flowchart which shows the other Example of this invention.

符号の説明Explanation of symbols

1 海水タンク
2 前処理装置
3 第1段目逆浸透膜装置
4 脱炭酸処理装置4
5 中間タンク
6 アルカリ液槽
7 第2段目逆浸透膜装置
8 スケール分離剤槽
1 Seawater tank 2 Pretreatment device 3 First stage reverse osmosis membrane device 4 Decarbonation treatment device 4
5 Intermediate tank 6 Alkaline liquid tank 7 Second stage reverse osmosis membrane device 8 Scale separator tank

Claims (3)

直列方向に2段に接続された逆浸透膜装置によって海水を淡水化処理する方法において、第2段目逆浸透膜装置の上流側で、第1段目逆浸透膜装置の透過水にスケール分散剤注入処理および/または脱炭酸処理を施すと共に、透過水のpHが9.2〜9.7となる様にアルカリ注入処理を施すことを特徴とする海水の淡水化処理方法。   In a method of desalinating seawater using a reverse osmosis membrane device connected in two stages in a series direction, the scale is dispersed in the permeate of the first-stage reverse osmosis membrane device upstream of the second-stage reverse osmosis membrane device. A desalination treatment method for seawater, characterized by performing an agent injection treatment and / or a decarboxylation treatment, and an alkali injection treatment such that the pH of the permeate is 9.2 to 9.7. 前記アルカリ注入処理において、アルカリ注入量を、アルカリ比例注入制御法またはPID制御法によって制御する請求項1に記載の淡水化処理方法。   The desalination treatment method according to claim 1, wherein the alkali injection amount is controlled by an alkali proportional injection control method or a PID control method in the alkali injection treatment. 直列方向に2段に接続された逆浸透膜装置によって海水を淡水化処理する装置において、第1段目逆浸透膜装置の下流側で、且つ第2段目逆浸透膜装置の上流側に、スケール分散剤注入処理装置および/または脱炭酸処理装置が設けられ、該いずれかの装置に続いてアルカリ注入装置が設けられているか、或いはアルカリ注入装置に続いてスケール発生防止装置が設けられていることを特徴とする海水の淡水化処理装置。   In a device for desalinating seawater with a reverse osmosis membrane device connected in two stages in a series direction, on the downstream side of the first-stage reverse osmosis membrane device and on the upstream side of the second-stage reverse osmosis membrane device, A scale dispersant injection processing device and / or a decarboxylation processing device is provided, and either of the devices is followed by an alkali injection device, or a scale generation prevention device is provided following the alkali injection device. A seawater desalination apparatus characterized by that.
JP2004057241A 2004-03-02 2004-03-02 Method and system for desalinating seawater Pending JP2005246158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004057241A JP2005246158A (en) 2004-03-02 2004-03-02 Method and system for desalinating seawater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004057241A JP2005246158A (en) 2004-03-02 2004-03-02 Method and system for desalinating seawater

Publications (1)

Publication Number Publication Date
JP2005246158A true JP2005246158A (en) 2005-09-15

Family

ID=35027160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004057241A Pending JP2005246158A (en) 2004-03-02 2004-03-02 Method and system for desalinating seawater

Country Status (1)

Country Link
JP (1) JP2005246158A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160230A (en) * 2005-12-14 2007-06-28 Mitsubishi Heavy Ind Ltd Water treatment system
JP2007268352A (en) * 2006-03-30 2007-10-18 Matsushita Electric Ind Co Ltd Water treatment method and water treatment apparatus
WO2011065257A1 (en) * 2009-11-30 2011-06-03 三菱重工業株式会社 Desalting system and method of desalting
JP2013156130A (en) * 2012-01-30 2013-08-15 Hitachi-Ge Nuclear Energy Ltd Radioactive waste liquid treatment method and radioactive waste liquid treatment apparatus
US8568588B2 (en) 2010-07-14 2013-10-29 Korea Institute Of Machinery & Materials Apparatus for osmotic power generation and desalination using salinity difference
WO2015002309A1 (en) * 2013-07-05 2015-01-08 三菱重工業株式会社 Water treatment system, water treatment method, cooling facility and power generating facility
WO2015002014A1 (en) * 2013-07-02 2015-01-08 栗田工業株式会社 Treatment method and treatment device for wastewater containing cationic surfactant

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160230A (en) * 2005-12-14 2007-06-28 Mitsubishi Heavy Ind Ltd Water treatment system
JP2007268352A (en) * 2006-03-30 2007-10-18 Matsushita Electric Ind Co Ltd Water treatment method and water treatment apparatus
WO2011065257A1 (en) * 2009-11-30 2011-06-03 三菱重工業株式会社 Desalting system and method of desalting
JP2011110531A (en) * 2009-11-30 2011-06-09 Mitsubishi Heavy Ind Ltd Desalination apparatus and desalination method
US8920653B2 (en) 2009-11-30 2014-12-30 Mitsubishi Heavy Industries, Ltd. Desalination apparatus and desalination method
US8568588B2 (en) 2010-07-14 2013-10-29 Korea Institute Of Machinery & Materials Apparatus for osmotic power generation and desalination using salinity difference
JP2013156130A (en) * 2012-01-30 2013-08-15 Hitachi-Ge Nuclear Energy Ltd Radioactive waste liquid treatment method and radioactive waste liquid treatment apparatus
WO2015002014A1 (en) * 2013-07-02 2015-01-08 栗田工業株式会社 Treatment method and treatment device for wastewater containing cationic surfactant
JP2015009230A (en) * 2013-07-02 2015-01-19 栗田工業株式会社 Method and apparatus for treating cationic surfactant-containing waste water
WO2015002309A1 (en) * 2013-07-05 2015-01-08 三菱重工業株式会社 Water treatment system, water treatment method, cooling facility and power generating facility
JP6038318B2 (en) * 2013-07-05 2016-12-07 三菱重工業株式会社 Water treatment system and method, cooling facility, power generation facility

Similar Documents

Publication Publication Date Title
EP1363856B1 (en) Method of boron removal in presence of magnesium ions
JP2011056345A (en) Desalination system
JP3870712B2 (en) Circulating cooling water treatment method and treatment apparatus
JP2003071252A (en) Multi-stage type reverse osmosis treating method
JP5807634B2 (en) Reverse osmosis membrane treatment method
JP2008229418A (en) Method and apparatus for industrial water treatment
JP5050605B2 (en) Organic substance processing method and organic substance processing apparatus
KR101840896B1 (en) Ultrapure water production process
WO2012133620A1 (en) Membrane-separation method
JP2009028724A (en) Method for water treatment and apparatus for water treatment
JP5609174B2 (en) Water treatment system
US20100047156A1 (en) Multiple stage reverse osmosis method for removing boron from a salinated fluid
JP3903746B2 (en) Circulating cooling water treatment method
JP2005246158A (en) Method and system for desalinating seawater
JP2011031146A (en) Water treatment system
WO2020195217A1 (en) Method and device for treating water containing calcium and organic matter
JPS6336890A (en) Apparatus for producing high-purity water
Nada et al. Experience on pre-and post-treatment from sea water desalination plants in Saudi Arabia
JP2011056411A (en) System and method for desalination of water to be treated
JP4576760B2 (en) Circulating cooling water treatment method
JP6968682B2 (en) Manufacturing method of permeated water, water treatment device and operation method of the water treatment device
JP2003236541A (en) Desalting treatment method and apparatus for seawater
JP5190909B2 (en) Membrane separation method and membrane separation apparatus
JP7094674B2 (en) Organic wastewater treatment method and treatment equipment
JP2004121896A (en) Method of producing treated water and salt water treatment equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090901