JP3729260B2 - Water treatment method using reverse osmosis membrane - Google Patents

Water treatment method using reverse osmosis membrane Download PDF

Info

Publication number
JP3729260B2
JP3729260B2 JP2002184465A JP2002184465A JP3729260B2 JP 3729260 B2 JP3729260 B2 JP 3729260B2 JP 2002184465 A JP2002184465 A JP 2002184465A JP 2002184465 A JP2002184465 A JP 2002184465A JP 3729260 B2 JP3729260 B2 JP 3729260B2
Authority
JP
Japan
Prior art keywords
water
reverse osmosis
osmosis membrane
treated
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002184465A
Other languages
Japanese (ja)
Other versions
JP2004025027A (en
Inventor
博敏 鶴口
直人 一柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2002184465A priority Critical patent/JP3729260B2/en
Publication of JP2004025027A publication Critical patent/JP2004025027A/en
Application granted granted Critical
Publication of JP3729260B2 publication Critical patent/JP3729260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、逆浸透膜技術を用いた水処理方法に関する。詳細には、冷却水系の循環冷却水等の被処理水を、膜機能を劣化させることなく逆浸透膜処理し、回収、再利用する技術に関する。
【0002】
【従来の技術】
循環冷却水系においては、系内のスケール成分の濃縮によるスケール障害を防止するために冷却塔から系内の水をブロー水として排出し、このブロー水の量に見合う量の水を補給水として補給している。このブロー水は、循環冷却水系の6〜8倍の高濃縮運転により、硬度成分やシリカ等のスケール成分が既に析出限界にまで濃縮された水である。
【0003】
このため、前記ブロー水を回収し、冷却水として再利用することは困難であったが、近年、逆浸透膜技術を利用して脱塩処理し、回収、再利用する方法が、特開2002−18437号報等において提案されるようになった。
【0004】
ここで、循環冷却水系等の冷却水系には、該水系のスライム障害を防止することを目的として、必要量のヒドラジン(N)が添加される場合がある。従来、このヒドラジンを含んだ被処理水(水系から逆浸透膜装置に導入される水、以下同様。)を逆浸透膜で処理しても、膜の脱塩性能には何ら悪影響を及ぼさないという認識が技術常識とされてきたので、ヒドラジンを含有する被処理水についても、他の被処理水同様に逆浸透膜処理が行われ、また、ヒドラジンは膜の殺菌剤としても用いられてきた。
【0005】
【発明が解決しようとする課題】
しかしながら、逆浸透膜の脱塩性能低下が発生することが問題となっていたため、本願発明者らが、鋭意研究を重ねたところ、ヒドラジンを含有する被処理水が、重金属を含み、かつpHが酸性である場合には、意外にも逆浸透膜の脱塩性能が低下してしまうという事実を見出した。
【0006】
そこで、本発明は、水系から得られるヒドラジン含有被処理水を、脱塩性能を低下させることなく逆浸透膜処理できる方法を提供することを主目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成し、上記技術的課題を解決するために、本発明では、以下の方法を提供する。
【0008】
まず、本発明では、少なくとも重金属及びヒドラジンが含まれる酸性領域の被処理水中に、前記重金属と安定なイオン形態を形成するキレート剤を添加することによって逆浸透膜の劣化を防止する方法を提供する。なお、本方法が適用される逆浸透膜の種類には、特に制限がなく、例えば、ポリアミド系膜、酢酸セルロース系膜等の中から、被処理水の種類に応じて適宜選択できる。
【0009】
この方法では、被処理水、とりわけ冷却水系の循環冷却水を適宜のpH調整手段によって酸性領域に調整し、具体的には、pH3〜6の範囲内、特に好適にはpH4.5〜5.5の範囲内に調整することによって、カルシウム及びシリカを含む被処理水を逆浸透膜処理した場合でも、該膜処理装置での炭酸カルシウムのスケール発生及びシリカによるスケール障害が防止され、長期にわたって安定した脱塩処理を行うことが可能となる。また、被処理水を酸性条件とすることによって、水中の微生物代謝物や微細粒子、コロイダル物質が凝集して比較的大きな粒子を形成するので、これらを膜ろ過により効率的に除去できる。
【0010】
被処理水を酸性領域に調整すると、前段落記載のような作用及び効果が得られるという利点があるが、該被処理水中に、重金属と水系のスケール防止剤又は/及び膜の殺菌剤として添加されたヒドラジンの双方が含まれている場合には、逆浸透膜による脱塩性能が低下することが、本願発明者らの研究によって新たに判明した。ヒドラジンは、強い還元作用を有するので、被処理水中の重金属イオンと反応して不安定化合物を形成するものと考えられ、これらの化合物が逆浸透膜を劣化させ、脱塩性能の低下を引き起こすものと予測される。
【0011】
そこで、本願で提供する水処理方法においては、逆浸透膜導入前の被処理水に対して、キレート剤を適宜の薬注装置を介して添加するように工夫する。キレート剤は、被処理水に含まれている重金属イオンとキレート結合し、非常に安定なイオン形態を形成し、ヒドラジンと重金属イオンとの反応を妨害するという作用を発揮するので、前段落記載の不安定化合物による膜性能劣化を未然に防止することができる。
【0012】
キレート剤としては、前記イオン形態を形成し得るものであれば採用でき、例えば、ホスホン酸やヘキサメタリン酸等のポリリン酸塩、クエン酸やエチレンジアミン四酢酸塩等の有機酸塩、ポリアクリル酸やポリマレイン酸等の水溶性高分子等から適宜選択することができる。
【0013】
次に、本発明に係る方法では、逆浸透膜処理前に除濁工程、即ち被処理水中のSS化した重金属を含む懸濁成分を除去してから逆浸透膜へ導入するように工夫する。
【0014】
この工夫によれば、キレート剤添加による膜性能劣化防止効果に加えて、膜の目詰まりが有効に防止されるので、逆浸透膜処理工程を効率よく行うことができるという効果が得られる。
【0015】
上記の方法は、酸性であって、かつ少なくとも重金属及びヒドラジンが含まれる被処理水に対して、キレート剤を添加することによって逆浸透膜の劣化を防止する方法に基づいている。
【0016】
以上のように、本発明は、水系から得られるヒドラジン含有被処理水を、脱塩性能を低下させることなく逆浸透膜処理できる水処理方法及び前記被処理水を扱う場合における逆浸透膜の劣化防止方法を提供するという技術的意義を有している。
【0017】
以下、図1に基づいて、本発明に係る方法の好適な実施形態について説明する。図1は、本方法の主要工程を簡略に示す系統図である。
【0018】
図1中の符号1は、循環冷却水系等の水系(例えば、冷却塔)を簡略に表しており、該水系に通水される冷却水等の水には、該水系のスライム防止を目的として、ヒドラジン2が必要量添加される。従って、水系1からのブロー水3には、ヒドラジン2が含有されており、また、該ブロー水3には、熱交換器等由来の銅、鉄などの重金属が含まれている。
【0019】
水系1からのブロー水3は、ストレーナ4で除塵された後に、スライム防止剤5とpH調整のための塩酸等の酸6が添加されて、脱炭酸塔8において脱炭酸処理される。なお、符号7は、脱炭酸塔入り口に設けられたpH計であり、V〜Vは、それぞれの箇所に設けられた開閉弁を表している。
【0020】
前記脱炭酸塔8においては、ブロー水3中に含まれる炭酸イオン(CO 2−)を炭酸ガスに変換して効率よく除去することによって、後続の逆浸透膜Rでの前記炭酸成分に起因するスケール障害を有効に防止するとともに、処理水Tの水質を向上させることができる。
【0021】
脱炭酸塔8からの流出水9は、ポンプPによって、MF(精密濾過)膜、UF(限外濾過)膜、カートリッジフィルタ等の膜濾過手段を備える除濁装置10に導入されることによって、水中のSS(懸濁物質)を除去する(除濁工程)。これにより、後続の逆浸透膜Rにおける膜汚染の原因となる水中の濁質やコロイダル成分を除去されるので、逆浸透膜Rへの通水が安定的に行われるようになる。
【0022】
ここで、前記除濁工程は、被処理水中のSSが少ない場合には、省略することが可能であるが、逆浸透膜処理を継続安定して行うには、該工程を積極的に行う方が望ましい。この除濁工程は、逆浸透膜処理工程の前段工程において行えば良いのであって、図1の配置構成に限定されない。例えば、脱炭酸塔8の前であってもよい。
【0023】
図1に示す除濁装置10からの濃縮水11は、再び脱炭酸塔8に返送され、一方、除濁装置10からの透過水12には、pH調整剤13とキレート剤14が添加された後に、中間給水槽15に導入される。なお、pH調整剤13とキレート剤14は、中間給水槽15に直接添加してもよい。
【0024】
ここで、中間給水槽15に一旦貯留される被処理水16のpH調整は、該被処理水16に含まれるカルシウムやシリカによる逆浸透膜Rのスケール障害を防止するために、pH3〜6、好ましくはpH4.5〜5.5の範囲に収まるように行う。脱炭酸処理された被処理水16は、脱炭酸処理前に比較してpHが変動するので、pH調整剤13として、塩酸、硫酸、硝酸等の酸やNaOH、KOH等のアルカリを用いて、前記範囲のpHに調整する。なお、このpH調整において、過度にpHが低いと、機器や配管の腐食の原因となるので、前記範囲に調整するのが好ましい。
【0025】
キレート剤14は、透過水12に含まれている銅や鉄等の重金属イオンとキレート結合し、非常に安定なイオン形態を形成することによって、水系1へ添加されたスケール防止剤又は逆浸透膜R等の殺菌剤として添加されたヒドラジンと前記重金属イオンとの反応を妨害するという作用を発揮する。この作用によって、重金属とヒドラジンの反応による不安定化合物生成を有効に妨害できるので、該不安定化合物によって起こると考えられる逆浸透膜Rの劣化を確実に防止できる。
【0026】
キレート剤14としては、例えば、ホスホン酸やヘキサメタリン酸等のポリリン酸塩、クエン酸やエチレンジアミン四酢酸塩等の有機酸塩、ポリアクリル酸やポリマレイン酸等の水溶性高分子等から適宜選択することができる。
【0027】
なお、pH調整剤13,キレート剤14に加えて、逆浸透膜Rのスケール発生を防止するために、ホスホン酸系、ポリリン酸系、ポリアクリル酸系、ポリアクリルアミド系等のスケール防止剤を添加してもよい。有機系のスケール防止剤は、逆浸透膜Rでのファウリングの原因となることがあるため、ホスホン酸系、ポリリン酸系のスケール防止剤が好適に採用できる。
【0028】
pHが上記範囲内に調整され、かつキレート剤14が添加された被処理水16は、中間給水槽15からポンプPによって逆浸透膜Rに導入されて、継続安定な脱塩処理が施された後、濃縮水17と処理水(透過水)Tとして、それぞれ系外に排出される。なお、符号18は、中間給水槽16に付設されたpH計、符号19は、レベルスイッチである。
【0029】
ここで、逆浸透膜Rの種類には、特に制限がなく、被処理水16の水質いよって適宜決定することができるが、脱塩率については85%以上、特に好適には90%以上のものを採用することが望ましい。脱塩率が前記数値よりも低いと、脱イオン効率が悪く、良好な水質の処理水Tが得られないからである。
【0030】
なお、上記した本発明に係る水処理方法は、冷却水系からのブロー水3に限らず、例えば、循環冷却水系の循環配管から循環冷却水の一部又は全部を引き抜いて、本発明方法で処理した後、再び循環冷却水系に戻すように工夫することもできる。また、本発明方法は、冷却水に限らず、自然水、河川水、井水、市水、工水等にも適用することができる。
【0031】
【実施例】
以下、本発明の実施例及びその比較例について説明する。
【0032】
水道水に塩酸を加え、pHを4〜6に調整した水を限外ろ過膜でろ過し、そのろ過水に硫酸銅溶液を添加し、逆浸透膜に供給される被処理水の銅濃度を0.2〜0.3mg/Lになるように調整した。更に、この水にヒドラジンを5mg/Lになるように添加した後、逆浸透膜に供給した。なお、逆浸透膜には、日東電工製NTR759HRを採用し、運転圧力0.6MPa、回収率67%の条件で通水した。
【0033】
<実施例>
逆浸透膜装置に対する被処理水の給水槽にキレート剤(ヘキサメタリン酸ナトリウム)を3mg/L添加し、該給水槽から供給される被処理水を逆浸透膜処理した。その結果を、図2に示す。
【0034】
図2に示されているように、本実施例では、脱塩率が94〜96%の高いレベルで維持され続け、200日を経過した段階でも、脱塩率が95%前後に維持されたので、被処理水を安定して、逆浸透膜に通水することができた。また、運転差圧は、通水開始直後の0.6MPaから変化することなく、安定していた。
【0035】
<比較例>
キレート剤を全く添加しなかった以外は、前記実施例と同条件で逆浸透膜処理を行った。その結果を図3に示す。
【0036】
図3に示されているように、本比較例における脱塩率は、通水開始直後は、実施例と略同様のレベルであったが、80日経過後から脱塩率が顕著に低下し始め、130日目には、脱塩率は30%まで低下した。
【0037】
以上説明した実施例、比較例から、被処理水が酸性であって、重金属を含む場合においては、キレート剤が逆浸透膜の劣化防止に有効に作用し、高い脱塩率を長期にわたって維持できることがわかる。
【0038】
【発明の効果】
本発明に係る方法によれば、被処理水を適宜のpH調整手段によって所定範囲の酸性領域に調整することによって、カルシウム及びシリカを含む被処理水を逆浸透膜処理した場合でも、該膜処理装置での炭酸カルシウムのスケール発生及びシリカによるスケール障害が防止できるので、長期にわたって安定した脱塩処理を行うことが可能となる。また、被処理水を酸性条件とすることによって、水中の微生物代謝物や微細粒子、コロイダル物質が凝集して比較的大きな粒子を形成するので、これらを膜ろ過により効率的に除去できる。
【0039】
特に、被処理水中に銅などの重金属とヒドラジンの双方が含まれている場合では、ヒドラジンが被処理水中の重金属イオンと反応して不安定化合物を形成し、この不安定化合物が逆浸透膜を劣化させ、脱塩性能の低下を引き起こすという新しい知見に基づいて、逆浸透膜導入前の被処理水へ所定のキレート剤を添加するように工夫をしたことにより、該キレート剤が重金属イオンとキレート結合して非常に安定なイオン形態を形成することによりヒドラジンと重金属イオンとの反応を防ぐため、(ヒドラジンと重金属イオンの反応性生物である)前記不安定化合物による膜性能劣化を未然に防止することができる。
【0040】
さらには、本発明に係る方法において、逆浸透膜処理前に除濁工程を設けるように工夫したことによって、キレート剤添加による膜性能劣化防止効果に加えて、膜の目詰まりや膜汚染を有効に防止することができる。
【図面の簡単な説明】
【図1】 本発明に係る方法の主要工程を簡略に示す系統図である。
【図2】 実施例の結果を示す図(グラフ)である。
【図3】 比較例の結果を示す図(グラフ)である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water treatment method using reverse osmosis membrane technology. Specifically, the present invention relates to a technique for treating, recovering and reusing water to be treated such as circulating cooling water in a cooling water system without deteriorating the membrane function.
[0002]
[Prior art]
In a circulating cooling water system, water in the system is discharged as blow water from the cooling tower to prevent scale failure due to concentration of scale components in the system, and water corresponding to the amount of blow water is supplied as makeup water. are doing. This blow water is water in which hardness components and scale components such as silica have already been concentrated to the precipitation limit by a high concentration operation 6 to 8 times that of the circulating cooling water system.
[0003]
For this reason, it has been difficult to collect the blow water and reuse it as cooling water. However, in recent years, a method for desalting, collecting, and reusing the reverse osmosis membrane technology is disclosed in Japanese Patent Application Laid-Open No. 2002-2002. It was proposed in No. 18437.
[0004]
Here, in a cooling water system such as a circulating cooling water system, a necessary amount of hydrazine (N 2 H 2 ) may be added for the purpose of preventing the slime damage of the aqueous system. Conventionally, even if the water to be treated containing hydrazine (water introduced into the reverse osmosis membrane device from the aqueous system, the same applies hereinafter) is treated with a reverse osmosis membrane, the desalination performance of the membrane is not adversely affected. Since recognition has been regarded as common technical knowledge, water to be treated containing hydrazine has been subjected to reverse osmosis membrane treatment in the same manner as other water to be treated, and hydrazine has also been used as a membrane disinfectant.
[0005]
[Problems to be solved by the invention]
However, since it has been a problem that the desalination performance of the reverse osmosis membrane is reduced, the inventors of the present application have conducted extensive research. As a result, the water to be treated containing hydrazine contains heavy metals and has a pH of It was found that the desalting performance of the reverse osmosis membrane is unexpectedly lowered when it is acidic.
[0006]
Therefore, the main object of the present invention is to provide a method capable of treating a hydrazine-containing treated water obtained from an aqueous system with a reverse osmosis membrane treatment without reducing the desalting performance.
[0007]
[Means for Solving the Problems]
In order to achieve the above object and solve the above technical problem, the present invention provides the following method .
[0008]
First, the present invention provides a method for preventing deterioration of a reverse osmosis membrane by adding a chelating agent that forms a stable ionic form with the heavy metal into water to be treated in an acidic region containing at least heavy metal and hydrazine. . In addition, there is no restriction | limiting in particular in the kind of reverse osmosis membrane to which this method is applied, For example, it can select suitably according to the kind of to-be-processed water from a polyamide-type film | membrane, a cellulose acetate type | system | group film | membrane, etc.
[0009]
In this method, the water to be treated, particularly the circulating cooling water in the cooling water system, is adjusted to an acidic region by an appropriate pH adjusting means, specifically within the range of pH 3 to 6, particularly preferably pH 4.5 to 5. By adjusting within the range of 5, the treated water containing calcium and silica is treated with a reverse osmosis membrane, so that scale formation of calcium carbonate in the membrane treatment apparatus and scale failure due to silica are prevented, and stable over a long period of time. It is possible to perform the desalting treatment. In addition, by making the water to be treated acidic, microbial metabolites, fine particles, and colloidal substances in the water aggregate to form relatively large particles, which can be efficiently removed by membrane filtration.
[0010]
When the water to be treated is adjusted to the acidic region, there is an advantage that the action and effect as described in the previous paragraph can be obtained, but it is added to the water to be treated as a scale inhibitor for heavy metals and water or / and as a film disinfectant. The present inventors have newly found out that the desalination performance by the reverse osmosis membrane is reduced when both of the hydrazines produced are contained. Since hydrazine has a strong reducing action, it is thought that it reacts with heavy metal ions in the water to be treated to form unstable compounds, and these compounds degrade reverse osmosis membranes and cause deterioration in desalination performance. It is predicted.
[0011]
Therefore, in the water treatment method provided in the present application, the chelating agent is devised so as to be added to the water to be treated before introduction of the reverse osmosis membrane through an appropriate chemical injection device. The chelating agent chelate-bonds with heavy metal ions contained in the water to be treated, forms a very stable ionic form, and exerts the action of hindering the reaction between hydrazine and heavy metal ions. It is possible to prevent deterioration of film performance due to unstable compounds.
[0012]
As the chelating agent, any one that can form the ionic form can be adopted, for example, polyphosphates such as phosphonic acid and hexametaphosphoric acid, organic acid salts such as citric acid and ethylenediaminetetraacetic acid salt, polyacrylic acid and polymaleic acid. It can be suitably selected from water-soluble polymers such as acids.
[0013]
Next, in the method according to the present invention, it is devised that a suspended component containing heavy metals that have become SS in the water to be treated is removed before the reverse osmosis membrane treatment and then introduced into the reverse osmosis membrane .
[0014]
According to this device, in addition to the effect of preventing the deterioration of the membrane performance due to the addition of the chelating agent, clogging of the membrane is effectively prevented, so that the effect of performing the reverse osmosis membrane treatment step can be obtained.
[0015]
The above method is based on a method of preventing deterioration of the reverse osmosis membrane by adding a chelating agent to water to be treated which is acidic and contains at least heavy metal and hydrazine.
[0016]
As described above, the present invention is a water treatment method capable of treating hydrazine-containing treated water obtained from an aqueous system with a reverse osmosis membrane without reducing desalting performance, and deterioration of a reverse osmosis membrane when treating the treated water. It has the technical significance of providing a prevention method.
[0017]
Hereinafter, a preferred embodiment of the method according to the present invention will be described with reference to FIG. FIG. 1 is a system diagram schematically showing the main steps of the present method .
[0018]
Reference numeral 1 in FIG. 1 simply represents an aqueous system (for example, a cooling tower) such as a circulating cooling water system, and the water such as cooling water passed through the aqueous system is for the purpose of preventing slime of the aqueous system. The required amount of hydrazine 2 is added. Therefore, the hydrazine 2 is contained in the blow water 3 from the water system 1, and the blow water 3 contains heavy metals such as copper and iron derived from a heat exchanger or the like.
[0019]
The blow water 3 from the aqueous system 1 is dedusted by a strainer 4, and then added with a slime inhibitor 5 and an acid 6 such as hydrochloric acid for pH adjustment, and decarboxylated in a decarboxylation tower 8. Reference numeral 7 is a pH meter provided decarbonation tower inlet, V 1 ~V 5 represents the on-off valve provided in each occurrence.
[0020]
In the decarboxylation tower 8, the carbonate ions (CO 3 2− ) contained in the blow water 3 are converted into carbon dioxide gas and efficiently removed, thereby resulting in the carbon dioxide component in the subsequent reverse osmosis membrane R. In addition to effectively preventing scale failure, the quality of the treated water T can be improved.
[0021]
The effluent water 9 from the decarbonation tower 8 is introduced by a pump P 1 into a turbidity removal apparatus 10 having membrane filtration means such as an MF (microfiltration) membrane, a UF (ultrafiltration) membrane, and a cartridge filter. Remove SS (suspended material) in water (turbidity removing step). Thereby, since turbidity and colloidal components in the water that cause membrane contamination in the subsequent reverse osmosis membrane R are removed, water can be stably passed through the reverse osmosis membrane R.
[0022]
Here, the turbidity removing step can be omitted when the amount of SS in the water to be treated is small. However, in order to perform the reverse osmosis membrane treatment continuously and stably, the step of actively performing the step Is desirable. This turbidity removal step may be performed in the previous step of the reverse osmosis membrane treatment step, and is not limited to the arrangement shown in FIG. For example, it may be before the decarboxylation tower 8.
[0023]
Concentrated water 11 from the turbidizer 10 shown in FIG. 1 is returned again to the decarbonation tower 8, while a pH adjuster 13 and a chelating agent 14 are added to the permeated water 12 from the turbidizer 10. Later, it is introduced into the intermediate water tank 15. The pH adjusting agent 13 and the chelating agent 14 may be added directly to the intermediate water tank 15.
[0024]
Here, the pH adjustment of the water to be treated 16 once stored in the intermediate water tank 15 is pH 3 to 6, in order to prevent scale failure of the reverse osmosis membrane R due to calcium or silica contained in the water to be treated 16. Preferably, it is carried out so as to be within the range of pH 4.5 to 5.5. Since the pH of the water to be treated 16 that has been decarboxylated varies compared with that before the decarboxylation treatment, an acid such as hydrochloric acid, sulfuric acid, nitric acid, or an alkali such as NaOH or KOH is used as the pH adjuster 13. Adjust the pH to the above range. In addition, in this pH adjustment, if the pH is excessively low, it may cause corrosion of equipment and piping, so it is preferable to adjust to the above range.
[0025]
The chelating agent 14 is chelate-bonded with heavy metal ions such as copper and iron contained in the permeated water 12 to form a very stable ionic form, whereby a scale inhibitor or reverse osmosis membrane added to the aqueous system 1 It exhibits the effect of preventing the reaction between hydrazine added as a bactericidal agent such as R and the heavy metal ions. This action can effectively prevent the formation of unstable compounds due to the reaction between heavy metals and hydrazine, and thus can reliably prevent the deterioration of the reverse osmosis membrane R that is considered to be caused by the unstable compounds.
[0026]
The chelating agent 14 is appropriately selected from, for example, polyphosphates such as phosphonic acid and hexametaphosphoric acid, organic acid salts such as citric acid and ethylenediaminetetraacetate, and water-soluble polymers such as polyacrylic acid and polymaleic acid. Can do.
[0027]
In addition to the pH adjuster 13 and the chelating agent 14, a phosphonic acid-based, polyphosphoric acid-based, polyacrylic acid-based, polyacrylamide-based scale inhibitor is added to prevent the reverse osmosis membrane R from generating scale. May be. Since organic scale inhibitors may cause fouling in the reverse osmosis membrane R, phosphonic acid-based and polyphosphoric acid-based scale inhibitors can be suitably employed.
[0028]
pH is adjusted in the above range, and treated water 16 that the chelating agent 14 is added, is introduced from the intermediate supply water tank 15 to the reverse osmosis membrane R by the pump P 2, stable desalination process is performed continuously After that, it is discharged out of the system as concentrated water 17 and treated water (permeated water) T, respectively. In addition, the code | symbol 18 is the pH meter attached to the intermediate water tank 16, and the code | symbol 19 is a level switch.
[0029]
Here, the type of the reverse osmosis membrane R is not particularly limited and can be appropriately determined depending on the water quality of the water 16 to be treated. However, the desalination rate is 85% or more, particularly preferably 90% or more. It is desirable to adopt one. This is because if the desalination rate is lower than the above value, the deionization efficiency is poor and the treated water T having good water quality cannot be obtained.
[0030]
The water treatment method according to the present invention is not limited to the blow water 3 from the cooling water system, and for example, a part or all of the circulating cooling water is extracted from the circulation pipe of the circulating cooling water system and is treated by the method of the present invention. Then, it can be devised to return to the circulating cooling water system again. The method of the present invention can be applied not only to cooling water but also to natural water, river water, well water, city water, industrial water, and the like.
[0031]
【Example】
Examples of the present invention and comparative examples thereof will be described below.
[0032]
Hydrochloric acid is added to tap water, water adjusted to pH 4-6 is filtered through an ultrafiltration membrane, a copper sulfate solution is added to the filtered water, and the copper concentration of the water to be treated supplied to the reverse osmosis membrane is adjusted. It adjusted so that it might become 0.2-0.3 mg / L. Furthermore, after adding hydrazine to this water so that it might become 5 mg / L, it supplied to the reverse osmosis membrane. NTR759HR manufactured by Nitto Denko was adopted as the reverse osmosis membrane, and water was passed under conditions of an operating pressure of 0.6 MPa and a recovery rate of 67%.
[0033]
<Example>
3 mg / L of a chelating agent (sodium hexametaphosphate) was added to a water supply tank for water to be treated with respect to the reverse osmosis membrane apparatus, and the water to be treated supplied from the water tank was subjected to reverse osmosis membrane treatment. The result is shown in FIG.
[0034]
As shown in FIG. 2, in this example, the desalination rate was kept at a high level of 94 to 96%, and even after 200 days, the desalination rate was maintained at around 95%. Therefore, the water to be treated was stably passed through the reverse osmosis membrane. Moreover, the operation differential pressure was stable without changing from 0.6 MPa immediately after the start of water flow.
[0035]
<Comparative example>
A reverse osmosis membrane treatment was performed under the same conditions as in the above example except that no chelating agent was added. The result is shown in FIG.
[0036]
As shown in FIG. 3, the desalting rate in this comparative example was almost the same level as in the example immediately after the start of water flow, but the desalting rate began to decrease significantly after 80 days. On day 130, the desalination rate dropped to 30%.
[0037]
From the examples and comparative examples described above, when the water to be treated is acidic and contains heavy metals, the chelating agent can effectively act to prevent deterioration of the reverse osmosis membrane and maintain a high desalination rate over a long period of time. I understand.
[0038]
【The invention's effect】
According to the method of the present invention, even when a water to be treated containing calcium and silica is subjected to a reverse osmosis membrane treatment by adjusting the water to be treated to an acidic region within a predetermined range by an appropriate pH adjusting means. Since generation of scale of calcium carbonate in the apparatus and scale failure due to silica can be prevented, stable desalting treatment can be performed over a long period of time. In addition, by making the water to be treated acidic, microbial metabolites, fine particles, and colloidal substances in the water aggregate to form relatively large particles, which can be efficiently removed by membrane filtration.
[0039]
In particular, in the case that contains both heavy and hydrazine such as copper in the for-treatment water, the hydrazine reacts with the water to be treated of the heavy metal ions to form a labile compound, this instability compound reverse osmosis membrane the degrade, based on the new finding that causes a decrease in the desalination performance, and more it has devised so as to add a predetermined chelating agent to the treatment water before introduction reverse osmosis membrane, the chelating agent is a heavy metal ion In order to prevent the reaction between hydrazine and heavy metal ions by chelating with hydrazine to form a very stable ionic form, membrane performance degradation due to the unstable compound ( which is a reactive product of hydrazine and heavy metal ions) Can be prevented .
[0040]
Furthermore, in the method according to the present invention, by devising to provide a turbidity step before the reverse osmosis membrane treatment, in addition to the effect of preventing the deterioration of membrane performance by adding a chelating agent, membrane clogging and membrane contamination are effective. Can be prevented.
[Brief description of the drawings]
FIG. 1 is a system diagram schematically showing main steps of a method according to the present invention .
FIG. 2 is a diagram (graph) showing the results of Examples .
FIG. 3 is a diagram (graph) showing the results of a comparative example .

Claims (5)

少なくとも重金属及びヒドラジンが含まれる酸性領域の被処理水中に、前記重金属と安定なイオン形態を形成するキレート剤を添加することによって逆浸透膜の劣化を防止する方法。 A method of preventing deterioration of a reverse osmosis membrane by adding a chelating agent that forms a stable ionic form with the heavy metal into water to be treated in an acidic region containing at least heavy metal and hydrazine . 前記重金属は、銅であることを特徴とする請求項1記載の方法。 The method of claim 1, wherein the heavy metal is copper . 前記キレート剤は、ヘキサメタリン酸ナトリウムであることを特徴とする請求項1記載の方法。 The method of claim 1, wherein the chelating agent is sodium hexametaphosphate . 前記被処理水の懸濁成分を除去してから逆浸透膜へ導入することを特徴とする請求項1記載の方法。 The method according to claim 1, wherein the suspended component of the water to be treated is removed and then introduced into the reverse osmosis membrane . 前記被処理水は、冷却水系の循環冷却水であることを特徴とする請求項1から4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the water to be treated is a circulating cooling water of a cooling water system .
JP2002184465A 2002-06-25 2002-06-25 Water treatment method using reverse osmosis membrane Expired - Fee Related JP3729260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002184465A JP3729260B2 (en) 2002-06-25 2002-06-25 Water treatment method using reverse osmosis membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002184465A JP3729260B2 (en) 2002-06-25 2002-06-25 Water treatment method using reverse osmosis membrane

Publications (2)

Publication Number Publication Date
JP2004025027A JP2004025027A (en) 2004-01-29
JP3729260B2 true JP3729260B2 (en) 2005-12-21

Family

ID=31180375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002184465A Expired - Fee Related JP3729260B2 (en) 2002-06-25 2002-06-25 Water treatment method using reverse osmosis membrane

Country Status (1)

Country Link
JP (1) JP3729260B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006026543A (en) * 2004-07-16 2006-02-02 Kurita Water Ind Ltd Apparatus and method for removing silica

Also Published As

Publication number Publication date
JP2004025027A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP3870712B2 (en) Circulating cooling water treatment method and treatment apparatus
JP5575015B2 (en) Fresh water production system
EP1424311B1 (en) Method of multi-stage reverse osmosis treatment
JP4241684B2 (en) Membrane module cleaning method
JP4798644B2 (en) Desalination method using reverse osmosis membrane
JP2008132421A (en) Water treatment apparatus and water treatment method
JP2008229418A (en) Method and apparatus for industrial water treatment
JP3903746B2 (en) Circulating cooling water treatment method
JP4850467B2 (en) Cleaning method for membrane deaerator
JPWO2008059824A1 (en) Water treatment apparatus and water treatment method
JPH05269463A (en) Membrane separation apparatus
JP3729260B2 (en) Water treatment method using reverse osmosis membrane
JP4576760B2 (en) Circulating cooling water treatment method
JP6106943B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment apparatus
JP2005238135A (en) Washing method of membrane separation device
JP3278918B2 (en) Desalting method
JP3267468B2 (en) Operating method of reverse osmosis membrane device
JP3906855B2 (en) Method and apparatus for treating wastewater containing organic matter and oxidizing agent
JP6968682B2 (en) Manufacturing method of permeated water, water treatment device and operation method of the water treatment device
JP3885319B2 (en) Pure water production equipment
JP7168324B2 (en) Silica-containing water treatment apparatus and treatment method
JP2005118712A (en) Pure water manufacturing method
JPH10249340A (en) Production of pure water
JP3227765B2 (en) Membrane separation device
JP2006122908A (en) Pure water producing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050927

R150 Certificate of patent or registration of utility model

Ref document number: 3729260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees