JP2014014738A - Method and apparatus for treating organic wastewater - Google Patents

Method and apparatus for treating organic wastewater Download PDF

Info

Publication number
JP2014014738A
JP2014014738A JP2012152125A JP2012152125A JP2014014738A JP 2014014738 A JP2014014738 A JP 2014014738A JP 2012152125 A JP2012152125 A JP 2012152125A JP 2012152125 A JP2012152125 A JP 2012152125A JP 2014014738 A JP2014014738 A JP 2014014738A
Authority
JP
Japan
Prior art keywords
treatment
water
membrane
softening
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012152125A
Other languages
Japanese (ja)
Other versions
JP5873771B2 (en
Inventor
Yosei Katsu
甬生 葛
Toshisane Nakamura
寿実 中村
Shojiro Watanabe
昌次郎 渡邊
Kanefusa Hara
金房 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Swing Corp
Daiso Engineering Co Ltd
Original Assignee
Swing Corp
Daiso Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swing Corp, Daiso Engineering Co Ltd filed Critical Swing Corp
Priority to JP2012152125A priority Critical patent/JP5873771B2/en
Publication of JP2014014738A publication Critical patent/JP2014014738A/en
Application granted granted Critical
Publication of JP5873771B2 publication Critical patent/JP5873771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Activated Sludge Processes (AREA)
  • Water Treatment By Sorption (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably produce a hypochlorous acid solution by electrolytically treating concentrated water which is obtained by performing a salt removal treatment of organic wastewater containing salts and organic matter.SOLUTION: A sodium hypochlorite solution is generated by performing a first softening treatment, an SS removal treatment, and a salt removal treatment of organic wastewater containing salts and organic matter, again performing a softening treatment of the obtained concentrated salt water, and electrolytically treating the obtained second softening treatment water.

Description

本発明は、し尿、ゴミ埋め立て地などから浸出した浸出水など、塩類を高濃度で含有する有機性廃水の処理方法及び処理装置に関する。   The present invention relates to a method and an apparatus for treating organic wastewater containing salt at a high concentration such as leachate and leachate leached from waste landfill.

し尿や、ゴミ埋め立て地からの浸出水などの有機性廃水は、一般に、カルシウムイオンや塩素イオンなどの塩類や有機物などの汚濁物質を高濃度で含んでいる。このような有機性廃水は、生化学的酸素要求量(以下BOD)や化学的酸素要求量(以下COD)が高く、多くの懸濁固体(以下SS)も含んでいる。そのため、該有機性廃水をそのまま再利用したり、河川などに直接放流したりすることはできない。   Organic wastewater such as human waste and leachate from landfills generally contain high concentrations of pollutants such as salts and organic substances such as calcium ions and chlorine ions. Such organic wastewater has a high biochemical oxygen demand (hereinafter referred to as BOD) and chemical oxygen demand (hereinafter referred to as COD), and also contains many suspended solids (hereinafter referred to as SS). Therefore, the organic wastewater cannot be reused as it is or discharged directly into a river or the like.

このような有機性廃水の処理方法として、例えばBOD除去を目的とした生物処理や、色度、COD及びSSなどの除去を目的とした凝集沈殿処理、SSなど濁質の除去を目的とした砂ろ過、精密ろ過(「MF」と称する)膜処理などが知られている。しかし、これらの処理は、有機性廃水中の有機性成分を除去することはできても、カルシウムイオンや塩素イオンなどの塩類を効果的に除去することはできなかった。   Such organic wastewater treatment methods include, for example, biological treatment for the purpose of removing BOD, coagulation sedimentation treatment for the purpose of removing chromaticity, COD and SS, and sand for the purpose of removing turbidity such as SS. Filtration, microfiltration (referred to as “MF”) membrane treatment, and the like are known. However, these treatments could remove organic components in the organic wastewater, but could not effectively remove salts such as calcium ions and chlorine ions.

そこで、従来、塩類を含む有機性廃水の処理方法として、塩類を含有する有機性廃水に軟化処理を行ってその中のカルシウム濃度を低下させた後、生物処理、凝集沈殿処理、砂ろ過処理、MF膜処理からなる群から選ばれる1以上の処理または2以上の組み合わせからなる処理を行い、次いで逆浸透膜(以下「RO膜」と称する)を用いたRO膜処理により脱塩処理して、RO濃縮水とRO処理水とに分離し、RO処理水を回収するとともにその一方、前記RO濃縮水を引き続いて電気透析(以下「ED」と称する)処理を施してED濃縮水とED処理水とに分離し、そのED処理水は、RO膜処理の供給側に戻す一方、ED濃縮水は、蒸発乾燥処理することによって水分と塩類とに分離し、塩類を単離するという、有機性廃水の処理方法が提案されている(特許文献1)。   Therefore, conventionally, as a method for treating organic wastewater containing salts, after performing softening treatment on organic wastewater containing salts to reduce the calcium concentration therein, biological treatment, coagulation sedimentation treatment, sand filtration treatment, One or more treatments selected from the group consisting of MF membrane treatment or a treatment consisting of a combination of two or more are performed, and then desalted by RO membrane treatment using a reverse osmosis membrane (hereinafter referred to as “RO membrane”), Separated into RO concentrated water and RO treated water, the RO treated water is recovered and, on the other hand, the RO concentrated water is subsequently subjected to electrodialysis (hereinafter referred to as “ED”) treatment, and then ED concentrated water and ED treated water. The ED treated water is returned to the supply side of the RO membrane treatment, while the ED concentrated water is separated into water and salts by evaporating and drying, and the organic waste water is isolated. The processing method of Is (Patent Document 1).

特許3800449号公報Japanese Patent No. 3800449

前述した特許文献1で提案されている処理方法は、ED処理で得られる濃縮水を、蒸発乾燥処理することによって水分と塩類とに分離し、塩類を単離する方法であった。しかし、当該蒸発乾燥処理では、塩類濃度の高いED濃縮水を蒸発乾燥して固形物の塩類にするために莫大な蒸発熱が必要であり、これがランニングコスト増大の主因となっていた。しかも、回収された固形物の塩類が単一成分でないため、得られた乾燥塩類の利用先が限られ、現実的には回収された固形物を長期保管するか、再度最終処分場に埋め立て処分するかしかないという問題も抱えていた。   The treatment method proposed in Patent Document 1 described above is a method of separating concentrated water obtained by ED treatment into water and salts by evaporating and drying to isolate the salts. However, in the evaporative drying treatment, enormous heat of evaporation is required to evaporate and dry the ED concentrated water having a high salt concentration into a solid salt, which has been a main cause of an increase in running cost. Moreover, since the collected solid salts are not a single component, the use of the obtained dry salts is limited, and in reality, the collected solids are stored for a long period of time or landfilled again at the final disposal site. I also had the problem of having to do it.

そこで、ED処理で得られる上記濃縮水を、電解処理によって次亜塩素酸溶液を作製しようと試みたところ、カルシウム及びマグネシウム由来のスケール析出が電解処理装置内に生じ、これが安定した電解処理が阻害するという新たな課題が明らかになった。また、ED処理で得られる上記濃縮水をそのまま電解処理して次亜塩素酸溶液を作製したのでは、有効塩素濃度を安定させることができないため、次亜塩素酸溶液を工業的に製造することが難しいことも明らかになってきた。   Therefore, when an attempt was made to produce a hypochlorous acid solution by electrolytic treatment of the concentrated water obtained by ED treatment, scale deposition derived from calcium and magnesium occurred in the electrolytic treatment apparatus, which inhibited stable electrolytic treatment. A new challenge has been revealed. Moreover, since the concentrated chlorine obtained by ED treatment is subjected to electrolytic treatment as it is to produce a hypochlorous acid solution, the effective chlorine concentration cannot be stabilized. It has become clear that this is difficult.

本発明は、塩類濃度が高い有機性廃水の処理方法において、ED処理やRO処理などの塩類除去処理を行って得られる濃縮処理水を電解処理によって次亜塩素酸溶液を作製する際、カルシウム及びマグネシウム由来のスケールの析出を抑制して安定した電解処理を行うことができるようにすることを第1の目的とし、その電解処理で得られる次亜塩素酸溶液の有効塩素濃度を安定させることを第2の目的とするものである。   In the method for treating organic wastewater having a high salt concentration, the present invention provides a calcium hypochlorite solution by electrolytic treatment of concentrated treated water obtained by performing salt removal treatment such as ED treatment or RO treatment. The primary purpose is to suppress the precipitation of magnesium-derived scale and to perform stable electrolytic treatment, and to stabilize the effective chlorine concentration of the hypochlorous acid solution obtained by the electrolytic treatment. This is the second purpose.

かかる課題解決のため、本発明は、塩類及び有機物を含有する有機性廃水に対して、軟化処理を行ってカルシウム濃度を低減させる第1軟化処理工程と、生物処理、凝集沈殿処理、活性炭吸着処理、砂ろ過処理、MF膜処理からなる群から選ばれる1以上の処理または2以上の組み合わせからなるSS除去処理工程とを備えると共に、
前記第1軟化処理工程及びSS除去処理工程を実施した後に、
ED処理によりED濃縮水とED処理水とに分離するED処理工程と、RO膜処理によりRO濃縮水とRO膜処理水とに分離するRO膜処理工程と、ナノろ過(以下「NF」と称する)膜処理によりNF膜濃縮水とNF膜処理水とに分離するNF膜処理工程のうちの何れかの工程或いは2種類以上の工程を含む塩類除去処理工程を備え、
前記塩類除去工程で得られた塩類濃縮水、すなわちED濃縮水、RO濃縮水又はNF膜濃縮水に対して、軟化処理を行ってカルシウム濃度を低減させる第2軟化処理工程を実施し、次いで、第2軟化処理工程で得られた第2軟化処理水を電気分解して次亜塩素酸ナトリウム溶液を生成する電解処理工程を実施することを特徴とする有機性廃水の処理方法を提案する。
In order to solve this problem, the present invention provides a first softening treatment step for reducing the calcium concentration by performing softening treatment on organic wastewater containing salts and organic matter, biological treatment, coagulation sedimentation treatment, activated carbon adsorption treatment. An SS removal treatment step consisting of one or more treatments selected from the group consisting of sand filtration treatment and MF membrane treatment or a combination of two or more,
After performing the first softening treatment step and the SS removal treatment step,
An ED treatment step that separates into ED concentrated water and ED treated water by ED treatment, an RO membrane treatment step that separates into RO concentrated water and RO membrane treated water by RO membrane treatment, and nanofiltration (hereinafter referred to as “NF”) ) A salt removal treatment step including any step or two or more types of NF membrane treatment steps separated into NF membrane concentrated water and NF membrane treated water by membrane treatment;
The salt concentration water obtained in the salt removal step, that is, the ED concentration water, the RO concentration water, or the NF membrane concentrated water is subjected to a second softening treatment step of performing a softening treatment to reduce the calcium concentration, Proposed is a method for treating organic wastewater, characterized by carrying out an electrolytic treatment step of electrolyzing the second softening treatment water obtained in the second softening treatment step to produce a sodium hypochlorite solution.

本発明はまた、前記電解処理工程において、被処理水のpHを10以上に調整して電気分解を行うか、或いは、電気分解後の電解処理水のpHを10以上に調整することを提案する。さらにこの際、電解処理工程で得られた電気分解後の電解処理水のpHを10以上に維持する貯蔵工程を実施することについてもさらに提案する。   The present invention also proposes that in the electrolytic treatment step, electrolysis is performed by adjusting the pH of the water to be treated to 10 or higher, or the pH of the electrolytically treated water after the electrolysis is adjusted to 10 or higher. . Further, at this time, it is further proposed to carry out a storage step of maintaining the pH of the electrolyzed water after electrolysis obtained in the electrolysis step at 10 or more.

本発明が提案する有機性廃水の処理方法によれば、塩類を含有する有機性廃水に対して、第1軟化処理工程でカルシウム濃度を下げると共に、SS除去処理工程で有機物やSSを除去することによって有機物の低減を図った後(これら軟化処理とSS除去処理をまとめて「前処理工程」という)、塩類除去工程を実施するため、SSや有機物の影響でRO膜処理の水回収率が低下したり、ED処理水中へ有機物成分が漏洩したりするのを防止することができる。よって、この方法によれば、塩類を高い濃度で含む有機性廃水を効率的に淡水化して、塩類除去処理水として回収することができ、再利用したり、河川などに直接放流したりすることができる。   According to the organic wastewater treatment method proposed by the present invention, with respect to organic wastewater containing salts, the calcium concentration is lowered in the first softening treatment step, and organic substances and SS are removed in the SS removal treatment step. After reducing the organic matter by the above (the softening treatment and SS removal treatment are collectively referred to as the “pretreatment step”), and the salt removal step is performed, the water recovery rate of the RO membrane treatment decreases due to the influence of SS and organic matter. And leakage of organic components into the ED treated water can be prevented. Therefore, according to this method, organic wastewater containing a high concentration of salts can be efficiently desalinated and recovered as salt removal treated water, which can be reused or directly discharged into rivers, etc. Can do.

第1軟化処理工程で、河川などに放流するのに十分な程度にカルシウムやマグネシウムの濃度を下げたとしても、塩類除去工程で濃縮されて塩類濃縮水のカルシウムやマグネシウムの濃度は再び高くなるため、電解処理装置においてカルシウム及びマグネシウム由来のスケール析出が生じ、これが安定した電解処理を妨げる原因となっていることが分かってきた。そこで、塩類除去工程で得られた塩類濃縮水に対して第2軟化処理を行ってカルシウム等を低減させたところ、電解処理装置においてカルシウム及びマグネシウム由来のスケール析出を抑制することができ、安定した電解処理を実施することができるようになった。   Even if the concentration of calcium or magnesium is lowered to a level sufficient for release into rivers or the like in the first softening treatment step, the concentration of calcium or magnesium in the salt-enriched water is increased again after being concentrated in the salt removal step. It has been found that scale deposition derived from calcium and magnesium occurs in the electrolytic treatment apparatus, which is a cause of hindering stable electrolytic treatment. Therefore, when the second softening treatment was performed on the salt concentrated water obtained in the salt removal step to reduce calcium and the like, it was possible to suppress the precipitation of calcium and magnesium-derived scale in the electrolytic treatment apparatus, and it was stable. Electrolytic treatment can be carried out.

さらに、電気分解によって次亜塩素酸溶液を作製する際、第2軟化処理を行って得た被処理水(第2軟化処理水)のpHを10以上に調整して電気分解を行うか、或いは、電気分解後の電解処理水のpHを10以上に調整したところ、有効塩素濃度を安定化させることができ、次亜塩素酸溶液を工業的に安定して作製できるようになった。
また、このようにpH調整を行った場合には、得られた電解処理水を貯蔵する際に、pHを10以上に維持するように貯蔵することにより、貯蔵時も次亜塩素酸の有効塩素濃度を安定化させることができるようになった。
Furthermore, when preparing a hypochlorous acid solution by electrolysis, the pH of the water to be treated (second softened water) obtained by performing the second softening treatment is adjusted to 10 or higher, or electrolysis is performed, or When the pH of the electrolyzed water after electrolysis was adjusted to 10 or more, the effective chlorine concentration could be stabilized, and a hypochlorous acid solution could be produced industrially stably.
In addition, when the pH is adjusted in this way, when the obtained electrolytically treated water is stored, it is stored so that the pH is maintained at 10 or more, so that effective chlorine of hypochlorous acid is also stored during storage. It became possible to stabilize the concentration.

有機性廃水の処理方法の一例及びそれを実施するための有機性廃水処理装置の一例を示した概略図である。It is the schematic which showed an example of the processing method of organic wastewater, and an example of the organic wastewater processing apparatus for implementing it. 有機性廃水の処理方法の一例、特に塩類除去処理工程を詳しく示した一例及びそれを実施するための有機性廃水処理装置の一例を示した概略図である。It is the schematic which showed an example of the processing method of organic wastewater, especially the example which showed the salt removal processing process in detail, and an example of the organic wastewater treatment apparatus for implementing it. 図2に示した有機性廃水の処理方法の変更例及びそれを実施するための有機性廃水処理装置の一例を示した概略図である。It is the schematic which showed the example of the change of the processing method of the organic wastewater shown in FIG. 2, and an example of the organic wastewater treatment apparatus for implementing it. 図2とは異なる塩類除去処理工程の一例及びそれを実施するための有機性廃水処理装置の一例を示した概略図である。It is the schematic which showed an example of the salt removal processing process different from FIG. 2, and an example of the organic waste water treatment apparatus for implementing it. 図4に示した有機性廃水の処理方法の変更例及びそれを実施するための有機性廃水処理装置の一例を示した概略図である。It is the schematic which showed the example of the change of the processing method of the organic wastewater shown in FIG. 4, and an example of the organic wastewater treatment apparatus for implementing it. 電解処理装置の一例を示した概略図である。It is the schematic which showed an example of the electrolytic processing apparatus. 電解処理装置の他の一例を示した概略図である。It is the schematic which showed another example of the electrolytic processing apparatus. 生成した電解処理水の貯蔵工程の一例を示した概略図である。It is the schematic which showed an example of the storage process of the produced | generated electrolytic treatment water. 実施例1と参照例1における電解処理水有効塩素濃度の変化を示したグラフである。6 is a graph showing changes in effective chlorine concentration of electrolytically treated water in Example 1 and Reference Example 1. 実施例1と比較例1における電解処理での電流効率の経過を示したグラフである。3 is a graph showing the progress of current efficiency in electrolytic treatment in Example 1 and Comparative Example 1. 実施例3における電解処理水有効塩素濃度の変化を示したグラフである。6 is a graph showing changes in effective chlorine concentration of electrolytically treated water in Example 3.

次に、本発明の実施の形態について説明する。但し、本発明が、次に説明する実施の形態に限定されるものではない。   Next, an embodiment of the present invention will be described. However, the present invention is not limited to the embodiment described below.

[有機性廃水処理装置1]
図1は、本発明の実施形態の一例としての有機性廃水の処理方法A及びそれを実施するための有機性廃水処理装置1の一例を示した概略図である。但し、有機性廃水の処理方法Aを実施するための装置がこの装置に限定されるものではない。
[Organic wastewater treatment equipment 1]
FIG. 1 is a schematic diagram illustrating an example of an organic wastewater treatment method A as an example of an embodiment of the present invention and an organic wastewater treatment apparatus 1 for implementing the method. However, the apparatus for implementing the organic wastewater treatment method A is not limited to this apparatus.

有機性廃水処理装置1においては、図1に示すように、有機性廃水を供給する被処理水流入管2が第1軟化処理装置3に接続され、第1軟化処理装置3の出口側には第1軟化処理水供給管4を介してSS除去処理装置5が接続され、SS除去処理装置5の出口側にはSS除去処理水供給管6を介して塩類除去処理装置7が接続され、塩類除去処理装置7の出口側には塩類濃縮水供給管8と塩類除去処理水排出管9が接続され、前記塩類濃縮水供給管8は第2軟化処理装置11に接続され、第2軟化処理装置11の出口側には第2軟化処理水供給管12を介して電解処理装置13が接続され、電解処理装置13の出口側には次亜塩素酸ナトリウム溶液供給管14を介して次亜塩素酸ナトリウム溶液貯留槽15が接続されている。   In the organic wastewater treatment apparatus 1, as shown in FIG. 1, a to-be-treated water inflow pipe 2 for supplying organic wastewater is connected to a first softening treatment apparatus 3. 1 SS removal treatment device 5 is connected via the softened treated water supply pipe 4, and a salt removal treatment device 7 is connected to the outlet side of the SS removal treatment device 5 via the SS removal treatment water supply pipe 6 to remove the salt. A salt concentrated water supply pipe 8 and a salt removal treated water discharge pipe 9 are connected to the outlet side of the processing apparatus 7. The salt concentrated water supply pipe 8 is connected to a second softening processing apparatus 11, and the second softening processing apparatus 11. An electrolytic treatment apparatus 13 is connected to the outlet side of the electrolytic treatment apparatus via a second softened treated water supply pipe 12, and sodium hypochlorite is connected to the outlet side of the electrolytic treatment apparatus 13 via a sodium hypochlorite solution supply pipe 14. A solution storage tank 15 is connected.

SS除去処理装置5は、生物処理装置、凝集沈殿処理装置、活性炭吸着処理、砂ろ過処理装置、MF膜処理装置からなる群から選ばれる1以上の装置または2以上の装置を組み合せて構成されていればよい。
例えば生物処理装置の出口側に凝集精密ろ過装置を接続することにより、生物処理水に無機凝集剤等を添加して凝集物を生成させた水をMF膜によりろ過することができる。
The SS removal treatment device 5 is configured by combining one or more devices selected from the group consisting of biological treatment devices, coagulation sedimentation treatment devices, activated carbon adsorption treatments, sand filtration treatment devices, and MF membrane treatment devices, or two or more devices. Just do it.
For example, by connecting an agglomeration microfiltration device to the outlet side of the biological treatment device, water in which an inorganic flocculant or the like is added to the biological treatment water to form an aggregate can be filtered through the MF membrane.

塩類除去処理装置7は、ED処理装置、RO膜処理装置、NF膜処理装置のうちの何れかの装置或いはこれらのうちの2種類以上の装置を組み合わせて構成されていればよい。 塩類除去処理装置7の構成例としては、例えば図2に示すように、SS除去処理装置5の出口側にSS除去処理水供給管6を介してRO膜処理装置16が接続され、RO膜処理装置16の出口側にはRO濃縮水供給管17とRO膜処理水排出管18が接続され、RO濃縮水供給管17はED処理装置19に接続され、ED装置19の出口側にはED処理水供給管20とED濃縮水供給管21とが接続され、ED濃縮水供給管21は、第2軟化処理装置11に接続されてなる構成例を挙げることができる。
この際、例えば図3に示すように、ED処理水供給管20を、被処理水流入管2、軟化処理水供給管4又はSS除去処理水供給管6に接続し、ED処理水を、被処理水流入管2、軟化処理水供給管4又はSS除去処理水供給管6に戻すように構成することもできる。
The salt removal processing device 7 may be configured by any one of an ED processing device, an RO membrane processing device, and an NF membrane processing device, or a combination of two or more of these devices. As an example of the configuration of the salt removal treatment device 7, for example, as shown in FIG. 2, an RO membrane treatment device 16 is connected to the outlet side of the SS removal treatment device 5 via an SS removal treatment water supply pipe 6, and the RO membrane treatment is performed. The RO concentrated water supply pipe 17 and the RO membrane treated water discharge pipe 18 are connected to the outlet side of the apparatus 16, the RO concentrated water supply pipe 17 is connected to the ED processing apparatus 19, and the ED processing is connected to the outlet side of the ED apparatus 19. A configuration example in which the water supply pipe 20 and the ED concentrated water supply pipe 21 are connected and the ED concentrated water supply pipe 21 is connected to the second softening treatment device 11 can be given.
At this time, for example, as shown in FIG. 3, the ED treated water supply pipe 20 is connected to the treated water inflow pipe 2, the softened treated water supply pipe 4 or the SS removal treated water supply pipe 6, and the ED treated water is treated. It can also be configured to return to the water inflow pipe 2, the softened treated water supply pipe 4 or the SS removal treated water supply pipe 6.

また、塩類除去処理装置7の他の構成例として、例えば図4に示すように、SS除去処理装置5の出口側にSS除去処理水供給管6を介してED装置19が接続され、ED装置19の出口側にはED処理水供給管20とED濃縮水供給管21とが接続され、ED濃縮水供給管21は第2軟化処理装置11に接続され、ED処理水供給管20はRO膜処理装置16に接続され、RO膜処理装置16の出口側にはRO濃縮水供給管17とRO膜処理水排出管18が接続されてなる構成例を挙げることができる。
この際、例えば図5に示すように、RO濃縮水供給管17を、被処理水流入管2、軟化処理水供給管4又はSS除去処理水供給管6に接続し、RO濃縮水を被処理水流入管2、軟化処理水供給管4又はSS除去処理水供給管6に戻すように構成することもできる。
As another configuration example of the salt removal treatment device 7, for example, as shown in FIG. 4, an ED device 19 is connected to the outlet side of the SS removal treatment device 5 via the SS removal treated water supply pipe 6, and the ED device. 19, an ED treated water supply pipe 20 and an ED concentrated water supply pipe 21 are connected to each other, the ED concentrated water supply pipe 21 is connected to the second softening treatment apparatus 11, and the ED treated water supply pipe 20 is an RO membrane. A configuration example in which the RO concentrated water supply pipe 17 and the RO membrane treated water discharge pipe 18 are connected to the processing apparatus 16 and the outlet side of the RO membrane processing apparatus 16 can be given.
At this time, for example, as shown in FIG. 5, the RO concentrated water supply pipe 17 is connected to the treated water inflow pipe 2, the softened treated water supply pipe 4, or the SS removal treated water supply pipe 6. It can also be configured to return to the inlet pipe 2, the softened treated water supply pipe 4 or the SS removed treated water supply pipe 6.

さらにまた、上記RO膜装置16の代わりに、NF膜処理装置を設置することもできる。   Furthermore, instead of the RO membrane device 16, an NF membrane treatment device can be installed.

なお、上記の各装置間は各種処理水供給管によって接続されていてもよいし、適宜箇所にタンクを設けて、そこにいったん処理液を貯蔵し、そこから各装置に供給するようにしてもよい。その他の処理装置を適宜設けることも可能である。   Each of the above devices may be connected by various treated water supply pipes, or a tank may be provided at an appropriate location to temporarily store the treatment liquid and supply it from there to each device. Good. Other processing apparatuses can be provided as appropriate.

[本処理方法A]
有機性廃水処理装置1を使用して、有機性廃水の処理方法Aを実施することができる。
[This processing method A]
The organic wastewater treatment apparatus 1 can be used to implement the organic wastewater treatment method A.

有機性廃水の処理方法A(「本処理方法A」と称する)は、図1に示すように、塩類及び有機物を含有する有機性廃水に対して第1軟化処理を行ってカルシウム濃度を低減させた後(第1軟化処理工程)、生物処理、凝集沈殿処理、活性炭吸着処理、砂ろ過処理、MF膜処理からなる群から選ばれる1以上の処理または2以上の組み合わせからなるSS除去処理を行い(SS除去処理工程)、次いで、塩類除去処理を行って塩類濃度を低下させて塩類除去処理水を得ると共に、塩類が濃縮された塩類濃縮水を得(塩類除去処理工程)、前記塩類除去処理水を回収する一方、前記塩類濃縮水に対しては第2軟化処理を行ってカルシウム濃度及びマグネシウム濃度を低減させた後(第2軟化処理工程)、第2軟化処理して得られた処理水(「第2軟化処理水」とも称する)を電解処理装置に供給して電気分解を行い、次亜塩素酸ナトリウム溶液を生成する(電解処理工程)という一連の処理方法を実施することにより、前記の塩類除去処理水と前記次亜塩素酸ナトリウム溶液を回収する方法である。   As shown in FIG. 1, organic wastewater treatment method A (referred to as “this treatment method A”) reduces the calcium concentration by performing a first softening treatment on organic wastewater containing salts and organic matter. (1st softening treatment process), SS removal treatment consisting of one or more treatments selected from the group consisting of biological treatment, coagulation sedimentation treatment, activated carbon adsorption treatment, sand filtration treatment, MF membrane treatment, or a combination of two or more is performed. (SS removal treatment step) Next, the salt removal treatment is performed to reduce the salt concentration to obtain the salt removal treatment water, and the salt concentration water in which the salt is concentrated is obtained (salt removal treatment step), and the salt removal treatment While recovering water, the salt-enriched water is subjected to a second softening treatment to reduce calcium concentration and magnesium concentration (second softening treatment step), and then treated water obtained by the second softening treatment. ("Second The salt removal treatment described above is carried out by carrying out a series of treatment methods in which an electrolysis is performed by supplying a water treatment solution (also referred to as “chemical treatment water”) to electrolyze and a sodium hypochlorite solution is produced (electrolysis treatment step). In this method, water and the sodium hypochlorite solution are recovered.

<被処理水>
本処理方法Aの被処理水としては、塩類及び有機物を含み、再利用や河川などへの放流ができない有機性廃水であればよい。例えば、海水や、し尿や、ゴミの埋め立て地の浸出水などの塩類濃度が高い有機性廃水を挙げることができる。これらは一般に、カルシウムイオンや塩素イオンなどの塩類や有機物などの汚濁物質を高濃度に含んでいる。
本処理方法Aの効果をより一層享受できる観点から、被処理水の塩素イオン濃度は2000〜20000mg/Lであるのが好ましく、中でも5000mg/L以下、その中でも4000mg/L以下であるのがさらに好ましい。
また、被処理水の蒸発残留物成分濃度(以下「TDS」と称する)としては4000〜40000mg/Lであるのが好ましい。
<Treatment water>
The treated water of this treatment method A may be any organic wastewater that contains salts and organic matter and cannot be reused or discharged into rivers. For example, organic wastewater with a high salt concentration such as seawater, human waste, and leachate from landfills of garbage can be mentioned. These generally contain high concentrations of pollutants such as salts such as calcium ions and chlorine ions and organic substances.
From the viewpoint of further enjoying the effect of the present treatment method A, the chlorine ion concentration of the water to be treated is preferably 2000 to 20000 mg / L, more preferably 5000 mg / L or less, and most preferably 4000 mg / L or less. preferable.
Further, the evaporation residue component concentration (hereinafter referred to as “TDS”) of the water to be treated is preferably 4000 to 40000 mg / L.

<第1軟化処理工程>
第1軟化処理は、例えば石灰ソーダ軟化法などのアルカリ凝沈や、イオン交換硬水軟化法、キレート剤吸着法などの方法によって、水中のカルシウムやマグネシウムの硬水成分(難溶塩形成成分)を低減し、軟化処理水を得る処理工程である。
<First softening process>
The first softening treatment reduces the hard water component (slightly soluble salt forming component) of calcium and magnesium in water by alkali precipitation such as lime soda softening method, ion exchange hard water softening method, chelating agent adsorption method, etc. And a process for obtaining softened water.

上記石灰ソーダ軟化法は、消石灰(水酸化カルシウム)或いは、消石灰とソーダ灰(炭酸ナトリウム)を併用して、カルシウムを炭酸カルシウムとして沈殿させてカルシウム濃度を低減させることにより硬度を除去する方法である。
上記イオン交換法は、イオン交換樹脂で硬度成分を除去する方法である。
The lime soda softening method is a method of removing hardness by reducing calcium concentration by precipitating calcium as calcium carbonate using slaked lime (calcium hydroxide) or slaked lime and soda ash (sodium carbonate) together. .
The ion exchange method is a method of removing hardness components with an ion exchange resin.

上記キレート剤吸着法は、キレート剤にカルシウムやマグネシウムの硬水成分(難溶塩形成成分)を吸着させる方法である。
キレート剤としては、例えばエチレンジアミン四酢酸塩(以下「EDTA」という)、ジエチレントリアミン五酢酸、イミノ二酢酸などのアミノカルボン酸系キレート剤のほか、ヒドロキシエチルエチレンジアミン三酢酸、ジヒドロキシエチルエチレンジアミン二酢酸)、1,3-プロパンジアミン四酢酸から選ばれた1種又は2種以上のものを挙げることができる。中でも、イミノジ酢酸などの2価金属イオンを選択的に吸着除去できるキレート剤を使用するのが好ましい。
The chelating agent adsorption method is a method of adsorbing calcium or magnesium hard water components (hardly soluble salt forming components) to the chelating agent.
Examples of the chelating agent include ethylenediaminetetraacetic acid salt (hereinafter referred to as “EDTA”), aminocarboxylic acid-based chelating agents such as diethylenetriaminepentaacetic acid and iminodiacetic acid, hydroxyethylethylenediaminetriacetic acid, dihydroxyethylethylenediaminediacetic acid), 1 , 3-propanediaminetetraacetic acid, or one or more of them selected from the group. Among them, it is preferable to use a chelating agent that can selectively adsorb and remove divalent metal ions such as iminodiacetic acid.

第1軟化処理工程では、回収する処理水、すなわち軟化処理水を、CaやMgの硬度成分によるスケール発生を抑制できる程度にCa量やMg量を下げることができればよい。その意味では、過度にCa量やMg量を下げることになると、処理効率が下がり経済的にも好ましくない。かかる観点から、上記処理の中でも石灰ソーダ軟化法を採用するのが好ましい。   In the first softening treatment step, it is only necessary to reduce the amount of Ca and Mg in the recovered treated water, that is, the softened treated water, to such an extent that scale generation due to hardness components of Ca and Mg can be suppressed. In that sense, if the amount of Ca or Mg is excessively reduced, the processing efficiency is lowered, which is not preferable economically. From this viewpoint, it is preferable to employ the lime soda softening method among the above treatments.

また、第1軟化処理では、上記のような観点から、軟化処理水中のT−Ca濃度が100mg/L以下、特に50mg/L以下になるように処理することが好ましい。但し、CaやMgの硬度成分によるスケール発生を抑制できる程度に下げることができればよいから、T−Ca濃度を10mg/L未満まで下げる必要はない。   Moreover, in a 1st softening process, it is preferable to process so that T-Ca density | concentration in softening process water may be 100 mg / L or less, especially 50 mg / L or less from the above viewpoints. However, there is no need to reduce the T-Ca concentration to less than 10 mg / L because it is sufficient that the scale generation due to the hardness components of Ca and Mg can be suppressed.

ここで、「T−Ca濃度」とは、水中の全カルシウム濃度であって、イオンだけでなく、溶解して未解離のカルシウム塩も含むものである。このT−Ca濃度が100mg/L以下になると、RO膜処理工程やED処理工程でカルシウムスケールが発生することを効果的に防止することができるため好ましい。   Here, the “T-Ca concentration” is the total calcium concentration in water and includes not only ions but also dissolved and undissociated calcium salts. It is preferable that the T-Ca concentration is 100 mg / L or less because calcium scales can be effectively prevented from being generated in the RO membrane treatment process or the ED treatment process.

<SS除去処理工程>
SS除去処理工程は、生物処理、凝集沈殿処理、活性炭吸着処理、砂ろ過処理、MF膜処理などにより、有機汚濁物などのSSを、前記工程で得られた軟化処理水から除去する処理工程である。
SS除去処理液中のSSは5mg/L以下とするのが好ましく、中でも1mg/L以下とするのがさらに好ましい。
<SS removal treatment process>
The SS removal treatment step is a treatment step for removing SS such as organic pollutants from the softened water obtained in the step by biological treatment, coagulation sedimentation treatment, activated carbon adsorption treatment, sand filtration treatment, MF membrane treatment, etc. is there.
SS in the SS removal treatment solution is preferably 5 mg / L or less, and more preferably 1 mg / L or less.

生物処理としては、具体的には標準的な活性汚泥法の他に、生物学的硝化脱窒素法なども挙げることができ、これらの方法を利用することにより、有機物の分解や窒素除去をすることができ、SS及びBODを低下させることができる。   Specific examples of biological treatment include biological activated nitrification and denitrification in addition to the standard activated sludge method. By using these methods, organic substances are decomposed and nitrogen is removed. And SS and BOD can be reduced.

凝集沈殿処理とは、水中の微細な浮遊物質やコロイド状物質を、凝集剤によりフロック(凝集体)を形成させ、必要に応じて高分子凝集剤などで更にフロックを大きくして固液分離したり、或いは、イオン化した重金属をキレート剤等の凝集剤により化学反応させて沈降分離除去したりする処理方法である。凝集沈殿処理によって、SSや、重金属イオン成分などを除去することができる。またCODも下げることができる。
凝集沈殿処理に先だって生物処理を行うことにより、凝集剤の添加量も少なく、処理効率を上がることができる。
The coagulation-precipitation process is a process that forms fine flocculent substances and colloidal substances in water with flocculants to form flocs (aggregates), and if necessary, further increases the flocs with a polymer flocculant and solid-liquid separation. Alternatively, it is a treatment method in which ionized heavy metals are chemically reacted with a flocculant such as a chelating agent to precipitate and remove. SS, heavy metal ion components, and the like can be removed by the coagulation precipitation treatment. COD can also be lowered.
By performing biological treatment prior to the coagulation sedimentation treatment, the amount of coagulant added is small, and the treatment efficiency can be increased.

活性炭吸着処理とは、瀝青炭やヤシ殻などから製造された活性炭に水中の有機物を吸着させる処理である。活性炭の吸着力は有機物の種類によって異なり、溶解性有機物質、COD、色度、界面活性剤、臭気成分などを除去することができる。
例えば粒状炭の吸着塔、再生炉として用いることができる。
生物化学的処理の後の高度処理や二次処理水の再生利用を行う目的から、塩素消毒の前処理として活性炭吸着処理を利用することもできる。
The activated carbon adsorption treatment is a treatment for adsorbing organic substances in water to activated carbon produced from bituminous coal or coconut shell. The adsorptive power of activated carbon varies depending on the type of organic substance, and it can remove soluble organic substances, COD, chromaticity, surfactants, odor components, and the like.
For example, it can be used as an adsorption tower or regeneration furnace for granular coal.
For the purpose of performing advanced treatment after biochemical treatment and recycling of secondary treated water, activated carbon adsorption treatment can also be used as pretreatment for chlorine disinfection.

砂ろ過処理とは、砂利を積んだ支持砂利層の上に、各種砂の層を積層してなる砂ろ過池に、被処理水を通過させて不純物を除去するろ過方法であり、SSや、鉄やマンガンなどを除去することができる。
凝集沈殿処理を砂ろ過処理のSS除去処理として行うことは特に有効である。
Sand filtration is a filtration method that removes impurities by passing water to be treated through a sand filtration pond formed by laminating various layers of sand on a support gravel layer loaded with gravel, such as SS, Iron and manganese can be removed.
It is particularly effective to perform the coagulation sedimentation treatment as the SS removal treatment of the sand filtration treatment.

凝集精密膜ろ過(以下「凝集MF膜ろ過」と称する)は、MF膜を利用した処理方法であり、好ましくは、生物処理と組み合わせて、生物処理による処理水に無機凝集剤を添加して凝集させたものを、MF膜でろ過するのがよい。このような方法を利用すると、特にSSを廃水中から除去することができる。   Agglomeration precision membrane filtration (hereinafter referred to as “aggregation MF membrane filtration”) is a treatment method using an MF membrane, and preferably in combination with biological treatment, an inorganic flocculant is added to the treated water by biological treatment. It is good to filter what was made to pass with a MF membrane. When such a method is used, particularly SS can be removed from wastewater.

<塩類除去処理工程>
塩類除去処理工程は、ED処理によりED濃縮水とED処理水とに分離するED処理工程と、RO膜処理によりRO濃縮水とRO膜処理水とに分離するRO膜処理工程と、NF膜処理によりNF膜濃縮水とNF膜処理水とに分離するNF膜処理工程のうちの何れかの工程或いはこれらのうちの2種類以上の工程を組み合わせた工程を経て、塩類濃度が低い塩類除去処理水と塩類が濃縮された塩類濃縮水を得るようにすればよい。
<Salt removal treatment process>
The salt removal treatment step includes an ED treatment step for separating ED concentrated water and ED treated water by ED treatment, an RO membrane treatment step for separating RO concentrated water and RO membrane treated water by RO membrane treatment, and an NF membrane treatment. The salt-removed treated water having a low salt concentration through any of the NF membrane treatment steps that are separated into NF membrane concentrated water and NF membrane treated water or a combination of two or more of these steps. And a salt-enriched water in which the salt is concentrated.

例えば図2に示すように、SS除去処理を行った後、RO膜処理により脱塩処理して、RO濃縮水とRO膜処理水とに分離し(逆浸透膜処理工程)、RO膜処理水を回収する一方、RO濃縮水にED処理を施して脱塩処理して、ED濃縮水とED処理水とに分離し(電気透析処理工程)、該ED処理水を回収し、前記ED濃縮水を第2軟化処理工程に供給するようにすればよい。
この際、図3に示すように、ED処理水を第1軟化工程、SS除去処理工程又はRO膜処理工程の供給側に戻すようにしてもよい。
For example, as shown in FIG. 2, after SS removal treatment, desalination treatment is performed by RO membrane treatment to separate RO concentrated water and RO membrane treated water (reverse osmosis membrane treatment step), and RO membrane treated water. On the other hand, the RO concentrated water is subjected to ED treatment and desalted, and separated into ED concentrated water and ED treated water (electrodialysis treatment step), and the ED treated water is recovered and the ED concentrated water is recovered. May be supplied to the second softening treatment step.
At this time, as shown in FIG. 3, the ED treated water may be returned to the supply side of the first softening step, the SS removal treatment step, or the RO membrane treatment step.

また、例えば図4に示すように、SS除去処理を行った後、ED処理を施して脱塩処理してED濃縮水とED処理水とに分離し(ED処理工程)、前記ED濃縮水を第2軟化処理工程に供給する一方、ED処理水をRO膜処理に供して脱塩処理してRO濃縮水とRO膜処理水とに分離し(RO膜処理工程)、RO膜処理水及びRO濃縮水を回収するようにすればよい。
この際、図5に示すように、RO濃縮水を、第1軟化工程、SS除去処理工程又はRO膜処理工程の供給側に戻すようにしてもよい。
For example, as shown in FIG. 4, after performing SS removal treatment, ED treatment is performed, desalting treatment is performed to separate ED concentrated water and ED treated water (ED treatment step), and the ED concentrated water is While supplying to the second softening treatment step, the ED treatment water is subjected to RO membrane treatment and desalted to separate into RO concentrated water and RO membrane treated water (RO membrane treatment step), RO membrane treated water and RO What is necessary is just to collect concentrated water.
At this time, as shown in FIG. 5, the RO concentrated water may be returned to the supply side of the first softening step, the SS removal treatment step, or the RO membrane treatment step.

なお、ED処理工程及びRO膜処理工程の順序は問わないが、図2及び図3に示すように、被処理水に対し、RO膜処理を先に行なう場合には、被処理水の塩類濃度が高いと、浸透圧が上昇してRO膜での操作圧力が高くなってしまう。通常、RO膜の操作圧力が6MPaであるため、被処理水の塩類濃度が高いと透過水量が低下して水回収率の低下を招き、処理水量の安定確保が困難となる。また、SS除去処理水とED処理水の混合水がRO膜処理の被処理水となる場合は、被処理水の有機物濃度が高いと、RO膜供給液に有機物が蓄積することになり、RO膜に及ぼす有機物の汚染が増大し、透過速度低下の要因となる可能性がある。このような理由から、RO膜処理を先に行う場合は、被処理水の有機物濃度および塩類濃度が比較的低い場合、具体的には塩素イオン濃度が2000〜20000mg/L以下、特に5000mg/L以下、中でも4000mg/L以下の有機性廃水を被処理水とするのがより一層効果的である。TDSで言えば、4000〜40000mg/L以下、特に10000mg/L以下、中でも8000mg/L以下の有機性廃水を被処理水とするのがより効果的である。RO膜処理によれば、有機物及び塩類をより効果的に除去することができ、より水質の高い最終処理液を得ることができる。   Although the order of the ED treatment process and the RO membrane treatment process does not matter, as shown in FIGS. 2 and 3, when the RO membrane treatment is performed on the treated water first, the salt concentration of the treated water If it is high, the osmotic pressure increases and the operating pressure on the RO membrane increases. Usually, since the operating pressure of the RO membrane is 6 MPa, if the salt concentration of the water to be treated is high, the amount of permeated water is lowered, leading to a reduction in the water recovery rate, making it difficult to ensure the stability of the treated water amount. In addition, when the mixed water of SS removal treated water and ED treated water is treated water for RO membrane treatment, if the concentration of organic matter in treated water is high, organic matter accumulates in the RO membrane supply liquid, and RO Organic matter contamination on the membrane increases, which may cause a reduction in permeation rate. For these reasons, when the RO membrane treatment is performed first, when the organic matter concentration and the salt concentration of the water to be treated are relatively low, specifically, the chlorine ion concentration is 2000 to 20000 mg / L or less, particularly 5000 mg / L. In the following, it is even more effective to use organic wastewater of 4000 mg / L or less as treated water. In terms of TDS, it is more effective to use organic waste water of 4000 to 40,000 mg / L or less, particularly 10,000 mg / L or less, especially 8000 mg / L or less as the water to be treated. According to the RO membrane treatment, organic substances and salts can be more effectively removed, and a final treatment liquid with higher water quality can be obtained.

逆に、図4及び図5に示すように、被処理水に対し、先にED処理を行なう場合には、RO膜処理の被処理水はED処理水のみであるから、RO膜処理の被処理水の塩類濃度も低いから、RO膜処理での水回収率を高めることができる。このような点は、有機性廃水の塩類濃度及び塩素イオン濃度が高い場合ほど、効果の差異が顕著である。
この際、RO膜濃縮水をED処理の供給側に戻すようにすることにより、ED濃縮水における塩素イオン濃度を高めることができ、電解処理による次亜塩素酸ナトリウム溶液の生成量を高めることができる。
このような理由から、先にED処理による透過を行なう場合は、被処理水の有機物濃度および塩類濃度が比較的高い場合、具体的には、塩素イオン濃度が5000mg/L以上、特に10000mg/L以上、中でも20000mg/L以上の有機性廃水を被処理水とするのがより一層効果的であり、TDSで言えば、10000mg/L以上、特に20000mg/L以上、中でも40000mg/L以上の有機性廃水を被処理水とするのがより効果的である。
On the other hand, as shown in FIGS. 4 and 5, when the ED treatment is first performed on the water to be treated, the water to be treated for the RO membrane treatment is only the ED treated water. Since the salt concentration of treated water is also low, the water recovery rate in RO membrane treatment can be increased. In such a point, the difference in the effect becomes more remarkable as the salt concentration and the chlorine ion concentration of the organic wastewater are higher.
At this time, by returning the RO membrane concentrated water to the supply side of the ED treatment, the chlorine ion concentration in the ED concentrated water can be increased, and the amount of sodium hypochlorite solution produced by the electrolytic treatment can be increased. it can.
For this reason, when permeation is first performed by ED treatment, when the organic matter concentration and the salt concentration of the water to be treated are relatively high, specifically, the chlorine ion concentration is 5000 mg / L or more, particularly 10,000 mg / L. Above all, it is even more effective to use organic wastewater of 20000 mg / L or more as treated water. In terms of TDS, organic wastewater is 10,000 mg / L or more, especially 20000 mg / L or more, especially 40000 mg / L or more. It is more effective to use wastewater as treated water.

なお、上記RO膜処理の代わりに、NF膜処理を行っても同様の効果を得ることができる。   Note that the same effect can be obtained by performing NF membrane treatment instead of the RO membrane treatment.

(RO膜処理)
RO膜処理は、RO膜で仕切られた室中の塩類水に浸透圧以上の機械的圧力を加えてRO膜を通すことにより、RO濃縮水とRO膜処理水とに分離する方法である。
(RO membrane treatment)
The RO membrane treatment is a method of separating the RO concentrated water and the RO membrane treated water by applying a mechanical pressure equal to or higher than the osmotic pressure to the salt water in the chamber partitioned by the RO membrane and passing the RO membrane.

RO膜処理の効率は、塩類濃度が低い場合に良くなることが知られている。そこで、 次工程のED処理によって脱塩された処理水を、図3に示すように、被処理水流入管2、軟化処理水供給管4又はSS除去処理水供給管6に戻して、RO膜処理の被処理水とすれば、戻さない場合と比べて、RO膜処理装置16に供給される被処理水の塩類濃度が低減するため、RO膜処理を通常の廃水より塩類濃度の低い状態で行うことができ、その分、塩類濃度が非常に低いRO膜処理水を効率よく回収できる。しかも、高い濃度のRO濃縮水を縮小した容積で回収できることになり、次工程の電気透析処理では、このような縮小した容積のRO濃縮水を対象として行わせることができ、ED処理の量的負担を少なくすることができる。   It is known that the efficiency of RO membrane treatment is improved when the salt concentration is low. Therefore, the treated water desalted by the ED treatment in the next step is returned to the treated water inflow pipe 2, the softened treated water supply pipe 4 or the SS removed treated water supply pipe 6 as shown in FIG. If the water to be treated is reduced, the salt concentration of the water to be treated supplied to the RO membrane treatment device 16 is reduced compared to the case where the water is not returned. Therefore, the RO membrane treatment is performed in a state where the salt concentration is lower than that of normal waste water. Accordingly, the RO membrane treated water having a very low salt concentration can be efficiently recovered. In addition, high-concentration RO concentrated water can be collected in a reduced volume, and the electrodialysis treatment in the next step can be performed on such a reduced volume of RO concentrated water, which is a quantitative measure of ED treatment. The burden can be reduced.

RO膜処理の脱塩率は80%以上であるのが好ましく、中でも85%以上、その中でも特に98%以上であるのがさらに好ましい。また、RO濃縮水のTDSは15000mg/L以上であるのが好ましく、中でも25000mg/L以上であるのがさらに好ましい。
ここで、「TDS」とは、その水の水分を蒸発させれば固形成分として蒸発缶中に残留する成分をいう。
The desalting rate in the RO membrane treatment is preferably 80% or more, more preferably 85% or more, and particularly preferably 98% or more. The TDS of RO concentrated water is preferably 15000 mg / L or more, and more preferably 25000 mg / L or more.
Here, “TDS” refers to a component that remains in the evaporator as a solid component when the water content of the water is evaporated.

(ED処理)
ED処理では、多数のED膜を配列し、交互に形成した濃縮室と希釈室にRO濃縮水を供給して、通電して濃縮室に高濃度のED濃縮水を得、希釈室に低濃度のED処理水を得る方法である。
(ED processing)
In ED processing, a large number of ED membranes are arranged, RO concentrated water is supplied to the alternately formed concentration chamber and dilution chamber, energized to obtain high concentration ED concentrated water in the concentration chamber, and low concentration in the dilution chamber. This is a method for obtaining ED treated water.

ED処理の脱塩率は80%以上であるのが好ましく、中でも95%以上であるのがさらに好ましい。
また、ED処理水のTDSは6000mg/L以下であるのが好ましく、中でも5000mg/L以下であるのがさらに好ましい。
また、ED処理後のED濃縮水におけるTDSは100,000mg/L以上であるのが好ましく、塩素イオン濃度は50,000mg/L以上であるのが好ましい。
The desalting rate in ED treatment is preferably 80% or more, and more preferably 95% or more.
The TDS of ED treated water is preferably 6000 mg / L or less, and more preferably 5000 mg / L or less.
The TDS in the ED concentrated water after the ED treatment is preferably 100,000 mg / L or more, and the chlorine ion concentration is preferably 50,000 mg / L or more.

ED処理では、SS除去処理の処理水中に残存するCaやMg由来のスケール発生を抑制するために、pHを7以下、特に5以下の酸性側とするのが好ましい。   In the ED treatment, in order to suppress the generation of scale derived from Ca and Mg remaining in the treated water of the SS removal treatment, the pH is preferably 7 or less, particularly 5 or less.

ED処理によって脱塩した処理水を、図3に示すように、被処理水流入管2、軟化処理水供給管4又はSS除去処理水供給管6に戻すようにすれば、RO膜処理装置16に供給される被処理水の塩類濃度が低減するため、RO膜処理の処理効率を高めることができると共に、高い濃度のRO濃縮水を縮小した容積で回収できることになり、ED処理では、このような縮小した容積のRO濃縮水を対象として行わせることができ、ED処理の量的負担を少なくすることができる。
中でも、ED処理によって脱塩された処理水を軟化処理水供給管4に戻すことにより、SS除去処理、特に生物処理を行って残留有機物を分解することができ、有機物の低減をより一層図ることができる。ED処理後の処理水は塩類濃度が大きく低減される。しかし、非イオン性である有機物がED処理では除去できず、処理水に残留したままである。これらを前処理工程に返送することで分解除去される。
If the treated water desalted by the ED treatment is returned to the treated water inflow pipe 2, the softened treated water supply pipe 4 or the SS removed treated water supply pipe 6, as shown in FIG. Since the salt concentration of the treated water to be supplied is reduced, it is possible to improve the processing efficiency of the RO membrane treatment and to collect the high concentration RO concentrated water in a reduced volume. A reduced volume of RO concentrated water can be used as a target, and the quantitative burden of ED processing can be reduced.
In particular, by returning the treated water desalted by the ED treatment to the softened treated water supply pipe 4, it is possible to decompose the residual organic matter by performing SS removal treatment, particularly biological treatment, and further reduce the organic matter. Can do. The treated water after ED treatment is greatly reduced in salt concentration. However, organic substances that are nonionic cannot be removed by the ED treatment and remain in the treated water. These are disassembled and removed by returning them to the pretreatment step.

(NF膜処理)
なお、RO膜処理の代わりに、NF膜処理を行うことも可能である。装置としては、RO膜処理装置の代わりに、NF膜処理装置を設置することが可能である。
(NF membrane treatment)
In addition, it is also possible to perform NF film | membrane process instead of RO film | membrane process. As an apparatus, an NF membrane treatment apparatus can be installed instead of the RO membrane treatment apparatus.

RO膜処理に使われるRO膜は、孔の大きさが概ね2nm以下であり、水を通すが、イオンや塩類など水以外の不純物は透過しない性質を有している。
これに対し、NF膜処理に使われるナノフィルターは、孔の大きさが概ね1nm〜2nmであり、イオンや塩類などの阻止率が概ね70%以下程度である。但し、その形態や原理、使用法はRO膜と同様である。
The RO membrane used for the RO membrane treatment has a pore size of approximately 2 nm or less and allows water to pass therethrough but does not permeate impurities other than water such as ions and salts.
On the other hand, the nanofilter used for the NF membrane treatment has a pore size of about 1 nm to 2 nm and a blocking rate of ions and salts of about 70% or less. However, the form, principle, and usage are the same as for the RO membrane.

RO膜は、被処理水の塩類濃度が高くなると、膜の厚さを増したり、複数の膜を連続して通させたり、などして高い圧力をかけてろ過する必要がある。これに対し、NF膜は、被処理水の塩類濃度が高くても、そのような負担は少ない。よって、被処理水の塩類濃度がそれ程高くなく、有機物濃度の高い場合には、NF膜処理を行って水回収率を高めるのが好ましい。   When the salt concentration of the water to be treated becomes high, the RO membrane needs to be filtered by applying a high pressure by increasing the thickness of the membrane or continuously passing a plurality of membranes. On the other hand, the NF membrane has a small burden even if the salt concentration of the water to be treated is high. Therefore, when the salt concentration of the water to be treated is not so high and the organic matter concentration is high, it is preferable to perform the NF membrane treatment to increase the water recovery rate.

<第2軟化処理工程>
第2軟化処理工程は、例えば石灰ソーダ軟化法などのアルカリ凝沈や、イオン交換硬水軟化法、キレート剤吸着法などの方法によって、前記工程で得られた塩類濃縮水中のカルシウムやマグネシウムの硬水成分(難溶塩形成成分)を低減して、第2軟化処理水を得る処理工程である。
<Second softening process>
In the second softening treatment step, for example, alkali precipitation such as lime soda softening method, ion exchange hard water softening method, chelating agent adsorption method or the like, calcium or magnesium hard water components in the salt-concentrated water obtained in the above step This is a treatment step in which (softly soluble salt forming component) is reduced to obtain second softened treated water.

上記石灰ソーダ軟化法は、消石灰(水酸化カルシウム)或いは、消石灰とソーダ灰(炭酸ナトリウム)を併用して、カルシウムを炭酸カルシウムとして沈殿させてカルシウム濃度を低減させることにより硬度を除去する方法である。
上記イオン交換法は、イオン交換樹脂で硬度成分を除去する方法である。
The lime soda softening method is a method of removing hardness by reducing calcium concentration by precipitating calcium as calcium carbonate using slaked lime (calcium hydroxide) or slaked lime and soda ash (sodium carbonate) together. .
The ion exchange method is a method of removing hardness components with an ion exchange resin.

上記キレート剤吸着法は、二価以上の金属イオンを選択的に吸着できるキレート剤にカルシウムやマグネシウムの硬水成分(難溶塩形成成分)を吸着させる方法である。
キレート剤としては、例えばエチレンジアミン四酢酸塩(以下「EDTA」という)、ジエチレントリアミン五酢酸、イミノ二酢酸などのアミノカルボン酸系キレート剤のほか、ヒドロキシエチルエチレンジアミン三酢酸、ジヒドロキシエチルエチレンジアミン二酢酸)、1,3-プロパンジアミン四酢酸から選ばれた1種又は2種以上のものを挙げることができる。中でも、イミノジ酢酸などの2価金属イオンを選択的に吸着除去できるキレート剤を使用するのが好ましい。
The chelating agent adsorption method is a method in which a hard water component (a hardly soluble salt forming component) of calcium or magnesium is adsorbed to a chelating agent capable of selectively adsorbing bivalent or higher-valent metal ions.
Examples of the chelating agent include ethylenediaminetetraacetic acid salt (hereinafter referred to as “EDTA”), aminocarboxylic acid-based chelating agents such as diethylenetriaminepentaacetic acid and iminodiacetic acid, hydroxyethylethylenediaminetriacetic acid, dihydroxyethylethylenediaminediacetic acid), 1 , 3-propanediaminetetraacetic acid, or one or more of them selected from the group. Among them, it is preferable to use a chelating agent that can selectively adsorb and remove divalent metal ions such as iminodiacetic acid.

第2軟化処理では、電解処理工程において、カルシウム及びマグネシウム由来のスケールの析出を抑制して安定した電解処理を行うことができるようにするという観点から、第2軟化処理水中のT−Ca濃度が10mg/L未満、T-Mg濃度が5mg/L未満になるように処理することが好ましい。中でも、Ca及びMg濃度をいずれも1mg/L以下にすれば、より安定した電解処理を行うことができる。   In the second softening treatment, the T-Ca concentration in the second softening treatment water is reduced from the viewpoint of enabling stable electrolytic treatment by suppressing the precipitation of calcium and magnesium-derived scale in the electrolytic treatment step. It is preferable to perform the treatment so that the T-Mg concentration is less than 10 mg / L and the T-Mg concentration is less than 5 mg / L. Especially, if both Ca and Mg density | concentration shall be 1 mg / L or less, more stable electrolytic treatment can be performed.

第2軟化処理工程では、第2軟化処理水中のT−Ca及びT−Mg濃度を上記のように効果的に低減させるために、上記処理の中でもキレート剤吸着法を採用するのが好ましい。
ただし、ED濃縮水のCa、Mg濃度が100mg/L以上と高い場合、アルカリ凝沈+ろ過処理による軟化処理が比較的低コストとなるので好ましい。
他方、ED濃縮水Ca及びMg濃度が100mg/L以下と比較的低い場合は、キレート吸着処理がコンパクト化でき、Ca及びMgともに低濃度に除去できることから、好ましい処理法である。
In the second softening treatment step, it is preferable to employ a chelating agent adsorption method among the above treatments in order to effectively reduce the T-Ca and T-Mg concentrations in the second softening treatment water as described above.
However, when the Ca and Mg concentrations of ED concentrated water are as high as 100 mg / L or more, the softening treatment by alkali precipitation + filtration treatment is relatively low cost, which is preferable.
On the other hand, when the ED concentrated water Ca and Mg concentrations are relatively low at 100 mg / L or less, the chelate adsorption treatment can be made compact, and both Ca and Mg can be removed at a low concentration, which is a preferable treatment method.

<電解処理工程>
電解処理工程は、前記工程で得られた第2軟化処理水を電気分解することにより、次亜塩素酸ナトリウム溶液を生成する処理工程である。
<Electrolytic treatment process>
The electrolytic treatment step is a treatment step for producing a sodium hypochlorite solution by electrolyzing the second softened water obtained in the above step.

但し、前記工程で得られた第2軟化処理水をそのままの状態で電解処理によって次亜塩素酸溶液を生成すると、有効塩素濃度が安定化せず、一定濃度の次亜塩素酸溶液を生成できない場合があった。そこで、電解処理の被処理水である第2軟化処理水のpHを10以上に調整して電気分解を行うようにしたところ、有効塩素濃度を安定化させることができ、工業的に次亜塩素酸溶液を生成できるようになった。
よって、次亜塩素酸溶液の有効塩素濃度を安定化させる観点から、電解処理の被処理水(第2軟化処理水)のpHを10以上、中でも10.5以上或いは12.5以下、その中でも11.0以上或いは12.0以下に調整して電気分解を行うのが好ましい。
However, if a hypochlorous acid solution is produced by electrolytic treatment with the second softened water obtained in the above process as it is, the effective chlorine concentration is not stabilized and a hypochlorous acid solution having a constant concentration cannot be produced. There was a case. Therefore, when the electrolysis is carried out by adjusting the pH of the second softened treated water, which is the water to be treated for electrolytic treatment, to 10 or more, the effective chlorine concentration can be stabilized, and hypochlorous acid is industrially produced. An acid solution can be generated.
Therefore, from the viewpoint of stabilizing the effective chlorine concentration of the hypochlorous acid solution, the pH of the water to be treated for electrolytic treatment (second softened water) is 10 or more, particularly 10.5 or more, or 12.5 or less, It is preferable to carry out the electrolysis by adjusting to 11.0 or more or 12.0 or less.

ここで、電解処理の被処理水(第2軟化処理水)のpHを10以上に調整する手段としては、NaOHなどのアルカリ化剤を添加して調整する方法を挙げることができる。
また、電解処理の被処理水(第2軟化処理水)のpHを10以上に調整する手段は、電解処理工程の前工程であればどこに配置してもよい。例えば、被処理水流入管2、第1軟化処理装置3、第1軟化処理水供給管4、SS除去処理装置5、SS除去処理水供給管6、塩類除去処理装置7、塩類濃縮水供給管8、第2軟化処理装置11或いは第2軟化処理水供給管12のいずれにpH調整手段を設けてもよい。また、図6及び図7に示すような電解処理装置のように、電解液(電解処理の被処理水)を供給タンクから電解槽に供給すると共に、電解槽で電解処理した処理液を供給タンクに戻して循環させる構成の電解処理装置においては、循環する系のいずれの位置にpH調整手段を配置しても、循環する処理液を所望のpHに調整することができる。
Here, as a means for adjusting the pH of the water to be treated for electrolytic treatment (second softened water) to 10 or more, a method of adjusting by adding an alkalizing agent such as NaOH can be mentioned.
In addition, the means for adjusting the pH of the water to be treated (second softened water) to 10 or more may be disposed anywhere as long as it is a previous process of the electrolytic treatment process. For example, the treated water inflow pipe 2, the first softening treatment device 3, the first softening treatment water supply tube 4, the SS removal treatment device 5, the SS removal treatment water supply tube 6, the salt removal treatment device 7, and the salt concentrated water supply tube 8 The pH adjusting means may be provided in either the second softening treatment apparatus 11 or the second softening treatment water supply pipe 12. In addition, as in the electrolytic treatment apparatus as shown in FIGS. 6 and 7, the electrolytic solution (water to be treated for electrolytic treatment) is supplied from the supply tank to the electrolytic bath, and the treatment liquid subjected to the electrolytic treatment in the electrolytic bath is supplied to the supply tank. In the electrolytic treatment apparatus configured to be returned to the circulation, the circulating treatment liquid can be adjusted to a desired pH regardless of the position of the pH adjusting unit disposed in the circulating system.

なお、上記のように、電解処理の被処理水(第2軟化処理水)のpHを10以上に調整して電気分解を行う代わりに、電気分解後の電解処理水のpHを10以上、中でも10.5以上或いは12.5以下、その中でも11.0以上或いは12.0以下に調整するようにしても、有効塩素濃度を安定化させることができ、工業的に次亜塩素酸溶液を生成することができる。
ここで、電解処理後の電解処理水のpHを10以上に調整する手段としては、NaOHなどのアルカリ化剤を添加して調整する方法を挙げることができる。
また、電解処理後の電解処理水のpHを10以上に調整する手段は、電解処理工程の後工程であればどこに配置してもよい。例えば、電解槽出口、電解処理水タンクのいずれにpH調整手段を設けてもよい。
In addition, as described above, instead of performing electrolysis by adjusting the pH of the water to be treated (second softened water) to 10 or more, the pH of the electrolyzed water after electrolysis is 10 or more, Even if it is adjusted to 10.5 or more or 12.5 or less, in particular, 11.0 or more or 12.0 or less, the effective chlorine concentration can be stabilized, and a hypochlorous acid solution is produced industrially. can do.
Here, as a means for adjusting the pH of the electrolytically treated water after the electrolytic treatment to 10 or more, a method of adjusting by adding an alkalizing agent such as NaOH can be mentioned.
In addition, the means for adjusting the pH of the electrolytically treated water after electrolytic treatment to 10 or more may be placed anywhere as long as it is a subsequent step of the electrolytic treatment step. For example, the pH adjusting means may be provided at either the electrolytic cell outlet or the electrolytically treated water tank.

また、このように電解処理の被処理水(第2軟化処理水)のpHを10以上に調整して電気分解を行うか、或いは、電気分解後の電解処理水のpHを10以上に調整するかした場合には、電気分解後の電解処理水のpHを10以上に維持するように貯蔵するのが好ましい。このようにすることにより、電解処理水の貯蔵時においても次亜塩素酸の有効塩素濃度を安定化させることができる。   In addition, the pH of the water to be treated for electrolytic treatment (second softened treated water) is adjusted to 10 or higher to conduct electrolysis, or the pH of the electrolyzed water after electrolysis is adjusted to 10 or higher. In such a case, it is preferable to store the electrolytically treated water after electrolysis so that the pH is maintained at 10 or more. By doing in this way, the effective chlorine concentration of hypochlorous acid can be stabilized also at the time of storage of electrolyzed water.

なお、本明細書において「X〜Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
In the present specification, when expressed as “X to Y” (X and Y are arbitrary numbers), “X is preferably greater than X” or “preferably” with the meaning of “X to Y” unless otherwise specified. Also includes the meaning "is smaller than Y".
In addition, when expressed as “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), it is “preferably greater than X” or “preferably less than Y”. Includes intentions.

以下、実施例および比較例によって本発明を更に詳細に説明するが、本発明は下記の実施例によって制限を受けるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not restrict | limited by the following Example.

<実施例1>
本実施例では、廃棄物最終処分場の浸出水を被処理水とした。
図5に示す如く、被処理水を第1軟化処理装置3に導入した。第1軟化処理装置3内では、被処理水に炭酸ナトリウムを添加してpH9.0以上に調整し、アルカリ凝沈処理によりCaを凝集沈殿させてCa濃度を低下させた(第1軟化処理工程)。次に、第1軟化処理後の軟化処理水をSS除去処理装置5に導入して、被処理水中のSSや有機物の除去及び低減を行った。SS除去処理装置5では、生物処理、凝集沈澱処理、砂ろ過、活性炭処理、MF膜ろ過の順に処理を行った(SS除去処理工程)。
SS除去処理装置5から得られたSS除去処理水をED処理装置19に導入し、ED処理水及びED濃縮液を得た(ED処理工程)。塩類の低減されたED処理水は、有機物濃度がやや高いため、RO処理装置16に導入して再度脱塩処理を行い、RO処理水とRO濃縮水を得た(RO処理工程)。RO処理水は、有機物濃度及び塩類濃度ともに十分に低減された。そのため、そのまま系外に排出し、再利用等に供することができる。他方、RO濃縮液は、第1軟化処理水供給管に返送し、SS除去処理工程から繰り返すようにした。
<Example 1>
In this example, the leachate at the waste final disposal site was treated water.
As shown in FIG. 5, the water to be treated was introduced into the first softening treatment device 3. In the 1st softening processing apparatus 3, sodium carbonate was added to to-be-processed water, and it adjusted to pH 9.0 or more, Ca was coagulated and settled by the alkali coagulation process, and Ca density | concentration was reduced (1st softening process process). ). Next, the softened water after the first softening treatment was introduced into the SS removal treatment apparatus 5 to remove and reduce SS and organic substances in the water to be treated. In SS removal processing apparatus 5, it processed in order of biological treatment, coagulation sedimentation processing, sand filtration, activated carbon treatment, and MF membrane filtration (SS removal treatment process).
SS removal treated water obtained from the SS removal treatment apparatus 5 was introduced into the ED treatment apparatus 19 to obtain ED treatment water and ED concentrated liquid (ED treatment step). Since the ED treated water with reduced salt has a slightly high organic substance concentration, it was introduced into the RO treatment device 16 and subjected to desalination again to obtain RO treated water and RO concentrated water (RO treatment step). In the RO treated water, both the organic substance concentration and the salt concentration were sufficiently reduced. Therefore, it can be discharged out of the system as it is and reused. On the other hand, the RO concentrate was returned to the first softened water supply pipe and was repeated from the SS removal process.

上記のED濃縮液は、第2軟化処理装置11に導入し、該第2軟化処理装置11内において、イミノジ酢酸を充填したキレート剤吸着塔内に当該ED濃縮液を流通させ、液中のCa及びMgを除去した(第2軟化処理工程)。   The ED concentrated liquid is introduced into the second softening treatment apparatus 11, and the ED concentrated liquid is circulated in the chelating agent adsorption tower filled with iminodiacetic acid in the second softening processing apparatus 11, and the Ca in the liquid is circulated. And Mg were removed (second softening treatment step).

第2軟化処理後の第2軟化処理水は、電解処理装置13に導入して電解処理を行い、次亜塩素酸溶液となる電解処理水を得た。
電解処理装置13は、図6に示すように、電解槽及び供給液タンクを処理液が循環するように構成されたものを使用した。具体的には、第2軟化処理水である電解原水を供給液タンクに供給して一旦貯留し、供給タンク内の混合液を被処理液として電解槽に供給して電解処理を行い、電解処理した処理液を循環液として供給液タンクに返送し、供給液タンク内で撹拌及び均一化を行ない、供給タンク内混合液の一部を電解処理水として供給液タンクから連続的に排出するようになっている。
また、供給液タンクには、pH計と、pH調整剤投入手段、すなわちpH計で計測されたpHに応じて所定量のNaOHを投入する装置が設置されており、pHが常に10.0以上、好ましくは11.0〜12.0になるようにNaOHが自動的に注入されるようになっている。
The second softened water after the second softening treatment was introduced into the electrolytic treatment apparatus 13 and subjected to an electrolytic treatment to obtain electrolytic treated water that became a hypochlorous acid solution.
As shown in FIG. 6, the electrolytic treatment apparatus 13 used was configured such that the treatment liquid circulated through the electrolytic cell and the supply liquid tank. Specifically, the raw electrolytic water that is the second softened water is supplied to the supply liquid tank and temporarily stored, and the mixed liquid in the supply tank is supplied to the electrolytic bath as the liquid to be processed to perform the electrolytic treatment. The treated liquid is returned to the supply liquid tank as a circulating liquid, stirred and homogenized in the supply liquid tank, and a part of the mixed liquid in the supply tank is continuously discharged from the supply liquid tank as electrolytic treatment water. It has become.
Further, the supply liquid tank is provided with a pH meter and a pH adjusting agent charging means, that is, a device for charging a predetermined amount of NaOH according to the pH measured by the pH meter, and the pH is always 10.0 or more. Preferably, NaOH is automatically injected so as to be 11.0 to 12.0.

上記実施例1における被処理水、第1軟化処理水(「軟化処理水」)、ED濃縮水、第2軟化処理水、電解処理水及びRO処理水の分析値を表1に示す。
なお、次亜塩素酸溶液の有効塩素濃度は,ヨウ素滴定法で測定した(下記同様)。
また、カルシウムスケール析出状況は、分析及び装置の処理性能より判断した。
Table 1 shows analysis values of the water to be treated, the first softened water (“softened water”), the ED concentrated water, the second softened water, the electrolytic water, and the RO water in Example 1.
The effective chlorine concentration of the hypochlorous acid solution was measured by the iodometric titration method (the same as below).
Moreover, the calcium scale precipitation situation was judged from the analysis and the processing performance of the apparatus.

Figure 2014014738
Figure 2014014738

(結果及び考察)
表1に示す如く、被処理水は、色度が300度、CODが250mg/L、Ca濃度が1200mg/L、Clイオン濃度が8300mg/L、TDSが15000mg/Lであった。
第1軟化処理後の軟化処理水は、T−Caが20mg/Lに低下し、Caが大きく低減できた。また、濁度が50度、CODが200mg/Lとなり、被処理水より若干低下した。その他は被処理水と同じであった。
ED処理後のED濃縮水は、色度が2度、CODが2.0mg/L、蒸発残留物が165000mg/Lであり、ED処理によって約10倍以上濃縮できた。
濃縮後のED濃縮水には、T−Caが120mg/L、T−Mgが12mg/L残留していたため、キレート吸着塔を流通させる第2軟化処理により、処理水のT−Ca及びT−Mgをそれぞれ、1.5mg/L、0.5mg/Lに低下させた。なお、Cl濃度及びTDSがそれぞれ、81000mg/Lと165000mg/Lであり、ED濃縮水と同じであった。
(Results and discussion)
As shown in Table 1, the water to be treated had a chromaticity of 300 degrees, a COD of 250 mg / L, a Ca concentration of 1200 mg / L, a Cl ion concentration of 8300 mg / L, and a TDS of 15000 mg / L.
In the softened water after the first softening treatment, T-Ca was reduced to 20 mg / L, and Ca could be greatly reduced. Moreover, turbidity became 50 degree | times and COD became 200 mg / L, and it fell a little from to-be-processed water. Others were the same as the treated water.
The ED concentrated water after the ED treatment had a chromaticity of 2 degrees, a COD of 2.0 mg / L, and an evaporation residue of 165000 mg / L, and was able to be concentrated about 10 times or more by the ED treatment.
In the concentrated ED concentrated water, 120 mg / L of T-Ca and 12 mg / L of T-Mg remained. Therefore, by the second softening treatment in which the chelate adsorption tower is circulated, T-Ca and T- Mg was reduced to 1.5 mg / L and 0.5 mg / L, respectively. In addition, Cl density | concentration and TDS were 81000 mg / L and 165000 mg / L, respectively, and were the same as ED concentrated water.

第2軟化処理水を電解処理した結果、電解処理水で有効塩素濃度2500mg/Lの次亜塩素溶液が得られた。
電解処理では、pHが11.0と高いが、CaとMgがほぼ除去されたことから、スケール生成がほぼ無く、安定した処理性能が得られた。
一方、RO処理水でClイオン濃度が120mg/L、TDSが250mg/L、色度1度以下、CODが1mg/L以下と良好な水質が得られた。
これより、電解装置の供給液タンクにおいて、pHを10.0以上、好ましくは11.0以上に制御すれば、電解処理より安定した有効塩素濃度の電解処理水が得られることが分かった。
また、pHの高い電解処理では、供給液中Ca、Mg残留がスケール生成要因となるため、これらの除去が必要となる。そこで、第2軟化処理が有効であることが確認された。
As a result of electrolytically treating the second softened water, a hypochlorous acid solution having an effective chlorine concentration of 2500 mg / L was obtained with the electrolytically treated water.
In the electrolytic treatment, the pH was as high as 11.0, but Ca and Mg were almost removed, so there was almost no scale formation and stable treatment performance was obtained.
On the other hand, in the RO-treated water, a good water quality was obtained with a Cl ion concentration of 120 mg / L, TDS of 250 mg / L, chromaticity of 1 degree or less, and COD of 1 mg / L or less.
From this, it was found that, in the supply liquid tank of the electrolysis apparatus, when the pH is controlled to 10.0 or higher, preferably 11.0 or higher, electrolyzed water having an effective chlorine concentration that is more stable than the electrolyzing can be obtained.
In addition, in the electrolytic treatment with a high pH, the Ca and Mg residues in the supply liquid become a scale generation factor, and therefore, these must be removed. Therefore, it was confirmed that the second softening treatment is effective.

第2軟化処理では、ED濃縮水のCa、Mg濃度が100mg/L以上と高い場合、アルカリ凝沈+ろ過処理による軟化処理が比較的低コストとなるので好ましいことが分かった。他方、ED濃縮水Ca,Mg濃度が100mg/L以下と比較的低い場合、キレート吸着処理がコンパクト化でき、Ca及びMgとも低濃度に除去できることが分かった。
第2軟化処理水のCa濃度が10mg/L以下、Mg濃度が5mg/L以下となれば、電解処理装置においてスケール発生を抑制することができ、さらにCa及びMg濃度をいずれも1mg/L以下にすれば、より安定した電解処理を行うことができることが分かった。
In the second softening treatment, when the Ca and Mg concentrations of the ED concentrated water are as high as 100 mg / L or more, it has been found preferable because the softening treatment by alkali precipitation + filtration treatment is relatively low cost. On the other hand, it was found that when the ED concentrated water Ca, Mg concentration is relatively low at 100 mg / L or less, the chelate adsorption treatment can be made compact, and both Ca and Mg can be removed at a low concentration.
If the Ca concentration of the second softened water is 10 mg / L or less and the Mg concentration is 5 mg / L or less, scale generation can be suppressed in the electrolytic treatment apparatus, and both the Ca and Mg concentrations are 1 mg / L or less. As a result, it was found that more stable electrolytic treatment can be performed.

<実施例2>
本実施例では、廃棄物埋立地の浸出水を被処理水とした。
図3に示す如く、被処理水である浸出水を第1軟化処理装置3に導入した。第1軟化処理装置3内では、被処理水に炭酸ナトリウムを添加してpH9.0以上に調整し、アルカリ凝集沈殿によりCa濃度を低下させた(第1軟化処理工程)。次に、第1軟化処理後の軟化処理水をSS除去処理装置5に導入して、被処理水中のSSや有機物の除去及び低減を行った。SS除去処理装置5では、生物処理、凝集沈澱処理、砂ろ過、活性炭処理、MF膜ろ過の順に処理を行った(SS除去処理工程)。
SS除去処理装置5から得られたSS除去処理水をRO処理装置16に導入して脱塩処理を行い、RO処理水とRO濃縮水を得た(RO処理工程)。有機物、塩類とも大きく低減されたRO処理水は、最終処理水として系外に排出した。一方、塩類が濃縮されたRO濃縮水は、ED処理装置19に供給され、ED処理されてED濃縮液及びED処理水を得た(ED処理工程)。ED処理水は、塩類が低下されたものの、有機物濃度が高いため、RO処理装置1に返送し、RO処理によって有機物を除去するようにした。
<Example 2>
In this example, the leachate from the waste landfill was treated water.
As shown in FIG. 3, leachate as the water to be treated was introduced into the first softening treatment device 3. In the 1st softening processing apparatus 3, sodium carbonate was added to to-be-processed water, and it adjusted to pH9.0 or more, and Ca density | concentration was reduced by alkali coagulation precipitation (1st softening processing process). Next, the softened water after the first softening treatment was introduced into the SS removal treatment apparatus 5 to remove and reduce SS and organic substances in the water to be treated. In SS removal processing apparatus 5, it processed in order of biological treatment, coagulation sedimentation processing, sand filtration, activated carbon treatment, and MF membrane filtration (SS removal treatment process).
The SS removal treated water obtained from the SS removal treatment device 5 was introduced into the RO treatment device 16 to perform desalting treatment, and RO treated water and RO concentrated water were obtained (RO treatment step). RO treated water, in which both organic substances and salts were greatly reduced, was discharged out of the system as final treated water. On the other hand, the RO concentrated water in which the salts were concentrated was supplied to the ED processing device 19 and subjected to ED processing to obtain an ED concentrated liquid and ED processed water (ED processing step). Although the ED treated water was reduced in salt, the organic matter concentration was high, so it was returned to the RO treatment device 1 to remove the organic matter by the RO treatment.

一方、ED濃縮液は、第2軟化処理装置11に導入し、該第2軟化処理装置11内において、イミノジ酢酸を充填したキレート剤吸着塔内に当該ED濃縮液を流通させ、液中のCa及びMgを除去した(第2軟化処理工程)。
第2軟化処理後の第2軟化処理水は、実施例1と同様の電解処理装置13(図2参照)に導入して電解処理を行い、次亜塩素酸溶液となる電解処理水を得た。
On the other hand, the ED concentrated liquid is introduced into the second softening treatment apparatus 11, and the ED concentrated liquid is circulated in the chelating agent adsorption tower filled with iminodiacetic acid in the second softening processing apparatus 11, and the Ca in the liquid is circulated. And Mg were removed (second softening treatment step).
The second softened water after the second softening treatment was introduced into the same electrolytic treatment apparatus 13 as in Example 1 (see FIG. 2) and subjected to an electrolytic treatment to obtain electrolytic treated water that became a hypochlorous acid solution. .

上記実施例2における被処理水、第1軟化処理水(「軟化処理水」)、ED濃縮水、第2軟化処理水、電解処理水及びRO処理水の分析値を表2に示す。
なお、次亜塩素酸溶液の有効塩素濃度は,ヨウ素滴定法で測定した(下記同様)。
また、カルシウムスケール析出状況は、分析及び装置の処理性能より判断した。
Table 2 shows analysis values of water to be treated, first softened water ("softened water"), ED concentrated water, second softened water, electrolytically treated water, and RO treated water in Example 2 above.
The effective chlorine concentration of the hypochlorous acid solution was measured by the iodometric titration method (the same as below).
Moreover, the calcium scale precipitation situation was judged from the analysis and the processing performance of the apparatus.

Figure 2014014738
Figure 2014014738

表2に示す如く、被処理水は、色度が250度、CODが250mg/L、Ca濃度が1200mg/L、Clイオン濃度が5800mg/L、TDSが10000mg/Lであった。それが、第1軟化処理後の軟化処理水となるとT−Caが20mg/Lに低下した。Caが低減された第1軟化処理水は、SS除去処理工程を経てRO処理にて、RO処理水のClイオン濃度は120mg/L、TDS250mg/L、色度1度以下、COD1mg/L以下となり、良好な水質となった。
一方、RO濃縮水を用いてED処理を行なった結果、ED濃縮水では色度が2度、CODが2.0mg/L、蒸発残留物が165000mg/Lとなり、被処理水に対して約16倍濃縮できた。しかし、濃縮後のED濃縮水はT−Caが120mg/L、T−Mg12mg/L残留していた。そこで、キレート吸着塔による第2軟化処理を行い、処理水のT−Ca及びT−Mgをそれぞれ1.5mg/L、0,5mg/Lに低下させることができた。なお、Cl濃度及びTDSはそれぞれ81000mg/L、165000mg/Lであり、ED濃縮水と同じであった。
第2軟化処理水をさらに電解処理した結果、電解処理水で有効塩素濃度2500mg/Lの次亜塩素溶液が得られた。この電解処理ではpHが11と高いが、CaとMgがほぼ除去されたことから、スケール生成はほぼ無く、安定した処理性能が得られた。
As shown in Table 2, the water to be treated had a chromaticity of 250 degrees, a COD of 250 mg / L, a Ca concentration of 1200 mg / L, a Cl ion concentration of 5800 mg / L, and a TDS of 10,000 mg / L. When it became the softened water after the first softening treatment, T-Ca was reduced to 20 mg / L. The first softened water with reduced Ca is subjected to the RO treatment after the SS removal treatment process, and the Cl ion concentration of the RO treated water is 120 mg / L, TDS 250 mg / L, chromaticity is 1 degree or less, and COD is 1 mg / L or less. The water quality was good.
On the other hand, as a result of performing ED treatment using RO concentrated water, ED concentrated water has a chromaticity of 2 degrees, COD of 2.0 mg / L, and evaporation residue of 165000 mg / L, which is about 16 times that of water to be treated. Double concentration was possible. However, the ED concentrated water after concentration remained T-Ca 120 mg / L and T-Mg 12 mg / L. Then, the 2nd softening process by a chelate adsorption tower was performed, and T-Ca and T-Mg of the treated water could be reduced to 1.5 mg / L and 0.5 mg / L, respectively. In addition, Cl density | concentration and TDS were 81000 mg / L and 165000 mg / L, respectively, and were the same as ED concentrated water.
As a result of further electrolytic treatment of the second softened water, a hypochlorous acid solution having an effective chlorine concentration of 2500 mg / L was obtained with the electrolytically treated water. In this electrolytic treatment, the pH was as high as 11, but Ca and Mg were almost removed, so there was almost no scale formation, and stable treatment performance was obtained.

<参照例1:電解pH10未満>
実施例1と同様の被処理水に対し、実施例1と同様な処理フローで処理を行なった。実施例1と異なるのは電解処理装置供給タンクの設定pHである。実施例1ではpH11.0以上となるように設定したのに対し、参照例1ではpH9.5に設定した。
<Reference Example 1: Electrolysis pH less than 10>
The water to be treated similar to that in Example 1 was treated with the same processing flow as in Example 1. The difference from Example 1 is the set pH of the electrolytic treatment apparatus supply tank. In Example 1, the pH was set to 11.0 or higher, while in Reference Example 1, the pH was set to 9.5.

図9は、実施例1及び参照例1の電解処理に伴う生成電解処理水の有効塩素濃度経過を示したグラフである。
この結果、実施例1では、連続処理200時間において電解処理水の有効塩素濃度が2600mg/Lとほぼ一定であった。これに対し、電解処理pH9.5とした参照例1では、電解処理水の有効塩素濃度が処理時間の経過とともに大きく低下し、安定した処理性能が得られなかった。
FIG. 9 is a graph showing the effective chlorine concentration course of the produced electrolytically treated water accompanying the electrolytic treatment of Example 1 and Reference Example 1.
As a result, in Example 1, the effective chlorine concentration of the electrolytically treated water was almost constant at 2600 mg / L in 200 hours of continuous treatment. On the other hand, in Reference Example 1 in which the electrolytic treatment pH was 9.5, the effective chlorine concentration of the electrolytic treatment water greatly decreased with the passage of treatment time, and stable treatment performance was not obtained.

<比較例1:第2軟化処理無>
実施例1と同様な被処理水を用い、第2軟化処理を行なわなかった以外の処理条件は実施例1と同一とした。
<Comparative Example 1: No second softening treatment>
The treatment conditions were the same as in Example 1 except that the same water to be treated as in Example 1 was used and the second softening treatment was not performed.

(結果)
図10は、実施例1及び比較例1において電解処理に伴う電流効率の経過を示したグラフである。
ここで、電流効率とは、電解処理で使用した電気量の内、実際に生成目的物質である次亜塩素酸の生成に寄与した電気量の比率である。
(result)
FIG. 10 is a graph showing the progress of current efficiency associated with electrolytic treatment in Example 1 and Comparative Example 1.
Here, the current efficiency is the ratio of the amount of electricity that has actually contributed to the production of hypochlorous acid, which is the production target substance, in the amount of electricity used in the electrolytic treatment.

実施例1では、約1ヶ月の連続処理期間において、電流効率がほぼ65%となり、安定した処理性能が得られた。これに対し、比較例1では、同様に約1ヶ月の処理において、電流効率が処理開始の約65%から徐々に低下し、処理経過30日後には22%と大きく低下した。
比較例1では、経過30日後に電解装置を分解したところ、陽極の電極表面にCa主体のスケールが大量に生成していることが確認された。電流効率の低下は、電極表面のスケール生成に起因するものと判断された。
In Example 1, the current efficiency was approximately 65% in a continuous processing period of about one month, and stable processing performance was obtained. On the other hand, in Comparative Example 1, the current efficiency gradually decreased from about 65% of the start of the process in the process of about one month, and greatly decreased to 22% after 30 days of the process.
In Comparative Example 1, when the electrolysis apparatus was disassembled after 30 days, it was confirmed that a large amount of Ca-based scale was generated on the electrode surface of the anode. The decrease in current efficiency was judged to be caused by the generation of scale on the electrode surface.

(結果及び考察)
実施例に示す如く、カルシウムを含有する被処理水に対し、予め第1軟化処理を行うことによってカルシウム濃度を低減することができる。
次に、このようにしてカルシウム濃度を低減した軟化処理水に対し、生物処理、凝集沈澱処理、砂ろ過、活性炭処理、MF膜ろ過などのSS除去処理を行うことにより、SS除去及び有機物低減が可能である。
次に、SS除去処理で得られた処理水に対し、RO及びEDの単独または組み合わせからなる処理を行うことで良好な脱塩処理を行うことができる。
さらにこのような脱塩処理から発生する濃縮液に対して、第2軟化処理を行ってカルシウム及びマグネシウムを所定濃度以下に低減すれば、この濃縮液を電解処理装置に供給して電解処理することにより、電解処理装置においてカルシウム及びマグネシウム由来のスケール析出が抑制でき、安定した電解処理が可能である。さらに、電解処理のpHを10以上とすれば、電解処理水において次亜塩素酸ナトリウムの有効塩素濃度が安定するため、生成した電解処理水が次亜塩素酸溶液として下水処理水等の消毒処理に利用することができる。これにより、従来の蒸発乾燥処理を用いた脱塩濃縮液処理と比べて、塩類の有効利用が容易となるばかりか、ランニングコストをより一層大幅に低減することができる。
(Results and discussion)
As shown in the Examples, the calcium concentration can be reduced by previously performing the first softening treatment on the water to be treated containing calcium.
Next, SS removal and organic matter reduction can be achieved by performing SS removal treatment such as biological treatment, coagulation sedimentation treatment, sand filtration, activated carbon treatment, and MF membrane filtration on the softened treated water thus reduced in calcium concentration. Is possible.
Next, a good desalination treatment can be performed by performing a treatment consisting of RO and ED alone or in combination on the treated water obtained by the SS removal treatment.
Furthermore, if the second softening treatment is performed on the concentrated solution generated from the desalting treatment to reduce calcium and magnesium to a predetermined concentration or less, the concentrated solution is supplied to the electrolytic treatment apparatus and subjected to the electrolytic treatment. Thus, scale deposition derived from calcium and magnesium can be suppressed in the electrolytic treatment apparatus, and stable electrolytic treatment is possible. Furthermore, if the pH of the electrolytic treatment is 10 or more, the effective chlorine concentration of sodium hypochlorite is stabilized in the electrolytically treated water, so that the produced electrolytically treated water is used as a hypochlorous acid solution to disinfect sewage treated water or the like. Can be used. This not only facilitates effective use of salts, but also significantly reduces running costs, as compared with conventional desalted and concentrated liquid treatment using evaporative drying treatment.

<実施例3>
実施例3は、図5に示す実施例1と同じ処理フローで行った。なお、電解処理装置13は、図7に示すように、電解槽への電解原水供給は実施例1と異なり、ワンパスで行うよう構成されたものを使用した。具体的には、第2軟化処理水である電解原水を電解槽に直接そのまま供給して電解処理を行い、電解処理した電解処理水を電解処理水タンクに送液するようになっている。
また、電解処理水タンクにはpH計を、電解槽出配管にはpH調整用薬剤投入手段、すなわちpH計で計測されたpHに応じて所定量のNaOHを投入する装置が設置されており、pHが常に10.0以上好ましくは11.0〜12.0になるようにNaOHが自動的に注入されるようになっている。さらに、電解処理水タンク内の液を均一し、pHの応答性を良くするために電解処理水タンクの液は電解処理水タンク内で循環し、あるいは、電解処理水タンク内を攪拌することが好ましい。
<Example 3>
Example 3 was performed with the same processing flow as Example 1 shown in FIG. In addition, as shown in FIG. 7, the electrolytic processing apparatus 13 used what was comprised so that the electrolytic raw water supply to an electrolytic cell might be performed by one pass unlike Example 1. FIG. Specifically, the electrolytic raw water, which is the second softened treated water, is directly supplied to the electrolytic bath as it is to perform electrolytic treatment, and the electrolytically treated electrolytic treated water is fed to the electrolytic treated water tank.
In addition, a pH meter is installed in the electrolytically treated water tank, and a device for charging a predetermined amount of NaOH according to the pH measured by the pH meter is installed in the electrolytic cell outlet pipe, that is, a pH measured by the pH meter. NaOH is automatically injected so that the pH is always 10.0 or more, preferably 11.0 to 12.0. Furthermore, in order to make the liquid in the electrolytic treatment water tank uniform and improve the responsiveness of pH, the liquid in the electrolytic treatment water tank may be circulated in the electrolytic treatment water tank or stirred in the electrolytic treatment water tank. preferable.

(結果と考察)
第2軟化処理水を電解処理した結果、電解処理水で有効塩素濃度2500mg/Lの次亜塩素酸溶液が得られた。
また、図11には、電解処理水タンク内の次亜塩素酸用液の有効塩素濃度の推移を示した。これより、電解処理水タンクにおいて、pHを10.0以上、好ましくは11.0以上に制御すると、有効塩素濃度が安定することを確認することができた。
(Results and discussion)
As a result of electrolytic treatment of the second softened water, a hypochlorous acid solution having an effective chlorine concentration of 2500 mg / L was obtained with the electrolytically treated water.
FIG. 11 shows the transition of the effective chlorine concentration of the hypochlorous acid solution in the electrolytically treated water tank. From this, it was confirmed that the effective chlorine concentration was stabilized when the pH was controlled to 10.0 or higher, preferably 11.0 or higher in the electrolytically treated water tank.

1 有機性廃水処理装置
2 被処理水流入管
3 第1軟化処理装置
4 第1軟化処理水供給管
5 SS除去処理装置
6 SS除去処理水供給管
7 塩類除去処理装置
8 塩類濃縮水供給管
9 塩類除去処理水排出管
11 第2軟化処理装置
12 第2軟化処理水供給管
13 電解処理装置
14 次亜塩素酸ナトリウム溶液供給管
15 次亜塩素酸ナトリウム溶液貯留槽
16 RO膜処理装置
17 RO濃縮水供給管
18 RO膜処理水排出管
19 ED処理装置
20 ED処理水供給管
21 ED濃縮水供給管
DESCRIPTION OF SYMBOLS 1 Organic waste water treatment apparatus 2 To-be-processed water inflow pipe 3 1st softening processing apparatus 4 1st softening processing water supply pipe 5 SS removal processing apparatus 6 SS removal processing water supply pipe 7 Salt removal processing apparatus 8 Salt concentrated water supply pipe 9 Salts Removal treatment water discharge pipe 11 Second softening treatment device 12 Second softening treatment water supply tube 13 Electrolytic treatment device 14 Sodium hypochlorite solution supply tube 15 Sodium hypochlorite solution storage tank 16 RO membrane treatment device 17 RO concentrated water Supply pipe 18 RO membrane treated water discharge pipe 19 ED treatment device 20 ED treated water supply pipe 21 ED concentrated water supply pipe

Claims (6)

塩類及び有機物を含有する有機性廃水に対して、軟化処理を行ってカルシウム濃度を低減させる第1軟化処理工程と、生物処理、凝集沈殿処理、活性炭吸着処理、砂ろ過処理、精密ろ過膜処理からなる群から選ばれる1以上の処理または2以上の組み合わせからなるSS除去処理工程とを備えると共に、
前記第1軟化処理工程及びSS除去処理工程を実施した後に、
電気透析処理により電気透析濃縮水と電気透析処理水とに分離する電気透析処理工程と、逆浸透膜処理により逆浸透濃縮水と逆浸透膜処理水とに分離する逆浸透膜処理工程と、NF膜処理によりNF膜濃縮水とNF膜処理水とに分離するNF膜処理工程のうちの何れかの工程或いは2種類以上の工程を含む塩類除去処理工程を備え、
前記塩類除去工程で得られた塩類濃縮水、すなわち電気透析濃縮水、逆浸透濃縮水又はNF膜濃縮水に対して、軟化処理を行ってカルシウム濃度を低減させる第2軟化処理工程を実施し、次いで、第2軟化処理工程で得られた第2軟化処理水を電気分解して次亜塩素酸ナトリウム溶液を生成する電解処理工程を実施することを特徴とする有機性廃水の処理方法。
From organic wastewater containing salts and organic matter, the first softening treatment step to soften and reduce the calcium concentration, biological treatment, coagulation sedimentation treatment, activated carbon adsorption treatment, sand filtration treatment, microfiltration membrane treatment And an SS removal treatment step comprising one or more treatments selected from the group consisting of or a combination of two or more,
After performing the first softening treatment step and the SS removal treatment step,
An electrodialysis treatment step for separating electrodialyzed concentrated water and electrodialyzed water by electrodialysis treatment, a reverse osmosis membrane treatment step for separating reverse osmosis concentrated water and reverse osmosis membrane treated water by reverse osmosis membrane treatment, and NF A salt removal treatment step including any step or two or more types of steps of an NF membrane treatment step that separates into NF membrane concentrated water and NF membrane treated water by membrane treatment,
The salt concentration water obtained in the salt removal step, i.e., electrodialysis concentration water, reverse osmosis concentration water or NF membrane concentration water, is subjected to a second softening treatment step of performing a softening treatment to reduce the calcium concentration, Next, an organic wastewater treatment method comprising performing an electrolytic treatment step of electrolyzing the second softened water obtained in the second softening treatment step to produce a sodium hypochlorite solution.
第1軟化処理工程では、処理水のカルシウム濃度を10mg/L〜100mg/Lとし、
第2軟化処理工程では、処理水のカルシウム濃度を10mg/L未満、マグネシウム濃度を5mg/L未満とすることを特徴とする請求項1に記載の有機性廃水の処理方法。
In the first softening treatment step, the calcium concentration of the treated water is 10 mg / L to 100 mg / L,
The method for treating organic wastewater according to claim 1, wherein in the second softening treatment step, the calcium concentration of the treated water is less than 10 mg / L and the magnesium concentration is less than 5 mg / L.
電解処理工程では、被処理水のpHを10以上に調整して電気分解を行うことを特徴とする請求項1又は2に記載の有機性廃水の処理方法。   3. The method for treating organic wastewater according to claim 1, wherein in the electrolytic treatment step, electrolysis is performed by adjusting the pH of the water to be treated to 10 or more. 電解処理工程では、電気分解後の電解処理水のpHを10以上に調整することを特徴とする請求項1又は2に記載の有機性廃水の処理方法。   The method for treating organic wastewater according to claim 1 or 2, wherein in the electrolytic treatment step, the pH of the electrolytically treated water after electrolysis is adjusted to 10 or more. 電解処理工程で得られた電気分解後の電解処理水のpHを10以上に維持する貯蔵工程を備えることを特徴とする請求項3又は4に記載の有機性廃水の処理方法。   The organic wastewater treatment method according to claim 3 or 4, further comprising a storage step of maintaining the pH of the electrolyzed water after electrolysis obtained in the electrolyzing step at 10 or more. 塩類及び有機物を含有する有機性廃水に対して軟化処理を行ってカルシウム濃度を低減させる第1軟化処理装置と、
生物処理、凝集沈殿処理、活性炭吸着処理、砂ろ過処理、精密ろ過膜処理からなる群から選ばれる1以上の処理または2以上の組み合わせからなるSS除去処理装置と、
電気透析処理により電気透析濃縮水と電気透析処理水とに分離する電気透析処理装置、逆浸透膜処理により逆浸透濃縮水と逆浸透膜処理水とに分離する逆浸透膜処理装置、NF膜処理によりNF膜濃縮水とNF膜処理水とに分離するNF膜処理装置のうちの何れかの装置或いはこれらのうちの2種類以上の装置を含む塩類除去装置と、
前記電気透析濃縮水、逆浸透濃縮水又はNF膜濃縮水に対して、軟化処理を行ってカルシウム濃度を低減させる第2軟化処理装置と、
第2軟化処理装置で得られた第2軟化処理水を電気分解して次亜塩素酸ナトリウム溶液を生成する電解処理装置と、
を備えた有機性廃水の処理装置。
A first softening treatment device that softens the organic wastewater containing salts and organic matter to reduce the calcium concentration;
SS removal treatment apparatus consisting of one or more treatments or a combination of two or more selected from the group consisting of biological treatment, coagulation sedimentation treatment, activated carbon adsorption treatment, sand filtration treatment, microfiltration membrane treatment,
Electrodialysis treatment device that separates electrodialyzed concentrated water and electrodialyzed water by electrodialysis treatment, reverse osmosis membrane treatment device that separates reverse osmosis concentrated water and reverse osmosis membrane treated water by reverse osmosis membrane treatment, NF membrane treatment A salt removal device including any one of the NF membrane treatment devices or the two or more types of these devices separated into the NF membrane concentrated water and the NF membrane treated water by
A second softening device that softens the electrodialysis concentrated water, reverse osmosis concentrated water, or NF membrane concentrated water to reduce the calcium concentration;
An electrolytic treatment apparatus for electrolyzing the second softened water obtained by the second softening treatment apparatus to produce a sodium hypochlorite solution;
Organic wastewater treatment equipment with
JP2012152125A 2012-07-06 2012-07-06 Organic wastewater treatment method and treatment apparatus Active JP5873771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012152125A JP5873771B2 (en) 2012-07-06 2012-07-06 Organic wastewater treatment method and treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012152125A JP5873771B2 (en) 2012-07-06 2012-07-06 Organic wastewater treatment method and treatment apparatus

Publications (2)

Publication Number Publication Date
JP2014014738A true JP2014014738A (en) 2014-01-30
JP5873771B2 JP5873771B2 (en) 2016-03-01

Family

ID=50109926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012152125A Active JP5873771B2 (en) 2012-07-06 2012-07-06 Organic wastewater treatment method and treatment apparatus

Country Status (1)

Country Link
JP (1) JP5873771B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104229943A (en) * 2014-08-29 2014-12-24 冯胜 Device applied to eutrophic water for light-electrical-catalytic degradation of organic matter in water
CN104478142A (en) * 2014-12-08 2015-04-01 中国民用航空总局第二研究所 Method for removing monovalent ions in alcohol-containing wastewater reverse osmosis concentrated solution
CN104591446A (en) * 2015-01-07 2015-05-06 成都邦研科技有限公司 Softening-electrolysis integrated acidic electrolyzed oxidizing water reactor
CN104761077A (en) * 2014-01-07 2015-07-08 麦王环境技术股份有限公司 Concentrated brine softening treatment process and device
CN104787982A (en) * 2015-04-22 2015-07-22 江苏省环境科学研究院 Treatment method of garbage leachate
CN104986921A (en) * 2015-07-07 2015-10-21 武汉天源环保股份有限公司 Combined technological method for landfill leachate treatment
CN105217751A (en) * 2014-06-19 2016-01-06 胡明成 The multiple precipitator method are removed city refuse landfill and are concentrated liquid calcium, magnesium ion
CN105254079A (en) * 2014-06-19 2016-01-20 徐才浚 Pool water purification apparatus
CN105417861A (en) * 2015-11-28 2016-03-23 常州大学 Landfill leachate treatment device
WO2017070927A1 (en) * 2015-10-30 2017-05-04 Dow Global Technologies Llc Membrane treatment of ammonia-containing waste water
CN106746128A (en) * 2017-01-17 2017-05-31 武汉致衡环境安全工程技术有限公司 Flue gas desulfurization waste-water is classified dual treatment method and system
JP2017114705A (en) * 2015-12-22 2017-06-29 学校法人福岡大学 Method for producing sodium hypochlorite, and sodium hypochlorite production device
JP2018035024A (en) * 2016-08-30 2018-03-08 クボタ環境サ−ビス株式会社 Method for producing sodium hypochlorite, and sodium hypochlorite production device
WO2019044197A1 (en) * 2017-08-31 2019-03-07 オルガノ株式会社 Treatment apparatus and treatment method for hardness component-containing water
CN110294556A (en) * 2019-07-02 2019-10-01 江苏博赛环境科技有限公司 A kind of processing unit and its processing method of industrial wastewater
CN110713269A (en) * 2019-08-22 2020-01-21 四川思达能环保科技有限公司 Acid wastewater treatment process and system in titanium dioxide production by sulfuric acid method
WO2020195217A1 (en) * 2019-03-26 2020-10-01 栗田工業株式会社 Method and device for treating water containing calcium and organic matter
JP2021037499A (en) * 2019-09-05 2021-03-11 横河電機株式会社 Wastewater treatment method and apparatus
WO2021045191A1 (en) 2019-09-05 2021-03-11 デノラ・ペルメレック株式会社 Apparatus for producing acidic aqueous solution and method for producing acidic aqueous solution
JP2021515096A (en) * 2018-02-27 2021-06-17 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC Adjustment of process stream composition for excellent electrolyzer performance
CN114314937A (en) * 2022-01-14 2022-04-12 临涣水务股份有限公司 Method for preparing sodium hypochlorite from reverse osmosis concentrated water of water plant
CN114477593A (en) * 2022-02-11 2022-05-13 华润电力(沧州运东)有限公司 Concentrated water treatment system
CN114538675A (en) * 2022-01-11 2022-05-27 安徽普朗膜技术有限公司 Landfill leachate treatment system and treatment method
CN114560574A (en) * 2022-02-26 2022-05-31 洛南环亚源铜业有限公司 Water filtration system
CN114656072A (en) * 2022-02-27 2022-06-24 杭州美易环境科技有限公司 Method for separating organic matters and salt in high-salt-content industrial wastewater containing organic matters

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105967260A (en) * 2016-05-30 2016-09-28 安庆丰源化工有限公司 Fine chemical wastewater treatment agent efficiently removing organic matter
CN108117129A (en) * 2017-12-27 2018-06-05 烟台安诺其精细化工有限公司 A kind of processing method of N- ethyls-N- benzyls meta-aminotoluene production waste water

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258690A (en) * 1987-04-15 1988-10-26 Kubota Ltd Treatment of organic sewage
JPH09253651A (en) * 1996-03-22 1997-09-30 Japan Storage Battery Co Ltd Apparatus and method for making sterilized water
JP2002035754A (en) * 2000-07-26 2002-02-05 Matsushita Electric Ind Co Ltd Batchwise electrolytic water making apparatus
JP2002210466A (en) * 2001-01-16 2002-07-30 Asahi Pretec Corp Method and device for generating electrolytic water by which discharge quantity of drainage is reduced
JP2004121969A (en) * 2002-10-01 2004-04-22 Kurita Water Ind Ltd Cooling water treatment method
JP2004298832A (en) * 2003-04-01 2004-10-28 Asahi Glass Engineering Co Ltd Method and apparatus for making electrolytic water, and method and apparatus for making electrolytic hypo-water

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258690A (en) * 1987-04-15 1988-10-26 Kubota Ltd Treatment of organic sewage
JPH09253651A (en) * 1996-03-22 1997-09-30 Japan Storage Battery Co Ltd Apparatus and method for making sterilized water
JP2002035754A (en) * 2000-07-26 2002-02-05 Matsushita Electric Ind Co Ltd Batchwise electrolytic water making apparatus
JP2002210466A (en) * 2001-01-16 2002-07-30 Asahi Pretec Corp Method and device for generating electrolytic water by which discharge quantity of drainage is reduced
JP2004121969A (en) * 2002-10-01 2004-04-22 Kurita Water Ind Ltd Cooling water treatment method
JP2004298832A (en) * 2003-04-01 2004-10-28 Asahi Glass Engineering Co Ltd Method and apparatus for making electrolytic water, and method and apparatus for making electrolytic hypo-water

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104761077B (en) * 2014-01-07 2017-07-07 麦王环境技术股份有限公司 Strong brine sofening treatment technique and device
CN104761077A (en) * 2014-01-07 2015-07-08 麦王环境技术股份有限公司 Concentrated brine softening treatment process and device
CN105217751A (en) * 2014-06-19 2016-01-06 胡明成 The multiple precipitator method are removed city refuse landfill and are concentrated liquid calcium, magnesium ion
CN105254079A (en) * 2014-06-19 2016-01-20 徐才浚 Pool water purification apparatus
CN104229943A (en) * 2014-08-29 2014-12-24 冯胜 Device applied to eutrophic water for light-electrical-catalytic degradation of organic matter in water
CN104478142A (en) * 2014-12-08 2015-04-01 中国民用航空总局第二研究所 Method for removing monovalent ions in alcohol-containing wastewater reverse osmosis concentrated solution
CN104591446A (en) * 2015-01-07 2015-05-06 成都邦研科技有限公司 Softening-electrolysis integrated acidic electrolyzed oxidizing water reactor
CN104787982A (en) * 2015-04-22 2015-07-22 江苏省环境科学研究院 Treatment method of garbage leachate
CN104787982B (en) * 2015-04-22 2016-07-13 江苏省环境科学研究院 A kind of processing method of percolate
CN104986921A (en) * 2015-07-07 2015-10-21 武汉天源环保股份有限公司 Combined technological method for landfill leachate treatment
WO2017070927A1 (en) * 2015-10-30 2017-05-04 Dow Global Technologies Llc Membrane treatment of ammonia-containing waste water
CN108137348B (en) * 2015-10-30 2021-02-05 陶氏环球技术有限责任公司 Membrane treatment of ammonia-containing wastewater
CN108137348A (en) * 2015-10-30 2018-06-08 陶氏环球技术有限责任公司 The film process of ammonia-containing water
US10752533B2 (en) 2015-10-30 2020-08-25 DDP Specialty Electronic Materials US, Inc. Membrane treatment of ammonia-containing waste water
CN105417861A (en) * 2015-11-28 2016-03-23 常州大学 Landfill leachate treatment device
JP2017114705A (en) * 2015-12-22 2017-06-29 学校法人福岡大学 Method for producing sodium hypochlorite, and sodium hypochlorite production device
JP2018035024A (en) * 2016-08-30 2018-03-08 クボタ環境サ−ビス株式会社 Method for producing sodium hypochlorite, and sodium hypochlorite production device
CN106746128A (en) * 2017-01-17 2017-05-31 武汉致衡环境安全工程技术有限公司 Flue gas desulfurization waste-water is classified dual treatment method and system
CN106746128B (en) * 2017-01-17 2023-08-08 武汉致衡环境安全工程技术有限公司 Method and system for classifying and treating flue gas desulfurization wastewater
WO2019044197A1 (en) * 2017-08-31 2019-03-07 オルガノ株式会社 Treatment apparatus and treatment method for hardness component-containing water
JP2019042651A (en) * 2017-08-31 2019-03-22 オルガノ株式会社 Treatment device and treatment method of hardness component-containing water
JP7020821B2 (en) 2017-08-31 2022-02-16 オルガノ株式会社 Treatment equipment and treatment method for water containing hardness components
JP2021515096A (en) * 2018-02-27 2021-06-17 エヴォクア ウォーター テクノロジーズ エルエルシーEvoqua Water Technologies LLC Adjustment of process stream composition for excellent electrolyzer performance
EP3758834A4 (en) * 2018-02-27 2022-03-09 Evoqua Water Technologies LLC Regulation of process stream composition for improved electrolyzer performance
JP7449865B2 (en) 2018-02-27 2024-03-14 エヴォクア ウォーター テクノロジーズ エルエルシー Tuning process stream composition for superior electrolyzer performance
JP2020157223A (en) * 2019-03-26 2020-10-01 栗田工業株式会社 Method and device of treating water that contains organic matter and calcium
WO2020195217A1 (en) * 2019-03-26 2020-10-01 栗田工業株式会社 Method and device for treating water containing calcium and organic matter
CN110294556A (en) * 2019-07-02 2019-10-01 江苏博赛环境科技有限公司 A kind of processing unit and its processing method of industrial wastewater
CN110713269A (en) * 2019-08-22 2020-01-21 四川思达能环保科技有限公司 Acid wastewater treatment process and system in titanium dioxide production by sulfuric acid method
JP7100001B2 (en) 2019-09-05 2022-07-12 横河電機株式会社 Wastewater treatment method and wastewater treatment equipment
WO2021045191A1 (en) 2019-09-05 2021-03-11 デノラ・ペルメレック株式会社 Apparatus for producing acidic aqueous solution and method for producing acidic aqueous solution
WO2021045107A1 (en) 2019-09-05 2021-03-11 横河電機株式会社 Wastewater treatment method and wastewater treatment apparatus
US11794147B2 (en) 2019-09-05 2023-10-24 Yokogawa Electric Corporation Wastewater treatment method and wastewater treatment apparatus
JP2021037499A (en) * 2019-09-05 2021-03-11 横河電機株式会社 Wastewater treatment method and apparatus
CN114538675A (en) * 2022-01-11 2022-05-27 安徽普朗膜技术有限公司 Landfill leachate treatment system and treatment method
CN114314937A (en) * 2022-01-14 2022-04-12 临涣水务股份有限公司 Method for preparing sodium hypochlorite from reverse osmosis concentrated water of water plant
CN114477593A (en) * 2022-02-11 2022-05-13 华润电力(沧州运东)有限公司 Concentrated water treatment system
CN114560574A (en) * 2022-02-26 2022-05-31 洛南环亚源铜业有限公司 Water filtration system
CN114656072A (en) * 2022-02-27 2022-06-24 杭州美易环境科技有限公司 Method for separating organic matters and salt in high-salt-content industrial wastewater containing organic matters

Also Published As

Publication number Publication date
JP5873771B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP5873771B2 (en) Organic wastewater treatment method and treatment apparatus
JP5567468B2 (en) Method and apparatus for treating organic wastewater
CN104445788B (en) High slat-containing wastewater treatment for reuse zero-emission integrated technique
JP3909793B2 (en) Method and apparatus for treating organic wastewater containing high-concentration salts
AU2013356476B2 (en) Water treatment process
AU2010219284B2 (en) Desalination system
CN108383315B (en) Multistage electrically driven ionic membrane&#39;s waste water recovery device
Subramani et al. Impact of intermediate concentrate softening on feed water recovery of reverse osmosis process during treatment of mining contaminated groundwater
AU2014352663B2 (en) Systems and methods for removing minerals from a brine using electrodialysis
CN101928088B (en) Method for treating reverse osmosis concentrated water of petrochemical enterprises
JP2009095821A (en) Method of treating salt water
WO2010122336A2 (en) Water treatment
JP6738145B2 (en) Method for producing sodium hypochlorite and apparatus for producing sodium hypochlorite
JP2008223115A (en) Method for treating salt water
Lee et al. Integrated pretreatment with capacitive deionization for reverse osmosis reject recovery from water reclamation plant
CN113003846B (en) Zero-emission treatment process and system for sewage with high salt content and high COD (chemical oxygen demand)
TW201505973A (en) Method and device for treating boron-containing water
JP3800450B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
TW201249756A (en) Seawater desalination system
JP3800449B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
JP3137831B2 (en) Membrane processing equipment
CN105198141A (en) High-temperature high-salinity wastewater zero-discharging method
KR20210010937A (en) A fresh water system capable of producing hydrogen gas
KR20180111229A (en) Salinity gradient power-desalination hybrid system with low energy cost
CN213771708U (en) Novel membrane treatment system for wastewater hardness removal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160118

R150 Certificate of patent or registration of utility model

Ref document number: 5873771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250