JPS63258690A - Treatment of organic sewage - Google Patents

Treatment of organic sewage

Info

Publication number
JPS63258690A
JPS63258690A JP62093691A JP9369187A JPS63258690A JP S63258690 A JPS63258690 A JP S63258690A JP 62093691 A JP62093691 A JP 62093691A JP 9369187 A JP9369187 A JP 9369187A JP S63258690 A JPS63258690 A JP S63258690A
Authority
JP
Japan
Prior art keywords
equipment
treated
treatment
water
subsequently
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62093691A
Other languages
Japanese (ja)
Other versions
JPH0741243B2 (en
Inventor
Yasuo Horii
安雄 堀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP62093691A priority Critical patent/JPH0741243B2/en
Publication of JPS63258690A publication Critical patent/JPS63258690A/en
Publication of JPH0741243B2 publication Critical patent/JPH0741243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To stably remove ions, by removing calcium ions in org. sewage as an insoluble salt and subsequently applying biological treatment and desalting treatment based on electrolysis to the sewage in succession. CONSTITUTION:Raw water is uniformized under mechanical stirring in a conditioning tank 1 and subsequently sent to a calcium removing equipment 2 and sodium carbonate is added to the raw water in quantity of a Ca<++> equivalent or more at room temp. to make reaction at pH 7-10 under stirring. Subsequently, calcium carbonate formed by the reaction of CaCl2 and Na2CO3 is sedimented to be subjected to solid-liquid separation. The treated water is biologically treated in a biological treatment equipment 3 and the supernatant liquid is treated with activated carbon in a sand filtering and activated carbon treatment equipment 5. Further, the treated water is subjected to sedimentation treatment in a flocculation, clarifying and filtering equipment 6 and subsequently treated in an electrodialytic equipment 7. By this method, scaling is prevented and raw water can be efficiently treated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、一般廃棄物最終処分場の浸出汚水あるいは一
般産業廃水などのカルシウムイオンおよび塩素イオンを
含有した有機性汚水の処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for treating organic sewage containing calcium ions and chloride ions, such as leachate sewage from a final disposal site for general waste or general industrial wastewater.

従来の技術 現在、一般廃棄物処理の主流は、焼却処理であり、最終
処分としては埋立処分が行なわれている。
BACKGROUND ART Currently, the mainstream of general waste treatment is incineration, and the final disposal method is landfill.

この埋立地から浸出する汚水は、水質汚濁防止のため浄
化処理が義務付けられている。
Sewage that leaks from this landfill must be purified to prevent water pollution.

従来から、上記の埋立地の浸出汚水の処理は、一般都市
下水などの処理とほぼ同一の工程で行なわれている。す
なわち、原水は調整槽を経て接触酸化槽あるいは回転円
板槽などの生物処理設備で生物処理され、次いで凝集沈
澱処理設備で凝集剤が添加されて汚泥が沈降し、固液分
離された後、処理水は砂濾過および活性炭処理して放流
され、汚泥は汚泥処理設備へ送られて処理される。
Conventionally, the treatment of leachate sewage from the above-mentioned landfill sites has been carried out in almost the same process as the treatment of general city sewage and the like. That is, the raw water passes through a conditioning tank and is subjected to biological treatment in biological treatment equipment such as a contact oxidation tank or a rotating disk tank, and then a flocculant is added to the coagulation sedimentation treatment equipment to settle the sludge, and after solid-liquid separation, The treated water is sand filtered and treated with activated carbon before being discharged, and the sludge is sent to a sludge treatment facility for treatment.

発明が解決しようとする問題点 上記のごとく一般廃棄物の最終処分として埋立処分され
ているが、近年その埋立処分されるものの内容が変化し
、そのため埋立地からの浸出汚水の水質特性が変わり、
それにともなって汚水処理において新たな対応がせまら
れている。
Problems to be Solved by the Invention As mentioned above, general waste is disposed of in landfills as a final disposal method, but in recent years the contents of the landfill have changed, and as a result, the water quality characteristics of leached sewage from landfills have changed.
In line with this, new measures are needed in sewage treatment.

その一つとして、最近焼却炉排ガス中に含まれる塩化水
素(HCI)の量が増加し、そのHCI除去のため生石
灰(Cab)を用いた乾式のHCI除去装置が広く使用
されており、埋立処分される焼却灰中に反応生成物であ
る塩化カルシウム(CaC12)が多量に含まれ、それ
にともなって雨水などにCaCl2が溶出して、埋立地
からの浸出汚水中のカルシウムイオン(Ca++)およ
び塩素イオン(C,l−)の濃度が高くなってきた( 
Ca + + :〜8000pP■。
One example of this is the recent increase in the amount of hydrogen chloride (HCI) contained in incinerator exhaust gas, and dry HCI removal equipment using quicklime (Cab) has been widely used to remove HCI, leading to landfill disposal. A large amount of calcium chloride (CaC12), which is a reaction product, is contained in the incinerated ash, and as a result, CaCl2 is eluted into rainwater, etc., and calcium ions (Ca++) and chloride ions are contained in the wastewater leached from the landfill. The concentration of (C, l-) has increased (
Ca + +: ~8000 pP■.

Cl−: 〜16000ppm)。そのためCa”+が
汚水中の炭酸根あるいは硫酸根と反応して不溶性の塩と
なって、配管やポンプのスケーリングを起こし、あるい
は生物処理において回転円板の表面にスケールとして付
着して生物処理機能障害を生じ、さらにC1−も放流水
中に多量の塩化物として含まれることになって塩害を惹
起する、などの多くの問題が生じている。しかしながら
、従来これらのCa”。
Cl-: ~16000 ppm). Therefore, Ca''+ reacts with carbonate or sulfate groups in wastewater and becomes insoluble salts, causing scaling of piping and pumps, or adhering as scale to the surface of rotating disks in biological treatment, causing biological treatment to fail. However, in the past, these Ca''

C1−を積極的に除去することは行なわれていなかった
・ 本発明は、上記の問題点を解決するもので、埋立地浸出
汚水のようにCa”+およびC1−を高濃度に含む有機
性汚水中のCa”、C1−を、経済的にかつ安定に除去
することができる有機性汚水の処理方法を提供すること
を目的とするものである。
Active removal of C1- has not been carried out. The present invention solves the above problems, and aims to remove organic waste containing a high concentration of Ca"+ and C1-, such as wastewater leached from a landfill. The object of the present invention is to provide a method for treating organic wastewater that can economically and stably remove Ca'' and C1- from wastewater.

問題点を解決するための手段 上記の問題点を解決するため本発明の有機性汚水の処理
方法は、カルシウムイオンと塩素イオンを含有する有機
性汚水の処理において、カルシウムイオンを水不溶性塩
として除去した後、生物処理し、汚泥を分離、濾過し、
次いで電気透析により脱塩処理することを特徴とするも
のである。
Means for Solving the Problems In order to solve the above problems, the organic wastewater treatment method of the present invention removes calcium ions as water-insoluble salts in the treatment of organic wastewater containing calcium ions and chloride ions. After that, biological treatment is performed, the sludge is separated and filtered,
It is characterized in that it is then subjected to desalination treatment by electrodialysis.

作用 上記構成により、Ca”+および01″を多量に含有す
る有機性汚水に炭酸ナトリウムその他Ca”と反応して
水不溶性塩を生成する水溶性の炭酸塩、硫酸塩、燐酸塩
などを添加して、Ca”+を水不溶性の塩として沈降除
去した後、生物処理し、次いで汚泥を分離して清澄濾過
後、電気透析してC1−を塩化物として除去することに
より、生物処理前にCa”+が除去されてポンプ、配管
や生物処理における装置類へのスケーリングが防止され
て障害を起こすことがなく、また生物処理、汚泥分離、
濾過を行なって、Ca”、BOD、SS等が十分減少し
た状態で電気透析されるので、何等の支障なく処理され
、 Ca”+を1100pp以下、CFを400PP園
以下として放流することができる。
Effect With the above structure, water-soluble carbonates, sulfates, phosphates, etc. that react with sodium carbonate and other Ca" to produce water-insoluble salts are added to organic wastewater containing a large amount of Ca"+ and 01". After precipitating and removing Ca''+ as water-insoluble salts, biological treatment is performed, and then the sludge is separated and clarified through filtration, followed by electrodialysis to remove C1- as chloride. "+" is removed to prevent scaling to pumps, piping, and equipment in biological treatment so that it does not cause any damage, and also to prevent damage to biological treatment, sludge separation,
After filtration, electrodialysis is carried out in a state where Ca'', BOD, SS, etc. are sufficiently reduced, so that it can be treated without any problems and can be discharged with Ca''+ of 1100 pp or less and CF of 400 PP or less.

実施例 埋立地浸出汚水を第1図の工程図に従って処理する。ま
ず原水を調整槽1で空気遮断の状態で機械撹拌を行なっ
て均一化した後、カルシウム除去設備2へ送液して室温
で炭酸ナトリウム(Na2CO,)をCa”+の当量以
上添加し、PH7〜10で撹拌して反応させ、次にCa
Cl2とN a a CO3との反応で生成した炭酸カ
ルシウム(Ca CO3)を沈澱させて固液分離する。
EXAMPLE Landfill leachate sewage is treated according to the process diagram shown in FIG. First, the raw water is homogenized by mechanical stirring in the condition of air exclusion in the adjustment tank 1, and then sent to the calcium removal equipment 2, where sodium carbonate (Na2CO, ) is added in an amount equal to or more than the equivalent of Ca''+ at room temperature, and the pH is adjusted to 7. ~ 10 to react by stirring, then Ca
Calcium carbonate (Ca CO3) produced by the reaction between Cl2 and Na CO3 is precipitated and separated into solid and liquid.

なおこの場合CaCO,粒子の沈降を促進するため塩化
第2鉄、硫酸ばん土などの無機凝集剤、高分子凝集剤等
を併用することが好ましい。また、Na、Go、に代え
て他の水溶性の炭酸塩、硫酸塩、燐酸塩などを添加して
もよい。
In this case, it is preferable to use an inorganic flocculant such as ferric chloride or sulfuric acid, a polymer flocculant, etc. in order to promote the sedimentation of CaCO and particles. Further, other water-soluble carbonates, sulfates, phosphates, etc. may be added in place of Na and Go.

前記カルシウム除去設備2を経た処理水は、生物処理設
備3へ送られ生物処理されて、BOD成分が分解される
。生物処理方式としては従来公知の活性汚泥法、接触酸
化法、回転板法などの種々の方式を採用しうる。生物処
理後は凝集沈澱設備4で汚泥を凝集沈澱分離し、上澄液
を砂濾過・活性炭処理設備5へ送液して濾過および活性
炭処理する0次に処理水を凝集清澄濾過設備6で、さら
に塩化第2鉄などの凝集剤を加えて凝集沈澱させた後、
アンスラサイト、珪砂等の粒径1m以下の粒子からなる
濾材を用いて清澄濾過を行なってCaco、、ssなど
の微細な粒子も除去して、次工程の電気透析設備6へ送
液する。電気透析設備7において、CFは塩化物NaC
1の濃厚溶液として分離され、処理水は放流される。上
記のNaC1濃厚溶液は、例えば電解膜iW8へ供給さ
れ、電気分解して次亜塩素酸ナトリウム(N a Cl
○)を生成させ、これを前記の放流される処理水の滅菌
剤として用いる。なお前記NaCl0に代えて水酸化ナ
トリウム(NaOH)を生成させてもよい。
The treated water that has passed through the calcium removal equipment 2 is sent to the biological treatment equipment 3 where it is biologically treated and the BOD components are decomposed. As the biological treatment method, various conventional methods such as the activated sludge method, the catalytic oxidation method, and the rotating plate method can be employed. After the biological treatment, the sludge is separated by coagulation and sedimentation in the coagulation and sedimentation equipment 4, and the supernatant liquid is sent to the sand filtration/activated carbon treatment equipment 5 to be filtered and treated with activated carbon.Then, the treated water is sent to the coagulation and clarifying filtration equipment 6, Furthermore, after adding a flocculant such as ferric chloride to coagulate and precipitate,
Clarification filtration is performed using a filter medium made of particles with a particle size of 1 m or less, such as anthracite and silica sand, to remove fine particles such as Caco, ss, etc., and the liquid is sent to the electrodialysis equipment 6 for the next step. In the electrodialysis equipment 7, CF is chloride NaC
1 as a concentrated solution, and the treated water is discharged. The above NaCl concentrated solution is supplied to the electrolytic membrane iW8, for example, and electrolyzed to form sodium hypochlorite (N a Cl
○) is produced and used as a sterilizing agent for the above-mentioned discharged treated water. Note that sodium hydroxide (NaOH) may be generated instead of NaCl0.

上記の一連の処理により、原水のCa” : 8000
PP■、CF: 16000ppmを、放流水でCa”
 : 1100pp以下、C1−: 400ppm以下
に低下さることができる。
Through the above series of treatments, the raw water Ca”: 8000
PP■, CF: 16,000ppm in effluent water
: 1100 ppm or less, C1-: Can be reduced to 400 ppm or less.

そして、生物処理設備3における生物処理の前段階でC
a”+が1100pp以下に減少されているので、ポン
プ、配管や生物処理装置などへCa CO3がスケール
になって付着することが防止されて処理機能障害を発生
することがなく、また電気透析設備7へ送られる処理水
が、Ca←、BOD、SS成分などが除去されているの
で、電気透析設備7において、スケーリング、詰まり1
機能低下などの障害を起こすことがない、また分離した
NaC11ll縮水は、電解設備8により電気分解処理
してNaCl0を生成させて放流水の滅菌剤として有効
に利用することができる。
Then, in the pre-stage of biological treatment in biological treatment facility 3, C.
Since a”+ has been reduced to 1100pp or less, CaCO3 is prevented from adhering to pumps, piping, biological treatment equipment, etc. as scale, and treatment function failures do not occur, and electrodialysis equipment Since Ca←, BOD, SS components, etc. have been removed from the treated water sent to the electrodialysis equipment 7, scaling, clogging, etc.
The separated NaCl11ll condensed water, which does not cause problems such as functional decline, can be electrolyzed in the electrolysis equipment 8 to generate NaCl0, which can be effectively used as a sterilizing agent for effluent water.

発明の効果 本発明により、埋立地からの浸出汚水、一般産業廃水の
うちのCa”+およびCFを多量に含有する有機性汚水
を、アルカリ金属炭酸塩などのCa”+と反応して水不
溶性カルシウム塩を生成しうる物質の添加によるCa”
の水不溶性塩としての沈澱除去、生物処理によるBOD
成分の分解。
Effects of the Invention According to the present invention, leachate sewage from landfills and organic sewage containing large amounts of Ca''+ and CF from general industrial wastewater are made water-insoluble by reacting with Ca''+ such as alkali metal carbonates. Ca” by adding substances that can generate calcium salts
Precipitation removal as water-insoluble salts, BOD by biological treatment
Decomposition of components.

汚泥分離、濾過によるSS成分の除去および電気透析に
よるCFの除去の各処理を行なうことにより、Ca”+
を100pPIIl以下、CFを400pp+m以下と
して塩害を発生することなく河川へ放流させることがで
き、かつ上記処理において、生物処理前にCa++が除
去されてポンプ、配管や生物処理におけるスケーリング
が防止されて機能障害を起こすことがなく、またさらに
生物処理および清澄濾過してCa”、BOD、SS成分
等が十分減少した状態で電気透析されるので装置へのス
ケーリング、詰まり、機能低下などの障害を発生するこ
となく、極めて効率よく処理することができる。
By performing sludge separation, removal of SS components by filtration, and removal of CF by electrodialysis, Ca"+
100pPIIl or less and CF less than 400pp+m, which can be discharged into rivers without causing salt damage, and in the above treatment, Ca++ is removed before biological treatment to prevent scaling in pumps, piping, and biological treatment. Since electrodialysis is performed in a state where Ca'', BOD, SS components, etc. are sufficiently reduced through biological treatment and clarifying filtration, problems such as scaling, clogging, and functional deterioration of the equipment do not occur. It can be processed extremely efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の工程図である。 1・・・調整槽、2・・・カルシウム除去設備、3・・
・生物処理設備、4・・・凝集沈澱設備、訃・・砂濾過
・活性炭設備、6・・・凝集清澄濾過設備、7・・・電
気透析設備、8・・・電解設備。
FIG. 1 is a process diagram of an embodiment of the present invention. 1...Adjustment tank, 2...Calcium removal equipment, 3...
- Biological treatment equipment, 4... Coagulation sedimentation equipment, Grain... Sand filtration/activated carbon equipment, 6... Coagulation clarifying filtration equipment, 7... Electrodialysis equipment, 8... Electrolysis equipment.

Claims (1)

【特許請求の範囲】[Claims] 1、カルシウムイオンと塩素イオンを含有する有機性汚
水の処理において、カルシウムイオンを水不溶性塩とし
て除去した後、生物処理し、汚泥を分離、濾過し、次い
で電気透析により脱塩処理することを特徴とする有機性
汚水の処理方法。
1. In the treatment of organic wastewater containing calcium ions and chloride ions, the calcium ions are removed as water-insoluble salts, followed by biological treatment, the sludge is separated and filtered, and then desalinated by electrodialysis. A method for treating organic wastewater.
JP62093691A 1987-04-15 1987-04-15 Organic wastewater treatment method Expired - Lifetime JPH0741243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62093691A JPH0741243B2 (en) 1987-04-15 1987-04-15 Organic wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62093691A JPH0741243B2 (en) 1987-04-15 1987-04-15 Organic wastewater treatment method

Publications (2)

Publication Number Publication Date
JPS63258690A true JPS63258690A (en) 1988-10-26
JPH0741243B2 JPH0741243B2 (en) 1995-05-10

Family

ID=14089429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62093691A Expired - Lifetime JPH0741243B2 (en) 1987-04-15 1987-04-15 Organic wastewater treatment method

Country Status (1)

Country Link
JP (1) JPH0741243B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012130891A (en) * 2010-12-24 2012-07-12 Swing Corp Method and apparatus for treating organic waste water
JP2012217943A (en) * 2011-04-11 2012-11-12 Takasago Thermal Eng Co Ltd Method for desalting and system for desalting
CN102910785A (en) * 2012-11-01 2013-02-06 广西大学 Treatment method and device for high-concentration organic wastewater
WO2013099304A1 (en) * 2011-12-28 2013-07-04 三菱重工メカトロシステムズ株式会社 Wastewater treatment device
CN103288244A (en) * 2013-06-26 2013-09-11 瓮福(集团)有限责任公司 High-hardness water purification treatment recycling process
JP2014014738A (en) * 2012-07-06 2014-01-30 Swing Corp Method and apparatus for treating organic wastewater
CN105967408A (en) * 2016-07-14 2016-09-28 河南能源化工集团研究院有限公司 Industrial wastewater treatment process of copper-based hydrogenation catalyst
JP2017114705A (en) * 2015-12-22 2017-06-29 学校法人福岡大学 Method for producing sodium hypochlorite, and sodium hypochlorite production device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012130891A (en) * 2010-12-24 2012-07-12 Swing Corp Method and apparatus for treating organic waste water
JP2012217943A (en) * 2011-04-11 2012-11-12 Takasago Thermal Eng Co Ltd Method for desalting and system for desalting
WO2013099304A1 (en) * 2011-12-28 2013-07-04 三菱重工メカトロシステムズ株式会社 Wastewater treatment device
JP2013138977A (en) * 2011-12-28 2013-07-18 Mitsubishi Heavy Industries Mechatronics Systems Ltd Waste water treatment device
CN103930380A (en) * 2011-12-28 2014-07-16 三菱重工机电系统株式会社 Wastewater treatment device
US9868656B2 (en) 2011-12-28 2018-01-16 Mitsubishi Heavy Industries Mechatronics Systems Wastewater treatment device
JP2014014738A (en) * 2012-07-06 2014-01-30 Swing Corp Method and apparatus for treating organic wastewater
CN102910785A (en) * 2012-11-01 2013-02-06 广西大学 Treatment method and device for high-concentration organic wastewater
CN103288244A (en) * 2013-06-26 2013-09-11 瓮福(集团)有限责任公司 High-hardness water purification treatment recycling process
JP2017114705A (en) * 2015-12-22 2017-06-29 学校法人福岡大学 Method for producing sodium hypochlorite, and sodium hypochlorite production device
CN105967408A (en) * 2016-07-14 2016-09-28 河南能源化工集团研究院有限公司 Industrial wastewater treatment process of copper-based hydrogenation catalyst
CN105967408B (en) * 2016-07-14 2019-07-26 河南能源化工集团研究总院有限公司 One kind plus hydrogen copper-based catalysts technique for treating industrial wastewater

Also Published As

Publication number Publication date
JPH0741243B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
JP3883445B2 (en) Sewage treatment equipment
US5266210A (en) Process for removing heavy metals from water
JP3909793B2 (en) Method and apparatus for treating organic wastewater containing high-concentration salts
US9242878B2 (en) Heavy metal removal from waste streams
CN105502782A (en) Technology for recovering water resources and salt from coking wastewater in coal chemical industry
WO2007052618A1 (en) Method for removing metals from waste water and apparatus for removing metals from waste water
JP4880656B2 (en) Water treatment apparatus and water treatment method
JP2004141799A (en) Silica-containing waste water treatment method
US3635817A (en) Waste water treatment process
JPS63258690A (en) Treatment of organic sewage
JP3918657B2 (en) Method and apparatus for purifying contaminated soil
JP3377091B2 (en) Method and apparatus for treating leachate at landfill site
JP2006218354A (en) Method for treating fluorine-containing waste water
JPH0824872A (en) Treatment of organic contaminated water containing phosphoer
KR0149156B1 (en) Apparatus and method for the treatment of grind waste water
JPH0366036B2 (en)
JP3734338B2 (en) Ion exchange resin recycling waste liquid treatment method
CN114516689A (en) Calcium carbide method polyvinyl chloride mercury-containing wastewater treatment and recycling method and application device thereof
JP3496773B2 (en) Advanced treatment method and apparatus for organic wastewater
Wang et al. Total waste recycle system for water purification plant using alum as primary coagulant
JPS63258692A (en) Treatment of organic sewage
JPH0433518B2 (en)
JP2004074009A (en) Stabilization treatment method of incineration ash waste
JP3392298B2 (en) Wastewater treatment method
JP3003746B2 (en) Leachate membrane separation method