JP2012217943A - Method for desalting and system for desalting - Google Patents

Method for desalting and system for desalting Download PDF

Info

Publication number
JP2012217943A
JP2012217943A JP2011087063A JP2011087063A JP2012217943A JP 2012217943 A JP2012217943 A JP 2012217943A JP 2011087063 A JP2011087063 A JP 2011087063A JP 2011087063 A JP2011087063 A JP 2011087063A JP 2012217943 A JP2012217943 A JP 2012217943A
Authority
JP
Japan
Prior art keywords
water
concentrated
electrodialysis
tank
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011087063A
Other languages
Japanese (ja)
Other versions
JP5731262B2 (en
Inventor
Kozo Ishida
幸三 石田
Noriaki Okamura
典明 岡村
Hideyuki Okamoto
英之 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2011087063A priority Critical patent/JP5731262B2/en
Publication of JP2012217943A publication Critical patent/JP2012217943A/en
Application granted granted Critical
Publication of JP5731262B2 publication Critical patent/JP5731262B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Abstract

PROBLEM TO BE SOLVED: To prevent slime formation on the surface of an ion-exchange membrane or in channels of concentrate brine and desalted water of an electrodialysis apparatus without using a specific sterilizing agent used conventionally in desalting treatment at a low concentration and a low salt rejection rate.SOLUTION: In desalting treatment raw water such as well water and drainage from an infrastructure by using an electrodialysis cell 1, the concentrate brine from the electrodialysis cell 1 is subjected to electrolysis in an apparatus 42 for generating water by electrolysis to produce electrlytic formed acid water, which is introduced into a desalted water circulation system and a concentrate brine circulation system of the electrodialysis cell 1 or a treatment raw water system. Because the electrolytic fromed acid water has a proper sterilizing power, a chemical agent for slime prevention and a supply system thereof are not necessary to be especially prepared.

Description

本発明は、脱塩処理方法及び脱塩処理システムに関するものである。   The present invention relates to a desalination treatment method and a desalination treatment system.

たとえば水の精製等を行なう場合に、水に溶解しているイオン物質を除去する技術として電気透析法がある。この技術は、電極板の間に組み込まれた隣り合うセルの区分けに、陽イオン交換膜と陰イオン交換膜を交互に配列することで、電圧により保持する正負電荷と反対の極へ移動するイオンの動きを制御し、対象とするセルからの脱塩、他方へ濃縮させることを特徴とするものである。   For example, when water is purified, there is an electrodialysis method as a technique for removing ionic substances dissolved in water. In this technology, the movement of ions moving to the opposite pole to the positive and negative charges held by voltage by alternately arranging cation exchange membranes and anion exchange membranes in the section of adjacent cells built in between the electrode plates. Is controlled, desalted from the target cell, and concentrated to the other.

脱塩技術に関しては、海水淡水化事業に代表されるRO膜等を用いた逆浸透膜技術があるが、前記した電気透析法は、逆浸透膜技術よりも、回収率が高い。RO膜による脱塩技術では回収率70%程度であるのに対して、電気透析法では、90%以上の回収が可能である。かかる電気透析法の優位性により、とりわけ中東域などの排水規制が法制化されつつある地域においての導入が検討されつつある。その際対象となる処理水は、井水等の未利用水の精製や冷却塔ブロー排水などのインフラ排水の精製再利用であり、海水塩濃度とくらべると遙かに低い濃度の水質を対象としている。   Regarding the desalination technology, there is a reverse osmosis membrane technology using an RO membrane or the like typified by a seawater desalination project. The electrodialysis method described above has a higher recovery rate than the reverse osmosis membrane technology. The RO salt desalting technique has a recovery rate of about 70%, while the electrodialysis method can recover 90% or more. Due to the superiority of the electrodialysis method, introduction into a region where drainage regulations are becoming legislated, particularly in the Middle East region, is being considered. The target treated water is the purification of unused water such as well water and the purification and reuse of infrastructure drainage such as cooling tower blow drainage, which targets water quality that is much lower than seawater salt concentration. Yes.

このように電気透析法は濃縮倍率を上げることにより脱塩精製水の回収率を増加させることができるが、炭酸カルシウムに代表される溶解度の低い物質がイオン交換膜表面に析出し、脱塩性能が低下するおそれがある。そのため、酸性の薬液を使用して濃縮水のpHを下げた運転管理が一般的に行われる。濃縮水は最終的には水酸化ナトリウム(苛性ソーダ)などであり、これらは再びpH調整された後廃棄されるが、その処理に関わるイニシャル、ランニング、メンテナンスについての各コストは、脱塩プロセスにおいて必ず考慮が必要とされるものである。   In this way, the electrodialysis method can increase the recovery rate of desalted and purified water by increasing the concentration factor, but a substance with low solubility typified by calcium carbonate is deposited on the surface of the ion exchange membrane, and the desalting performance. May decrease. Therefore, operation management in which the pH of concentrated water is lowered using an acidic chemical is generally performed. Concentrated water is ultimately sodium hydroxide (caustic soda), etc., and these will be discarded after pH adjustment again, but the costs for initial, running, and maintenance related to the treatment are always in the desalination process. It is something that needs to be considered.

一方で、微生物由来の汚染物が膜表面でスライムを形成し、イオンの膜移動阻害、脱塩流量の低下による脱塩性能の劣化を引起す。このスライム形成による性能劣化を回避するため、殺菌剤の投入や電気透析装置の分解洗浄を行うが、この処置に対する薬剤コスト、メンテナンスコストは電気透析処理コストにおいて高い割合を占めている。   On the other hand, microorganism-derived contaminants form a slime on the membrane surface, causing ion migration inhibition and deterioration of desalting performance due to a decrease in desalting flow rate. In order to avoid the performance deterioration due to the slime formation, the bactericide is introduced and the electrodialyzer is disassembled and washed. The chemical cost and maintenance cost for this treatment account for a high proportion of the electrodialysis treatment cost.

上に述べた電気透析法の課題を列挙すれば下記のようである。
(1)濃縮水についての低pH管理が必要である。
(2)イオン交換膜に生成するスライムの防止、及びスライム除去のために要するコストが大きい。
(3)濃縮水を廃棄する際にpH調整が必要となる。
The problems of the electrodialysis method described above are listed as follows.
(1) Low pH control is necessary for concentrated water.
(2) The cost required for prevention of slime generated on the ion exchange membrane and removal of the slime is high.
(3) pH adjustment is required when discarding concentrated water.

上記課題を解決する手段として、脱塩プロセスにより排出される濃縮水を有効利用する技術(特許文献1)が提案されている。この技術は海水の脱塩淡水化等で排出されるRO膜ろ過の濃縮排水を電気透析で脱塩し、電気透析陽極液と電極板間で生成する塩素由来の強酸化性溶液で殺菌を行うことにより、上記の電気透析システムにおける課題克服を目的としたシステムである。さらに電気透析で排出される濃縮水のpH調整、キレートによる硬度処理を行い、その水を有膜電気分解することで酸、アルカリ溶液を生成し、脱塩プロセスでのpH調整溶液として利用するものである。   As means for solving the above problems, a technique (Patent Document 1) that effectively uses concentrated water discharged by a desalting process has been proposed. In this technology, RO membrane filtration concentrated wastewater discharged by desalination and desalination of seawater is desalted by electrodialysis, and sterilized with a strong oxidizing solution derived from chlorine generated between the electrodialysis anolyte and the electrode plate. Thus, the system aims to overcome the problems in the electrodialysis system. Furthermore, pH adjustment of concentrated water discharged by electrodialysis, hardness treatment with chelate, and electrolysis of the water into membranes produce acid and alkali solutions that are used as pH adjustment solutions in the desalting process It is.

特開平6−269777号公報JP-A-6-269777

特許文献1に開示された技術は、高塩濃度の原水より上水、飲用レベルの低濃度水質を高い回収率で精製する目的から、その原水からの濃縮水は非常に高い硬度類を保有し、硬度除去のために多くの設備を導入するという問題がある。以下、詳述すると、
(1)設備コストの高さ
特許文献1に開示された技術は、海水(電気伝導度5500mS/m程度)等から、電気伝導度が15〜30mS/m程度の飲用水レベルへの脱塩処理を行うため、電気透析からの濃縮水は回収率に応じて原水の数倍の塩濃度となり、性能劣化や配管等の閉塞といったスケール障害の原因物質である硬度類も濃縮されるため、有効利用するには別途硬度処理装置の設置が不可欠となる。
(2)陽極液を用いて生成する電解液濃度制御の困難さ
印加電圧は、処理流量や脱塩率により設計されるセル数により異なるが、その際極板と陽極間での塩素生成量は電圧に応じて変化することになる。さらにスライム防止に必要な塩素量は、RO膜ろ過での濃縮倍率と電気透析での濃縮倍率により決定されてしまうため、スライム防止に必要とする電解条件と主目的である脱塩による設計条件を合致させることは煩雑な作業である。
(3)陽極膜の劣化
特許文献1に開示された技術では、電気透析の陽極で発生する塩素を殺菌に利用しているが、塩素は強力な酸化作用を持つため、一般的には、陽極液には硫酸や硫酸ナトリウムなどの薬液を別系統で用い、陽極での反応は水の電気分解を促進し、濃縮層と陽極室との区分けの陽極膜には、カチオン交換膜を用いて塩化物イオンの濃縮層からの混入を極力減少させる手法を採用する。電気透析槽における防スライム処理には0.1mg/l程度のイオン交換膜破壊に大きな影響を与えない低濃度に残留塩素濃度を管理することで効果が得られることは報告されているが(特開2004−8851号公報)、極板−陽極間で0.1mg/l程度の塩素生成量を基準とする脱塩システムは電気エネルギー的なコスト面で考えると非現実的である。
The technology disclosed in Patent Document 1 has a very high hardness in the concentrated water from the raw water for the purpose of purifying the high-concentration raw water and the low-concentration water quality at the drinking level with a high recovery rate. There is a problem that a lot of equipment is introduced to remove hardness. In detail,
(1) High equipment cost The technology disclosed in Patent Document 1 is a desalination treatment from seawater (electric conductivity of about 5500 mS / m) to a drinking water level having an electric conductivity of about 15 to 30 mS / m. Concentrated water from electrodialysis has a salt concentration that is several times higher than the raw water depending on the recovery rate, and hardness that is a causative agent of scale failure such as performance deterioration and blockage of piping is also concentrated. In order to achieve this, it is essential to install a separate hardness processing device.
(2) Difficulty in controlling the concentration of the electrolyte produced using the anolyte The applied voltage varies depending on the number of cells designed depending on the treatment flow rate and the desalination rate, but the amount of chlorine produced between the electrode plate and the anode is It will change according to the voltage. Furthermore, the amount of chlorine necessary for slime prevention is determined by the concentration rate in RO membrane filtration and the concentration rate in electrodialysis, so the electrolysis conditions necessary for slime prevention and the design conditions for desalination, which is the main purpose, must be set. Matching is a cumbersome task.
(3) Degradation of anode film In the technique disclosed in Patent Document 1, chlorine generated at the anode of electrodialysis is used for sterilization. However, since chlorine has a strong oxidizing action, A chemical solution such as sulfuric acid or sodium sulfate is used in another system, and the reaction at the anode promotes the electrolysis of water, and the anodic membrane between the concentrated layer and the anode chamber is chlorinated using a cation exchange membrane. Adopting a method to reduce contamination from the concentrated layer of product ions as much as possible. It has been reported that anti-slime treatment in an electrodialysis tank can be effective by controlling the residual chlorine concentration to a low concentration that does not significantly affect the ion exchange membrane destruction of about 0.1 mg / l (special No. 2004-8851), a desalination system based on a chlorine production amount of about 0.1 mg / l between the electrode plate and the anode is unrealistic in terms of electric energy cost.

本発明はかかる点に鑑みてなされたものであり、低濃度、低脱塩率での脱塩処理を行うにあたり、従来のような専用の殺菌用薬剤を用いることなく、電気透析装置のイオン交換膜表面や、濃縮水および脱塩水の流路に、スライムが発生することを防止して、前記問題点を解決することを目的としている。   The present invention has been made in view of the above points, and in performing desalination treatment at a low concentration and a low desalination rate, ion exchange of an electrodialysis apparatus is performed without using a conventional sterilizing agent. An object of the present invention is to prevent the occurrence of slime on the membrane surface and the flow path of concentrated water and demineralized water to solve the above problems.

前期目的を達成するため、本発明の脱塩処理方法は、電気透析槽を用いて、井水またはインフラ排水を処理原水として脱塩処理する方法において、電気透析槽からの濃縮水を電気分解し、当該電気分解によって生じた電解生成酸性水を、前記電気透析槽の脱塩水循環系および濃縮水循環系、または処理原水系に導入することを特徴としている。ここでいう、インフラ排水とは、ビル排水、プラント排水、空調、衛生用水の廃棄水、冷却塔ブロー水、厨房排水、汚水や汚水を敷地内で処理した中水などをいう。   In order to achieve the purpose of the previous term, the desalinating method of the present invention uses an electrodialysis tank to electrolyze the concentrated water from the electrodialysis tank in a method of desalinating well water or infrastructure drainage as raw water for treatment. The electrolyzed acidic water generated by the electrolysis is introduced into the desalted water circulation system and the concentrated water circulation system or the treated raw water system of the electrodialysis tank. As used herein, infrastructure wastewater refers to building wastewater, plant wastewater, air conditioning, sanitary water wastewater, cooling tower blow water, kitchen wastewater, sewage or sewage treated in-site.

本発明によれば、井水またはインフラ排水を電気透析処理した際に発生する濃縮水を電気分解し、その際に生成された電解生成酸性水を、前記電気透析槽の脱塩水循環系および濃縮水循環系、または処理原水系に導入するようにしたので、専用の殺菌用薬剤を用いることなく、スライムの発生を防止することが可能である。また処理原水は、井水やインフラ排水であるから、これを電気透析した際に発生する濃縮水はその濃度が低く、したがって当該低濃度の濃縮水を電気分解しても、硬度類(水に含まれるカルシウム、マグネシウムなど陽イオンで析出しやすい物質)や、シリカが析出しにくく、硬度調整は不要である。したがって、全体として簡素な設備で安定した電解能力を維持することができ、脱塩処理を長期間に渡って安定して実施することが可能である。   According to the present invention, the concentrated water generated when the well water or the infrastructure drainage is electrodialyzed is electrolyzed, and the electrolytically generated acidic water generated at that time is converted into the desalted water circulation system and the concentration of the electrodialysis tank. Since it is introduced into the water circulation system or the treated raw water system, generation of slime can be prevented without using a dedicated sterilizing agent. In addition, since the treated raw water is well water or infrastructure drainage, the concentration of the concentrated water generated when electrodialyzing this is low. Therefore, even if the low concentration concentrated water is electrolyzed, hardness (water Substances that are easily precipitated by cations such as calcium and magnesium) and silica are difficult to precipitate, and hardness adjustment is not required. Therefore, stable electrolysis capability can be maintained with simple equipment as a whole, and desalting treatment can be stably performed over a long period of time.

前記電気分解によって生じた電解生成アルカリ水を、濃縮廃棄水系に供給して、当該濃縮廃棄水のpH調整を行なうようにしてもよい。   The electrolytically generated alkaline water generated by the electrolysis may be supplied to a concentrated waste water system to adjust the pH of the concentrated waste water.

また本発明で用いる処理原水は、その電気伝導度が、40〜300mS/mであることが望ましい。   Moreover, as for the process raw | natural water used by this invention, it is desirable that the electrical conductivity is 40-300 mS / m.

本発明の脱塩処理システムは、前記脱塩処理方法を実施するためのシステムであり、電気透析槽からの濃縮水の一部を有隔膜電気分解処理する電解水生成装置と、当該電解水生成装置で生成された電解生成酸性水を、前記電気透析槽の脱塩水循環系および濃縮水循環系、または処理原水導入系に導入する配管と、当該電解水生成装置で生成された電解生成アルカリ水を、濃縮廃棄水系に導入する配管と、を有することを特徴としている。   The desalination treatment system of the present invention is a system for carrying out the desalination treatment method, and an electrolyzed water generating device that electrolyzes a part of the concentrated water from the electrodialysis tank, and the electrolyzed water generation A pipe for introducing the electrolytically generated acidic water generated by the apparatus into the desalted water circulating system and the concentrated water circulating system of the electrodialysis tank, or the treated raw water introducing system, and the electrolytically generated alkaline water generated by the electrolytic water generating apparatus. And a pipe to be introduced into the concentrated waste water system.

本発明によれば、専用の殺菌用薬剤を用いることなく、電気透析装置のイオン交換膜表面や、濃縮水および脱塩水の流路に、スライムが発生することを防止することができる。   According to the present invention, it is possible to prevent slime from being generated on the surface of the ion exchange membrane of the electrodialysis apparatus and the flow path of concentrated water and demineralized water without using a dedicated sterilizing agent.

実施の形態にかかる脱塩処理システムの系統の概略を示す説明図である。It is explanatory drawing which shows the outline of the system | strain of the desalination processing system concerning embodiment.

図1は、実施の形態にかかる脱塩処理システムの系統の概要を示しており、システムの中核となる電気透析槽1は、陰イオン交換膜(アニオン膜)Aと、陽イオン交換膜(カチオン膜)Kとを交互に並べられた構成を有しており、陰極側端部には、陰極室11が形成され、陽極側端部には、陽極室21が形成されている。そしてこれら陰極室11と陽極室21の間に、前記した陰イオン交換膜(アニオン膜)Aと、陽イオン交換膜(カチオン膜)Kとが交互に並べて配置されている。そして陰極2と陽極3との間に直流電圧が印加されることで、これら陰イオン交換膜(アニオン膜)Aと、陽イオン交換膜(カチオン膜)Kに供給される処理原水が脱塩処理される。   FIG. 1: has shown the outline | summary of the system | strain of the desalination processing system concerning embodiment, The electrodialysis tank 1 used as the core of a system is an anion exchange membrane (anion membrane) A and a cation exchange membrane (cation). Film) K are arranged alternately, the cathode chamber 11 is formed at the cathode side end portion, and the anode chamber 21 is formed at the anode side end portion. Between the cathode chamber 11 and the anode chamber 21, the anion exchange membrane (anion membrane) A and the cation exchange membrane (cation membrane) K are alternately arranged. The raw water supplied to the anion exchange membrane (anion membrane) A and the cation exchange membrane (cation membrane) K is desalted by applying a DC voltage between the cathode 2 and the anode 3. Is done.

陰極室11は、ポンプ12によって陰極液タンク13との間で陰極液が循環している。一方陽極室21は、ポンプ22によって陽極液タンク23との間で陽極液が循環している。   The catholyte is circulated between the cathode chamber 11 and the catholyte tank 13 by a pump 12. On the other hand, the anolyte is circulated between the anolyte tank 21 and the anolyte tank 23 by the pump 22.

処理原水は、配管31を通じて、一部は濃縮水槽14、一部は脱塩水槽24へと一旦供給される。そして濃縮水槽14に供給された処理原水は、流入する処理済の濃縮水とともにポンプ25によって電気透析槽1に供給され、濃縮水循環系に導入される。また脱塩水槽24に供給された処理原水は、流入する処理済の脱塩水とともに、電気透析槽1に供給され、脱塩水循環系に導入される。   The treated raw water is temporarily supplied to the concentrated water tank 14 and partly to the desalted water tank 24 through the pipe 31. Then, the treated raw water supplied to the concentrated water tank 14 is supplied to the electrodialysis tank 1 by the pump 25 together with the treated concentrated water flowing in, and is introduced into the concentrated water circulation system. The treated raw water supplied to the desalted water tank 24 is supplied to the electrodialysis tank 1 together with the treated desalted water flowing in, and is introduced into the desalted water circulation system.

電気透析槽1において脱塩処理した際に発生する濃縮水は、配管32を通じて濃縮水槽14へと戻され、脱塩処理して生成された脱塩水は、配管33を通じて脱塩水槽24へと戻される。   The concentrated water generated when the desalting treatment is performed in the electrodialysis tank 1 is returned to the concentrated water tank 14 through the pipe 32, and the desalted water generated by the desalting treatment is returned to the desalted water tank 24 through the pipe 33. It is.

濃縮水槽14内の濃縮水の一部は、ポンプ41によって、電解水生成装置42へと供給される。この電解水生成装置42は、隔膜を有する有隔膜タイプの電解水生成装置であり、濃縮水槽14から供給された濃縮水を電気分解処理する。そして電解水生成装置42で電気分解された際に生成された電解生成酸性水の一部は、配管43、44を通じて濃縮水槽14に戻すことが可能である。また電解生成酸性水の他の一部は、配管43、45を通じて脱塩水槽24にも供給することが可能になっている。なお配管44、45には、各々対応するバルブV1、V2が設けられている。   A part of the concentrated water in the concentrated water tank 14 is supplied to the electrolyzed water generating device 42 by the pump 41. The electrolyzed water generating device 42 is a diaphragm type electrolyzed water generating device having a diaphragm, and electrolyzes the concentrated water supplied from the concentrated water tank 14. A part of the electrolytically generated acidic water generated when electrolyzed by the electrolytic water generating device 42 can be returned to the concentrated water tank 14 through the pipes 43 and 44. The other part of the electrolytically generated acidic water can be supplied to the desalted water tank 24 through the pipes 43 and 45. The pipes 44 and 45 are provided with corresponding valves V1 and V2, respectively.

電解水生成装置42において電気分解によって生成された電解生成アルカリ水は、配管46を通じてpH調整水槽47へと送られる。このpH調整水槽47には、濃縮水槽14から排気される濃縮水が、配管48を通じて送られる。pH調整水槽47には、pH調整用アルカリ薬液タンク51から、ポンプ52によってpH調整用アルカリ薬液が供給され、pH調整された後、排出される。   The electrolyzed alkaline water generated by electrolysis in the electrolyzed water generating device 42 is sent to the pH adjusted water tank 47 through the pipe 46. Concentrated water exhausted from the concentrated water tank 14 is sent to the pH adjusted water tank 47 through a pipe 48. The pH-adjusting water tank 47 is supplied with the pH-adjusting alkaline chemical solution by the pump 52 from the pH-adjusting alkaline chemical solution tank 51, adjusted to pH, and then discharged.

濃縮水槽14には、pH調整用酸薬液タンク61から、ポンプ62によって配管63を通じて、pH調整用酸薬液が供給される。またpH調整用酸薬液タンク61内のpH調整用酸薬液は、ポンプ64によって、配管65を通じて、配管陰極液タンク13へも供給可能である。   The concentrated water tank 14 is supplied with a pH adjusting acid chemical solution from a pH adjusting acid chemical solution tank 61 through a pipe 63 by a pump 62. Further, the pH-adjusting acid / chemical solution in the pH-adjusting acid / chemical solution tank 61 can be supplied to the pipe catholyte tank 13 through the pipe 65 by the pump 64.

実施の形態にかかる脱塩処理システムの主要部は、以上の構成を有しており、処理原水として、電気伝導度が40〜300mS/mの井水やインフラ排水を回収率90%程度で脱塩処理を行うために、電気透析槽1において電気透析を行なった場合、生成される濃縮水の電気伝導度は400〜3000mS/m程度となる。この濃縮水には、塩素の電解生成に必要な塩化物イオンを十分量含んでおり、さらに保有する硬度成分はpH調整する限りにおいて、析出やファウリングに問題のない濃度である。   The main part of the desalination treatment system according to the embodiment has the above-described configuration. As raw water for treatment, well water and infrastructure wastewater having an electrical conductivity of 40 to 300 mS / m are removed at a recovery rate of about 90%. When electrodialysis is performed in the electrodialysis tank 1 to perform the salt treatment, the electric conductivity of the produced concentrated water is about 400 to 3000 mS / m. This concentrated water contains a sufficient amount of chloride ions necessary for the electrolytic generation of chlorine, and the hardness component possessed is a concentration that does not cause problems in precipitation and fouling as long as the pH is adjusted.

したがって、従来のような硬度処理を必要とせず、濃縮水を電解水生成装置42に直接導入することにより、塩素由来の殺菌作用のある電解生成酸性水を生成することができる。また電解水生成装置42は、脱塩制御する電気透析槽1とは独立した制御を組むことが可能である。さらに電解水生成装置42に対して印加する電圧による供給濃度、ポンプ41による供給添加量、バルブV1、V2の制御を調整することにより、ポンプ25によって循環する脱塩循環水、ポンプ15によって循環する濃縮循環水の残留塩素濃度を、各々制御することが可能である。   Therefore, by directly introducing concentrated water to the electrolyzed water generating device 42 without requiring a hardness treatment as in the prior art, electrolyzed acidic water having a bactericidal action derived from chlorine can be generated. Moreover, the electrolyzed water production | generation apparatus 42 can set up control independent of the electrodialysis tank 1 which desalinate-controls. Furthermore, by adjusting the supply concentration by the voltage applied to the electrolyzed water generating device 42, the supply addition amount by the pump 41, and the control of the valves V1 and V2, the desalted circulating water circulated by the pump 25 and the pump 15 are circulated. It is possible to control the residual chlorine concentration of the concentrated circulating water.

殺菌剤として良く使用される次亜塩素酸ナトリウムよりも、電解生成酸性水は残塩素濃度基準において高い殺菌作用があるため、次亜塩素酸ナトリウムよりも低い残留塩素濃度で、電気透析槽1のイオン交換膜のスライム防止効果が期待できる。また、電気透析プロセスにおける濃縮水に対して、電解水生成装置42で生成された電解生成酸性水を添加することで、本来低pH管理のために添加される酸溶液の使用量低減が可能となる。またさらに、排水の水質規制により、濃縮水は廃棄される際に、アルカリ溶液でpH=5.0〜9.0以下(下水放流)に調整されるが、電解水生成装置42で生成された電解生成アルカリ薬液を添加することでアルカリ溶液の使用量も低減が可能である。   Electrolytically generated acidic water has a higher bactericidal action on the basis of residual chlorine concentration than sodium hypochlorite, which is often used as a bactericidal agent. The slime prevention effect of the ion exchange membrane can be expected. In addition, by adding the electrolytically generated acidic water generated by the electrolyzed water generating device 42 to the concentrated water in the electrodialysis process, it is possible to reduce the amount of acid solution originally added for low pH control. Become. Furthermore, due to the water quality regulation of the wastewater, the concentrated water is adjusted to pH = 5.0 to 9.0 or less (sewage discharge) with an alkaline solution when it is discarded, but is generated by the electrolyzed water generating device 42. The amount of the alkaline solution used can be reduced by adding the electrolytically generated alkaline chemical.

以下に、前記システムを使用して脱塩処理の実験を行なった結果を示す。前記システムで1m/day×1ヵ月の連続実験データを取ることにより、性能検証を行った。試験は、電解水生成装置42を持たない従来の脱塩処理法との同時比較実験として行い、pH調整試薬、殺菌薬液使用量とスライム生成状況を確認した。 Below, the result of having conducted the experiment of the desalination process using the said system is shown. Performance verification was performed by taking continuous experimental data of 1 m 3 / day × 1 month with the system. The test was conducted as a simultaneous comparison experiment with a conventional desalting method without the electrolyzed water generating device 42, and the amount of pH adjusting reagent, bactericidal solution used and slime generation status were confirmed.

比較系実験条件として、脱塩水槽24、濃縮水槽14の残留塩素濃度が0.05〜0.1mg/lを維持するために、200mg/lの次亜塩素酸ソーダの添加量を制御した。試験系においては電解水生成装置42により残塩濃度30〜50mg/lの電解生成酸性水を印加電圧を調整して生成し、脱塩水槽24、濃縮水槽14の残塩濃度が、各々0.01〜0.03mg/lとなるように添加量を制御した。これは強酸性電解水が次亜塩素酸ソーダと同等濃度において10〜20倍の殺菌効果を示すとの資料調査により条件を設定したものである。   As comparative system experiment conditions, the amount of sodium hypochlorite added at 200 mg / l was controlled so that the residual chlorine concentration in the desalted water tank 24 and the concentrated water tank 14 was maintained at 0.05 to 0.1 mg / l. In the test system, electrolyzed acid water having a residual salt concentration of 30 to 50 mg / l is generated by adjusting the applied voltage by the electrolyzed water generating device 42, and the residual salt concentrations in the desalted water tank 24 and the concentrated water tank 14 are each 0. The amount added was controlled to be 01 to 0.03 mg / l. This is a condition set by a material survey that strongly acidic electrolyzed water exhibits a sterilizing effect 10 to 20 times at the same concentration as sodium hypochlorite.

実験後に、電気透析の分解、目視によるスライム生成状況を確認したところ、試験系と比較系においてスライムは確認されなかった。また脱塩水、濃縮水の循環流量の低下や脱塩性能の低下もなかった。なお別途実験により、殺菌剤を投入しない場合の連続実験では実験開始後2週間で脱塩流量低下が観測され、分解洗浄時に、電気透析槽1内においてスライムが生成されているのを目視確認している。   After the experiment, when the electrodialysis was decomposed and the slime production state was visually confirmed, no slime was confirmed in the test system and the comparative system. Further, there was no decrease in the circulating flow rate of desalted water and concentrated water, and no decrease in desalting performance. In a separate experiment in which no bactericidal agent was added, a decrease in the desalination flow rate was observed two weeks after the start of the experiment, and it was visually confirmed that slime was generated in the electrodialysis tank 1 during decomposition and cleaning. ing.

そして従来技術において殺菌剤として使用した残塩素濃度200ppmの溶液使用量が3kg/tonであったのに対し、試験系において電解水(電解酸性水、電解アルカリ水)投入のみの条件で、電気透析槽1のイオン交換膜(陰イオン交換膜A、陽イオン交換膜K)の表面や、濃縮水および脱塩水の流路にスライムが発生することなく、電気透析槽1の定常運転の継続を確認した。またpH調整溶液の使用量については、10%程度の削減効果を確認した。   And while the amount of solution used with a residual chlorine concentration of 200 ppm used as a bactericide in the prior art was 3 kg / ton, electrodialysis was performed only under the condition that electrolytic water (electrolytic acid water, electrolytic alkaline water) was charged in the test system. Confirmed the continuation of steady operation of the electrodialysis tank 1 without generating slime on the surface of the ion exchange membrane (anion exchange membrane A, cation exchange membrane K) in the tank 1 or in the flow path of concentrated water and demineralized water. did. Moreover, about the usage-amount of pH adjustment solution, the reduction effect of about 10% was confirmed.

本発明は、電気透析法を用いて、低脱塩率の脱塩処理を行なう際に有用である。   The present invention is useful when performing a desalting treatment with a low desalting rate using an electrodialysis method.

1 電気透析槽
11 陰極室
12、15、22、25、41、52、62、64 ポンプ
13 陰極液タンク
14 濃縮水槽
21 陽極室
23 陽極液タンク
24 脱塩水槽
42 電解水生成装置
47 pH調整水槽
51 pH調整用アルカリ薬液タンク
61 pH調整用酸薬液タンク
A 陰イオン交換膜(アニオン膜)
K 陽イオン交換膜(カチオン膜)
DESCRIPTION OF SYMBOLS 1 Electrodialysis tank 11 Cathode chamber 12, 15, 22, 25, 41, 52, 62, 64 Pump 13 Catholyte tank 14 Concentrated water tank 21 Anode chamber 23 Anode solution tank 24 Desalted water tank 42 Electrolyzed water production apparatus 47 pH adjustment water tank 51 Alkaline chemical tank for pH adjustment 61 Acid chemical tank for pH adjustment A Anion exchange membrane (anion membrane)
K cation exchange membrane (cation membrane)

Claims (4)

電気透析槽を用いて、井水またはインフラ排水を処理原水として脱塩処理する方法において、
電気透析槽からの濃縮水を電気分解し、
当該電気分解によって生じた電解生成酸性水を、前記電気透析槽の脱塩水循環系および濃縮水循環系、または処理原水系に導入することを特徴とする脱塩処理方法。
In a method of desalinating well water or infrastructure drainage as raw water using an electrodialysis tank,
Electrolyze the concentrated water from the electrodialysis tank,
A desalinization treatment method, wherein the electrolytically generated acidic water generated by the electrolysis is introduced into a desalted water circulation system and a concentrated water circulation system or a treated raw water system of the electrodialysis tank.
前記電気分解によって生じた電解生成アルカリ水を、濃縮廃棄水系に供給して、当該濃縮廃棄水のpH調整を行なうことを特徴とする、請求項1に記載の脱塩処理方法。 The desalinization processing method according to claim 1, wherein the electrolytically generated alkaline water generated by the electrolysis is supplied to a concentrated waste water system to adjust the pH of the concentrated waste water. 前記処理原水の電気伝導度は、40〜300mS/mであることを特徴とする、請求項1または2に記載の脱塩処理方法。 The desalination treatment method according to claim 1 or 2, wherein the electric conductivity of the treated raw water is 40 to 300 mS / m. 請求項1〜3のいずれかに記載の脱塩処理方法を実施するためのシステムであって、
電気透析槽からの濃縮水の一部を有隔膜電気分解処理する電解水生成装置と、
当該電解水生成装置で生成された電解生成酸性水を、前記電気透析槽の脱塩水循環系および濃縮水循環系、または処理原水導入系に導入する配管と、
当該電解水生成装置で生成された電解生成アルカリ水を、濃縮廃棄水系に導入する配管と、
を有することを特徴とする、脱塩処理システム。
A system for carrying out the desalting method according to any one of claims 1 to 3,
An electrolyzed water generator for electrolyzing a part of the concentrated water from the electrodialysis tank;
Piping for introducing the electrolytically generated acidic water generated by the electrolyzed water generating device into the desalted water circulation system and the concentrated water circulation system of the electrodialysis tank, or the treated raw water introduction system;
Piping for introducing electrolytically generated alkaline water generated by the electrolytic water generator into the concentrated waste water system;
A desalinization treatment system comprising:
JP2011087063A 2011-04-11 2011-04-11 Desalination treatment method and desalination treatment system Active JP5731262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011087063A JP5731262B2 (en) 2011-04-11 2011-04-11 Desalination treatment method and desalination treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011087063A JP5731262B2 (en) 2011-04-11 2011-04-11 Desalination treatment method and desalination treatment system

Publications (2)

Publication Number Publication Date
JP2012217943A true JP2012217943A (en) 2012-11-12
JP5731262B2 JP5731262B2 (en) 2015-06-10

Family

ID=47270060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011087063A Active JP5731262B2 (en) 2011-04-11 2011-04-11 Desalination treatment method and desalination treatment system

Country Status (1)

Country Link
JP (1) JP5731262B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014150792A1 (en) 2013-03-15 2014-09-25 Hydronovation, Inc. Electrochemical water treatment system and method
JP2015509048A (en) * 2012-02-02 2015-03-26 タンジェント カンパニー エルエルシー Deionization of electrochemically reclaimed water
CN104623750A (en) * 2013-11-13 2015-05-20 甘布罗伦迪亚股份公司 Dialysis monitors, use of battery units of dialysis monitors,and methods relating to heating of fluids
WO2018164143A1 (en) * 2017-03-10 2018-09-13 株式会社アストム Electrodialysis apparatus and reverse electrodialysis apparatus
CN114162925A (en) * 2020-12-10 2022-03-11 佛山市美的清湖净水设备有限公司 Waterway system and control method of water making equipment and water making equipment
CN114162925B (en) * 2020-12-10 2024-05-03 佛山市美的清湖净水设备有限公司 Waterway system of water making equipment, control method and water making equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258690A (en) * 1987-04-15 1988-10-26 Kubota Ltd Treatment of organic sewage
JPH022830A (en) * 1988-06-15 1990-01-08 Babcock Hitachi Kk Electric dialysis device
JPH06269777A (en) * 1993-03-16 1994-09-27 Asahi Glass Co Ltd Fresh water producing process
JPH09131591A (en) * 1995-11-08 1997-05-20 Tokico Ltd Electrolytic water generator
JPH10128338A (en) * 1996-10-29 1998-05-19 Ebara Corp Method and device for preventing scale from being deposited in electric regeneration type continuous desalting apparatus
JP2007098272A (en) * 2005-10-04 2007-04-19 Kobelco Eco-Solutions Co Ltd Ammonia-containing water treatment method and apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63258690A (en) * 1987-04-15 1988-10-26 Kubota Ltd Treatment of organic sewage
JPH022830A (en) * 1988-06-15 1990-01-08 Babcock Hitachi Kk Electric dialysis device
JPH06269777A (en) * 1993-03-16 1994-09-27 Asahi Glass Co Ltd Fresh water producing process
JPH09131591A (en) * 1995-11-08 1997-05-20 Tokico Ltd Electrolytic water generator
JPH10128338A (en) * 1996-10-29 1998-05-19 Ebara Corp Method and device for preventing scale from being deposited in electric regeneration type continuous desalting apparatus
US5837124A (en) * 1996-10-29 1998-11-17 Ebara Corporation Method and apparatus for preventing scale from precipitating in producing deionized water
JP2007098272A (en) * 2005-10-04 2007-04-19 Kobelco Eco-Solutions Co Ltd Ammonia-containing water treatment method and apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015509048A (en) * 2012-02-02 2015-03-26 タンジェント カンパニー エルエルシー Deionization of electrochemically reclaimed water
WO2014150792A1 (en) 2013-03-15 2014-09-25 Hydronovation, Inc. Electrochemical water treatment system and method
EP2969144A4 (en) * 2013-03-15 2016-10-12 Hydronovation Inc Electrochemical water treatment system and method
US9574277B2 (en) 2013-03-15 2017-02-21 Hydronovation, Inc. Electrochemical water softening system
AU2014235607B2 (en) * 2013-03-15 2017-12-07 Evoqua Water Technologies Pte. Ltd. Electrochemical water treatment system and method
CN104623750A (en) * 2013-11-13 2015-05-20 甘布罗伦迪亚股份公司 Dialysis monitors, use of battery units of dialysis monitors,and methods relating to heating of fluids
US10610628B2 (en) 2013-11-13 2020-04-07 Gambro Lundia Ab Dialysis monitors, methods relating to heating of fluids, and use of battery units of dialysis monitors
WO2018164143A1 (en) * 2017-03-10 2018-09-13 株式会社アストム Electrodialysis apparatus and reverse electrodialysis apparatus
JPWO2018164143A1 (en) * 2017-03-10 2020-01-16 株式会社アストム Electrodialysis and reverse electrodialysis
CN114162925A (en) * 2020-12-10 2022-03-11 佛山市美的清湖净水设备有限公司 Waterway system and control method of water making equipment and water making equipment
CN114162925B (en) * 2020-12-10 2024-05-03 佛山市美的清湖净水设备有限公司 Waterway system of water making equipment, control method and water making equipment

Also Published As

Publication number Publication date
JP5731262B2 (en) 2015-06-10

Similar Documents

Publication Publication Date Title
Valero et al. Electrodialysis technology: theory and applications
JP5873771B2 (en) Organic wastewater treatment method and treatment apparatus
KR100874269B1 (en) High efficiency seawater electrolysis apparatus and electrolysis method including pretreatment process
JP2009095821A (en) Method of treating salt water
JP2008223115A (en) Method for treating salt water
JPH10128338A (en) Method and device for preventing scale from being deposited in electric regeneration type continuous desalting apparatus
KR102207458B1 (en) A fresh water system capable of producing hydrogen gas
WO2021223369A1 (en) Chemical-free electric method combined treatment process system and method for circulating water of thermal power plant
JP5731262B2 (en) Desalination treatment method and desalination treatment system
JP2018035024A (en) Method for producing sodium hypochlorite, and sodium hypochlorite production device
KR102328974B1 (en) A fresh water system capable of producing hydrogen gas
US10131553B2 (en) Electrochemical cells for supply of acid water
JP3137831B2 (en) Membrane processing equipment
Liu et al. Robust electrolysis system divided by bipolar electrode and non-conductive membrane for energy-efficient calcium hardness removal
JP3656458B2 (en) Pure water production method
TWI715974B (en) Method for removing chlorine-containing salt from industrial wastewater and apparatus thereof
CN115485245A (en) Method for treating wastewater, method for producing ultrapure water, and wastewater treatment apparatus
US11794147B2 (en) Wastewater treatment method and wastewater treatment apparatus
US20220242757A1 (en) Apparatus for producing acidic aqueous solution and method for producing acidic aqueous solution
JP2001219161A (en) Water cleaning apparatus
WO2021090583A1 (en) Water treatment system and water treatment method
Santhanam et al. A two-step electrochemical method for separating Mg (OH) 2 and CaCO3: Application to RO reject and polluted groundwater
CN110028193B (en) Waste water recycling system
KR20030026269A (en) The deionization and purification of glycelin solution using electrodeionization system
Santhanam et al. An Electrochemical Approach for Separation of Mg (Oh) 2 and Caco3 from Each Other: Application to Ro Reject and Polluted Water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150409

R150 Certificate of patent or registration of utility model

Ref document number: 5731262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150