JP2018176116A - Water treatment method - Google Patents

Water treatment method Download PDF

Info

Publication number
JP2018176116A
JP2018176116A JP2017082942A JP2017082942A JP2018176116A JP 2018176116 A JP2018176116 A JP 2018176116A JP 2017082942 A JP2017082942 A JP 2017082942A JP 2017082942 A JP2017082942 A JP 2017082942A JP 2018176116 A JP2018176116 A JP 2018176116A
Authority
JP
Japan
Prior art keywords
chlorine
water
water treatment
treatment method
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017082942A
Other languages
Japanese (ja)
Other versions
JP6565966B2 (en
Inventor
勝郎 依田
Katsuro Yoda
勝郎 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2017082942A priority Critical patent/JP6565966B2/en
Priority to PCT/JP2018/015019 priority patent/WO2018193907A1/en
Publication of JP2018176116A publication Critical patent/JP2018176116A/en
Application granted granted Critical
Publication of JP6565966B2 publication Critical patent/JP6565966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Hydrology & Water Resources (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent decomposition of chlorine and generation of harmful substances such as trihalomethane when suppressing biofouling in a water treatment device by addition of a chlorine type oxidizing agent to supply water or generation of chlorine by electrolysis, and to suppress biofouling in an RO membrane device by eliminating the need of adding a reducing agent at an inlet side of an RO membrane or installing an activated carbon column.SOLUTION: A water treatment method is a method for supplying supply water to a water treatment device after making free chlorine present in the supply water by adding a chlorine type oxidizing agent to the supply water or by generating chlorine by electrolysis. In the water treatment method, before making free chlorine present in the supply water, a nitrogen compound is added as a chlorine stabilizer to the supply water.SELECTED DRAWING: Figure 1

Description

本発明は水処理方法に係り、詳しくは、海水淡水化用逆浸透膜(RO膜)装置等の水処理装置におけるバイオファウリングを抑制する水処理方法に関する。   The present invention relates to a water treatment method, and more particularly, to a water treatment method for suppressing biofouling in a water treatment apparatus such as a reverse osmosis membrane (RO membrane) apparatus for seawater desalination.

工業用水、市水、井水、海水、河川水、湖沼水、工場廃水などを水処理して純水等を製造する手段として、RO膜装置が広く利用されている。この場合、これらの被処理水に含まれる微生物によるバイオファウリングを抑制するために、塩素、次亜塩素酸ナトリウム、亜塩素酸ナトリウム等の塩素系酸化剤が被処理水(供給水)に添加される。また、電気分解により塩素を生成させることも行われている。   As a means for treating industrial water, city water, well water, seawater, river water, lake water, factory wastewater and the like to produce pure water and the like, RO membrane devices are widely used. In this case, a chlorine-based oxidizing agent such as chlorine, sodium hypochlorite or sodium chlorite is added to the water to be treated (feed water) in order to suppress biofouling caused by microorganisms contained in the water to be treated. Be done. In addition, generation of chlorine by electrolysis is also performed.

塩素系酸化剤の添加や電気分解により遊離塩素を存在させた水をRO膜処理すると、RO膜が酸化劣化を受ける。特にポリアミド系のRO膜では酸化劣化し易い。このため、従来、RO膜装置の前段に活性炭塔を設置して塩素等の残留酸化剤を除去するか(特許文献1)、RO膜装置の前段で亜硫酸水素ナトリウム(SBS)や亜硫酸ナトリウムなどの還元剤を添加して塩素を分解除去する(特許文献2)等の処理がなされている。   When RO film treatment is performed on water containing free chlorine by addition of a chlorine-based oxidizing agent or electrolysis, the RO film is oxidatively deteriorated. In particular, in the case of a polyamide-based RO film, it is easily oxidized and deteriorated. Therefore, conventionally, an activated carbon tower is installed at the front stage of the RO membrane apparatus to remove residual oxidant such as chlorine (Patent Document 1), or sodium bisulfite (SBS) or sodium sulfite etc. at the front stage of the RO membrane apparatus. A treatment such as adding a reducing agent to decompose and remove chlorine (Patent Document 2) is performed.

ただし、活性炭塔を設置した場合、塔内でバイオファウリングが発生して後段装置を汚染することがある、イニシャルコストがかかる、などの欠点があり、一般的には還元剤の添加による残留酸化剤の分解除去が行われている。   However, when an activated carbon tower is installed, there is a disadvantage that biofouling occurs in the tower to contaminate the post-stage apparatus, initial cost is increased, etc. Generally, residual oxidation due to addition of a reducing agent The agent has been decomposed and removed.

図2は、従来の海水淡水化設備の一例を示す系統図であり、塩素系酸化剤の添加による図2(a)では、海水が送水ポンプにより原水槽1に送給される過程で次亜塩素酸ナトリウム(NaClO)等の塩素系酸化剤が添加され、その後、原水槽1から反応槽2に送給される過程で塩化第二鉄(FeCl)等の無機凝集剤が添加されて反応槽2で凝集処理され、次いで二層濾過器3で濾過された後、給水槽4、保安フィルター5を経てRO膜装置6でRO膜処理され、RO膜透過水が処理水として取り出されるが、保安フィルター5の入口側では、残留酸化剤を分解除去するために、亜硫酸水素ナトリウム(SBS)等の還元剤が添加される。電気分解による図2(b)では、海水が電解装置7で電気分解され、電気分解で生成した塩素を含む海水が原水槽1を経て、図2(a)におけると同様に凝集、濾過された後、SBS等の還元剤が添加されてRO膜装置6で処理される。
なお、この還元剤の添加により、供給水中に遊離塩素が存在しなくなる結果、RO膜装置にバイオファウリングが起こることを防止するために、還元剤の添加後、RO膜に対する劣化影響の少ない結合塩素系スライムコントロール剤(例えば栗田工業(株)製「クリバーターIK−110」)が添加される場合もある。
FIG. 2 is a system diagram showing an example of a conventional seawater desalination plant, and in FIG. 2 (a) by the addition of a chlorine-based oxidizing agent, the sea water is supplied to the raw water tank 1 by the water pump in FIG. A chlorine-based oxidizing agent such as sodium chlorate (NaClO) is added, and then an inorganic flocculant such as ferric chloride (FeCl 3 ) is added in the process of being supplied from the raw water tank 1 to the reaction tank 2 After being coagulated in tank 2 and then filtered in double-layer filter 3, it is subjected to RO membrane processing by RO membrane device 6 through water supply tank 4 and security filter 5, and RO membrane permeated water is taken out as treated water, At the inlet side of the security filter 5, a reducing agent such as sodium bisulfite (SBS) is added to decompose and remove the residual oxidizing agent. In FIG. 2 (b) by electrolysis, seawater is electrolyzed by the electrolytic device 7, and seawater containing chlorine generated by the electrolysis passes through the raw water tank 1 and is aggregated and filtered as in FIG. 2 (a). Thereafter, a reducing agent such as SBS is added and processed in the RO membrane device 6.
In addition, as a result that free chlorine is not present in the feed water due to the addition of this reducing agent, in order to prevent the occurrence of biofouling in the RO membrane device, bonding with little deterioration effect on the RO membrane after the addition of the reducing agent Chlorine-based slime control agents (for example, "Kuribata IK-110" manufactured by Kurita Kogyo Co., Ltd.) may be added.

特開平10−337563号公報JP 10-337563 A 特開平7−308671号公報JP-A-7-308671

上記従来の海水淡水化RO膜処理では、次のような問題があった。
(1) 次亜塩素酸ナトリウム等の塩素系酸化剤の添加や海水の電気分解で生成した遊離塩素は、海水中の有機物や、臭素、ヨウ素により分解され易いため、分解分を補ってバイオファウリング抑制効果を十分に得るための薬品添加量や消費電力量が多い。
(2) 海水に塩素系酸化剤を添加すると、有害なトリハロメタン等の有機塩素化合物が生成するため、特に飲料水用途では問題となる。
(3) RO膜の酸化劣化の防止のために、RO膜の入口側で還元剤の添加や活性炭塔設置による処理が必要となり、処理が複雑である。
(4) RO膜装置の前段で還元剤の添加や活性炭処理で遊離塩素を除去してしまうため、RO膜装置におけるバイオファウリングの抑制が不十分である。
(5) RO膜装置の入口で結合塩素系スライムコントロール剤を添加することにより、上記(4)の問題を解決することができるが、この場合には、更に添加する薬剤が増えることになる。
The above-described conventional seawater desalination RO membrane processing has the following problems.
(1) Free chlorine produced by the addition of chlorine-based oxidizing agents such as sodium hypochlorite and electrolysis of seawater is easily decomposed by organic substances in the seawater, bromine and iodine, so the decomposition fraction is supplemented to There is a large amount of chemical addition and power consumption to obtain sufficient ring suppression effect.
(2) Addition of a chlorine-based oxidizing agent to seawater generates harmful chlorine, such as trihalomethane, which is a problem particularly in drinking water applications.
(3) In order to prevent the oxidation deterioration of the RO membrane, the treatment is required by the addition of a reducing agent on the inlet side of the RO membrane and the installation of an activated carbon tower, and the treatment is complicated.
(4) Since the free chlorine is removed by the addition of a reducing agent and the activated carbon treatment at the front stage of the RO membrane device, the suppression of biofouling in the RO membrane device is insufficient.
(5) The problem of the above (4) can be solved by adding the combined chlorine slime control agent at the inlet of the RO membrane device, but in this case, the amount of the agent to be added is further increased.

本発明は上記した従来法の課題を解決する水処理方法を提供することを目的とする。   An object of the present invention is to provide a water treatment method which solves the problems of the above-mentioned conventional method.

本発明者は、上記課題を解決すべく、鋭意検討した結果、塩素系酸化剤の添加或いは電気分解による塩素の発生に先立ち、供給水に塩素安定化剤として窒素化合物を添加し、供給水中の塩素を安定化させることにより、塩素の分解やトリハロメタン等の生成を防止することができると共に、遊離塩素濃度の低減でRO膜の酸化劣化を防止することができ、RO膜入口側での還元剤の添加や活性炭塔の設置を不要とした上で、RO膜のバイオファウリングを効果的に抑制することが可能となることを見出した。   As a result of intensive studies to solve the above problems, the present inventor added a nitrogen compound as a chlorine stabilizer to the feed water prior to the generation of chlorine due to the addition of a chlorine-based oxidizing agent or electrolysis, By stabilizing chlorine, it is possible to prevent the decomposition of chlorine and the formation of trihalomethane etc., and to prevent the oxidation deterioration of the RO membrane by reducing the concentration of free chlorine, and the reducing agent at the RO membrane inlet side It has been found that biofouling of the RO membrane can be effectively suppressed while eliminating the need for the addition of carbon and the installation of an activated carbon tower.

即ち、本発明は以下を要旨とする。   That is, the present invention provides the following.

[1] 水処理装置への供給水に、塩素系酸化剤を添加するか或いは電気分解で塩素を発生させることにより遊離塩素を存在させた後該水処理装置に供給する水処理方法において、該供給水に遊離塩素を存在させるに先立ち、該供給水に塩素安定化剤として窒素化合物を添加することを特徴とする水処理方法。 [1] A water treatment method comprising adding a chlorine-based oxidizing agent to feed water to a water treatment apparatus or causing free chlorine to be generated by generating chlorine by electrolysis and then supplying it to the water treatment apparatus; A water treatment method comprising adding a nitrogen compound as a chlorine stabilizer to the feed water prior to the presence of free chlorine in the feed water.

[2] [1]において、前記水処理装置が逆浸透膜装置であることを特徴とする水処理方法。 [2] The water treatment method according to [1], wherein the water treatment device is a reverse osmosis membrane device.

[3] [1]又は[2]において、前記供給水が海水であることを特徴とする水処理方法。 [3] The water treatment method according to [1] or [2], wherein the supplied water is seawater.

[4] [1]ないし[3]のいずれかにおいて、前記窒素化合物がスルファミン酸化合物及び/又は有機窒素化合物であることを特徴とする水処理方法。 [4] The water treatment method according to any one of [1] to [3], wherein the nitrogen compound is a sulfamic acid compound and / or an organic nitrogen compound.

[5] [1]ないし[4]のいずれかにおいて、前記塩素系酸化剤として次亜塩素酸塩及び/又はジクロロイソシアヌル酸を前記供給水に添加することを特徴とする水処理方法。 [5] The water treatment method according to any one of [1] to [4], wherein hypochlorite and / or dichloroisocyanuric acid is added to the feed water as the chlorine-based oxidizing agent.

[6] [1]ないし[5]のいずれかにおいて、前記窒素化合物を前記供給水に0.3〜50mg/L添加することを特徴とする水処理方法。 [6] The water treatment method according to any one of [1] to [5], wherein 0.3 to 50 mg / L of the nitrogen compound is added to the feed water.

[7] [1]ないし[6]のいずれかにおいて、前記遊離塩素を存在させた後の前記供給水の残留塩素濃度を0.1〜10mg−Cl/Lに維持することを特徴とする水処理方法。 [7] In any one of [1] to [6], the residual chlorine concentration of the feed water after the presence of the free chlorine is maintained at 0.1 to 10 mg-Cl 2 / L. Water treatment method.

本発明によれば、塩素系酸化剤の添加或いは電気分解による塩素の発生に先立ち、供給水に塩素安定化剤として窒素化合物を添加し、その後、供給水中に添加又は生成させた遊離塩素を安定化させることにより、塩素の分解やトリハロメタン等の有害物質の生成を防止することができる。また、塩素を安定化塩素として供給水中に存在させ、遊離塩素濃度を低減することにより、供給水のRO膜酸化劣化性が低減されるため、RO膜入口側での還元剤の添加や活性炭塔の設置を不要とすることができ、処理を簡素化することができると共に、安定化塩素によりRO膜装置におけるバイオファウリングを効果的に抑制することが可能となる。   According to the present invention, prior to the addition of a chlorine-based oxidizing agent or the generation of chlorine by electrolysis, a nitrogen compound is added to the feed water as a chlorine stabilizer, and thereafter free chlorine added or generated in the feed water is stabilized. The decomposition can prevent the decomposition of chlorine and the formation of harmful substances such as trihalomethane. In addition, by making chlorine be present in the feed water as stabilized chlorine and reducing the free chlorine concentration, the RO membrane oxidation deterioration property of the feed water is reduced, so the addition of the reducing agent at the RO membrane inlet side and the activated carbon tower In addition, the treatment can be simplified, and the stabilized chlorine can effectively suppress biofouling in the RO membrane apparatus.

本発明の水処理方法の実施の形態の一例を示す海水淡水化設備の系統図である。It is a systematic diagram of the seawater desalination installation which shows an example of embodiment of the water treatment method of this invention. 従来の海水淡水化設備の系統図である。It is a systematic diagram of the conventional seawater desalination plant. 実験例1の結果を示すグラフである。It is a graph which shows the result of example 1 of an experiment. 実験例2の結果を示すグラフである。It is a graph which shows the result of example 2 of an experiment. 実験例3の結果を示すグラフである。7 is a graph showing the results of Experimental Example 3. 実験例4の結果を示すグラフである。7 is a graph showing the results of Experimental Example 4; 実験例5の結果を示すグラフである。7 is a graph showing the results of Experimental Example 5; 実験例6の結果を示すグラフである。It is a graph which shows the result of Experimental example 6. 比較実験例1の結果を示すグラフである。It is a graph which shows the result of the comparative example 1 of an experiment.

以下に図面を参照して本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1(a),(b)は、本発明の水処理方法を適用した海水の淡水化設備の一例を示す系統図であり、それぞれ、図2(a),(b)に示す海水の淡水化設備と同一機能を奏する部材に同一符号を付してある。
図1(a),(b)に示すように、本発明の水処理方法は、次亜塩素酸ナトリウム(NaClO)等の塩素系酸化剤の添加又は電気分解による塩素の発生に先立ち、塩素安定化剤として窒素化合物を供給水に添加して供給水中の塩素を安定化させることを特徴とする。
Fig.1 (a), (b) is a systematic diagram which shows an example of the desalination installation of the seawater to which the water treatment method of this invention is applied, The freshwater of the seawater shown to FIG. 2 (a), (b), respectively The same code | symbol is attached | subjected to the member which plays the same function as the equipment.
As shown in FIGS. 1 (a) and 1 (b), according to the water treatment method of the present invention, chlorine is stabilized prior to the generation of chlorine by the addition of a chlorine-based oxidizing agent such as sodium hypochlorite (NaClO) or electrolysis. A nitrogen compound is added to the feed water as an agent to stabilize the chlorine in the feed water.

塩素の安定化のために添加する窒素化合物としては、供給水中の塩素を安定化結合塩素又は活性化結合塩素として安定化することができるものであればよく、特に制限はないが、例えばスルファミン酸、スルファミン酸のナトリウム塩、カリウム塩、カルシウム塩、アンモニウム塩等のスルファミン酸化合物、グリシン、タウリン、トレオニン、オルニチン(Lオルニチン)、アラニン、フェニルアラニン(Lフェニルアラニン)等の有機窒素化合物が挙げられる。これらの窒素化合物は1種のみを用いてもよく、2種以上を併用してもよい。   The nitrogen compound to be added for stabilization of chlorine is not particularly limited as long as it can stabilize chlorine in feed water as stabilized combined chlorine or activated combined chlorine, and there is no particular limitation. And sulfamic acid compounds such as sodium salt, potassium salt, calcium salt and ammonium salt of sulfamic acid, and organic nitrogen compounds such as glycine, taurine, threonine, ornithine (L ornithine), alanine and phenylalanine (L phenylalanine). These nitrogen compounds may be used alone or in combination of two or more.

供給水へのこれらの窒素化合物の添加量は、用いる窒素化合物の種類、その後段で添加する塩素系酸化剤の添加量、電気分解により発生させる塩素量、それにより供給水中に維持すべき塩素濃度等によっても異なるが、0.3〜50mg/L、特に0.3〜20mg/L程度とすることが好ましい。窒素化合物の添加量が少な過ぎると、供給水中の塩素を十分に安定化することができず、多過ぎても処理コストが高くなったり、ファウリングの原因となり不適切である。   The amount of these nitrogen compounds added to the feed water depends on the type of nitrogen compound used, the amount of the chlorine-based oxidizing agent added in the latter stage, the amount of chlorine generated by electrolysis, and thereby the concentration of chlorine to be maintained in the feed water Although it varies depending on the condition etc., it is preferably about 0.3 to 50 mg / L, particularly about 0.3 to 20 mg / L. If the addition amount of the nitrogen compound is too small, chlorine in the feed water can not be stabilized sufficiently, and if too much, the treatment cost becomes high or causes fouling, which is unsuitable.

本発明においては、塩素安定化剤としての窒素化合物を上記の好適な添加量で添加して、供給水中で窒素化合物が十分に均一に拡散された後に塩素系酸化剤を添加するか電気分解により塩素を発生させることが好ましく、例えば、塩素系酸化剤を添加する場合には、図1(a)に示すように、塩素安定化剤としての窒素化合物を送水ポンプの吐出側で添加し、原水槽1で滞留する間に均一化させた後、原水槽1の出口側でNaClO等の塩素系酸化剤をFeCl等の無機凝集剤と共に添加することが好ましい。また、電気分解による場合は、図1(b)に示すように、送水ポンプの吐出側で塩素安定化剤を添加し、電解装置7における電気分解中に均一化させると共に塩素を発生させるようにすることが好ましい。 In the present invention, a nitrogen compound as a chlorine stabilizer is added in the above-mentioned suitable addition amount, and after the nitrogen compound is sufficiently uniformly diffused in the feed water, a chlorine-based oxidizing agent is added or it is electrolyzed It is preferable to generate chlorine. For example, when adding a chlorine-based oxidizing agent, as shown in FIG. 1 (a), a nitrogen compound as a chlorine stabilizer is added on the discharge side of the water pump, After homogenization while staying in the water tank 1, it is preferable to add a chlorine-based oxidizing agent such as NaClO together with an inorganic coagulant such as FeCl 3 at the outlet side of the raw water tank 1. Further, in the case of electrolysis, as shown in FIG. 1 (b), a chlorine stabilizer is added on the discharge side of the water pump so that the chlorine can be generated as well as uniform during electrolysis in the electrolytic device 7. It is preferable to do.

図1(a)に示すように、塩素安定化剤添加後に塩素系酸化剤を添加する場合、塩素系酸化剤としては、従来公知のものをいずれも用いることができるが、製品安全性の観点から、次亜塩素酸ナトリウム等の次亜塩素酸塩、或いはジクロロイソシアヌル酸、ジクロロイソシアヌル酸ナトリウム等のジクロロイソシアヌル酸塩等が好ましく、特に、次亜塩素酸ナトリウム或いはジクロロイソシアヌル酸を用いることが好ましい。これらの塩素系酸化剤は1種のみを用いてもよく、2種以上を併用してもよい。   As shown in FIG. 1 (a), when a chlorine-based oxidizing agent is added after adding a chlorine stabilizer, any conventionally known chlorine-based oxidizing agent can be used, but from the viewpoint of product safety From the above, hypochlorite such as sodium hypochlorite or dichloroisocyanurate such as dichloroisocyanuric acid, sodium dichloroisocyanurate and the like are preferable, and it is particularly preferable to use sodium hypochlorite or dichloroisocyanuric acid. . These chlorine-based oxidizing agents may be used alone or in combination of two or more.

塩素系酸化剤の添加量は、処理対象水系のバイオファウリングの発生傾向によっても異なるが、通常0.1〜1.0mg/L、特に0.3〜0.7mg/L程度とすることが好ましく、塩素安定化剤の窒素化合物添加後に塩素系酸化剤を上記範囲で添加することにより、RO膜装置の入口での残留塩素濃度が0.3〜1.0mg−Cl/L、特に0.5〜0.7mg−Cl/L程度となるように制御することが好ましい。RO膜装置入口での残留塩素濃度が上記下限よりも少ないと十分なバイオファウリング抑制効果を得ることができず、上記上限を超えると残留塩素中の遊離塩素の割合にもよるが、RO膜劣化のおそれがある。 The addition amount of the chlorine-based oxidizing agent is usually 0.1 to 1.0 mg / L, particularly about 0.3 to 0.7 mg / L, although it varies depending on the generation tendency of the biofouling of the water system to be treated. Preferably, the residual chlorine concentration at the inlet of the RO membrane device is 0.3 to 1.0 mg-Cl 2 / L, particularly 0, by adding a chlorine-based oxidizing agent in the above range after the addition of the nitrogen compound of the chlorine stabilizer. It is preferable to control so as to be about 0.5 to 0.7 mg-Cl 2 / L. If the residual chlorine concentration at the inlet of the RO membrane device is less than the above lower limit, sufficient biofouling suppression effect can not be obtained, and if it exceeds the above upper limit, it depends on the proportion of free chlorine in the residual chlorine, but the RO membrane There is a risk of deterioration.

また、電気分解による場合においても、塩素安定化剤の窒素化合物添加後の電気分解による塩素の発生で、RO膜装置の入口での残留塩素濃度が上記範囲となるように電気分解条件を制御することが好ましい。   In addition, even in the case of electrolysis, the electrolysis conditions are controlled so that the concentration of residual chlorine at the inlet of the RO membrane device is in the above range due to the generation of chlorine due to the electrolysis after the addition of the nitrogen compound of the chlorine stabilizer. Is preferred.

特に本発明では、塩素系酸化剤による塩素又は電気分解により生成した塩素を窒素化合物により安定化することで、RO膜装置入口での残留塩素濃度が上記範囲であって、遊離塩素濃度は0.1mg−Cl/L以下、特に0.05mg−Cl/L以下となるように制御することで、遊離塩素によるRO膜の酸化劣化を防止した上でバイオファウリング抑制効果を十分に得ることができ、RO膜装置前段での還元剤の添加や活性炭塔の設置を不要とすることができる。
とりわけ、RO膜装置入口での残留塩素に占める結合塩素(活性化結合塩素と安定化結合塩素との合計)の割合は90%以上であることが好ましく、更に、安定化結合塩素が80%以上であることが好ましい。そして、このような割合となるように、塩素安定化剤としての窒素化合物の種類や添加量を制御することにより、RO膜の劣化を防止した上で良好なバイオファウリング抑制効果を得ることができる。
In the present invention, in particular, by stabilizing the chlorine produced by the chlorine-based oxidizing agent or chlorine produced by electrolysis with a nitrogen compound, the residual chlorine concentration at the inlet of the RO membrane device is in the above range, and the free chlorine concentration is 0.2. By controlling the concentration to be 1 mg-Cl 2 / L or less, particularly 0.05 mg-Cl 2 / L or less, it is possible to prevent the oxidative degradation of the RO membrane due to free chlorine and sufficiently obtain the biofouling suppressing effect. It is possible to eliminate the need for the addition of the reducing agent at the front stage of the RO membrane device and the installation of the activated carbon tower.
In particular, the ratio of combined chlorine (total of activated combined chlorine and stabilized combined chlorine) to residual chlorine at the RO membrane apparatus inlet is preferably 90% or more, and further, 80% or more of stabilized combined chlorine Is preferred. And, by controlling the kind and the addition amount of the nitrogen compound as the chlorine stabilizer so as to become such a ratio, it is possible to obtain a good biofouling suppressing effect after preventing the deterioration of the RO film. it can.

なお、ここで、遊離塩素、活性化結合塩素、安定化結合塩素とは、後述の実施例の項に記載の方法で測定される塩素に該当し、残留塩素とは、これら遊離塩素、活性化結合塩素及び安定化結合塩素の合計である。   Here, free chlorine, activated combined chlorine, and stabilized combined chlorine correspond to chlorine measured by the method described in the section of Examples described later, and residual chlorine refers to these free chlorine, activated It is the sum of combined chlorine and stabilized combined chlorine.

本発明では、上記の通り、残留塩素濃度を制御することにより、RO膜装置の入口での還元剤の添加や活性炭塔の設置を不要とすることができるが、何らこれらの操作や装置を排除するものではなく、必要に応じて少量の還元剤を添加してもよい。   In the present invention, as described above, by controlling the residual chlorine concentration, the addition of a reducing agent at the inlet of the RO membrane device and the installation of an activated carbon tower can be omitted, but any of these operations and devices are excluded. However, if necessary, a small amount of reducing agent may be added.

図1では、本発明を海水の淡水化設備に適用した場合を例示したが、本発明において、水処理装置はRO膜装置に限らず、バイオファウリング抑制のために塩素系酸化剤の添加又は電気分解を行うが、装置の劣化防止のために、その入口側で遊離塩素を除去する必要があるイオン交換装置等の水処理装置による水処理にも適用することができる。また、供給水は海水に限らず、河川水や井水、湖沼水、各種排水等を供給水とする場合にも適用することができる。ただし、塩素の分解、トリハロメタン等の有機塩素化合物の生成、RO膜劣化といった課題の解決の面から、海水のRO膜装置による淡水化設備に適用した場合、特に本発明の効果が有効に発揮される。   Although FIG. 1 exemplifies the case where the present invention is applied to seawater desalination equipment, in the present invention, the water treatment apparatus is not limited to the RO membrane apparatus, but addition of a chlorine-based oxidizing agent or bio-fouling suppression is possible. Although it electrolyzes, in order to prevent deterioration of an apparatus, it can apply also to the water treatment by water treatment apparatuses, such as an ion exchange apparatus which needs to remove free chlorine in the entrance side. Further, the supply water is not limited to seawater, and can be applied to cases where river water, well water, lake water, various drainages, etc. are used as supply water. However, from the viewpoint of solving problems such as decomposition of chlorine, formation of organic chlorine compounds such as trihalomethane, and RO membrane deterioration, the effect of the present invention is particularly effectively exhibited when applied to desalination equipment using seawater RO membrane apparatus. Ru.

以下に実施例に代わる実験例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be more specifically described by way of experimental examples instead of the examples.

以下の実験例において、塩素濃度(mg−Cl/L)の測定には、東亜DKK社製ポケット塩素測定器「HACH2470」を用い、以下の測定方法ないし算出方法で各塩素濃度を求めた。 In the following experimental examples, for measuring the chlorine concentration (mg-Cl 2 / L), each chlorine concentration was determined by the following measuring method or calculating method using a pocket chlorine measuring instrument "HACH2470" manufactured by Toa DKK.

遊離塩素濃度:遊離塩素測定用試薬であるDPD(Free)試薬による5〜30秒後
の塩素濃度測定結果(mg−Cl/L)
活性化結合塩素濃度:遊離塩素測定用試薬であるDPD(Free)試薬による300
秒後の塩素濃度測定結果(mg−Cl/L)から、上記遊離塩素濃度
(mg−Cl/L)の測定結果を差し引いた値
安定化結合塩素濃度:全塩素測定用試薬であるDPD(Total)試薬による180
秒後の塩素濃度測定結果(mg−Cl/L)から、遊離塩素測定用試
薬であるDPD(Free)試薬による300秒後の塩素濃度測定結果
(mg−Cl/L)を差し引いた値
残留塩素濃度:上記遊離塩素濃度と活性化結合塩素濃度と安定化結合塩素濃度の合計
(mg−Cl/L)
Free chlorine concentration: After 5 to 30 seconds with DPD (Free) reagent, a reagent for measuring free chlorine
Chlorine concentration measurement result (mg-Cl 2 / L)
Activated bound chlorine concentration: 300 with DPD (Free) reagent, a reagent for free chlorine measurement
From the chlorine concentration measurement result after 2 seconds (mg-Cl 2 / L), the above free chlorine concentration
The value obtained by subtracting the measurement result of (mg-Cl 2 / L) Stabilized combined chlorine concentration: 180 by DPD (Total) reagent which is a reagent for total chlorine measurement
From the chlorine concentration measurement result (mg-Cl 2 / L) after 1 second , a test for free chlorine measurement
Measurement result of chlorine concentration after 300 seconds by DPD (Free) reagent which is a medicine
The value obtained by subtracting (mg-Cl 2 / L) Residual chlorine concentration: Sum of the above free chlorine concentration, activated combined chlorine concentration, and stabilized combined chlorine concentration
(Mg-Cl 2 / L)

海水としては大洗海水を用い、ビーカー試験を実施した。   A beaker test was performed using Oarai seawater as seawater.

[実験例1]
海水に塩素安定化剤としてスルファミン酸を添加したときの効果を調べる実験を行った。
スルファミン酸30mg/Lを海水に添加して1分間均一に撹拌混合した後、次亜塩素酸ナトリウムを1.5mg−Cl/L添加し、5分後と60分後の各塩素濃度を調べた。
別に、海水に次亜塩素酸ナトリウムを1.5mg−Cl/L添加した後、1分経過後にスルファミン酸30mg/Lを添加し、5分後と60分後の各塩素濃度を調べた。
これらの結果を図3に示す。
図3中、「(後)スルファミン酸」は次亜塩素酸ナトリウム添加後にスルファミン酸を添加した場合を示し、「(先)スルファミン酸」は次亜塩素酸ナトリウム添加前にスルファミン酸を添加した場合を示す。以下の実験例2〜6においても同様である。
[Experimental Example 1]
An experiment was conducted to investigate the effect of adding sulfamic acid as a chlorine stabilizer to seawater.
After adding 30 mg / L of sulfamic acid to seawater and stirring and mixing uniformly for 1 minute, add 1.5 mg-Cl 2 / L of sodium hypochlorite, and check each chlorine concentration after 5 minutes and after 60 minutes The
Separately, after adding sodium hypochlorite 1.5 mg-Cl 2 / L to seawater, 30 mg / L of sulfamic acid was added after 1 minute, and each chlorine concentration after 5 minutes and after 60 minutes was examined.
These results are shown in FIG.
In FIG. 3, "(after) sulfamic acid" shows the case where sulfamic acid is added after sodium hypochlorite addition, and "(previous) sulfamic acid" is the case where sulfamic acid is added before sodium hypochlorite addition. Indicates The same applies to the following Experimental Examples 2 to 6.

[実験例2〜6]
スルファミン酸30mg/Lの代わりにそれぞれ以下のものを7.5mg/L添加したこと以外は実験例1と同様に、各々添加効果を調べ、結果をそれぞれ図4〜8に示した。
実施例2:グリシン
実施例3:フェニルアラニン
実施例4:トレオニン
実施例5:オルニチン
実施例6:タウリン
[Experimental Examples 2 to 6]
The effect of each addition was examined in the same manner as in Experimental Example 1 except that 7.5 mg / L of each of the following was added instead of 30 mg / L of sulfamic acid, and the results are shown in FIGS.
Example 2: Glycine Example 3: phenylalanine Example 4: threonine Example 5: ornithine Example 6: taurine

[比較実験例1]
海水に次亜塩素酸ナトリウム(NaClO)を1.5mg−Cl/L又は2.5mg−Cl/L添加し、5分後又は60分後の各塩素濃度を測定し、結果を図9に示した。
[Comparative Experiment 1]
Sodium hypochlorite (NaClO) of 1.5 mg-Cl 2 / L or 2.5 mg-Cl 2 / L was added to seawater, and each chlorine concentration was measured after 5 minutes or after 60 minutes, and the results are shown in FIG. It was shown to.

図3〜9から次のことが分かる。
次亜塩素酸ナトリウムのみの添加の場合、1.5mg−Cl/Lの添加では、残留塩素濃度は60分後に残留塩素濃度0.4mg−Cl/Lにまで低下してしまい、2.5mg−Cl/Lの高濃度添加でも60分後には1.2mg−Cl/Lを下回る結果となる(図9)。
これに対して、塩素安定化剤として窒素化合物を添加した後次亜塩素酸ナトリウムを添加することにより、遊離塩素濃度は低減しても活性化結合塩素及び安定化結合塩素濃度が増え、次亜塩素酸ナトリウムのみを添加した場合に比べて残留塩素濃度を高く維持することができ、次亜塩素酸ナトリウム1.5mg−Cl/Lの添加で、60分後でも残留塩素濃度を1.2〜1.5mg−Cl/L程度に維持することができている。しかし、同じ窒素化合物であっても、次亜塩素酸ナトリウム添加後に添加した場合には、このような効果は得られない(図3〜8)。
The following can be understood from FIGS.
In the case of addition of only sodium hypochlorite, the addition of 1.5 mg-Cl 2 / L causes the residual chlorine concentration to drop to a residual chlorine concentration of 0.4 mg-Cl 2 / L after 60 minutes. resulting in less than 1.2mg-Cl 2 / L even after 60 minutes at high concentrations the addition of 5mg-Cl 2 / L (Fig. 9).
On the other hand, addition of a nitrogen compound as a chlorine stabilizer followed by sodium hypochlorite increases the concentration of activated combined chlorine and stabilized combined chlorine even though the concentration of free chlorine decreases, The residual chlorine concentration can be maintained higher than when only sodium chlorate is added, and the residual chlorine concentration is 1.2 even after 60 minutes by the addition of sodium hypochlorite 1.5 mg-Cl 2 / L. It can be maintained at about 1.5 mg-Cl 2 / L. However, even if it is the same nitrogen compound, such an effect is not acquired when adding after sodium hypochlorite addition (FIGS. 3-8).

これらの結果より、本発明によれば、予め塩素安定化剤として窒素化合物を添加した後、次亜塩素酸ナトリウム等の塩素系酸化剤を添加したり電気分解で遊離塩素を発生させることにより、供給水中の塩素を安定化させることができ、
1) 海水中の有機物、臭素、ヨウ素による塩素の分解や消費を抑えることができるので、バイオファウリングの抑制に必要な塩素系酸化剤添加量の削減又は電気分解装置の消費電力の低減を図ることができる。
2) 遊離塩素濃度を低減することでRO膜の劣化などの影響を低減することができる。場合によってはRO膜装置の手前で還元剤や活性炭塔での分解処理を行うことなく、RO膜のバイオファウリングを抑制することができる。
3) 塩素を安定化することにより、トリハロメタンなどの有害物の生成を抑制することができる。
といった優れた効果を得ることができることが分かる。
また、窒素化合物の後添加では、先添加におけるような効果が得られないことから、本発明の効果は、単に塩素系酸化剤を窒素化合物で安定化させて結合塩素系酸化剤として添加するものとは全く異なるものであることが分かる。
From these results, according to the present invention, after a nitrogen compound is previously added as a chlorine stabilizer, a chlorine-based oxidizing agent such as sodium hypochlorite is added, or free chlorine is generated by electrolysis. Can stabilize chlorine in the feed water,
1) It is possible to suppress the decomposition and consumption of chlorine due to organic matter, bromine and iodine in seawater, so reduce the amount of chlorine-based oxidant addition necessary for suppressing biofouling and reduce the power consumption of the electrolytic device be able to.
2) By reducing the concentration of free chlorine, it is possible to reduce the effects of deterioration of the RO membrane and the like. In some cases, biofouling of the RO membrane can be suppressed without performing decomposition treatment in a reducing agent or an activated carbon tower before the RO membrane device.
3) Stabilization of chlorine can suppress the formation of harmful substances such as trihalomethane.
It can be seen that such excellent effects can be obtained.
In addition, the effect of the present invention can be obtained by simply stabilizing the chlorine-based oxidizing agent with the nitrogen compound and adding it as a combined chlorine-based oxidizing agent, since the effect as in the prior addition can not be obtained by post-addition of nitrogen compounds. It turns out that is completely different.

1 原水槽
2 反応槽
3 2層式濾過器
4 給水槽
5 保安フィルター
6 RO膜装置
7 電解装置
1 original water tank 2 reaction tank 3 two-layer type filter 4 water supply tank 5 security filter 6 RO membrane device 7 electrolyzer

Claims (7)

水処理装置への供給水に、塩素系酸化剤を添加するか或いは電気分解で塩素を発生させることにより遊離塩素を存在させた後該水処理装置に供給する水処理方法において、
該供給水に遊離塩素を存在させるに先立ち、該供給水に塩素安定化剤として窒素化合物を添加することを特徴とする水処理方法。
In the water treatment method, a chlorine-based oxidizing agent is added to feed water to a water treatment apparatus, or free chlorine is made to exist by generating chlorine by electrolysis and then supplied to the water treatment apparatus,
A water treatment method comprising adding a nitrogen compound as a chlorine stabilizer to the feed water prior to the presence of free chlorine in the feed water.
請求項1において、前記水処理装置が逆浸透膜装置であることを特徴とする水処理方法。   The water treatment method according to claim 1, wherein the water treatment device is a reverse osmosis membrane device. 請求項1又は2において、前記供給水が海水であることを特徴とする水処理方法。   The water treatment method according to claim 1, wherein the supply water is seawater. 請求項1ないし3のいずれか1項において、前記窒素化合物がスルファミン酸化合物及び/又は有機窒素化合物であることを特徴とする水処理方法。   The water treatment method according to any one of claims 1 to 3, wherein the nitrogen compound is a sulfamic acid compound and / or an organic nitrogen compound. 請求項1ないし4のいずれか1項において、前記塩素系酸化剤として次亜塩素酸塩及び/又はジクロロイソシアヌル酸を前記供給水に添加することを特徴とする水処理方法。   The water treatment method according to any one of claims 1 to 4, wherein hypochlorite and / or dichloroisocyanuric acid is added to the feed water as the chlorine-based oxidizing agent. 請求項1ないし5のいずれか1項において、前記窒素化合物を前記供給水に0.3〜50mg/L添加することを特徴とする水処理方法。   The water treatment method according to any one of claims 1 to 5, wherein 0.3 to 50 mg / L of the nitrogen compound is added to the feed water. 請求項1ないし6のいずれか1項において、前記遊離塩素を存在させた後の前記供給水の残留塩素濃度を0.1〜10mg−Cl/Lに維持することを特徴とする水処理方法。 The water treatment method according to any one of claims 1 to 6, wherein the residual chlorine concentration of the feed water after the presence of the free chlorine is maintained at 0.1 to 10 mg-Cl 2 / L. .
JP2017082942A 2017-04-19 2017-04-19 Water treatment method Active JP6565966B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017082942A JP6565966B2 (en) 2017-04-19 2017-04-19 Water treatment method
PCT/JP2018/015019 WO2018193907A1 (en) 2017-04-19 2018-04-10 Water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017082942A JP6565966B2 (en) 2017-04-19 2017-04-19 Water treatment method

Publications (2)

Publication Number Publication Date
JP2018176116A true JP2018176116A (en) 2018-11-15
JP6565966B2 JP6565966B2 (en) 2019-08-28

Family

ID=63855791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017082942A Active JP6565966B2 (en) 2017-04-19 2017-04-19 Water treatment method

Country Status (2)

Country Link
JP (1) JP6565966B2 (en)
WO (1) WO2018193907A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158253A1 (en) * 2021-01-20 2022-07-28 栗田工業株式会社 Membrane separation method

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07124559A (en) * 1993-11-08 1995-05-16 Toyobo Co Ltd Sterilization of water to be treated in seawater desalting process
US20040166136A1 (en) * 2002-10-07 2004-08-26 Alcide Corporation Acidified chlorite compositions containing nitrogenous stabilizers and systems and methods related thereto
JP2006022097A (en) * 2004-07-02 2006-01-26 Rohm & Haas Co Germicidal composition
JP2006289298A (en) * 2005-04-13 2006-10-26 Ase:Kk Water treatment method and water treatment device
WO2012133620A1 (en) * 2011-03-30 2012-10-04 栗田工業株式会社 Membrane-separation method
JP2014529497A (en) * 2011-08-22 2014-11-13 ザ ウォーター イニシアティブ,エルエルシー Water purification system and water quality improvement system
JP2015058405A (en) * 2013-09-19 2015-03-30 三菱瓦斯化学株式会社 Marine organism adhesion prevention method
JP2015063475A (en) * 2013-09-24 2015-04-09 栗田工業株式会社 Antibacterial/algicidal method of cooling water system and antibacterial/algicidal agent
JP2016120466A (en) * 2014-12-25 2016-07-07 オルガノ株式会社 Filtration treatment system and filtration treatment method
JP2016120457A (en) * 2014-12-25 2016-07-07 オルガノ株式会社 Filtration treatment system and filtration treatment method
WO2016158633A1 (en) * 2015-03-31 2016-10-06 栗田工業株式会社 Reverse osmosis membrane treatment system operation method and reverse osmosis membrane treatment system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07124559A (en) * 1993-11-08 1995-05-16 Toyobo Co Ltd Sterilization of water to be treated in seawater desalting process
US20040166136A1 (en) * 2002-10-07 2004-08-26 Alcide Corporation Acidified chlorite compositions containing nitrogenous stabilizers and systems and methods related thereto
JP2006022097A (en) * 2004-07-02 2006-01-26 Rohm & Haas Co Germicidal composition
JP2006289298A (en) * 2005-04-13 2006-10-26 Ase:Kk Water treatment method and water treatment device
WO2012133620A1 (en) * 2011-03-30 2012-10-04 栗田工業株式会社 Membrane-separation method
JP2014529497A (en) * 2011-08-22 2014-11-13 ザ ウォーター イニシアティブ,エルエルシー Water purification system and water quality improvement system
JP2015058405A (en) * 2013-09-19 2015-03-30 三菱瓦斯化学株式会社 Marine organism adhesion prevention method
JP2015063475A (en) * 2013-09-24 2015-04-09 栗田工業株式会社 Antibacterial/algicidal method of cooling water system and antibacterial/algicidal agent
JP2016120466A (en) * 2014-12-25 2016-07-07 オルガノ株式会社 Filtration treatment system and filtration treatment method
JP2016120457A (en) * 2014-12-25 2016-07-07 オルガノ株式会社 Filtration treatment system and filtration treatment method
WO2016158633A1 (en) * 2015-03-31 2016-10-06 栗田工業株式会社 Reverse osmosis membrane treatment system operation method and reverse osmosis membrane treatment system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158253A1 (en) * 2021-01-20 2022-07-28 栗田工業株式会社 Membrane separation method
JP2022111534A (en) * 2021-01-20 2022-08-01 栗田工業株式会社 Membrane separation method
JP7243746B2 (en) 2021-01-20 2023-03-22 栗田工業株式会社 Membrane separation method
CN116710194A (en) * 2021-01-20 2023-09-05 栗田工业株式会社 Membrane separation process
CN116710194B (en) * 2021-01-20 2024-05-07 栗田工业株式会社 Membrane separation process

Also Published As

Publication number Publication date
JP6565966B2 (en) 2019-08-28
WO2018193907A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
AU2016240613B2 (en) Reverse osmosis membrane treatment system operation method and reverse osmosis membrane treatment system
WO2011021415A1 (en) Fresh water production method
JP6622424B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
WO2016104356A1 (en) Method for controlling slime on separation membrane
JP6107985B2 (en) Reverse osmosis membrane device pretreatment method and water treatment device
JP5609174B2 (en) Water treatment system
JP7013141B2 (en) Water treatment method using reverse osmosis membrane
JP2015186774A (en) Fresh water generation method and fresh water generator
TWI727106B (en) Water treatment method and water treatment device using reverse osmosis membrane
JP6970516B2 (en) Water treatment method using reverse osmosis membrane
JP5967337B1 (en) Method of operating reverse osmosis membrane treatment system and reverse osmosis membrane treatment system
JP6565966B2 (en) Water treatment method
JP5678436B2 (en) Ultrapure water production method and apparatus
JP2020037059A (en) Membrane filtration system, and membrane filtration method
US11174181B2 (en) Accelerated oxidation treatment method and accelerated oxidation treatment device
WO2018142904A1 (en) Method for modifying reverse osmosis membrane, reverse osmosis membrane, method for treating water containing non-charged substance, operation method for reverse osmosis membrane, and reverse osmosis membrane device
JP7008470B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP7050414B2 (en) Water treatment method using reverse osmosis membrane
JP2017121605A (en) Preprocessing method of inverse infiltration apparatus, and water processing equipment
JP7144922B2 (en) Reverse osmosis membrane operation method and reverse osmosis membrane device
JP6974936B2 (en) Water treatment method using reverse osmosis membrane
WO2016194443A1 (en) Method for pretreating reverse osmosis membrane device, and device for treating water
WO2024048154A1 (en) Method for producing slime-suppressing auxiliary agent for reverse osmosis membrane, slime-suppressing auxiliary agent for reverse osmosis membrane, and water treatment method
JP7141919B2 (en) Reverse osmosis membrane treatment method, reverse osmosis membrane treatment system, water treatment method, and water treatment system
WO2023120350A1 (en) Microorganism contamination prevention method for water system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190514

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190715

R150 Certificate of patent or registration of utility model

Ref document number: 6565966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150