JP2016120457A - Filtration treatment system and filtration treatment method - Google Patents

Filtration treatment system and filtration treatment method Download PDF

Info

Publication number
JP2016120457A
JP2016120457A JP2014261684A JP2014261684A JP2016120457A JP 2016120457 A JP2016120457 A JP 2016120457A JP 2014261684 A JP2014261684 A JP 2014261684A JP 2014261684 A JP2014261684 A JP 2014261684A JP 2016120457 A JP2016120457 A JP 2016120457A
Authority
JP
Japan
Prior art keywords
nanofiltration membrane
reverse osmosis
compound
bromine
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014261684A
Other languages
Japanese (ja)
Other versions
JP6534524B2 (en
Inventor
勇規 中村
Yuki Nakamura
勇規 中村
吉川 浩
Hiroshi Yoshikawa
浩 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2014261684A priority Critical patent/JP6534524B2/en
Publication of JP2016120457A publication Critical patent/JP2016120457A/en
Application granted granted Critical
Publication of JP6534524B2 publication Critical patent/JP6534524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a filtration treatment system where, after nanofiltration membrane treatment of water to be treated, in filtration treatment of performing reverse osmosis membrane treatment, the slime inhibition (sterilization) of a nanofiltration membrane and a reverse osmosis membrane by a simple method can be performed.SOLUTION: There is provided a filtration treatment system comprising: a nanofiltration membrane treatment device 12 where the treatment of water to be treated is performed by using a nanofiltration membrane; a reverse osmosis membrane treatment device 14 where the treatment of nanofiltration membrane permeable water from the nanofiltration membrane treatment device 12 is performed by using a reverse osmosis membrane; and slime inhibitor feeding means which feeds a slime inhibitor permeating the nanofiltration membrane in the prestage of the nanofiltration membrane treatment device 12, and further, less deteriorating the nanofiltration membrane and the reverse osmosis membrane than hypochlorous acid.SELECTED DRAWING: Figure 1

Description

本発明は、ナノろ過膜を用いる膜ろ過処理の後に逆浸透膜処理を行うろ過処理システムおよびろ過処理方法に関する。   The present invention relates to a filtration treatment system and a filtration treatment method for performing reverse osmosis membrane treatment after membrane filtration treatment using a nanofiltration membrane.

海水から工業用水や飲料水等の淡水を得る方法として、例えば、特許文献1には、海水をまずナノろ過膜(NF膜)で処理した後、その透過水を逆浸透膜処理して淡水を得る方法が記載されている。   As a method for obtaining fresh water such as industrial water and drinking water from seawater, for example, Patent Document 1 discloses that seawater is first treated with a nanofiltration membrane (NF membrane), and then the permeate is treated with a reverse osmosis membrane to obtain fresh water. The method of obtaining is described.

このような処理において、スライムの生成を抑制する目的で、通常は次亜塩素酸を原水中に添加する。しかし、前段のナノろ過膜処理の透過水中に次亜塩素酸が残留するので、後段で逆浸透膜による逆浸透膜処理を行う場合には、逆浸透膜処理装置に次亜塩素酸が流入してしまう。一般的に広く使用されるポリアミド製の逆浸透膜は次亜塩素酸に弱く、次亜塩素酸にさらされると逆浸透膜が劣化してしまうという問題がある。また、ナノろ過膜についても、材質によっては、次亜塩素酸により劣化してしまうという問題がある。   In such treatment, hypochlorous acid is usually added to the raw water for the purpose of suppressing slime formation. However, since hypochlorous acid remains in the permeated water of the nanofiltration membrane treatment in the previous stage, when performing reverse osmosis membrane treatment with a reverse osmosis membrane in the latter stage, hypochlorous acid flows into the reverse osmosis membrane treatment device. End up. Polyamide reverse osmosis membranes that are generally widely used are vulnerable to hypochlorous acid, and the reverse osmosis membranes deteriorate when exposed to hypochlorous acid. In addition, the nanofiltration membrane also has a problem of being deteriorated by hypochlorous acid depending on the material.

そのため、ナノろ過膜処理または逆浸透膜処理の前段で還元剤を添加したり、活性炭を用いたりして残留した次亜塩素酸を除去する必要があった。その上で、ナノろ過膜および逆浸透膜でのスライム生成を抑制するために、再度これらの膜を劣化させにくいスライム抑制剤(殺菌剤)を添加する必要があった。   Therefore, it was necessary to remove the remaining hypochlorous acid by adding a reducing agent or using activated carbon before the nanofiltration membrane treatment or reverse osmosis membrane treatment. In addition, in order to suppress slime production in the nanofiltration membrane and reverse osmosis membrane, it was necessary to add a slime inhibitor (bactericidal agent) that hardly deteriorates these membranes again.

特開2002−282855号公報JP 2002-282855 A

本発明の目的は、被処理水をナノろ過膜処理後、逆浸透膜処理するろ過処理において、簡易な方法でナノろ過膜および逆浸透膜のスライム抑制(殺菌)を行うことができるろ過処理システムおよびろ過処理方法を提供することにある。   An object of the present invention is to provide a filtration system capable of performing slime suppression (sterilization) of a nanofiltration membrane and a reverse osmosis membrane by a simple method in a filtration treatment in which water to be treated is treated with a reverse osmosis membrane after being treated with a nanofiltration membrane. And providing a filtration method.

本発明は、ナノろ過膜を用いて被処理水の処理を行うナノろ過膜処理手段と、逆浸透膜を用いて前記ナノろ過膜処理手段からのナノろ過膜透過水の処理を行う逆浸透膜処理手段と、前記ナノろ過膜処理手段の前段において前記ナノろ過膜を透過するスライム抑制剤を供給するスライム抑制剤供給手段と、を備え、前記ナノろ過膜を透過するスライム抑制剤が、臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、を含む薬剤、もしくは、臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物との反応生成物を含む薬剤である次亜臭素酸安定化組成物;塩素系酸化剤とスルファミン酸化合物とを含む薬剤、もしくは、塩素系酸化剤とスルファミン酸化合物との反応生成物を含む薬剤である次亜塩素酸安定化組成物;イソチアゾロン化合物;クロラミン化合物;ニトロアルコール化合物;ハロシアノアセトアミド化合物;の少なくとも1つであるろ過処理システムである。   The present invention relates to a nanofiltration membrane treatment means for treating water to be treated using a nanofiltration membrane, and a reverse osmosis membrane for treatment of nanofiltration membrane permeated water from the nanofiltration membrane treatment means using a reverse osmosis membrane. A slime inhibitor supplying means for supplying a slime inhibitor that permeates the nanofiltration membrane in the previous stage of the nanofiltration membrane treatment means, wherein the slime inhibitor that permeates the nanofiltration membrane is bromine-based Oxidizing agent, or a reagent containing a reaction product of a bromine compound and a chlorine-based oxidizing agent and a sulfamic acid compound, or a bromine-based oxidizing agent, or a reaction product of a bromine compound and a chlorine-based oxidizing agent, and a sulfamic acid compound A hypobromite stabilizing composition, which is a drug containing a reaction product of chlorinated oxidant and a drug containing a chlorinated oxidant and a sulfamic acid compound, or a reaction product of a chlorinated oxidant and a sulfamic acid compound. Hypochlorite stabilizing composition is drug-free; isothiazolone compounds; chloramine compounds, nitro alcohol compounds; halo cyanoacetamide compound; at least is one filtration system.

前記ろ過処理システムにおいて、前記ナノろ過膜処理手段からのナノろ過膜濃縮水および前記逆浸透膜処理手段からの逆浸透膜濃縮水のうち少なくとも1つを、前記ナノろ過膜処理手段の前段に返送する返送手段を備えることが好ましい。   In the filtration system, at least one of the nanofiltration membrane concentrated water from the nanofiltration membrane processing means and the reverse osmosis membrane concentrated water from the reverse osmosis membrane processing means is returned to the previous stage of the nanofiltration membrane processing means. It is preferable to provide return means.

本発明は、ナノろ過膜を用いて被処理水の処理を行うナノろ過膜処理工程と、逆浸透膜を用いて前記ナノろ過膜処理工程からのナノろ過膜透過水の処理を行う逆浸透膜処理工程と、前記ナノろ過膜処理工程の前段において前記ナノろ過膜を透過するスライム抑制剤を供給するスライム抑制剤供給工程と、を含み、前記ナノろ過膜を透過するスライム抑制剤が、臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、を含む薬剤、もしくは、臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物との反応生成物を含む薬剤である次亜臭素酸安定化組成物;塩素系酸化剤とスルファミン酸化合物とを含む薬剤、もしくは、塩素系酸化剤とスルファミン酸化合物との反応生成物を含む薬剤である次亜塩素酸安定化組成物;イソチアゾロン化合物;クロラミン化合物;ニトロアルコール化合物;ハロシアノアセトアミド化合物;の少なくとも1つであるろ過処理方法である。   The present invention relates to a nanofiltration membrane treatment step for treating treated water using a nanofiltration membrane, and a reverse osmosis membrane for treatment of nanofiltration membrane permeated water from the nanofiltration membrane treatment step using a reverse osmosis membrane A slime inhibitor supplying step for supplying a slime inhibitor that permeates the nanofiltration membrane in the previous stage of the nanofiltration membrane treatment step, and the slime inhibitor that permeates the nanofiltration membrane is bromine-based Oxidizing agent, or a reagent containing a reaction product of a bromine compound and a chlorine-based oxidizing agent and a sulfamic acid compound, or a bromine-based oxidizing agent, or a reaction product of a bromine compound and a chlorine-based oxidizing agent, and a sulfamic acid compound A hypobromite stabilizing composition, which is a drug containing a reaction product of chlorinated oxidant and a drug containing a chlorinated oxidant and a sulfamic acid compound, or a reaction product of a chlorinated oxidant and a sulfamic acid compound. Hypochlorite stabilizing composition is drug-free; isothiazolone compounds; chloramine compounds, nitro alcohol compounds; halo cyanoacetamide compound; at least is one filtering processing method.

前記ろ過処理方法において、前記ナノろ過膜処理工程からのナノろ過膜濃縮水および前記逆浸透膜処理工程からの逆浸透膜濃縮水のうち少なくとも1つを、前記ナノろ過膜処理工程の前段に返送する返送工程を含むことが好ましい。   In the filtration method, at least one of the nanofiltration membrane concentrated water from the nanofiltration membrane treatment step and the reverse osmosis membrane concentrated water from the reverse osmosis membrane treatment step is returned to the previous stage of the nanofiltration membrane treatment step. It is preferable to include a returning step.

本発明では、被処理水をナノろ過膜処理後、逆浸透膜処理するろ過処理において、簡易な方法でナノろ過膜および逆浸透膜のスライム抑制(殺菌)を行うことができるろ過処理システムおよびろ過処理方法を提供することができる。   In the present invention, a filtration treatment system and filtration capable of performing slime suppression (sterilization) of the nanofiltration membrane and the reverse osmosis membrane by a simple method in the filtration treatment in which the water to be treated is treated with the reverse osmosis membrane after the nanofiltration membrane treatment. A processing method can be provided.

本発明の実施形態に係るろ過処理システムの一例を示す概略構成図である。It is a schematic structure figure showing an example of a filtration processing system concerning an embodiment of the present invention. 本発明の実施形態に係るろ過処理システムの他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the filtration processing system which concerns on embodiment of this invention.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

<ろ過処理システムおよびろ過処理方法>
本発明の実施形態に係るろ過処理システムの一例の概略を図1に示し、その構成について説明する。ろ過処理システム1は、ナノろ過膜処理手段としてナノろ過膜を備えるナノろ過膜処理装置12と、逆浸透膜処理手段として逆浸透膜を備える逆浸透膜処理装置14とを備える。ろ過処理システム1は、原水槽10と、ナノろ過膜透過水槽16とを備えてもよい。
<Filtration treatment system and filtration treatment method>
The outline of an example of the filtration processing system which concerns on embodiment of this invention is shown in FIG. 1, and the structure is demonstrated. The filtration processing system 1 includes a nanofiltration membrane processing apparatus 12 including a nanofiltration membrane as nanofiltration membrane processing means, and a reverse osmosis membrane processing apparatus 14 including a reverse osmosis membrane as reverse osmosis membrane processing means. The filtration processing system 1 may include a raw water tank 10 and a nanofiltration membrane permeated water tank 16.

図1のろ過処理システム1において、原水槽10の入口には原水配管24が接続され、原水槽10の出口とナノろ過膜処理装置12の入口は、ポンプ18を介して原水供給配管26により接続されている。ナノろ過膜処理装置12の透過水出口とナノろ過膜透過水槽16の入口は、ナノろ過膜透過水配管28により接続され、ナノろ過膜透過水槽16の出口と逆浸透膜処理装置14の入口は、ポンプ20を介してナノろ過膜透過水供給配管30により接続されている。ナノろ過膜処理装置12のナノろ過膜濃縮水出口にはナノろ過膜濃縮水配管34が接続されている。逆浸透膜処理装置14の逆浸透膜濃縮水出口には逆浸透膜濃縮水配管36が接続され、逆浸透膜透過水出口には逆浸透膜透過水配管32が接続されている。原水供給配管26におけるポンプ18の下流側には、スライム抑制剤供給手段としてスライム抑制剤供給配管38が接続されている。   In the filtration processing system 1 of FIG. 1, a raw water pipe 24 is connected to the inlet of the raw water tank 10, and the outlet of the raw water tank 10 and the inlet of the nanofiltration membrane processing apparatus 12 are connected by a raw water supply pipe 26 via a pump 18. Has been. The permeated water outlet of the nanofiltration membrane treatment device 12 and the inlet of the nanofiltration membrane permeated water tank 16 are connected by a nanofiltration membrane permeated water pipe 28, and the outlet of the nanofiltration membrane permeated water tank 16 and the inlet of the reverse osmosis membrane treatment device 14 are The nanofiltration membrane permeated water supply pipe 30 is connected via the pump 20. A nanofiltration membrane concentrated water pipe 34 is connected to the nanofiltration membrane concentrated water outlet of the nanofiltration membrane treatment device 12. A reverse osmosis membrane concentrated water pipe 36 is connected to the reverse osmosis membrane concentrated water outlet of the reverse osmosis membrane treatment apparatus 14, and a reverse osmosis membrane permeated water pipe 32 is connected to the reverse osmosis membrane permeated water outlet. A slime inhibitor supply pipe 38 is connected downstream of the pump 18 in the raw water supply pipe 26 as slime inhibitor supply means.

本実施形態に係るろ過処理方法およびろ過処理システム1の動作について説明する。   Operation of the filtration method and filtration system 1 according to the present embodiment will be described.

被処理水である原水は原水配管24を通して、必要に応じて原水槽10に貯留された後、ポンプ18により原水供給配管26を通してナノろ過膜処理装置12に供給される。ここで、原水供給配管26におけるポンプ18の下流側において、スライム抑制剤がスライム抑制剤供給配管38を通して原水に供給される(スライム抑制剤供給工程)。ナノろ過膜処理装置12において、ナノろ過膜により被処理水から不溶解性成分等が除去される(ナノろ過膜処理工程)。スライム抑制剤は、原水槽10において添加されてもよい。   The raw water that is the water to be treated is stored in the raw water tank 10 through the raw water pipe 24 as necessary, and then supplied to the nanofiltration membrane treatment apparatus 12 through the raw water supply pipe 26 by the pump 18. Here, on the downstream side of the pump 18 in the raw water supply pipe 26, the slime inhibitor is supplied to the raw water through the slime inhibitor supply pipe 38 (slime inhibitor supply process). In the nanofiltration membrane treatment apparatus 12, insoluble components and the like are removed from the water to be treated by the nanofiltration membrane (nanofiltration membrane treatment step). The slime inhibitor may be added in the raw water tank 10.

ナノろ過膜処理されたナノろ過膜透過水は、ナノろ過膜透過水配管28を通して、必要に応じてナノろ過膜透過水槽16に貯留された後、ポンプ20によりナノろ過膜透過水供給配管30を通して逆浸透膜処理装置14に供給される。逆浸透膜処理装置14において、逆浸透膜により逆浸透膜処理される(逆浸透膜処理工程)。一方、ナノろ過膜処理で得られたナノろ過膜濃縮水は、ナノろ過膜濃縮水配管34を通して排出される。   The nanofiltration membrane permeated water subjected to the nanofiltration membrane treatment is stored in the nanofiltration membrane permeated water tank 16 through the nanofiltration membrane permeated water piping 28 as necessary, and then passed through the nanofiltration membrane permeated water supply piping 30 by the pump 20. It is supplied to the reverse osmosis membrane treatment device 14. In the reverse osmosis membrane treatment apparatus 14, reverse osmosis membrane treatment is performed by the reverse osmosis membrane (reverse osmosis membrane treatment step). On the other hand, the nanofiltration membrane concentrated water obtained by the nanofiltration membrane treatment is discharged through the nanofiltration membrane concentrated water piping 34.

逆浸透膜処理で得られた逆浸透膜濃縮水は、逆浸透膜濃縮水配管36を通して排出され、逆浸透膜透過水は、逆浸透膜透過水配管32を通して排出される。   The reverse osmosis membrane concentrated water obtained by the reverse osmosis membrane treatment is discharged through the reverse osmosis membrane concentrated water pipe 36, and the reverse osmosis membrane permeated water is discharged through the reverse osmosis membrane permeated water pipe 32.

本実施形態に係るろ過処理方法およびろ過処理システムでは、ナノろ過膜処理装置12の閉塞防止やスライム生成抑制、逆浸透膜処理装置14の閉塞防止やスライム生成抑制等のために、ナノろ過膜処理装置12の前段においてナノろ過膜を透過するとともに、次亜塩素酸に比べてナノろ過膜および逆浸透膜を劣化させないスライム抑制剤が供給される。ナノろ過膜処理装置12の前段においてスライム抑制剤を添加すると、後段の逆浸透膜処理装置14にも適度に殺菌成分が透過し、ナノろ過膜処理装置12と共に逆浸透膜処理装置14も殺菌することができる。また、前記スライム抑制剤は、次亜塩素酸に比べてナノろ過膜および逆浸透膜を劣化させにくいため、逆浸透膜処理装置14の前段での還元剤の添加や活性炭塔等の設置を行わなくてもよい上に、逆浸透膜処理装置14の前段でのスライム抑制剤の再添加を行わなくてもよく、システムが簡素化する。   In the filtration treatment method and filtration treatment system according to the present embodiment, nanofiltration membrane treatment is performed to prevent clogging of the nanofiltration membrane treatment device 12 and to suppress slime formation, to prevent clogging of the reverse osmosis membrane treatment device 14 and to suppress slime production, and the like. A slime inhibitor that passes through the nanofiltration membrane in the front stage of the device 12 and does not deteriorate the nanofiltration membrane and the reverse osmosis membrane as compared with hypochlorous acid is supplied. When a slime inhibitor is added at the front stage of the nanofiltration membrane treatment apparatus 12, the sterilization component appropriately passes through the subsequent reverse osmosis membrane treatment apparatus 14, and the reverse osmosis membrane treatment apparatus 14 is sterilized together with the nanofiltration membrane treatment apparatus 12. be able to. Moreover, since the slime inhibitor is less likely to deteriorate the nanofiltration membrane and the reverse osmosis membrane than hypochlorous acid, the reducing agent is added at the front stage of the reverse osmosis membrane treatment apparatus 14 and an activated carbon tower is installed. In addition, it is not necessary to re-add the slime inhibitor in the previous stage of the reverse osmosis membrane treatment apparatus 14, and the system is simplified.

ナノろ過膜(NF膜)は、操作圧力0.3〜1.5MPaの評価条件の下で、塩化ナトリウム阻止率が5%以上93%未満の膜を指す。ナノろ過膜のNaCl阻止率は93%未満であることが好ましい。ナノろ過膜のNaCl阻止率が93%未満であれば、スライム抑制剤が適度に後段に透過し、ナノろ過膜処理装置12と共に逆浸透膜処理装置14も殺菌することができる。ナノろ過膜のNaCl阻止率が93%以上となると、スライム抑制剤がほとんど阻止されてしまい、後段の逆浸透膜処理装置14を十分に殺菌することができない。   A nanofiltration membrane (NF membrane) refers to a membrane having a sodium chloride rejection of 5% or more and less than 93% under evaluation conditions of an operating pressure of 0.3 to 1.5 MPa. The NaCl rejection of the nanofiltration membrane is preferably less than 93%. If the NaCl rejection of the nanofiltration membrane is less than 93%, the slime inhibitor permeates appropriately to the subsequent stage, and the reverse osmosis membrane treatment device 14 can be sterilized together with the nanofiltration membrane treatment device 12. When the NaCl rejection of the nanofiltration membrane is 93% or more, the slime inhibitor is almost blocked and the subsequent reverse osmosis membrane treatment device 14 cannot be sufficiently sterilized.

ナノろ過膜を透過するスライム抑制剤としては、添加したスライム抑制剤のうち5重量%以上が透過するものであればよく、特に制限はない。ナノろ過膜を透過するスライム抑制剤の具体例としては、臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、を含む薬剤、もしくは、臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物との反応生成物を含む薬剤である次亜臭素酸安定化組成物;塩素系酸化剤とスルファミン酸化合物とを含む薬剤、もしくは、塩素系酸化剤とスルファミン酸化合物との反応生成物を含む薬剤である次亜塩素酸安定化組成物;イソチアゾロン化合物;クロラミン化合物;ニトロアルコール化合物;ハロシアノアセトアミド化合物等が挙げられる。これらのナノろ過膜を透過するスライム抑制剤は、次亜塩素酸と比べて、ナノろ過膜および逆浸透膜を劣化させにくい。   The slime inhibitor that permeates through the nanofiltration membrane is not particularly limited as long as 5% by weight or more of the added slime inhibitor permeates. Specific examples of the slime inhibitor that permeates the nanofiltration membrane include a bromine-based oxidant, a reaction product of a bromine compound and a chlorine-based oxidant, and a sulfamic acid compound, or a bromine-based oxidant, Or a hypobromite stabilizing composition which is a drug containing a reaction product of a reaction product of a bromine compound and a chlorine-based oxidant and a sulfamic acid compound; a drug containing a chlorine-based oxidant and a sulfamic acid compound, or And hypochlorous acid stabilization composition which is a drug containing a reaction product of a chlorinated oxidant and a sulfamic acid compound; isothiazolone compound; chloramine compound; nitroalcohol compound; halocyanoacetamide compound and the like. The slime inhibitor that permeates these nanofiltration membranes is less likely to degrade the nanofiltration membrane and reverse osmosis membrane than hypochlorous acid.

イソチアゾロン化合物としては、例えば、2−メチル−4−イソチアゾリン−3−オン、2−エチル−4−イソチアゾリン−3−オン、2−オクチル−4−イソチアゾリン−3−オン、5−クロロ−2−メチル−4−イソチアゾリン−3−オン、5−クロロ−2−オクチル−4−イソチアゾリン−3−オン、4,5−ジクロロ−2−メチル−4−イソチアゾリン−3−オン、4,5−ジクロロ−2−オクチル−4−イソチアゾリン−3−オン、1,2−ベンゾイソチアゾリン−3−オン等が挙げられる。   Examples of the isothiazolone compound include 2-methyl-4-isothiazolin-3-one, 2-ethyl-4-isothiazolin-3-one, 2-octyl-4-isothiazolin-3-one, and 5-chloro-2-methyl. -4-isothiazolin-3-one, 5-chloro-2-octyl-4-isothiazolin-3-one, 4,5-dichloro-2-methyl-4-isothiazolin-3-one, 4,5-dichloro-2 -Octyl-4-isothiazolin-3-one, 1,2-benzisothiazolin-3-one, and the like.

クロラミン化合物としては、例えば、モノクロラミン、ジクロラミン等が挙げられる。   Examples of the chloramine compound include monochloramine, dichloramine and the like.

ニトロアルコール化合物としては、例えば、2−ブロモ−2−ニトロプロパン−1,3−ジオール、2−ブロモ−2−ニトロブタン−1,3−ジオール、3−ブロモ−3−ニトロペンタン−2,4−ジオール、2,2−ジブロモ−2−ニトロ−1−エタノール、2−ニトロ−1,3−プロパンジオール、トリス(ヒドロキシメチル)ニトロメタン、2−ブロモ−2−ニトロ−1,3−ジアセチルオキシプロパン、3,3−ジブロモ−3−ニトロ−2−プロパノール、2−クロロ−2−ニトロエタノール、2−クロロ−2−ニトロ−1,3−プロパンジオール、3−クロロ−3−ニトロ−2−プロパノール等が挙げられる。   Examples of the nitroalcohol compound include 2-bromo-2-nitropropane-1,3-diol, 2-bromo-2-nitrobutane-1,3-diol, and 3-bromo-3-nitropentane-2,4- Diol, 2,2-dibromo-2-nitro-1-ethanol, 2-nitro-1,3-propanediol, tris (hydroxymethyl) nitromethane, 2-bromo-2-nitro-1,3-diacetyloxypropane, 3,3-dibromo-3-nitro-2-propanol, 2-chloro-2-nitroethanol, 2-chloro-2-nitro-1,3-propanediol, 3-chloro-3-nitro-2-propanol, etc. Is mentioned.

ハロシアノアセトアミド化合物としては、例えば、2−ブロモ−3−ニトリロプロピオンアミド、2,2−ジブロモ−3−ニトリロプロピオンアミド(DBNPA)、2−クロロ−2−ブロモ−3−ニトリロプロピオンアミド、2−クロロ−3−ニトリロプロピオンアミド、2,2−ジクロロ−3−ニトリロプロピオンアミド、N−メチル−2,2−ジブロモ−3−ニトリロプロピオンアミド、N−プロピル−2−クロロ−2−ブロモ−3−ニトリロプロピオンアミド等が挙げられる。   Examples of the halocyanoacetamide compound include 2-bromo-3-nitrilopropionamide, 2,2-dibromo-3-nitrilopropionamide (DBNPA), 2-chloro-2-bromo-3-nitrilopropionamide, 2- Chloro-3-nitrilopropionamide, 2,2-dichloro-3-nitrilopropionamide, N-methyl-2,2-dibromo-3-nitrilopropionamide, N-propyl-2-chloro-2-bromo-3- Nitrilopropionamide and the like can be mentioned.

本実施形態に係るろ過処理方法およびろ過処理システムでは、上記スライム抑制剤として、「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」と、「スルファミン酸化合物」と、を含む薬剤を使用することが好ましい。これにより、原水中で次亜臭素酸安定化組成物が生成すると考えられる。   In the filtration treatment method and filtration treatment system according to the present embodiment, as the slime inhibitor, “bromine-based oxidant” or “reaction product of bromine compound and chlorine-based oxidant” and “sulfamic acid compound” It is preferred to use a drug containing. Thereby, it is thought that a hypobromite stabilization composition produces | generates in raw | natural water.

また、本実施形態に係るろ過処理方法およびろ過処理システムでは、上記スライム抑制剤として、「臭素系酸化剤とスルファミン酸化合物との反応生成物」、または「臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、の反応生成物」である次亜臭素酸安定化組成物を使用することが好ましい。   Further, in the filtration treatment method and filtration treatment system according to the present embodiment, as the slime inhibitor, “reaction product of bromine-based oxidant and sulfamic acid compound” or “reaction of bromine compound and chlorine-based oxidant” It is preferable to use a hypobromite stabilizing composition which is a “reaction product of a product and a sulfamic acid compound”.

これらの次亜臭素酸安定化組成物により、ナノろ過膜および逆浸透膜の劣化を抑えつつ、ナノろ過膜処理装置12と共に逆浸透膜処理装置14も殺菌することができる。次亜臭素酸安定化組成物が逆浸透膜を劣化させることがほとんどないため、逆浸透膜処理装置14の前段での還元剤の添加や活性炭塔等の設置を行わなくてもよい上に、逆浸透膜処理装置14の前段でのスライム抑制剤の再添加を行わなくてもよく、システムが簡素化する。   These hypobromite stabilizing compositions can sterilize the reverse osmosis membrane treatment device 14 together with the nanofiltration membrane treatment device 12 while suppressing deterioration of the nanofiltration membrane and the reverse osmosis membrane. Since the hypobromite stabilizing composition hardly deteriorates the reverse osmosis membrane, it is not necessary to add a reducing agent or install an activated carbon tower or the like in the previous stage of the reverse osmosis membrane treatment apparatus 14. It is not necessary to re-add the slime inhibitor in the previous stage of the reverse osmosis membrane treatment apparatus 14, and the system is simplified.

具体的には本実施形態に係るろ過処理方法およびろ過処理システムでは、例えば、原水中に、「臭素」、「塩化臭素」または「臭化ナトリウムと次亜塩素酸との反応物」と、「スルファミン酸化合物」と、を供給する。   Specifically, in the filtration treatment method and filtration treatment system according to the present embodiment, for example, in the raw water, “bromine”, “bromine chloride” or “reaction product of sodium bromide and hypochlorous acid”, “ A sulfamic acid compound ".

また、本実施形態に係るろ過処理方法およびろ過処理システムでは、例えば、原水中に、「臭素とスルファミン酸化合物との反応生成物」、「塩化臭素とスルファミン酸化合物との反応生成物」、または「臭化ナトリウムと次亜塩素酸との反応物と、スルファミン酸化合物と、の反応生成物」を供給する。   In the filtration method and the filtration system according to the present embodiment, for example, in the raw water, “reaction product of bromine and sulfamic acid compound”, “reaction product of bromine chloride and sulfamic acid compound”, or A “reaction product of sodium bromide and hypochlorous acid and a sulfamic acid compound” is supplied.

例えば、原水槽10または原水供給配管26において、原水に「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」と、「スルファミン酸化合物」とを、またはこれらの反応生成物を薬注ポンプ等により注入すればよい。「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」と、「スルファミン酸化合物」とは別々に添加してもよく、または、原液同士で混合させてから添加してもよい。   For example, in the raw water tank 10 or the raw water supply pipe 26, “bromine-based oxidizing agent” or “reaction product of bromine compound and chlorine-based oxidizing agent” and “sulfamic acid compound” or reaction products thereof are added to the raw water. May be injected by a chemical injection pump or the like. “Brominated oxidant” or “reaction product of bromine compound and chlorinated oxidant” and “sulfamic acid compound” may be added separately, or may be added after mixing in stock solutions. Good.

「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」の当量に対する「スルファミン酸化合物」の当量の比は、1以上であることが好ましく、1以上2以下の範囲であることがより好ましい。「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」の当量に対する「スルファミン酸化合物」の当量の比が1未満であると、有効成分が十分安定化しない可能性があり、2を超えると、製造コストが増加する場合がある。   The ratio of the equivalent of “sulfamic acid compound” to the equivalent of “bromine-based oxidizing agent” or “reaction product of bromine compound and chlorine-based oxidizing agent” is preferably 1 or more, and is in the range of 1 or more and 2 or less. It is more preferable. If the ratio of the equivalent of “sulfamic acid compound” to the equivalent of “bromine-based oxidizing agent” or “reaction product of bromine compound and chlorine-based oxidizing agent” is less than 1, the active ingredient may not be sufficiently stabilized. If it exceeds 2, the production cost may increase.

原水中の有効ハロゲン濃度は有効塩素濃度換算で、1〜10mg/Lの範囲であることが好ましい。この範囲であれば、後段の逆浸透膜処理装置14を効率的に殺菌することができる。原水中の有効ハロゲン濃度が1mg/L未満であると、ナノろ過膜処理装置12の後段で遊離ハロゲンが検出されない可能性があり、十分なスライム抑制効果を得ることができない場合がある。原水中の有効ハロゲン濃度が10mg/Lより多いと、長期的に通水した場合、ナノろ過膜または逆浸透膜を劣化させる可能性があり、また、配管等の金属材料の腐食を引き起こす可能性がある。   The effective halogen concentration in the raw water is preferably in the range of 1 to 10 mg / L in terms of effective chlorine concentration. If it is this range, the latter reverse osmosis membrane processing apparatus 14 can be disinfected efficiently. If the effective halogen concentration in the raw water is less than 1 mg / L, free halogen may not be detected in the subsequent stage of the nanofiltration membrane treatment apparatus 12, and a sufficient slime suppression effect may not be obtained. If the effective halogen concentration in the raw water is more than 10 mg / L, it may cause deterioration of the nanofiltration membrane or reverse osmosis membrane when water is passed for a long time, and may cause corrosion of metallic materials such as piping. There is.

臭素系酸化剤としては、臭素(液体臭素)、塩化臭素、次亜臭素酸、臭素酸、臭素酸塩等が挙げられる。   Examples of bromine-based oxidizing agents include bromine (liquid bromine), bromine chloride, hypobromite, bromate, bromate, and the like.

これらのうち、臭素を用いた「臭素とスルファミン酸化合物」または「臭素とスルファミン酸化合物との反応生成物」の製剤は、「次亜塩素酸と臭素化合物とスルファミン酸」の製剤および「塩化臭素とスルファミン酸」の製剤等に比べて、塩化物イオンが少なく、配管等の金属材料の腐食を引き起こす可能性が低いため、より好ましい。   Among these, the preparations of “bromine and sulfamic acid compound” or “reaction product of bromine and sulfamic acid compound” using bromine are the preparations of “hypochlorous acid, bromine compound and sulfamic acid” and “bromine chloride”. It is more preferable because it has less chloride ions and is less likely to cause corrosion of metal materials such as pipes, compared to the formulation of “and sulfamic acid”.

すなわち、本実施形態に係るろ過処理方法およびろ過処理システムでは、原水中に、臭素と、スルファミン酸化合物とを存在させる、または臭素とスルファミン酸化合物との反応生成物を存在させることが好ましい。   That is, in the filtration method and filtration system according to the present embodiment, it is preferable that bromine and a sulfamic acid compound are present in the raw water, or a reaction product of bromine and a sulfamic acid compound is present.

臭素化合物としては、臭化ナトリウム、臭化カリウム、臭化リチウム、臭化アンモニウム及び臭化水素酸等が挙げられる。これらのうち、製剤コスト等の点から、臭化ナトリウムが好ましい。   Examples of bromine compounds include sodium bromide, potassium bromide, lithium bromide, ammonium bromide and hydrobromic acid. Of these, sodium bromide is preferable from the viewpoint of formulation cost and the like.

塩素系酸化剤としては、例えば、塩素ガス、二酸化塩素、次亜塩素酸またはその塩、亜塩素酸またはその塩、塩素酸またはその塩、過塩素酸またはその塩、塩素化イソシアヌル酸またはその塩等が挙げられる。これらのうち、塩としては、例えば、次亜塩素酸ナトリウム、次亜塩素酸カリウム等の次亜塩素酸アルカリ金属塩、次亜塩素酸カルシウム、次亜塩素酸バリウム等の次亜塩素酸アルカリ土類金属塩、亜塩素酸ナトリウム、亜塩素酸カリウム等の亜塩素酸アルカリ金属塩、亜塩素酸バリウム等の亜塩素酸アルカリ土類金属塩、亜塩素酸ニッケル等の他の亜塩素酸金属塩、塩素酸アンモニウム、塩素酸ナトリウム、塩素酸カリウム等の塩素酸アルカリ金属塩、塩素酸カルシウム、塩素酸バリウム等の塩素酸アルカリ土類金属塩等が挙げられる。これらの塩素系酸化剤は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。塩素系酸化剤としては、取り扱い性等の点から、次亜塩素酸ナトリウムを用いるのが好ましい。   Examples of the chlorine-based oxidizing agent include chlorine gas, chlorine dioxide, hypochlorous acid or a salt thereof, chlorous acid or a salt thereof, chloric acid or a salt thereof, perchloric acid or a salt thereof, chlorinated isocyanuric acid or a salt thereof. Etc. Among these, examples of the salt include alkali metal hypochlorites such as sodium hypochlorite and potassium hypochlorite, alkaline earth hypochlorite such as calcium hypochlorite and barium hypochlorite. Metal salts, alkali metal chlorites such as sodium chlorite and potassium chlorite, alkaline earth metal chlorites such as barium chlorite, and other metal chlorites such as nickel chlorite , Alkali metal chlorates such as ammonium chlorate, sodium chlorate and potassium chlorate, and alkaline earth metal chlorates such as calcium chlorate and barium chlorate. These chlorine-based oxidants may be used alone or in combination of two or more. As the chlorine-based oxidant, sodium hypochlorite is preferably used from the viewpoint of handleability.

スルファミン酸化合物は、以下の一般式(1)で示される化合物である。
NSOH (1)
(式中、Rは独立して水素原子または炭素数1〜8のアルキル基である。)
The sulfamic acid compound is a compound represented by the following general formula (1).
R 2 NSO 3 H (1)
(In the formula, R is independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.)

スルファミン酸化合物としては、例えば、2個のR基の両方が水素原子であるスルファミン酸(アミド硫酸)の他に、N−メチルスルファミン酸、N−エチルスルファミン酸、N−プロピルスルファミン酸、N−イソプロピルスルファミン酸、N−ブチルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数1〜8のアルキル基であるスルファミン酸化合物、N,N−ジメチルスルファミン酸、N,N−ジエチルスルファミン酸、N,N−ジプロピルスルファミン酸、N,N−ジブチルスルファミン酸、N−メチル−N−エチルスルファミン酸、N−メチル−N−プロピルスルファミン酸等の2個のR基の両方が炭素数1〜8のアルキル基であるスルファミン酸化合物、N−フェニルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数6〜10のアリール基であるスルファミン酸化合物、またはこれらの塩等が挙げられる。スルファミン酸塩としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩、マンガン塩、銅塩、亜鉛塩、鉄塩、コバルト塩、ニッケル塩等の他の金属塩、アンモニウム塩およびグアニジン塩等が挙げられる。スルファミン酸化合物およびこれらの塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。スルファミン酸化合物としては、環境負荷等の点から、スルファミン酸(アミド硫酸)を用いるのが好ましい。   Examples of the sulfamic acid compound include sulfamic acid (amidosulfuric acid) in which both two R groups are hydrogen atoms, N-methylsulfamic acid, N-ethylsulfamic acid, N-propylsulfamic acid, N- A sulfamic acid compound in which one of two R groups such as isopropylsulfamic acid and N-butylsulfamic acid is a hydrogen atom and the other is an alkyl group having 1 to 8 carbon atoms, N, N-dimethylsulfamic acid, N, Two R groups such as N-diethylsulfamic acid, N, N-dipropylsulfamic acid, N, N-dibutylsulfamic acid, N-methyl-N-ethylsulfamic acid, N-methyl-N-propylsulfamic acid, etc. One of two R groups such as a sulfamic acid compound and N-phenylsulfamic acid, both of which are alkyl groups having 1 to 8 carbon atoms, An atom, the other is sulfamic acid compound or a salt thereof, such as an aryl group having 6 to 10 carbon atoms. Examples of the sulfamate include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt, strontium salt and barium salt, manganese salt, copper salt, zinc salt, iron salt, cobalt salt, Other metal salts such as nickel salts, ammonium salts, guanidine salts and the like can be mentioned. The sulfamic acid compounds and salts thereof may be used alone or in combination of two or more. As the sulfamic acid compound, sulfamic acid (amidosulfuric acid) is preferably used from the viewpoint of environmental load.

本実施形態に係るろ過処理方法およびろ過処理システムにおいて、さらにアルカリを存在させてもよい。アルカリとしては、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ等が挙げられる。低温時の製品安定性等の点から、水酸化ナトリウムと水酸化カリウムとを併用してもよい。また、アルカリは、固形でなく、水溶液として用いてもよい。   In the filtration method and filtration system according to the present embodiment, an alkali may be further present. Examples of the alkali include alkali hydroxides such as sodium hydroxide and potassium hydroxide. From the viewpoint of product stability at low temperatures, sodium hydroxide and potassium hydroxide may be used in combination. Further, the alkali is not solid and may be used as an aqueous solution.

ナノろ過膜処理装置12のナノろ過膜としては、ポリエーテルスルホン(PES)製、ピペラジンアミド製、酢酸セルロース製、ポリアミド製等の有機系のナノろ過膜(NF膜)が挙げられる。本実施形態に係るろ過処理方法およびろ過処理システムは、特に、ポリエーテルスルホン(PES)製、ピペラジンアミド製、酢酸セルロース製、ポリアミド製のナノろ過膜に好適に適用できる。これらの材質であれば、材質に関係なく次亜臭素酸安定化組成物を透過することができる。   Examples of the nanofiltration membrane of the nanofiltration membrane treatment apparatus 12 include organic nanofiltration membranes (NF membranes) made of polyethersulfone (PES), piperazine amide, cellulose acetate, polyamide, and the like. The filtration treatment method and filtration treatment system according to the present embodiment can be suitably applied particularly to nanofiltration membranes made of polyethersulfone (PES), piperazine amide, cellulose acetate, and polyamide. These materials can permeate the hypobromite stabilizing composition regardless of the material.

逆浸透膜処理装置14の逆浸透膜としては、ポリアミド系等の有機系の逆浸透膜(RO膜)等が挙げられる。逆浸透膜の膜材質がポリアミドであれば、次亜臭素酸安定化組成物による膜劣化がほとんど発生せず、かつ、高い阻止性能を発揮できる。   Examples of the reverse osmosis membrane of the reverse osmosis membrane treatment apparatus 14 include an organic reverse osmosis membrane (RO membrane) such as polyamide. If the membrane material of the reverse osmosis membrane is polyamide, membrane deterioration due to the hypobromite stabilizing composition hardly occurs and high blocking performance can be exhibited.

本実施形態に係るろ過処理方法およびろ過処理システムは、特に、逆浸透膜(RO膜)として昨今主流であるポリアミド系高分子膜に好適に適用することができる。ポリアミド系高分子膜は、酸化剤に対する耐性が比較的低く、遊離塩素等をポリアミド系高分子膜に連続的に接触させると、膜性能の著しい低下が起こる。しかしながら、本実施形態に係るろ過処理方法およびろ過処理システムではポリアミド高分子膜においても、このような著しい膜性能の低下はほとんど起こらない。   The filtration method and filtration system according to the present embodiment can be suitably applied particularly to polyamide polymer membranes that are currently mainstream as reverse osmosis membranes (RO membranes). Polyamide polymer membranes have a relatively low resistance to oxidizing agents, and when free chlorine or the like is continuously brought into contact with the polyamide polymer membrane, the membrane performance is significantly reduced. However, in the filtration treatment method and filtration treatment system according to the present embodiment, such a remarkable decrease in membrane performance hardly occurs even in the polyamide polymer membrane.

本実施形態に係るろ過処理方法およびろ過処理システムにおいて、被処理水である原水のpHが5.5以上であることが好ましく、6.0以上であることがより好ましく、6.5以上であることがさらに好ましい。原水のpHが5.5未満であると、逆浸透膜処理装置14への給水(ナノろ過膜透過水)のpHが5.5未満となり、透過水量が低下する場合がある。また、原水のpHの上限値については、通常の逆浸透膜の適用上限pH(例えば、pH10)以下であれば特に制限はないが、カルシウム等の硬度成分のスケール析出を考慮すると、pHは例えば9.0以下で運転することが好ましい。本実施形態に係るろ過処理方法およびろ過処理システムを用いる場合、原水のpHが5.5以上で運転することにより、逆浸透膜処理装置14の逆浸透膜の劣化、処理水(逆浸透膜透過水)の水質悪化を抑制し、十分なスライム抑制効果を発揮しつつ、十分な透過水量の確保も可能となる。   In the filtration method and filtration system according to this embodiment, the pH of the raw water that is the treated water is preferably 5.5 or more, more preferably 6.0 or more, and 6.5 or more. More preferably. If the pH of the raw water is less than 5.5, the pH of the water supplied to the reverse osmosis membrane treatment device 14 (the nanofiltration membrane permeated water) becomes less than 5.5, and the amount of permeated water may decrease. In addition, the upper limit of the pH of the raw water is not particularly limited as long as it is not higher than the normal upper limit pH of the reverse osmosis membrane (for example, pH 10), but considering the scale precipitation of hardness components such as calcium, the pH is, for example, It is preferable to operate at 9.0 or less. When using the filtration method and the filtration system according to the present embodiment, the reverse osmosis membrane of the reverse osmosis membrane treatment device 14 is deteriorated and treated water (reverse osmosis membrane permeation) by operating at a raw water pH of 5.5 or higher. It is possible to secure a sufficient amount of permeated water while suppressing the deterioration of water quality and exhibiting a sufficient slime suppressing effect.

逆浸透膜処理装置14において、逆浸透膜処理装置14へのナノろ過膜透過水のpH5.5以上でスケールが発生する場合には、スケール抑制のために分散剤をスライム抑制剤と併用してもよい。分散剤としては、例えば、ポリアクリル酸、ポリマレイン酸、ホスホン酸等が挙げられる。分散剤の給水(前ろ過処理水)への添加量は、例えば、濃縮水中の濃度として0.1〜1,000mg/Lの範囲である。   In the reverse osmosis membrane treatment device 14, when a scale is generated at pH 5.5 or higher of the nanofiltration membrane permeate to the reverse osmosis membrane treatment device 14, a dispersant is used in combination with a slime inhibitor for scale inhibition. Also good. Examples of the dispersant include polyacrylic acid, polymaleic acid, and phosphonic acid. The amount of the dispersant added to the feed water (prefiltered water) is, for example, in the range of 0.1 to 1,000 mg / L as the concentration in the concentrated water.

また、分散剤を使用せずにスケールの発生を抑制するためには、例えば、逆浸透膜濃縮水中のシリカ濃度を溶解度以下に、カルシウムスケールの指標であるランゲリア指数を0以下になるように、逆浸透膜処理装置14の回収率等の運転条件を調整することが挙げられる。   Moreover, in order to suppress the occurrence of scale without using a dispersant, for example, the silica concentration in the reverse osmosis membrane concentrated water is less than or equal to the solubility, and the Langelia index that is an index of calcium scale is less than or equal to 0, Adjusting the operating conditions such as the recovery rate of the reverse osmosis membrane treatment device 14 may be mentioned.

本実施形態に係るろ過処理方法およびろ過処理システムは、例えば、かん水、表流水、井戸水、海水、工場等からの排水等を処理対象とする。被処理水のTOCは、例えば、0.1mg/L〜1000mg/Lの範囲である。   The filtration treatment method and filtration treatment system according to the present embodiment treat, for example, brine, surface water, well water, seawater, waste water from a factory, and the like. The TOC of the water to be treated is, for example, in the range of 0.1 mg / L to 1000 mg / L.

本発明の実施形態に係るろ過処理システムの他の例の概略構成を図2に示す。図2のろ過処理システム3において、ナノろ過膜処理装置12のナノろ過膜濃縮水出口と原水槽10とは、返送手段としての濃縮水返送配管42により接続されている。また、逆浸透膜処理装置14の逆浸透膜濃縮水出口が返送手段としての濃縮水返送配管44により濃縮水返送配管42の途中と接続されている。濃縮水返送配管42と濃縮水返送配管44との接続点の上流側において、濃縮水返送配管42にはナノろ過膜濃縮水配管46が接続され、濃縮水返送配管44には逆浸透膜濃縮水配管48が接続されている。   The schematic structure of the other example of the filtration processing system which concerns on embodiment of this invention is shown in FIG. In the filtration processing system 3 of FIG. 2, the nanofiltration membrane concentrated water outlet of the nanofiltration membrane treatment device 12 and the raw water tank 10 are connected by a concentrated water return pipe 42 as a return means. Further, the reverse osmosis membrane concentrated water outlet of the reverse osmosis membrane treatment device 14 is connected to the middle of the concentrated water return pipe 42 by a concentrated water return pipe 44 as a return means. On the upstream side of the connection point between the concentrated water return pipe 42 and the concentrated water return pipe 44, a nanofiltration membrane concentrated water pipe 46 is connected to the concentrated water return pipe 42, and a reverse osmosis membrane concentrated water is connected to the concentrated water return pipe 44. A pipe 48 is connected.

本構成により、ナノろ過膜処理装置12からのナノろ過膜濃縮水の少なくとも一部および逆浸透膜処理装置14からの逆浸透膜濃縮水の少なくとも一部のうち少なくとも1つが、ナノろ過膜処理装置12の前段である原水槽10に返送される(返送工程)。これにより、スライム抑制剤の使用量を低減することができ、逆浸透膜透過水の回収率が向上する。   With this configuration, at least one of at least a part of the nanofiltration membrane concentrated water from the nanofiltration membrane treatment device 12 and at least a part of the reverse osmosis membrane concentrated water from the reverse osmosis membrane treatment device 14 is a nanofiltration membrane treatment device. 12 is returned to the raw water tank 10 which is the previous stage (returning step). Thereby, the usage-amount of a slime inhibitor can be reduced and the recovery rate of reverse osmosis membrane permeated water improves.

<ろ過処理用組成物>
本実施形態に係るろ過処理用組成物は、例えば、「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」と、「スルファミン酸化合物」とを含有するものであり、さらにアルカリを含有してもよい。
<Composition for filtration treatment>
The composition for filtration treatment according to the present embodiment contains, for example, “bromine-based oxidant” or “reaction product of bromine compound and chlorine-based oxidant” and “sulfamic acid compound”, and You may contain an alkali.

また、本実施形態に係るろ過処理用組成物は、例えば、「臭素系酸化剤とスルファミン酸化合物との反応生成物」、または「臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、の反応生成物」を含有するものであり、さらにアルカリを含有してもよい。   Moreover, the composition for filtration treatment according to the present embodiment includes, for example, “a reaction product of a bromine-based oxidant and a sulfamic acid compound”, or “a reaction product of a bromine compound and a chlorinated oxidant, and a sulfamic acid compound”. And “a reaction product of” and may further contain an alkali.

臭素系酸化剤、臭素化合物、塩素系酸化剤およびスルファミン酸化合物については、上述した通りである。   The bromine-based oxidizing agent, bromine compound, chlorine-based oxidizing agent, and sulfamic acid compound are as described above.

本実施形態に係るろ過処理用組成物としては、配管等の金属材料に対する腐食性が低く、臭素酸の副生が少ない等の点から、臭素と、スルファミン酸化合物とを含有するもの、または、臭素とスルファミン酸化合物との反応生成物を含有するものが好ましい。   As the composition for filtration treatment according to the present embodiment, one containing bromine and a sulfamic acid compound from the viewpoint of low corrosiveness to a metal material such as piping and less by-product of bromic acid, or Those containing a reaction product of bromine and a sulfamic acid compound are preferred.

本実施形態に係るろ過処理用組成物は、クロロスルファミン酸等の結合塩素系スライム抑制剤と比較すると、酸化力が高く、スライム抑制力、スライム剥離力が著しく高い。   The composition for filtration treatment according to the present embodiment has higher oxidizing power and significantly higher slime suppressing power and slime peeling power than a combined chlorine-based slime inhibitor such as chlorosulfamic acid.

本実施形態に係るろ過処理用組成物は、次亜塩素酸等の酸化剤とは異なり、逆浸透膜をほとんど劣化させない。また、次亜塩素酸等と同様に現場で濃度を測定することができるため、より正確な濃度管理が可能である。   Unlike the oxidizing agent such as hypochlorous acid, the composition for filtration treatment according to this embodiment hardly deteriorates the reverse osmosis membrane. Further, since the concentration can be measured on site in the same manner as hypochlorous acid or the like, more accurate concentration management is possible.

組成物のpHは、例えば、13.0超であり、13.2超であることがより好ましい。組成物のpHが13.0以下であると組成物中の有効ハロゲンが不安定になる場合がある。   The pH of the composition is, for example, more than 13.0, more preferably more than 13.2. When the pH of the composition is 13.0 or less, the effective halogen in the composition may become unstable.

ろ過処理用組成物中の臭素酸濃度は、5mg/kg未満であることが好ましい。ろ過処理用組成物中の臭素酸濃度が5mg/kg以上であると、処理水の水質が悪化する場合がある。   The bromic acid concentration in the composition for filtration treatment is preferably less than 5 mg / kg. When the bromic acid concentration in the composition for filtration treatment is 5 mg / kg or more, the quality of the treated water may deteriorate.

<ろ過処理用組成物の製造方法>
本実施形態に係るろ過処理用組成物は、例えば、臭素系酸化剤とスルファミン酸化合物とを混合する、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物とを混合することにより得られ、さらにアルカリを混合してもよい。
<Method for producing composition for filtration treatment>
The composition for filtration treatment according to the present embodiment includes, for example, mixing a bromine-based oxidant and a sulfamic acid compound, or mixing a reaction product of a bromine compound and a chlorine-based oxidant with a sulfamic acid compound. Obtained and further mixed with alkali.

臭素と、スルファミン酸化合物とを含有するろ過処理用組成物、または、臭素とスルファミン酸化合物との反応生成物を含有するろ過処理用組成物の製造方法としては、水、アルカリおよびスルファミン酸化合物を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させる工程を含むことが好ましい。不活性ガス雰囲気下で添加して反応させることにより、組成物中の臭素酸イオン濃度がより低くなり、好ましい。   As a method for producing a composition for filtration treatment containing bromine and a sulfamic acid compound or a composition for filtration treatment containing a reaction product of bromine and a sulfamic acid compound, water, an alkali and a sulfamic acid compound are used. It is preferable to include a step of adding bromine to the mixed liquid to react under an inert gas atmosphere. By adding and reacting under an inert gas atmosphere, the bromate ion concentration in the composition becomes lower, which is preferable.

用いる不活性ガスとしては限定されないが、製造等の面から室素およびアルゴンのうち少なくとも1つが好ましく、特に製造コスト等の面から窒素が好ましい。   The inert gas to be used is not limited, but at least one of chamber element and argon is preferable from the viewpoint of manufacturing and the like, and nitrogen is particularly preferable from the viewpoint of manufacturing cost and the like.

臭素の添加の際の反応器内の酸素濃度は6%以下が好ましいが、4%以下がより好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。臭素の反応の際の反応器内の酸素濃度が6%を超えると、反応系内の臭素酸の生成量が増加する場合がある。   The oxygen concentration in the reactor upon addition of bromine is preferably 6% or less, more preferably 4% or less, further preferably 2% or less, and particularly preferably 1% or less. If the oxygen concentration in the reactor during the bromine reaction exceeds 6%, the amount of bromic acid produced in the reaction system may increase.

臭素の添加率は、組成物全体の量に対して25重量%以下であることが好ましく、1重量%以上20重量%以下であることがより好ましい。臭素の添加率が組成物全体の量に対して25重量%を超えると、反応系内の臭素酸の生成量が増加する場合がある。1重量%未満であると、殺菌力が劣る場合がある。   The addition ratio of bromine is preferably 25% by weight or less, more preferably 1% by weight or more and 20% by weight or less based on the total amount of the composition. If the bromine addition rate exceeds 25% by weight relative to the total amount of the composition, the amount of bromic acid produced in the reaction system may increase. If it is less than 1% by weight, the sterilizing power may be inferior.

臭素添加の際の反応温度は、0℃以上25℃以下の範囲に制御することが好ましいが、製造コスト等の面から、0℃以上15℃以下の範囲に制御することがより好ましい。臭素添加の際の反応温度が25℃を超えると、反応系内の臭素酸の生成量が増加する場合があり、0℃未満であると、凍結する場合がある。   The reaction temperature during the addition of bromine is preferably controlled in the range of 0 ° C. to 25 ° C., but more preferably in the range of 0 ° C. to 15 ° C. from the viewpoint of production cost and the like. When the reaction temperature at the time of bromine addition exceeds 25 degreeC, the production amount of the bromic acid in a reaction system may increase, and when it is less than 0 degreeC, it may freeze.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

[安定化次亜臭素酸組成物aの調製]
窒素雰囲気下で、液体臭素:16.9重量%(wt%)、スルファミン酸:10.7重量%、水酸化ナトリウム:12.9重量%、水酸化カリウム:3.94重量%、水:残分を混合して、組成物aを調製した。組成物のpHは14、有効ハロゲン濃度(有効塩素換算濃度)は7.5重量%であった。安定化次亜臭素酸組成物aの詳細な調製方法は以下の通りである。
[Preparation of Stabilized Hypobromite Composition a]
Under nitrogen atmosphere, liquid bromine: 16.9% by weight (wt%), sulfamic acid: 10.7% by weight, sodium hydroxide: 12.9% by weight, potassium hydroxide: 3.94% by weight, water: remaining Minutes were mixed to prepare composition a. The pH of the composition was 14, and the effective halogen concentration (effective chlorine equivalent concentration) was 7.5% by weight. The detailed method for preparing the stabilized hypobromite composition a is as follows.

反応容器内の酸素濃度が1%に維持されるように、窒素ガスの流量をマスフローコントローラでコントロールしながら連続注入で封入した2Lの4つ口フラスコに1436gの水、361gの水酸化ナトリウムを加え混合し、次いで300gのスルファミン酸を加え混合した後、反応液の温度が0〜15℃になるように冷却を維持しながら、473gの液体臭素を加え、さらに48%水酸化カリウム溶液230gを加え、組成物全体の量に対する重量比でスルファミン酸10.7%、臭素16.9%、臭素の当量に対するスルファミン酸の当量比が1.04である、目的の組成物aを得た。生じた溶液のpHは、ガラス電極法にて測定したところ、14であった。生じた溶液の臭素含有率は、臭素をヨウ化カリウムによりヨウ素に転換後、チオ硫酸ナトリウムを用いて酸化還元滴定する方法により測定したところ16.9%であり、理論含有率(16.9%)の100.0%であった。また、臭素反応の際の反応容器内の酸素濃度は、株式会社ジコー製の「酸素モニタJKO−02 LJDII」を用いて測定した。なお、臭素酸濃度は5mg/kg未満であった。   Add 1436 g of water and 361 g of sodium hydroxide to a 2 L four-necked flask sealed by continuous injection while controlling the flow rate of nitrogen gas with a mass flow controller so that the oxygen concentration in the reaction vessel is maintained at 1%. Next, after adding 300 g of sulfamic acid and mixing, 473 g of liquid bromine was added while maintaining cooling so that the temperature of the reaction solution was 0 to 15 ° C., and 230 g of 48% potassium hydroxide solution was added. The target composition a having a sulfamic acid 10.7% by weight ratio to the total amount of the composition, bromine 16.9%, and an equivalent ratio of sulfamic acid to an equivalent of bromine of 1.04 was obtained. The pH of the resulting solution was 14 as measured by the glass electrode method. The bromine content of the resulting solution was 16.9% as measured by a redox titration method using sodium thiosulfate after bromine was converted to iodine with potassium iodide, and the theoretical content (16.9% ) Of 100.0%. In addition, the oxygen concentration in the reaction vessel during the bromine reaction was measured using “Oxygen Monitor JKO-02 LJDII” manufactured by Zico Corporation. The bromic acid concentration was less than 5 mg / kg.

[ろ過処理]
表1に示すそれぞれの分離膜を備える膜処理装置を用い、原水に上記安定化次亜臭素酸組成物aを有効ハロゲン濃度で10mg/L添加し、透過水の有効ハロゲン濃度を測定した。
[Filtration treatment]
Using the membrane treatment apparatus provided with each separation membrane shown in Table 1, 10 mg / L of the stabilized hypobromite composition a was added to the raw water at an effective halogen concentration, and the effective halogen concentration of the permeated water was measured.

有効ハロゲン濃度は、残留塩素測定装置(Hach社製、「DR−4000」)を使用してDPD法により測定し、有効塩素濃度換算したものである。分離膜のNaCl阻止率は、イオンクロマトグラフにより測定した。   The effective halogen concentration is measured by the DPD method using a residual chlorine measuring apparatus (manufactured by Hach, “DR-4000”), and converted into an effective chlorine concentration. The NaCl rejection of the separation membrane was measured by ion chromatography.

(実験条件)
原水:NaCl溶液(NaCl濃度:500mg/L)
運転圧力:0.75MPa
原水pH:7
試験温度:25℃
(Experimental conditions)
Raw water: NaCl solution (NaCl concentration: 500 mg / L)
Operating pressure: 0.75 MPa
Raw water pH: 7
Test temperature: 25 ° C

Figure 2016120457
Figure 2016120457

NaCl阻止率93%以下のナノろ過膜(NF膜)は安定化次亜臭素酸組成物aを透過するが、99%以上の逆浸透膜(RO膜)では安定化次亜臭素酸組成物aが透過しなかった。   Nanofiltration membranes (NF membranes) with a NaCl rejection of 93% or less permeate the stabilized hypobromite composition a, whereas stabilized reverse bromite compositions a with a reverse osmosis membrane (RO membrane) of 99% or more. Did not penetrate.

このように、被処理水をナノろ過膜処理後、逆浸透膜処理するろ過処理において、簡易な方法でナノろ過膜および逆浸透膜の殺菌を行うことができることが示唆された。   Thus, it was suggested that the nanofiltration membrane and the reverse osmosis membrane can be sterilized by a simple method in the filtration treatment in which the water to be treated is treated with the reverse osmosis membrane after the nanofiltration membrane treatment.

[安定化次亜臭素酸組成物bの調製]
臭化ナトリウム:11重量%、12%次亜塩素酸ナトリウム水溶液:50重量%、スルファミン酸ナトリウム:14重量%、水酸化ナトリウム:8重量%、水:残分を混合して、組成物bを調製した。組成物bのpHは14、有効ハロゲン濃度(有効塩素換算濃度)は6重量%であった。組成物bの詳細な調製方法は以下の通りである。
[Preparation of Stabilized Hypobromite Composition b]
Sodium bromide: 11% by weight, 12% sodium hypochlorite aqueous solution: 50% by weight, sodium sulfamate: 14% by weight, sodium hydroxide: 8% by weight, water: the remainder was mixed to prepare composition b. Prepared. The pH of the composition b was 14, and the effective halogen concentration (effective chlorine equivalent concentration) was 6% by weight. The detailed preparation method of the composition b is as follows.

反応容器に17gの水を入れ、11gの臭化ナトリウムを加え撹拌して溶解させた後、50gの12%次亜塩素酸ナトリウム水溶液を加え混合し、次いで14gのスルファミン酸ナトリウムを加え撹拌して溶解させた後、8gの水酸化ナトリウムを加え撹拌し溶解させて目的の組成物bを得た。   17 g of water was put into a reaction vessel, 11 g of sodium bromide was added and dissolved by stirring, 50 g of 12% aqueous sodium hypochlorite solution was added and mixed, and then 14 g of sodium sulfamate was added and stirred. After dissolution, 8 g of sodium hydroxide was added, stirred and dissolved to obtain the desired composition b.

[組成物c]
安定化次亜臭素酸組成物bの各組成を水中に別々に添加した。
[Composition c]
Each composition of stabilized hypobromite composition b was added separately into water.

[組成物d]
塩化臭素、スルファミン酸ナトリウム、水酸化ナトリウムを含有する組成物dを使用した。組成物dのpHは14、有効ハロゲン濃度(有効塩素換算濃度)は7重量%であった。
[Composition d]
Composition d containing bromine chloride, sodium sulfamate, sodium hydroxide was used. The pH of the composition d was 14, and the effective halogen concentration (effective chlorine equivalent concentration) was 7% by weight.

[組成物e]
12%次亜塩素酸ナトリウム水溶液を使用した。
[Composition e]
A 12% aqueous sodium hypochlorite solution was used.

[組成物f]
臭化ナトリウム:15重量%、12%次亜塩素酸ナトリウム水溶液:42.4重量%、を水中に別々に添加した。
[Composition f]
Sodium bromide: 15% by weight, 12% sodium hypochlorite aqueous solution: 42.4% by weight were separately added to water.

[組成物g]
12%次亜塩素酸ナトリウム水溶液:50重量%、スルファミン酸:10重量%、水酸化ナトリウム:8重量%、水:残分を混合して、組成物gを調製した。組成物gのpHは14、有効ハロゲン濃度(有効塩素換算濃度)は6重量%であった。
[Composition g]
12% sodium hypochlorite aqueous solution: 50% by weight, sulfamic acid: 10% by weight, sodium hydroxide: 8% by weight, water: residue were mixed to prepare composition g. The pH of composition g was 14, and the effective halogen concentration (effective chlorine equivalent concentration) was 6% by weight.

[RO膜排除率への影響、透過水への影響、酸化力の比較試験]
以下の条件で、逆浸透膜装置の原水に、組成物a〜gを添加して、RO膜の排除率への影響、透過水への影響、酸化力を比較した。
[Comparison test of RO membrane rejection rate, impact on permeated water, and oxidizing power]
Under the following conditions, the compositions a to g were added to the raw water of the reverse osmosis membrane device, and the influence on the RO membrane rejection rate, the influence on the permeated water, and the oxidizing power were compared.

(試験条件)
・試験装置:平膜試験装置
・分離膜:日東電工(株)製、ポリアミド系高分子逆浸透膜 ES20
・運転圧力:0.75MPa
・原水:相模原井水(pH7.2、導電率240μS/cm)
・薬剤:組成物a〜gを、有効ハロゲン濃度(有効塩素換算濃度)として10mg/Lとなるように添加
(Test conditions)
Test apparatus: Flat membrane test apparatus Separation membrane: Polyamide polymer reverse osmosis membrane ES20 manufactured by Nitto Denko Corporation
・ Operating pressure: 0.75 MPa
Raw water: Sagamiharai water (pH 7.2, conductivity 240 μS / cm)
Drug: Compositions a to g are added so that the effective halogen concentration (effective chlorine equivalent concentration) is 10 mg / L.

(評価方法)
・RO膜の排除率への影響:30日通水後の導電率排除率(%)
(100−[透過水導電率/給水導電率]×100)
・透過水への影響:薬剤添加1時間後の透過水中の有効ハロゲン濃度(有効塩素換算濃度、mg/L)を、残留塩素測定装置(Hach社製、「DR−4000」)を使用してDPD法により測定
・酸化力:1時間後の給水の酸化還元電位(ORP)を、酸化還元電位測定装置(東亜DKK製、RM−20P型ORP計)を使用して測定
(Evaluation method)
・ Effect on RO membrane rejection rate: Conductivity rejection rate after 30 days of water flow (%)
(100- [permeated water conductivity / feed water conductivity] × 100)
・ Effect on the permeated water: Effective halogen concentration (effective chlorine equivalent concentration, mg / L) in the permeated water 1 hour after the addition of the chemical was measured using a residual chlorine measuring device ("DR-4000" manufactured by Hach). Measured by DPD method / Oxidation power: Measures redox potential (ORP) of feed water after 1 hour using redox potential measuring device (RM-20P type ORP meter, manufactured by Toa DKK)

[殺菌力の比較試験]
以下の条件で、模擬水に組成物a〜gを添加して、殺菌力を比較した。
[Comparison test of bactericidal activity]
Under the following conditions, compositions a to g were added to simulated water, and the bactericidal power was compared.

(試験条件)
・水:相模原井水に普通ブイヨンを添加し、一般細菌数が10CFU/mlとなるよう調整した模擬水
・薬剤:組成物a〜gを、有効ハロゲン濃度(有効塩素換算濃度)として1mg/Lとなるよう添加(有効ハロゲン濃度の測定方法:残留塩素測定装置(Hach社製、「DR−4000」)を使用してDPD法により測定)
(Test conditions)
-Water: Simulated water prepared by adding normal bouillon to Sagamiharai water and adjusting the general bacterial count to 10 5 CFU / ml.-Drug: Compositions ag to 1 mg as effective halogen concentration (effective chlorine equivalent concentration) / L added (Measurement method of effective halogen concentration: measured by DPD method using residual chlorine measuring device (manufactured by Hach, “DR-4000”))

(評価方法)
・薬剤添加後24時間後の一般細菌数を菌数測定キット(三愛石油製、バイオチェッカーTTC)を使用して測定
(Evaluation method)
・ Measures the number of general bacteria 24 hours after the addition of chemicals using a bacterial count kit (manufactured by Sanai Oil, BioChecker TTC)

試験結果を表2に示す。   The test results are shown in Table 2.

Figure 2016120457
Figure 2016120457

組成物a〜dは、高いRO膜の排除率を保持し、透過水の有効ハロゲン濃度(有効塩素換算濃度)も低く、酸化力、殺菌力も高かった。組成物a〜dの中では、組成物aが、最も高いRO膜の排除率を保持し、透過水の有効ハロゲン濃度(有効塩素換算濃度)が最も低かった。   Compositions a to d maintained a high RO membrane rejection rate, had low effective halogen concentration (effective chlorine equivalent concentration) of permeated water, and high oxidation power and bactericidal power. Among the compositions a to d, the composition a retained the highest RO membrane rejection rate and had the lowest effective halogen concentration (effective chlorine equivalent concentration) of permeated water.

組成物eは、酸化力、殺菌力は高いものの、RO膜の排除率が低下し、透過水の有効ハロゲン濃度(有効塩素換算濃度)も高かった。組成物fは、酸化力、殺菌力は高いものの、透過水の有効ハロゲン濃度(有効塩素換算濃度)が高かった。組成物gは、RO膜の排除率はほとんど低下しておらず、透過水の有効ハロゲン濃度(有効塩素換算濃度)も低いものの、酸化力が低く、殺菌力も低かった。   Although the composition e had high oxidizing power and bactericidal power, the RO membrane rejection rate decreased and the effective halogen concentration (effective chlorine equivalent concentration) of permeated water was also high. The composition f had a high effective halogen concentration (effective chlorine equivalent concentration) in the permeated water, although the oxidizing power and the bactericidal power were high. Composition g had almost no reduction in the RO membrane rejection rate, and the permeated water had a low effective halogen concentration (effective chlorine equivalent concentration), but had low oxidizing power and low bactericidal power.

このように、ナノろ過膜を用いる膜ろ過処理の後に逆浸透膜処理を行うろ過処理システムにおけるナノろ過膜処理の前段に、ナノろ過膜を透過する上記スライム抑制剤を供給することにより、逆浸透膜の劣化、処理水の水質悪化を抑制し、十分なスライム抑制効果を得ることができることがわかった。   Thus, by supplying the slime inhibitor that permeates the nanofiltration membrane to the front stage of the nanofiltration membrane treatment in the filtration treatment system that performs the reverse osmosis membrane treatment after the membrane filtration treatment using the nanofiltration membrane, reverse osmosis is achieved. It was found that the deterioration of the membrane and the deterioration of the quality of the treated water can be suppressed and a sufficient slime suppressing effect can be obtained.

[透過水の臭素酸イオンの濃度の比較実験]
組成物調製時の窒素ガスパージの有無による透過水の臭素酸イオンの濃度を比較した。
[Comparison experiment of bromate ion concentration in permeated water]
The bromate ion concentration of permeated water with and without nitrogen gas purge during composition preparation was compared.

<安定化次亜臭素酸組成物a’の調製>
安定化次亜臭素酸組成物aと同様にして、窒素雰囲気下で、液体臭素:17重量%(wt%)、スルファミン酸:10.7重量%、水酸化ナトリウム:12.9重量%、水酸化カリウム:3.95重量%、水:残分を混合して、組成物a’を調製した。組成物a’のpHは14、有効ハロゲン濃度(有効塩素換算濃度)は7.5重量%であり、臭素酸濃度は5mg/kg未満であった。
<Preparation of Stabilized Hypobromite Composition a '>
In the same manner as the stabilized hypobromite composition a, in a nitrogen atmosphere, liquid bromine: 17% by weight (wt%), sulfamic acid: 10.7% by weight, sodium hydroxide: 12.9% by weight, water A composition a ′ was prepared by mixing potassium oxide: 3.95 wt% and water: residue. The pH of the composition a ′ was 14, the effective halogen concentration (effective chlorine equivalent concentration) was 7.5% by weight, and the bromic acid concentration was less than 5 mg / kg.

<安定化次亜臭素酸組成物hの調製>
窒素パージを行わず、大気下で、液体臭素:17重量%(wt%)、スルファミン酸:10.7重量%、水酸化ナトリウム:12.9重量%、水酸化カリウム:3.95重量%、水:残分を混合して、組成物hを調製した。組成物hのpHは14、有効ハロゲン濃度(有効塩素換算濃度)は7.4重量%であり、臭素酸濃度は63mg/kgであった。
<Preparation of Stabilized Hypobromite Composition h>
In the atmosphere without nitrogen purge, liquid bromine: 17% by weight (wt%), sulfamic acid: 10.7% by weight, sodium hydroxide: 12.9% by weight, potassium hydroxide: 3.95% by weight, Water: the residue was mixed to prepare composition h. The pH of the composition h was 14, the effective halogen concentration (effective chlorine equivalent concentration) was 7.4% by weight, and the bromic acid concentration was 63 mg / kg.

(試験条件)
・試験装置:平膜試験装置
・分離膜:日東電工(株)製、ポリアミド系高分子逆浸透膜 ES20
・運転圧力:0.75MPa
・原水:相模原井水(pH7.2、導電率240μS/cm)
・薬剤:安定化次亜臭素酸組成物a’,hを、有効ハロゲン濃度(有効塩素換算濃度)として50mg/Lとなるように添加
(Test conditions)
Test apparatus: Flat membrane test apparatus Separation membrane: Polyamide polymer reverse osmosis membrane ES20 manufactured by Nitto Denko Corporation
・ Operating pressure: 0.75 MPa
Raw water: Sagamiharai water (pH 7.2, conductivity 240 μS / cm)
・ Drug: Stabilized hypobromite compositions a ′ and h are added so that the effective halogen concentration (effective chlorine equivalent concentration) is 50 mg / L.

(評価方法)
・透過水の臭素酸イオン濃度を、イオンクロマトグラフ−ポストカラム吸光光度法で測定した。
(Evaluation method)
-The bromate ion concentration of the permeated water was measured by ion chromatography-post column absorptiometry.

試験結果を表3に示す。   The test results are shown in Table 3.

Figure 2016120457
Figure 2016120457

安定化次亜臭素酸組成物a’では、給水、透過水中の臭素酸イオン濃度は1μg/L未満であった。安定化次亜臭素酸組成物hでは、給水、透過水中の臭素酸イオン濃度は、安定化次亜臭素酸組成物a’に比べて高かった。   In the stabilized hypobromite composition a ′, the bromate ion concentration in the feed water and the permeated water was less than 1 μg / L. In the stabilized hypobromite composition h, the bromate ion concentration in feed water and permeated water was higher than that in the stabilized hypobromite composition a '.

1,3 ろ過処理システム、10 原水槽、12 ナノろ過膜処理装置、14 逆浸透膜処理装置、16 ナノろ過膜透過水槽、18,20 ポンプ、24 原水配管、26 原水供給配管、28 ナノろ過膜透過水配管、30 ナノろ過膜透過水供給配管、32 逆浸透膜透過水配管、34,46 ナノろ過膜濃縮水配管、36,48 逆浸透膜濃縮水配管、38 スライム抑制剤供給配管、42,44 濃縮水返送配管。   DESCRIPTION OF SYMBOLS 1,3 Filtration processing system, 10 Raw water tank, 12 Nanofiltration membrane processing apparatus, 14 Reverse osmosis membrane processing apparatus, 16 Nanofiltration membrane permeated water tank, 18, 20 Pump, 24 Raw water piping, 26 Raw water supply piping, 28 Nanofiltration membrane Permeate pipe, 30 Nanofiltration membrane permeate supply pipe, 32 Reverse osmosis membrane permeate pipe, 34,46 Nanofiltration membrane concentrate water pipe, 36,48 Reverse osmosis membrane concentrate water pipe, 38 Slime inhibitor supply pipe, 42, 44 Concentrated water return piping.

Claims (4)

ナノろ過膜を用いて被処理水の処理を行うナノろ過膜処理手段と、
逆浸透膜を用いて前記ナノろ過膜処理手段からのナノろ過膜透過水の処理を行う逆浸透膜処理手段と、
前記ナノろ過膜処理手段の前段において前記ナノろ過膜を透過するスライム抑制剤を供給するスライム抑制剤供給手段と、
を備え、
前記ナノろ過膜を透過するスライム抑制剤が、臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、を含む薬剤、もしくは、臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物との反応生成物を含む薬剤である次亜臭素酸安定化組成物;塩素系酸化剤とスルファミン酸化合物とを含む薬剤、もしくは、塩素系酸化剤とスルファミン酸化合物との反応生成物を含む薬剤である次亜塩素酸安定化組成物;イソチアゾロン化合物;クロラミン化合物;ニトロアルコール化合物;ハロシアノアセトアミド化合物;の少なくとも1つであることを特徴とするろ過処理システム。
A nanofiltration membrane treatment means for treating the water to be treated using the nanofiltration membrane;
Reverse osmosis membrane treatment means for treating nanofiltration membrane permeated water from the nanofiltration membrane treatment means using a reverse osmosis membrane;
A slime inhibitor supply means for supplying a slime inhibitor that permeates the nanofiltration membrane in the preceding stage of the nanofiltration membrane treatment means;
With
The slime inhibitor that permeates the nanofiltration membrane is a bromine-based oxidant, a reaction product of a bromine compound and a chlorine-based oxidant, and a sulfamic acid compound, or a bromine-based oxidant, or a bromine compound. Hypobromite stabilizing composition, which is a chemical containing a reaction product of chlorinated oxidant and a reaction product of sulfamic acid compound; chemical containing chlorinated oxidant and sulfamic acid compound, or chlorinated A hypochlorous acid stabilizing composition which is a drug containing a reaction product of an oxidant and a sulfamic acid compound; isothiazolone compound; chloramine compound; nitroalcohol compound; halocyanoacetamide compound; Filtration processing system.
請求項1に記載のろ過処理システムであって、
前記ナノろ過膜処理手段からのナノろ過膜濃縮水および前記逆浸透膜処理手段からの逆浸透膜濃縮水のうち少なくとも1つを、前記ナノろ過膜処理手段の前段に返送する返送手段を備えることを特徴とするろ過処理システム。
The filtration system according to claim 1,
A return means for returning at least one of the nanofiltration membrane concentrated water from the nanofiltration membrane treatment means and the reverse osmosis membrane concentrated water from the reverse osmosis membrane treatment means to the previous stage of the nanofiltration membrane treatment means; Filtration processing system characterized by.
ナノろ過膜を用いて被処理水の処理を行うナノろ過膜処理工程と、
逆浸透膜を用いて前記ナノろ過膜処理工程からのナノろ過膜透過水の処理を行う逆浸透膜処理工程と、
前記ナノろ過膜処理工程の前段において前記ナノろ過膜を透過するスライム抑制剤を供給するスライム抑制剤供給工程と、
を含み、
前記ナノろ過膜を透過するスライム抑制剤が、臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、を含む薬剤、もしくは、臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物との反応生成物を含む薬剤である次亜臭素酸安定化組成物;塩素系酸化剤とスルファミン酸化合物とを含む薬剤、もしくは、塩素系酸化剤とスルファミン酸化合物との反応生成物を含む薬剤である次亜塩素酸安定化組成物;イソチアゾロン化合物;クロラミン化合物;ニトロアルコール化合物;ハロシアノアセトアミド化合物;の少なくとも1つであることを特徴とするろ過処理方法。
A nanofiltration membrane treatment process for treating the water to be treated using the nanofiltration membrane;
A reverse osmosis membrane treatment step of treating the nanofiltration membrane permeated water from the nanofiltration membrane treatment step using a reverse osmosis membrane;
A slime inhibitor supply step for supplying a slime inhibitor that permeates the nanofiltration membrane in the previous stage of the nanofiltration membrane treatment step;
Including
The slime inhibitor that permeates the nanofiltration membrane is a bromine-based oxidant, a reaction product of a bromine compound and a chlorine-based oxidant, and a sulfamic acid compound, or a bromine-based oxidant, or a bromine compound. Hypobromite stabilizing composition, which is a chemical containing a reaction product of chlorinated oxidant and a reaction product of sulfamic acid compound; chemical containing chlorinated oxidant and sulfamic acid compound, or chlorinated A hypochlorous acid stabilizing composition which is a drug containing a reaction product of an oxidant and a sulfamic acid compound; isothiazolone compound; chloramine compound; nitroalcohol compound; halocyanoacetamide compound; Filtration treatment method.
請求項3に記載のろ過処理方法であって、
前記ナノろ過膜処理工程からのナノろ過膜濃縮水および前記逆浸透膜処理工程からの逆浸透膜濃縮水のうち少なくとも1つを、前記ナノろ過膜処理工程の前段に返送する返送工程を含むことを特徴とするろ過処理方法。
The filtration method according to claim 3,
Including a returning step of returning at least one of the nanofiltration membrane concentrated water from the nanofiltration membrane treatment step and the reverse osmosis membrane concentrated water from the reverse osmosis membrane treatment step to the previous stage of the nanofiltration membrane treatment step. A filtration method characterized by.
JP2014261684A 2014-12-25 2014-12-25 Filtration treatment system and filtration treatment method Active JP6534524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014261684A JP6534524B2 (en) 2014-12-25 2014-12-25 Filtration treatment system and filtration treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014261684A JP6534524B2 (en) 2014-12-25 2014-12-25 Filtration treatment system and filtration treatment method

Publications (2)

Publication Number Publication Date
JP2016120457A true JP2016120457A (en) 2016-07-07
JP6534524B2 JP6534524B2 (en) 2019-06-26

Family

ID=56326947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014261684A Active JP6534524B2 (en) 2014-12-25 2014-12-25 Filtration treatment system and filtration treatment method

Country Status (1)

Country Link
JP (1) JP6534524B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018030073A (en) * 2016-08-23 2018-03-01 オルガノ株式会社 Treatment method and treatment system of low molecular organic matter-containing water
JP2018079451A (en) * 2016-11-18 2018-05-24 オルガノ株式会社 Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method
JP2018083175A (en) * 2016-11-25 2018-05-31 野村マイクロ・サイエンス株式会社 Ultrapure water production method, and ultrapure water production system
JP2018094489A (en) * 2016-12-12 2018-06-21 前澤工業株式会社 Water purifying method
JP2018153749A (en) * 2017-03-17 2018-10-04 オルガノ株式会社 Water treatment method and water treatment system using reverse osmosis membrane
WO2018193907A1 (en) * 2017-04-19 2018-10-25 栗田工業株式会社 Water treatment method
JP2020075219A (en) * 2018-11-08 2020-05-21 オルガノ株式会社 Reverse osmosis membrane treatment method, reverse osmosis membrane treatment system, water treatment method and water treatment system
CN112805247A (en) * 2018-10-05 2021-05-14 奥加诺株式会社 Water treatment device, water treatment method, forward osmosis membrane treatment system, and water treatment system
CN113614039A (en) * 2019-03-28 2021-11-05 栗田工业株式会社 Water treatment device and water treatment method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079246A (en) * 2000-06-19 2002-03-19 Toray Ind Inc Water making method
JP2006263510A (en) * 2005-03-22 2006-10-05 Kurita Water Ind Ltd Slime preventing agent for membrane separation and membrane separation method
US20090053327A1 (en) * 2004-09-07 2009-02-26 Albemarle Corporation Concentrated aqueous bromine solutions and their preparation
JP2009247992A (en) * 2008-04-07 2009-10-29 Japan Organo Co Ltd Pure water producing method and pure water production apparatus
JP2014073451A (en) * 2012-10-04 2014-04-24 Kurita Water Ind Ltd Industrial antibacterial method
JP2014101251A (en) * 2012-11-20 2014-06-05 Japan Organo Co Ltd Method of manufacturing hypobromous acid stabilized composition and hypobromous acid stabilized composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079246A (en) * 2000-06-19 2002-03-19 Toray Ind Inc Water making method
US20090053327A1 (en) * 2004-09-07 2009-02-26 Albemarle Corporation Concentrated aqueous bromine solutions and their preparation
JP2006263510A (en) * 2005-03-22 2006-10-05 Kurita Water Ind Ltd Slime preventing agent for membrane separation and membrane separation method
JP2009247992A (en) * 2008-04-07 2009-10-29 Japan Organo Co Ltd Pure water producing method and pure water production apparatus
JP2014073451A (en) * 2012-10-04 2014-04-24 Kurita Water Ind Ltd Industrial antibacterial method
JP2014101251A (en) * 2012-11-20 2014-06-05 Japan Organo Co Ltd Method of manufacturing hypobromous acid stabilized composition and hypobromous acid stabilized composition

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018030073A (en) * 2016-08-23 2018-03-01 オルガノ株式会社 Treatment method and treatment system of low molecular organic matter-containing water
KR102358382B1 (en) * 2016-11-18 2022-02-04 오르가노 코포레이션 Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method
JP2018079451A (en) * 2016-11-18 2018-05-24 オルガノ株式会社 Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method
WO2018092852A1 (en) * 2016-11-18 2018-05-24 オルガノ株式会社 Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method
TWI786071B (en) * 2016-11-18 2022-12-11 日商奧璐佳瑙股份有限公司 Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method
KR20190062582A (en) * 2016-11-18 2019-06-05 오르가노 코포레이션 Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method
CN109906204A (en) * 2016-11-18 2019-06-18 奥加诺株式会社 Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method
CN109906204B (en) * 2016-11-18 2022-04-19 奥加诺株式会社 Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method
JP2018083175A (en) * 2016-11-25 2018-05-31 野村マイクロ・サイエンス株式会社 Ultrapure water production method, and ultrapure water production system
WO2018096929A1 (en) * 2016-11-25 2018-05-31 野村マイクロ・サイエンス株式会社 Method for producing ultrapure water and system for producing ultrapure water
JP2018094489A (en) * 2016-12-12 2018-06-21 前澤工業株式会社 Water purifying method
JP2018153749A (en) * 2017-03-17 2018-10-04 オルガノ株式会社 Water treatment method and water treatment system using reverse osmosis membrane
JP2018176116A (en) * 2017-04-19 2018-11-15 栗田工業株式会社 Water treatment method
WO2018193907A1 (en) * 2017-04-19 2018-10-25 栗田工業株式会社 Water treatment method
CN112805247A (en) * 2018-10-05 2021-05-14 奥加诺株式会社 Water treatment device, water treatment method, forward osmosis membrane treatment system, and water treatment system
JP2020075219A (en) * 2018-11-08 2020-05-21 オルガノ株式会社 Reverse osmosis membrane treatment method, reverse osmosis membrane treatment system, water treatment method and water treatment system
JP7141919B2 (en) 2018-11-08 2022-09-26 オルガノ株式会社 Reverse osmosis membrane treatment method, reverse osmosis membrane treatment system, water treatment method, and water treatment system
CN113614039A (en) * 2019-03-28 2021-11-05 栗田工业株式会社 Water treatment device and water treatment method

Also Published As

Publication number Publication date
JP6534524B2 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
JP6401491B2 (en) Method for inhibiting slime of separation membrane, slime inhibitor composition for reverse osmosis membrane or nanofiltration membrane, and method for producing slime inhibitor composition for separation membrane
JP6534524B2 (en) Filtration treatment system and filtration treatment method
JP6616855B2 (en) Filtration treatment system and filtration treatment method
JP6533056B2 (en) Filtration treatment system and filtration treatment method
WO2016104356A1 (en) Method for controlling slime on separation membrane
JP6837301B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP2016155074A (en) Operational method for separation membrane, modification method for separation membrane, and separation membrane
JP6513424B2 (en) Method of sterilizing separation membrane
JP6630562B2 (en) Slime suppression method for separation membrane
JP6682401B2 (en) Water treatment method using reverse osmosis membrane
JP7013141B2 (en) Water treatment method using reverse osmosis membrane
JP2018008182A (en) Water treatment method using reverse osmosis membrane, and agent for improving blocking rate of silica in reverse osmosis membrane
JP7250612B2 (en) Water-based sterilization method and water-based nitrosamine compound removal method
JP6457807B2 (en) Water treatment apparatus and water treatment method
JP7144922B2 (en) Reverse osmosis membrane operation method and reverse osmosis membrane device
JP7008470B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP6823401B2 (en) Method for treating water containing low molecular weight organic substances and method for modifying reverse osmosis membranes
JP7141919B2 (en) Reverse osmosis membrane treatment method, reverse osmosis membrane treatment system, water treatment method, and water treatment system
JP6422765B2 (en) Membrane separation treatment system and membrane separation treatment method
JP7471143B2 (en) Water treatment method and water treatment device
JP2018069120A (en) Water treatment method and apparatus using reverse osmosis membrane
JP2018069124A (en) Water treatment apparatus and method using reverse osmosis membrane
JP2016120487A (en) Method for sterilizing water
JP2018030061A (en) Water treatment methods using reverse osmosis membranes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190529

R150 Certificate of patent or registration of utility model

Ref document number: 6534524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250