WO2016104356A1 - Method for controlling slime on separation membrane - Google Patents

Method for controlling slime on separation membrane Download PDF

Info

Publication number
WO2016104356A1
WO2016104356A1 PCT/JP2015/085476 JP2015085476W WO2016104356A1 WO 2016104356 A1 WO2016104356 A1 WO 2016104356A1 JP 2015085476 W JP2015085476 W JP 2015085476W WO 2016104356 A1 WO2016104356 A1 WO 2016104356A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
bromine
separation membrane
water
slime
Prior art date
Application number
PCT/JP2015/085476
Other languages
French (fr)
Japanese (ja)
Inventor
吉川 浩
染谷 新太郎
雅人 都司
千晴 大森
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015034205A external-priority patent/JP6513424B2/en
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to KR1020177016226A priority Critical patent/KR101966569B1/en
Priority to SG11201704614YA priority patent/SG11201704614YA/en
Priority to MYPI2017702134A priority patent/MY188356A/en
Priority to CN201580070782.9A priority patent/CN107108277B/en
Publication of WO2016104356A1 publication Critical patent/WO2016104356A1/en
Priority to SA517381683A priority patent/SA517381683B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • B01D65/06Membrane cleaning or sterilisation ; Membrane regeneration with special washing compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens

Definitions

  • the slime suppression method of the separation membrane according to the present embodiment despite exhibiting a slime suppression effect equal to or higher than that of a chlorine-based oxidizing agent such as hypochlorous acid, compared with a chlorine-based oxidizing agent, Since the elimination rate of the brominated trihalomethane produced in the separation membrane is extremely high, the trihalomethane in the permeated water of the separation membrane can be greatly reduced. For this reason, the slime inhibitor used with the slime suppression method of the separation membrane which concerns on this embodiment is suitable as a slime inhibitor for separation membranes.
  • a method in which “bromine-based oxidant” and “sulfamic acid compound” are present, “reaction product of bromine compound and chlorine-based oxidant”, and “sulfamic acid compound” ”, A method in which“ a reaction product of a bromine-based oxidant and a sulfamic acid compound ”is present, or“ a reaction product of a reaction product of a bromine compound and a chlorinated oxidant and a sulfamic acid compound ”
  • the method in which the “product” is present has an extremely low deterioration effect on the separation membrane, and can be directly introduced into the separation membrane to suppress slime. For this reason, the slime inhibitor used by these slime suppression methods is more suitable as a slime inhibitor for separation membranes.
  • the trihalomethane precursor can be measured as a trihalomethane production ability (THMFP) (mg / L) by a measurement method based on “a special method for the maintenance of water quality in a tap water source area for prevention of specific water use damage”. Specifically, the sample was produced under the conditions of pH 7.0, temperature 20 ° C., reaction time 24 hours, and sodium hypochlorite added so that the free residual chlorine concentration after 24 hours was 1 to 2 mg / L. In this method, the amount of trihalomethane produced is determined by simultaneous analysis using a purge / trap / gas chromatograph / mass spectrometer. The trihalomethane precursor can also be measured with a TOC meter or the like.
  • TMMFP trihalomethane production ability
  • the trihalomethane precursor When the trihalomethane precursor is present at 0.001 mg / L or more as the trihalomethane precursor (THMFP) (mg / L), trihalomethane is likely to be generated.
  • the concentration is L or more, preferably 0.01 mg / L or more, and more preferably 0.02 mg / L or more, the method for suppressing slime of the separation membrane according to this embodiment is more effective.
  • the concentration is L or more, preferably 0.01 mg / L or more, and more preferably 0.02 mg / L or more, the method for suppressing slime of the separation membrane according to this embodiment is more effective.
  • limiting in particular in the upper limit of the trihalomethane production ability of the feed water or washing water to a membrane separator For example, it is 1 mg / L or less.
  • Slime inhibitors such as “hypobromite” and “hypobromite stabilizing composition in which bromine-based oxidant and sulfamic acid coexist” used in the method for suppressing slime of a separation membrane according to an embodiment of the present invention are Slime suppression effect (bactericidal effect) equivalent to or better than hypochlorous acid.
  • bromine trihalomethane is mainly produced.
  • these “hypobromite” and “hypobromite stabilization composition” unlike ordinary hypochlorous acid, hardly increases the amount of trihalomethane generated with increasing bromide ion concentration. .
  • the slime suppression method for a separation membrane according to this embodiment is suitable as a slime suppression method for a membrane separation device using feed water or washing water containing a trihalomethane precursor and bromide ions.
  • the slime suppression method for a separation membrane enables a slime suppression treatment that minimizes the trihalomethane concentration in the permeated water of the separation membrane while having a high slime suppression effect.
  • bromine-based oxidant or “bromine compound and chlorine” is fed into the feed water or the wash water to the membrane separator using the feed water or the wash water containing the trihalomethane precursor. What is necessary is just to inject
  • the “bromine compound” and the “chlorine oxidant” may be added separately to the aqueous system, or may be added to the aqueous system after being mixed with the stock solution.
  • a “bromine oxidant” or a “reaction product of a bromine compound and a chlorine oxidizer” and “sulfamic acid” may be injected by a chemical injection pump or the like.
  • the “bromine-based oxidant” or “reaction product of bromine compound and chlorine-based oxidant” and the “sulfamic acid compound” may be added separately to the aqueous system, or they are mixed together in the stock solution and then into the aqueous system. It may be added.
  • the separation membrane slime suppression method according to the present embodiment can suppress the deterioration of the separation membrane and effectively sterilize the separation membrane during the operation suspension even in the membrane separation system that operates and halts the operation. It becomes.
  • a raw water pipe 16 is connected to the inlet of the raw water tank 10.
  • the outlet of the raw water tank 10 and the inlet of the membrane separation device 12 are connected by a raw water supply pipe 18 via a pump 14.
  • a permeated water pipe 20 is connected to the permeated water outlet of the membrane separator 12, and a concentrated water pipe 22 is connected to the concentrated water outlet.
  • a sterilizing agent supply pipe 24 is connected between the pump 14 in the raw water supply pipe 18 and the inlet of the membrane separation device 12.
  • the raw water to be treated is stored in the raw water tank 10 as necessary, and then supplied to the membrane separation device 12 through the raw water supply pipe 18 by the pump 14.
  • membrane separation processing is performed by the separation membrane (membrane separation processing step).
  • the permeated water (treated water) obtained by the membrane separation treatment is discharged through the permeated water pipe 20, and the concentrated water is discharged through the concentrated water pipe 22.
  • the concentrated water may be circulated to the raw water tank 10 or the raw water supply pipe 18.
  • the raw water in the raw water tank 10 is passed through the membrane separator 12 and a predetermined concentration of bactericide is added to the raw water through the bactericide supply pipe 24 from the bactericide supply mechanism, and the operation of the membrane separation system 1 is performed.
  • the pump 14 is stopped and the bactericide is stopped during the operation of the membrane separation system 1. May be present in the membrane separation device 12.
  • operation stop means that the membrane separation system 1 has not obtained treated water (permeated water).
  • a bactericidal agent is added to the backwashing water, and the membrane separation system 1 is not in operation.
  • a disinfectant may be present in the membrane separation device 12.
  • a level switch is installed in the raw water tank 10, the operation is stopped when the water level in the raw water tank 10 detected by the level switch during operation is lower than a predetermined height, and the level switch is detected during the operation stop. Control may be performed so that the operation is resumed when the water level in the raw water tank 10 becomes higher than a predetermined height.
  • bromine-based oxidizing agent and “sulfamic acid compound” are used as disinfectants (slime suppressing agents) during the operation stop of the membrane separation system 1 in which the operation and the operation stop are performed.
  • a hypobromite stabilization composition produces
  • the slime suppression method of the separation membrane which concerns on this embodiment is a "bromine-type oxidizing agent and a sulfamic acid compound as a disinfectant (slime inhibitor) during the operation stop of the membrane separation system 1 in which an operation
  • a reaction product of a reaction product of a bromine compound and a chlorinated oxidant and a sulfamic acid compound is present in the membrane separation device 12.
  • the method for suppressing the slime of the separation membrane includes, for example, “bromine”, “bromine chloride”, “hypobromine” during the operation stop of the membrane separation system 1 in which the operation and the operation stop are performed.
  • the “acid” or “reaction product of sodium bromide and hypochlorous acid” and the “sulfamic acid compound” are present in the membrane separator 12.
  • the method for suppressing slime of the separation membrane according to the present embodiment can be performed during, for example, “reaction product of bromine and sulfamic acid compound”, “salt chloride” during the operation stop of the membrane separation system 1 in which the operation and the operation stop are performed.
  • the reaction product of bromine and sulfamic acid compound ", or the reaction product of sodium bromide and hypochlorous acid and the reaction product of sulfamic acid compound” hypobromite stabilization composition This is a method of existing in the separation device 12.
  • the “reactant” and the “sulfamic acid compound” may be injected into the aqueous system by a chemical injection pump or the like.
  • the “bromine-based oxidant” or “reaction product of bromine compound and chlorine-based oxidant” and the “sulfamic acid compound” may be added separately to the aqueous system, or they are mixed together in the stock solution and then into the aqueous system. It may be added.
  • reaction product of bromine-based oxidant and sulfamic acid compound or “reaction of bromine compound and chlorine-based oxidant”
  • reaction product of the product and the sulfamic acid compound may be injected into the aqueous system by a chemical injection pump or the like.
  • the ratio of the equivalent of “sulfamic acid compound” to the equivalent of “bromine-based oxidant” or “reaction product of bromine compound and chlorine-based oxidant” is 1 or more. It is preferable that it is in the range of 1 or more and 2 or less. If the ratio of the equivalent of “sulfamic acid compound” to the equivalent of “bromine-based oxidant” or “reaction product of bromine compound and chlorine-based oxidant” is less than 1, the film may be deteriorated. When it exceeds, manufacturing cost may increase.
  • the effective halogen concentration in contact with the separation membrane is preferably 0.01 to 100 mg / L in terms of effective chlorine concentration. If it is less than 0.01 mg / L, a sufficient slime-inhibiting effect may not be obtained. If it is more than 100 mg / L, it may cause deterioration of the separation membrane and corrosion of piping.
  • bromine-based oxidizing agents examples include bromine (liquid bromine), bromine chloride, bromic acid, bromate, and hypobromite.
  • the preparation of “bromine and sulfamic acid compound (mixture of bromine and sulfamic acid compound)” or “reaction product of bromine and sulfamic acid compound” using bromine is composed of “hypochlorous acid and bromine compound and Compared to sulfamic acid preparations and bromine chloride and sulfamic acid preparations, the amount of trihalomethane produced is small, and the reverse osmosis membrane (RO membrane) does not deteriorate further, and the reverse osmosis membrane (RO membrane) permeates. Since the amount of effective halogen leaked into membrane permeated water such as water is smaller, it is more preferable as a slime inhibitor for separation membranes such as reverse osmosis membranes (RO membranes).
  • RO membranes reverse osmosis membranes
  • bromine and a sulfamic acid compound are present in feed water or washing water to a membrane separation apparatus including a separation membrane, which contains a trihalomethane precursor (preferably, a mixture of bromine and a sulfamic acid compound is present).
  • a reaction product of bromine and a sulfamic acid compound is present in the feed water or the washing water containing a trihalomethane precursor and supplied to a membrane separation apparatus including a separation membrane.
  • bromine compounds include sodium bromide, potassium bromide, lithium bromide, ammonium bromide and hydrobromic acid. Of these, sodium bromide is preferable from the viewpoint of formulation cost and the like.
  • Examples of the chlorine-based oxidizing agent include chlorine gas, chlorine dioxide, hypochlorous acid or a salt thereof, chlorous acid or a salt thereof, chloric acid or a salt thereof, perchloric acid or a salt thereof, chlorinated isocyanuric acid or a salt thereof.
  • examples of the salt include alkali metal hypochlorites such as sodium hypochlorite and potassium hypochlorite, alkaline earth hypochlorite such as calcium hypochlorite and barium hypochlorite.
  • alkali metal chlorites such as sodium chlorite and potassium chlorite
  • alkaline earth metal chlorites such as barium chlorite
  • other metal chlorites such as nickel chlorite
  • Alkali metal chlorates such as ammonium chlorate, sodium chlorate and potassium chlorate
  • alkaline earth metal chlorates such as calcium chlorate and barium chlorate.
  • chlorine-based oxidants may be used alone or in combination of two or more.
  • sodium hypochlorite is preferably used from the viewpoint of handleability.
  • the sulfamic acid compound is a compound represented by the following general formula (1).
  • R 2 NSO 3 H (1) (In the formula, R is independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.)
  • sulfamic acid compound examples include sulfamic acid (amidosulfuric acid) in which both two R groups are hydrogen atoms, N-methylsulfamic acid, N-ethylsulfamic acid, N-propylsulfamic acid, N- A sulfamic acid compound in which one of two R groups such as isopropylsulfamic acid and N-butylsulfamic acid is a hydrogen atom and the other is an alkyl group having 1 to 8 carbon atoms, N, N-dimethylsulfamic acid, N, Two R groups such as N-diethylsulfamic acid, N, N-dipropylsulfamic acid, N, N-dibutylsulfamic acid, N-methyl-N-ethylsulfamic acid, N-methyl-N-propylsulfamic acid, etc.
  • sulfamic acid amidosulfuric
  • One of two R groups such as a sulfamic acid compound, N-phenylsulfamic acid and the like, both of which are alkyl groups having 1 to 8 carbon atoms Is a hydrogen atom and the other sulfamic acid compound or a salt thereof, such as an aryl group having 6 to 10 carbon atoms.
  • the sulfamate include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt, strontium salt and barium salt, manganese salt, copper salt, zinc salt, iron salt, cobalt salt, Other metal salts such as nickel salts, ammonium salts, guanidine salts and the like can be mentioned.
  • the sulfamic acid compounds and salts thereof may be used alone or in combination of two or more.
  • sulfamic acid compound sulfamic acid (amidosulfuric acid) is preferably used from the viewpoint of environmental load.
  • an alkali may be further present.
  • the alkali include alkali hydroxides such as sodium hydroxide and potassium hydroxide. From the viewpoint of product stability at low temperatures, sodium hydroxide and potassium hydroxide may be used in combination. Further, the alkali is not solid and may be used as an aqueous solution.
  • the separation membrane examples include a reverse osmosis membrane (RO membrane), a nanofiltration membrane (NF membrane), a microfiltration membrane (MF membrane), and an ultrafiltration membrane (UF membrane).
  • RO membrane reverse osmosis membrane
  • NF membrane nanofiltration membrane
  • MF membrane microfiltration membrane
  • UF membrane ultrafiltration membrane
  • the method for suppressing slime of the separation membrane according to the embodiment of the present invention can be suitably applied particularly to a reverse osmosis membrane (RO membrane).
  • the slime suppression method of the separation membrane which concerns on embodiment of this invention is suitably applicable to the polyamide-type polymer membrane which is mainstream these days as a reverse osmosis membrane.
  • Polyamide polymer membranes have a relatively low resistance to oxidizing agents, and when free chlorine or the like is continuously brought into contact with the polyamide polymer membrane, the membrane performance is significantly reduced.
  • such a remarkable decrease in membrane performance hardly occurs even in the polyamide polymer membrane.
  • the reverse osmosis membrane (RO membrane) is deteriorated and treated water (permeated water) is deteriorated by operating at a pH of 5.5 or higher for the water supplied to the RO device. It is possible to secure a sufficient amount of permeated water while suppressing deterioration of water quality and exhibiting a sufficient slime suppressing effect.
  • a dispersant may be used in combination with a bromine-based oxidizing agent or a hypobromite stabilizing composition for scale control.
  • examples of the dispersant include polyacrylic acid, polymaleic acid, and phosphonic acid.
  • the amount of the dispersant added to the feed water is, for example, in the range of 0.1 to 1,000 mg / L as the concentration in the RO concentrated water.
  • an RO device is used so that the silica concentration in the RO concentrated water is less than the solubility and the Langeria index, which is a calcium scale index, is less than 0. Adjusting the operating conditions such as the recovery rate.
  • RO device examples include seawater desalination and wastewater recovery.
  • the slime inhibitor composition for separation membrane contains “bromine-based oxidant” or “reaction product of bromine compound and chlorine-based oxidant” and “sulfamic acid compound”, Furthermore, you may contain an alkali.
  • the slime inhibitor composition for separation membrane includes a “reaction product of a bromine-based oxidant and a sulfamic acid compound” or a “reaction product of a bromine compound and a chlorine-based oxidant, and a sulfamic acid. It contains a reaction product of a compound and may further contain an alkali.
  • the bromine-based oxidizing agent, bromine compound, chlorine-based oxidizing agent, and sulfamic acid compound are as described above.
  • the reverse osmosis membrane (RO membrane) or the like is not further deteriorated, and the amount of effective halogen leaked into membrane permeated water such as RO permeated water is smaller.
  • Containing bromine and a sulfamic acid compound containing a mixture of bromine and sulfamic acid compound
  • a sulfamic acid compound for example, a mixture of bromine, sulfamic acid compound, alkali and water, or reaction of bromine with sulfamic acid compound
  • a product containing a product for example, a mixture of a reaction product of bromine and a sulfamic acid compound, an alkali, and water is preferable.
  • the slime inhibitor composition for a separation membrane according to the present embodiment has a high oxidizing power, slime inhibitory power, and slime peeling power, which is remarkably high compared to a combined chlorine-based slime inhibitor such as chlorosulfamic acid. Similarly, it hardly causes significant film deterioration like hypochlorous acid having high oxidizing power. At normal use concentrations, the effect on film degradation can be substantially ignored. Therefore, it is optimal as a slime inhibitor for separation membranes such as reverse osmosis membranes (RO membranes).
  • RO membranes reverse osmosis membranes
  • the slime inhibitor composition for separation membrane according to the present embodiment hardly permeates the reverse osmosis membrane (RO membrane), and therefore has little influence on the quality of treated water. Further, since the concentration can be measured on site in the same manner as hypochlorous acid or the like, more accurate concentration management is possible.
  • the slime inhibitor composition for separation membrane according to the present embodiment reacts with the trihalomethane precursor to produce bromine-based trihalomethane, but is easily eliminated by the separation membrane, and the trihalomethane in the permeated water of the separation membrane is greatly reduced. It is thought that it is done.
  • the pH of the composition is, for example, more than 13.0, more preferably more than 13.2.
  • the pH of the composition is 13.0 or less, the effective halogen in the composition may become unstable.
  • the bromic acid concentration in the slime inhibitor composition for separation membrane is preferably less than 5 mg / kg. If the bromate concentration in the slime inhibitor composition for separation membrane is 5 mg / kg or more, the concentration of bromate ions in the permeated water may increase.
  • the slime inhibitor composition for a separation membrane is a mixture of a bromine-based oxidant and a sulfamic acid compound, or a reaction product of a bromine compound and a chlorine-based oxidant, and a sulfamic acid compound. And may be further mixed with an alkali.
  • the inert gas to be used is not limited, at least one of nitrogen and argon is preferable from the viewpoint of production and the like, and nitrogen is particularly preferable from the viewpoint of manufacturing cost and the like.
  • the oxygen concentration in the reactor during the addition of bromine is preferably 6% or less, more preferably 4% or less, further preferably 2% or less, and particularly preferably 1% or less. If the oxygen concentration in the reactor during the bromine reaction exceeds 6%, the amount of bromic acid produced in the reaction system may increase.
  • the addition ratio of bromine is preferably 25% by weight or less, more preferably 1% by weight or more and 20% by weight or less based on the total amount of the composition. If the bromine addition rate exceeds 25% by weight relative to the total amount of the composition, the amount of bromic acid produced in the reaction system may increase. If it is less than 1% by weight, the sterilizing power may be inferior.
  • the reaction temperature at the time of bromine addition is preferably controlled in the range of 0 ° C. to 25 ° C., but more preferably in the range of 0 ° C. to 15 ° C. from the viewpoint of production cost.
  • the reaction temperature at the time of bromine addition exceeds 25 degreeC, the production amount of the bromic acid in a reaction system may increase, and when it is less than 0 degreeC, it may freeze.
  • composition 1 Under nitrogen atmosphere, liquid bromine: 16.9% by weight (wt%), sulfamic acid: 10.7% by weight, sodium hydroxide: 12.9% by weight, potassium hydroxide: 3.94% by weight, water: remaining Minutes were mixed to prepare composition 1.
  • the pH of Composition 1 was 14, and the effective halogen concentration (effective chlorine equivalent concentration) was 7.5% by weight.
  • the detailed preparation method of the composition 1 is as follows.
  • the pH of the resulting solution was 14 as measured by the glass electrode method.
  • the bromine content of the resulting solution was 16.9% as measured by a redox titration method using sodium thiosulfate after bromine was converted to iodine with potassium iodide, and the theoretical content (16.9% ) Of 100.0%.
  • the oxygen concentration in the reaction vessel during the bromine reaction was measured using “Oxygen Monitor JKO-02 LJDII” manufactured by Zico Corporation.
  • the bromic acid concentration was less than 5 mg / kg.
  • composition 2 Sodium bromide: 11% by weight, 12% sodium hypochlorite aqueous solution: 50% by weight, sodium sulfamate: 14% by weight, sodium hydroxide: 8% by weight, water: the residue was mixed to prepare composition 2.
  • the pH of Composition 2 was 14, and the effective halogen concentration (effective chlorine equivalent concentration) was 6% by weight.
  • the detailed preparation method of the composition 2 is as follows.
  • composition 2 (1100 mg / kg).
  • composition 1 less than 50 mg / kg).
  • composition 3 A 9% by weight aqueous sodium hypobromite solution (Kanto Chemical Co., Ltd., Deer Grade 1) was used as Composition 3.
  • composition 4 A 12 wt% aqueous sodium hypochlorite solution was used as Composition 4.
  • compositions 1 to 4 were added to the raw water of the reverse osmosis membrane device, respectively, and the total trihalomethane concentration in the separation membrane feed water and the separation membrane permeated water, the total trihalomethane in the reverse osmosis membrane (RO membrane) Exclusion rates were compared.
  • raw water the following simulated water was used in Examples 1 to 3 and Comparative Example 1, and pure water was used in Reference Examples 1 and 2.
  • Test apparatus Flat membrane test apparatus Separation membrane: Polyamide polymer reverse osmosis membrane ES15 manufactured by Nitto Denko Corporation ⁇ Operating pressure: 0.75 MPa ⁇
  • Raw water Simulated water with trihalomethane production ability of 0.01 mg / L (pure water added with 8.9 mg / L humic acid (manufactured by Wako Pure Chemical Industries) as a trihalomethane precursor, TOC: 5 mg / L) or pure Water / drug: Compositions 1 to 4 are added so that the effective halogen concentration (effective chlorine equivalent concentration) is 3 mg / L.
  • Raw water pH The pH of the test water is adjusted to 8 after the drug is added.
  • Total trihalomethane concentration in RO water supply and RO permeated water, removal rate of total trihalomethane in reverse osmosis membrane (RO membrane) Compositions 1 to 4 as shown in Table 1 were added to simulated water or pure water, and the pH was adjusted to 8. The water temperature was adjusted to 25 ° C. and circulated through the RO apparatus. Four hours later, the total trihalomethane concentration (mg / L) in the RO water supply and RO permeated water was measured. From the total trihalomethane concentration in the RO water supply and RO permeated water, the removal rate (%) of the total trihalomethane in the reverse osmosis membrane (RO membrane) was determined. The results are shown in Table 1.
  • the total trihalomethane refers to four substances of chloroform, bromodichloromethane, dibromochloromethane and bromoform.
  • Total trihalomethane concentration was measured by a simultaneous analysis method using a purge / trap / gas chromatograph / mass spectrometer in accordance with the method (Ministry of Health, Labor and Welfare Notification No. 261) established by the Minister of Health, Labor and Welfare based on the provisions of the Ministerial Ordinance on Water Quality Standards. .
  • compositions 1, 2, 4 to 7 are added to the raw water of the reverse osmosis membrane device to influence the exclusion rate of the reverse osmosis membrane (RO membrane), the effect on the permeated water, and the oxidizing power. Compared.
  • composition 6 Composition 6 containing bromine chloride, sodium sulfamate, and sodium hydroxide was used. The pH of the composition 6 was 14, and the effective halogen concentration (effective chlorine equivalent concentration) was 7% by weight.
  • composition 7 Sodium bromide: 15% by weight, 12% sodium hypochlorite aqueous solution: 42.4% by weight were separately added to water.
  • Test apparatus Flat membrane test apparatus Separation membrane: Polyamide polymer reverse osmosis membrane ES20 manufactured by Nitto Denko Corporation ⁇ Operating pressure: 0.75 MPa
  • Raw water Sagamiharai water (pH 7.2, conductivity 240 ⁇ S / cm, bromide ion concentration less than 1.0 mg / L) ⁇
  • Drug Compositions 1, 2, 4 to 7 are added so that the effective halogen concentration (effective chlorine equivalent concentration) is 10 mg / L.
  • compositions 1, 2, 4 to 7 were added to simulated water, and the bactericidal power was compared.
  • compositions 1, 2, 5, and 6 maintained a high reverse osmosis membrane (RO membrane) rejection rate, had low effective halogen concentration (effective chlorine equivalent concentration) of permeated water, and high oxidation power and bactericidal power.
  • compositions 1, 2, 5, and 6 maintained the highest reverse osmosis membrane (RO membrane) rejection rate and had the lowest effective halogen concentration (effective chlorine equivalent concentration) of permeated water. .
  • Composition 4 had high oxidizing power and bactericidal power, but the rejection rate of the reverse osmosis membrane (RO membrane) was reduced, and the effective halogen concentration (effective chlorine equivalent concentration) of the permeated water was also high.
  • the composition 7 had high oxidizing power and bactericidal power, the effective halogen concentration (effective chlorine equivalent concentration) of permeated water was slightly high.
  • composition 1 ′ In the same manner as in Composition 1, in a nitrogen atmosphere, liquid bromine: 17% by weight (wt%), sulfamic acid: 10.7% by weight, sodium hydroxide: 12.9% by weight, potassium hydroxide: 3.95 The composition 1 ′ was prepared by mixing the weight%, water: residue. Composition 1 ′ had a pH of 14, an effective halogen concentration (effective chlorine equivalent concentration) of 7.5% by weight, and a bromic acid concentration of less than 5 mg / kg.
  • composition 8 In the atmosphere without nitrogen purge, liquid bromine: 17% by weight (wt%), sulfamic acid: 10.7% by weight, sodium hydroxide: 12.9% by weight, potassium hydroxide: 3.95% by weight, Water: the residue was mixed to prepare composition 8.
  • Composition 8 had a pH of 14, an effective halogen concentration (effective chlorine equivalent concentration) of 7.4% by weight, and a bromic acid concentration of 63 mg / kg.
  • Test apparatus Flat membrane test apparatus Separation membrane: Polyamide polymer reverse osmosis membrane ES20 manufactured by Nitto Denko Corporation ⁇ Operating pressure: 0.75 MPa
  • Raw water Sagamiharai water (pH 7.2, conductivity 240 ⁇ S / cm)
  • -Drug Compositions 1 'and 8 are added so that the effective halogen concentration (effective chlorine equivalent concentration) is 50 mg / L.
  • composition 1 ' the bromate ion concentration in the feed water and permeate was less than 1 ⁇ g / L.
  • composition 8 the bromate ion concentration in the feed water and permeated water was higher than in composition 1 '.
  • hypobromite stabilizing composition which is a “reaction product of bromine-based oxidant and sulfamic acid compound” is used as a slime inhibitor (Example 4)
  • “bromine-based oxidant” is used.
  • Example 5 when hypochlorous acid, which is a general slime inhibitor, is used (Comparative Example 2), hypochlorous acid is a reaction product of hypochlorous acid and a sulfamic acid compound. It compared about the trihalomethane density
  • composition 9 was prepared by mixing 12% aqueous sodium hypochlorite solution: 50% by weight, sulfamic acid: 10% by weight, sodium hydroxide: 8% by weight, water: residue. The pH of the composition 9 was 14, and the effective halogen concentration (effective chlorine equivalent concentration) was 6% by weight.
  • compositions 1, 3, and 4 were added to the raw water, and the total trihalomethane concentrations in the treated water were compared.
  • the following simulated water was used as raw water.
  • Raw water Simulated water (pure water with humic acid (manufactured by Wako Pure Chemical Industries) 8.9 mg / L as a trihalomethane precursor and sodium bromide (manufactured by Kanto Kagaku, special grade) as a bromide ion source with a concentration of 0.1 to Added to 300mg / L) -Drug: Compositions 1, 3, and 4 are added so that the effective halogen concentration (effective chlorine equivalent concentration) is 3 mg / L.-Raw water pH: adjusted so that the pH of the test water is 8 after the drug is added. Temperature: 25 ° C ⁇ Measurement method of effective halogen concentration: measured by DPD method using residual chlorine measuring device (manufactured by Hach, “DR-4000”)
  • Total trihalomethane concentration in treated water Compositions 1, 3, and 4 were added to the simulated water and the pH was adjusted to 8, and the water temperature was adjusted to 25 ° C. and stirred for 4 hours. After 4 hours of stirring, the total trihalomethane concentration (mg / L) in the treated water was measured. The results are shown in FIG. Here, the total trihalomethane refers to four substances of chloroform, bromodichloromethane, dibromochloromethane and bromoform.
  • Total trihalomethane concentration was measured by a simultaneous analysis method using a purge / trap / gas chromatograph / mass spectrometer in accordance with the method (Ministry of Health, Labor and Welfare Notification No. 261) established by the Minister of Health, Labor and Welfare based on the provisions of the Ministerial Ordinance on Water Quality Standards. .
  • the effective halogen concentration is determined by diluting the sample and using a multi-item water quality analyzer DR / 4000 manufactured by HACH (in the case of the total halogen concentration, the measurement item is “total chlorine”), and the effective chlorine measurement method (DPD (diethyl-p -Phenylenediamine) method) (mg / L asCl 2 ).
  • the effective halogen referred to here is a value measured by an effective chlorine measuring method (DPD method).
  • an effective bromine concentration mg / L asCl 2
  • the measured value by the effective chlorine measurement method (DPD method) is 2.25 (159.8).
  • compositions 1, 2 ′ which are hypobromite stabilizing compositions, have a lower total halogen concentration in simulated seawater than composition 4. Suppressed. This is because the hypobromite stabilization composition is more stable than hypochlorous acid and hypobromite, and a portion of the hypobromite stabilization composition and chlorination in artificial seawater. This is thought to be due to the reaction of the product ions and the production of bound chlorine with extremely high stability.
  • Test conditions -Separation membrane: Nitto Denko Corporation, polyamide polymer reverse osmosis membrane ES15
  • Test water Simulated seawater A or simulated seawater B or simulated water C
  • Chemicals added to a total halogen concentration of 10 mg / L asCl 2
  • Test water pH adjusted to a predetermined pH using sodium hydroxide aqueous solution or sulfuric acid aqueous solution
  • Immersion storage period of separation membrane 30 days
  • Conditions room temperature (25 ° C) under light-shielding conditions
  • composition 4 when the separation membrane is stored for a long period of time, the separation membrane deteriorates and the rejection rate is greatly reduced.
  • compositions 1 and 2 'maintain a high rejection rate even if the separation membrane is stored for a long period of time. Film deterioration was suppressed.
  • the degradation of the separation membrane is suppressed, and the separation membrane is effectively removed during the shutdown. It was found that it can be sterilized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Provided is a method for controlling slime on separation membranes, the method being capable of reducing trihalomethane content in permeate while having adequate slime-controlling effects in membrane separation apparatuses that use water supply or rinse water containing trihalomethane precursors. The method for controlling slime on a separation membrane adds, to trihalomethane precursor-containing water supply or rinse water for a membrane separation apparatus with a separation membrane: a bromine oxidizing agent or a reactant of a bromine compound with a chlorine oxidizing agent; a bromine oxidizing agent or a reactant of a bromine compound with a chlorine oxidizing agent, and a sulfamic acid compound; or a reaction product of a bromine oxidizing agent with a sulfamic acid compound, or a reaction product of a sulfamic acid compound with a reactant of a bromine compound with a chlorine oxidizing agent.

Description

分離膜のスライム抑制方法Method for suppressing slime in separation membrane
 本発明は、逆浸透膜(RO膜)等の分離膜のスライム抑制方法に関する。 The present invention relates to a slime suppression method for a separation membrane such as a reverse osmosis membrane (RO membrane).
 逆浸透膜(RO膜)等の分離膜のスライム抑制方法としては、各種のスライム抑制剤を使用する方法が知られている。次亜塩素酸等の塩素系酸化剤は代表的なスライム抑制剤であり、系内のスライム抑制目的で通常は分離膜の前段に添加される。塩素系酸化剤は分離膜を劣化させる可能性が高いため、一般的には分離膜の直前で塩素系酸化剤を還元分解するか、間欠的に塩素系酸化剤を分離膜に流入させることで運用されている(特許文献1参照)。 As a slime suppression method for separation membranes such as reverse osmosis membranes (RO membranes), methods using various slime inhibitors are known. Chlorine oxidizers such as hypochlorous acid are typical slime inhibitors, and are usually added upstream of the separation membrane for the purpose of suppressing slime in the system. Since chlorinated oxidants are likely to deteriorate the separation membrane, it is generally possible to reduce and decompose the chlorinated oxidants immediately before the separation membrane, or intermittently flow the chlorinated oxidant into the separation membrane. It is operated (see Patent Document 1).
特開平9-057076号公報JP-A-9-057076
 塩素系酸化剤は、水中にフミン質等のトリハロメタン前駆物質が存在する場合、それらと反応し、クロロホルム等のトリハロメタンを生成することが知られている。ここで、これらの塩素系酸化剤によって生成されるトリハロメタンは、分離膜で排除され難く、分離膜の透過水中へ漏洩しやすいという問題があることが、本発明者らの検討により明らかとなった。 It is known that a chlorine-based oxidant reacts with trihalomethane precursors such as humic substances in water to produce trihalomethanes such as chloroform. Here, it has become clear from the examination of the present inventors that trihalomethane produced by these chlorinated oxidants is difficult to be excluded by the separation membrane and easily leaks into the permeated water of the separation membrane. .
 本発明の目的は、トリハロメタン前駆物質を含有する給水または洗浄水を用いる膜分離装置において、十分なスライム抑制効果を有しながら、透過水中のトリハロメタン含有量を低減することが可能な分離膜のスライム抑制方法を提供することにある。 An object of the present invention is to provide a separation membrane slime capable of reducing the trihalomethane content in the permeate while having a sufficient slime suppression effect in a membrane separation apparatus using feed water or washing water containing a trihalomethane precursor. It is to provide a suppression method.
 本発明は、トリハロメタン前駆物質を含有する、分離膜を備える膜分離装置への給水または洗浄水中に、臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物を存在させる分離膜のスライム抑制方法である。 The present invention relates to a slime of a separation membrane in which a bromine-based oxidant or a reaction product of a bromine compound and a chlorine-based oxidant is present in feed water or washing water to a membrane separation apparatus having a separation membrane containing a trihalomethane precursor. It is a suppression method.
 本発明は、トリハロメタン前駆物質を含有する、分離膜を備える膜分離装置への給水または洗浄水中に、臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、を存在させる分離膜のスライム抑制方法である。 The present invention provides a bromine-based oxidant or a reaction product of a bromine compound and a chlorine-based oxidant, a sulfamic acid compound, in a feed water or a wash water containing a trihalomethane precursor and having a separation membrane. Is a method for suppressing slime in a separation membrane.
 本発明は、トリハロメタン前駆物質を含有する、分離膜を備える膜分離装置への給水または洗浄水中に、臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、の反応生成物を存在させる分離膜のスライム抑制方法である。 The present invention provides a bromine-based oxidant or a reaction product of a bromine compound and a chlorine-based oxidant, a sulfamic acid compound, in a feed water or a wash water containing a trihalomethane precursor and having a separation membrane. This is a method for suppressing slime of a separation membrane in which the reaction product of the present is present.
 本発明は、トリハロメタン前駆物質を含有する、分離膜を備える膜分離装置への給水または洗浄水中に、臭素とスルファミン酸化合物の混合物、または、臭素とスルファミン酸化合物との反応生成物を存在させる分離膜のスライム抑制方法である。 The present invention relates to a separation in which a mixture of bromine and a sulfamic acid compound or a reaction product of bromine and a sulfamic acid compound is present in feed water or washing water to a membrane separation apparatus having a separation membrane containing a trihalomethane precursor. This is a method for suppressing the slime of a film.
 前記分離膜のスライム抑制方法において、前記臭素とスルファミン酸化合物との反応生成物が、水、アルカリおよびスルファミン酸化合物を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させる工程を含む方法により得られたものであることが好ましい。 In the method for suppressing slime of the separation membrane, the reaction product of bromine and a sulfamic acid compound includes a step of reacting a mixed liquid containing water, an alkali and a sulfamic acid compound by adding bromine in an inert gas atmosphere. It is preferable that it is obtained by the method.
 前記分離膜のスライム抑制方法において、前記給水または洗浄水のトリハロメタン前駆物質の濃度が、トリハロメタン生成能として0.001mg/L以上であることが好ましい。 In the method for suppressing slime of the separation membrane, it is preferable that the concentration of the trihalomethane precursor in the feed water or the washing water is 0.001 mg / L or more as a trihalomethane generating ability.
 前記分離膜のスライム抑制方法において、前記分離膜がポリアミド系高分子膜であることが好ましい。 In the method for suppressing slime of the separation membrane, the separation membrane is preferably a polyamide polymer membrane.
 前記分離膜のスライム抑制方法において、前記トリハロメタン前駆物質がフミン質を含むことが好ましい。 In the method for suppressing slime of the separation membrane, the trihalomethane precursor preferably contains humic substances.
 前記分離膜のスライム抑制方法において、前記給水または洗浄水が、臭化物イオンをさらに含有することが好ましい。 In the method for suppressing slime of the separation membrane, it is preferable that the water supply or washing water further contains bromide ions.
 前記分離膜のスライム抑制方法において、前記給水または洗浄水中の臭化物イオンの濃度が、5mg/L以上であることが好ましい。 In the method for suppressing slime of the separation membrane, it is preferable that the concentration of bromide ions in the feed water or the wash water is 5 mg / L or more.
 前記分離膜のスライム抑制方法において、前記分離膜を備える膜分離装置が、運転と運転休止とが行われる膜分離装置であり、前記膜分離装置の運転休止中に、
 前記臭素系酸化剤、もしくは臭素化合物と塩素系酸化剤との反応物を存在させる、
 前記臭素系酸化剤、もしくは臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物とを存在させる、
 前記臭素系酸化剤、もしくは臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物との反応生成物を存在させる、または、
 前記臭素とスルファミン酸化合物との反応生成物を存在させる、
 分離膜のスライム抑制方法である。
In the method for suppressing slime of the separation membrane, the membrane separation device provided with the separation membrane is a membrane separation device that is operated and stopped, and during the suspension of operation of the membrane separation device,
The presence of the bromine-based oxidant or a reaction product of a bromine compound and a chlorine-based oxidant;
The bromine-based oxidant or a reaction product of a bromine compound and a chlorine-based oxidant and a sulfamic acid compound are present;
The brominated oxidant, or the reaction product of a bromine compound and a chlorinated oxidant and the reaction product of a sulfamic acid compound, or
The presence of a reaction product of the bromine with a sulfamic acid compound;
This is a method for suppressing slime of a separation membrane.
 前記分離膜のスライム抑制方法において、前記膜分離装置内に存在させる水のpHが、pH5.5以上であることが好ましい。 In the method for suppressing slime of the separation membrane, it is preferable that the pH of water existing in the membrane separation device is pH 5.5 or more.
 前記分離膜のスライム抑制方法において、前記膜分離装置内に存在させる水が、海水およびかん水のうち少なくとも一つであることが好ましい。 In the method for suppressing slime of the separation membrane, the water present in the membrane separation device is preferably at least one of seawater and brine.
 本発明では、トリハロメタン前駆物質を含有する、分離膜を備える膜分離装置への給水または洗浄水中に、臭素系酸化剤、もしくは臭素化合物と塩素系酸化剤との反応物を存在させることにより;臭素系酸化剤、もしくは臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物とを存在させることにより;臭素系酸化剤、もしくは臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、の反応生成物を存在させることにより;臭素とスルファミン酸化合物の混合物を存在させることにより;または、臭素とスルファミン酸化合物との反応生成物を存在させることにより、十分なスライム抑制効果を有しながら、透過水中のトリハロメタン含有量を低減することが可能となる。 In the present invention, a bromine-based oxidant or a reaction product of a bromine compound and a chlorine-based oxidant is present in feed water or washing water to a membrane separation apparatus including a separation membrane containing a trihalomethane precursor; A oxidant, or a reaction product of a bromine compound and a chlorine oxidant, and a sulfamic acid compound; a bromine-based oxidant, or a reaction product of a bromine compound and a chlorine-based oxidant, and a sulfamic acid compound The presence of a reaction product of bromine and a sulfamic acid compound; or the presence of a reaction product of bromine and a sulfamic acid compound has a sufficient slime-inhibiting effect. However, the trihalomethane content in the permeated water can be reduced.
本発明の実施形態に係る膜分離システムの一例を示す概略構成図である。It is a schematic structure figure showing an example of a membrane separation system concerning an embodiment of the present invention. 実施例4,5および比較例2における、被処理水中の臭化物イオン濃度(mg/L)に対する処理水中の総トリハロメタン濃度(mg/L)を示す図である。In Example 4, 5 and Comparative Example 2, it is a figure which shows the total trihalomethane density | concentration (mg / L) in the treated water with respect to the bromide ion density | concentration (mg / L) in to-be-treated water.
 本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.
<分離膜のスライム抑制方法>
 本発明の実施形態に係る分離膜のスライム抑制方法は、トリハロメタン前駆物質を含有する、分離膜を備える膜分離装置への給水または洗浄水中に、スライム抑制剤として「臭素系酸化剤」を存在させる方法、または次亜臭素酸等の「臭素化合物と塩素系酸化剤との反応物」を存在させる方法である。
<Method for suppressing slime of separation membrane>
In the method for suppressing slime of a separation membrane according to an embodiment of the present invention, a “bromine-based oxidant” is present as a slime inhibitor in feed water or wash water containing a trihalomethane precursor and supplied to a membrane separation apparatus having a separation membrane. A method, or a method in which a “reaction product of a bromine compound and a chlorine-based oxidizing agent” such as hypobromous acid is present.
 本発明の実施形態に係る分離膜のスライム抑制方法は、トリハロメタン前駆物質を含有する、分離膜を備える膜分離装置への給水または洗浄水中に、スライム抑制剤として「臭素系酸化剤」と「スルファミン酸化合物」とを存在させる方法、または「臭素化合物と塩素系酸化剤との反応物」と「スルファミン酸化合物」とを存在させる方法である。これにより、給水または洗浄水中で、次亜臭素酸安定化組成物が生成すると考えられる。 The method for suppressing slime of a separation membrane according to an embodiment of the present invention includes a “bromine-based oxidant” and a “sulfamine” as slime inhibitors in feed water or washing water to a membrane separation apparatus including a separation membrane containing a trihalomethane precursor. Acid compound ”or“ reaction product of bromine compound and chlorinated oxidant ”and“ sulfamic acid compound ”. Thereby, it is thought that a hypobromite stabilization composition produces | generates in feed water or washing water.
 また、本発明の実施形態に係る分離膜のスライム抑制方法は、トリハロメタン前駆物質を含有する、分離膜を備える膜分離装置への給水または洗浄水中に、スライム抑制剤として「臭素系酸化剤とスルファミン酸化合物との反応生成物」である次亜臭素酸安定化組成物を存在させる方法、または「臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、の反応生成物」である次亜臭素酸安定化組成物を存在させる方法である。 In addition, the slime suppression method for a separation membrane according to an embodiment of the present invention includes a bromine-based oxidizing agent and a sulfamine as a slime inhibitor in feed water or washing water containing a trihalomethane precursor and having a separation membrane. A method of allowing a hypobromite stabilizing composition to be a "reaction product with an acid compound" or a "reaction product of a reaction product of a bromine compound with a chlorine-based oxidant and a sulfamic acid compound" This is a method in which a hypobromite stabilizing composition is present.
 具体的には本発明の実施形態に係る分離膜のスライム抑制方法は、トリハロメタン前駆物質を含有する、分離膜を備える膜分離装置への給水または洗浄水中に、例えば、「臭素」、「塩化臭素」、「次亜臭素酸」または「臭化ナトリウムと次亜塩素酸との反応物」を存在させる方法である。 Specifically, the method for suppressing slime of a separation membrane according to an embodiment of the present invention includes, for example, “bromine”, “bromine chloride” in feed water or washing water to a membrane separation device including a trihalomethane precursor and including a separation membrane. ”,“ Hypobromite ”or“ reaction product of sodium bromide and hypochlorous acid ”.
 本発明の実施形態に係る分離膜のスライム抑制方法は、トリハロメタン前駆物質を含有する、分離膜を備える膜分離装置への給水または洗浄水中に、例えば、「臭素」、「塩化臭素」、「次亜臭素酸」または「臭化ナトリウムと次亜塩素酸との反応物」と、「スルファミン酸化合物」と、を存在させる方法である。 A method for suppressing slime of a separation membrane according to an embodiment of the present invention includes, for example, “bromine”, “bromine chloride”, “next” in feed water or washing water to a membrane separation device including a trihalomethane precursor and including a separation membrane. This is a method in which "bromous acid" or "reaction product of sodium bromide and hypochlorous acid" and "sulfamic acid compound" are present.
 また、本発明の実施形態に係る分離膜のスライム抑制方法は、トリハロメタン前駆物質を含有する、分離膜を備える膜分離装置への給水または洗浄水中に、例えば、「臭素とスルファミン酸化合物との反応生成物」、「塩化臭素とスルファミン酸化合物との反応生成物」、または「臭化ナトリウムと次亜塩素酸との反応物と、スルファミン酸化合物と、の反応生成物」である次亜臭素酸安定化組成物を存在させる方法である。なお、「臭素とスルファミン酸化合物との反応生成物」として、どのような化合物が生じているかは明らかではないが、次亜臭素酸安定化化合物である「ブロモスルファミン酸」が生成していると考えられる。 In addition, the method for suppressing slime of a separation membrane according to an embodiment of the present invention includes, for example, “reaction of bromine with a sulfamic acid compound” in feed water or washing water containing a trihalomethane precursor to a membrane separation device including a separation membrane. Hypobromite, which is "product", "reaction product of bromine chloride and sulfamic acid compound", or "reaction product of sodium bromide and hypochlorous acid and sulfamic acid compound" A method of presenting a stabilizing composition. In addition, it is not clear what kind of compound is generated as “reaction product of bromine and sulfamic acid compound”, but “bromosulfamic acid” which is a hypobromite stabilizing compound is generated. Conceivable.
 これらの方法により、トリハロメタン前駆物質を含有する給水または洗浄水を用いる膜分離装置における分離膜のスライム発生を抑制しつつ、透過水中のトリハロメタン含有量を低減することができる。また、分離膜の性能をほとんど劣化させることなく、微生物による膜汚染を確実に抑制することができる。本実施形態に係る分離膜のスライム抑制方法により、高いスライム抑制効果を有しながら、膜性能、後段水質への影響を最小限に抑えたスライム抑制処理が可能となる。 By these methods, it is possible to reduce the trihalomethane content in the permeated water while suppressing the generation of slime in the separation membrane in the membrane separation apparatus using feed water or washing water containing a trihalomethane precursor. Moreover, membrane contamination by microorganisms can be reliably suppressed without substantially degrading the performance of the separation membrane. By the slime suppression method of the separation membrane according to the present embodiment, slime suppression treatment can be performed while having a high slime suppression effect while minimizing the influence on membrane performance and downstream water quality.
 臭素系酸化剤および次亜臭素酸安定化組成物も塩素系酸化剤と同様に、トリハロメタン前駆物質と反応し、トリハロメタンを生成するが、臭素系酸化剤および次亜臭素酸安定化組成物によって生成されるトリハロメタンはブロモホルム等の臭素系トリハロメタンが主であり、塩素系酸化剤により生成されるクロロホルム等の塩素系トリハロメタンよりも分離膜で排除され易く、分離膜の透過水中のトリハロメタンが大幅に低減されると考えられる。臭素系トリハロメタンの分離膜での排除率が高い理由としては、詳細は不明であるが、臭素系トリハロメタンが塩素系トリハロメタンと比較して、相対的に分子量が大きいこと等が推測される。 Bromine-based oxidants and hypobromite stabilization compositions, like chlorine-based oxidants, react with trihalomethane precursors to produce trihalomethanes, but are produced by bromine-based oxidants and hypobromite stabilization compositions. The brominated trihalomethanes such as bromoform are the main trihalomethanes, and are more easily removed by the separation membrane than the chloroform-based trihalomethanes such as chloroform produced by the chlorinated oxidant, and the trihalomethane in the permeated water of the separation membrane is greatly reduced. It is thought. The reason for the high removal rate of brominated trihalomethanes in the separation membrane is unknown, but it is presumed that brominated trihalomethanes have a relatively large molecular weight compared to chlorinated trihalomethanes.
 このように、本実施形態に係る分離膜のスライム抑制方法は、次亜塩素酸等の塩素系酸化剤と同等以上のスライム抑制効果を発揮するにも関わらず、塩素系酸化剤と比較すると、生成する臭素系トリハロメタンの分離膜での排除率が著しく高いため、分離膜の透過水中のトリハロメタンを大幅に低減できる。このため、本実施形態に係る分離膜のスライム抑制方法で用いられるスライム抑制剤は分離膜用スライム抑制剤としては好適である。 Thus, the slime suppression method of the separation membrane according to the present embodiment, despite exhibiting a slime suppression effect equal to or higher than that of a chlorine-based oxidizing agent such as hypochlorous acid, compared with a chlorine-based oxidizing agent, Since the elimination rate of the brominated trihalomethane produced in the separation membrane is extremely high, the trihalomethane in the permeated water of the separation membrane can be greatly reduced. For this reason, the slime inhibitor used with the slime suppression method of the separation membrane which concerns on this embodiment is suitable as a slime inhibitor for separation membranes.
 本実施形態に係る分離膜のスライム抑制方法のうち、「臭素系酸化剤」と「スルファミン酸化合物」とを存在させる方法、「臭素化合物と塩素系酸化剤との反応物」と「スルファミン酸化合物」とを存在させる方法、「臭素系酸化剤とスルファミン酸化合物との反応生成物」を存在させる方法、または「臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、の反応生成物」を存在させる方法は、分離膜への劣化影響が著しく低く、分離膜に直接流入させてスライム抑制をすることができる。このため、これらのスライム抑制方法で用いられるスライム抑制剤は分離膜用スライム抑制剤としてはより好適である。 Among the slime suppression methods of the separation membrane according to the present embodiment, a method in which “bromine-based oxidant” and “sulfamic acid compound” are present, “reaction product of bromine compound and chlorine-based oxidant”, and “sulfamic acid compound” ”, A method in which“ a reaction product of a bromine-based oxidant and a sulfamic acid compound ”is present, or“ a reaction product of a reaction product of a bromine compound and a chlorinated oxidant and a sulfamic acid compound ” The method in which the “product” is present has an extremely low deterioration effect on the separation membrane, and can be directly introduced into the separation membrane to suppress slime. For this reason, the slime inhibitor used by these slime suppression methods is more suitable as a slime inhibitor for separation membranes.
 本実施形態に係る分離膜のスライム抑制方法のうち、「臭素系酸化剤」、または「臭素化合物と塩素系酸化剤との反応物」が、臭素である場合、塩素系酸化剤が存在しないため、分離膜での排除率の低い塩素系トリハロメタンの生成量も低くなり、分離膜用スライム抑制剤としてはさらに好適である。塩素系酸化剤を含む場合は、塩素酸の生成が懸念される。 Among the slime suppression methods of the separation membrane according to the present embodiment, when “bromine-based oxidant” or “reaction product of bromine compound and chlorine-based oxidant” is bromine, there is no chlorine-based oxidant. Moreover, the production amount of chlorine-based trihalomethanes having a low rejection rate in the separation membrane is also low, which is more suitable as a slime inhibitor for separation membranes. When a chlorinated oxidant is included, there is a concern about the production of chloric acid.
 トリハロメタンは、メタンの3つの水素原子がハロゲンで置換されたものを指すが、例えば、クロロホルム、ブロモジクロロメタン、ジブロモクロロメタンおよびブロモホルム等が挙げられる。トリハロメタン前駆物質は、トリハロメタンの前駆体となる物質であればよく特に制限はないが、例えば、1,3-ジケトン構造を有する化合物、1,3-ジヒドロキシベンゼン構造を有する化合物等が挙げられる。トリハロメタン前駆物質の具体例としては、例えば、フミン酸やフルボ酸を含むフミン質等が挙げられる。ここで、フミン質(腐植物質)は、植物の葉や茎等の部分が腐植してできた有機成分であり、フミン質の中で酸により沈殿する分画をフミン酸、沈殿しない分画をフルボ酸と呼ぶ。 Trihalomethane refers to one in which three hydrogen atoms of methane are substituted with halogen, and examples thereof include chloroform, bromodichloromethane, dibromochloromethane, and bromoform. The trihalomethane precursor is not particularly limited as long as it is a substance that becomes a precursor of trihalomethane, and examples thereof include a compound having a 1,3-diketone structure and a compound having a 1,3-dihydroxybenzene structure. Specific examples of the trihalomethane precursor include humic substances including humic acid and fulvic acid. Here, the humic substance (humic substance) is an organic component formed by huming the parts of the plant such as leaves and stems. Called fulvic acid.
 トリハロメタン前駆物質は、トリハロメタン生成能(THMFP)(mg/L)として、「特定水道利水障害防止のための水道水源域の水質の保全に関する特別法」に基づいた測定方法で測定することができる。具体的には、試料をpH7.0、温度20℃、反応時間24時間、24時間後の遊離残留塩素濃度が1~2mg/Lとなるように次亜塩素酸ナトリウムを添加した条件で、生成したトリハロメタン生成量をパージ・トラップ-ガスクロマトグラフ-質量分析計による一斉分析法で測定して、求める方法である。また、トリハロメタン前駆物質は、TOC計等でも測定することができる。 The trihalomethane precursor can be measured as a trihalomethane production ability (THMFP) (mg / L) by a measurement method based on “a special method for the maintenance of water quality in a tap water source area for prevention of specific water use damage”. Specifically, the sample was produced under the conditions of pH 7.0, temperature 20 ° C., reaction time 24 hours, and sodium hypochlorite added so that the free residual chlorine concentration after 24 hours was 1 to 2 mg / L. In this method, the amount of trihalomethane produced is determined by simultaneous analysis using a purge / trap / gas chromatograph / mass spectrometer. The trihalomethane precursor can also be measured with a TOC meter or the like.
 トリハロメタン前駆物質がトリハロメタン生成能(THMFP)(mg/L)として、0.001mg/L以上存在するとトリハロメタンが生成し易いため、膜分離装置への給水または洗浄水のトリハロメタン生成能が0.001mg/L以上、好ましくは0.01mg/L以上、より好ましくは0.02mg/L以上であると、本実施形態に係る分離膜のスライム抑制方法がより効果を発揮する。膜分離装置への給水または洗浄水のトリハロメタン生成能の上限には特に制限はないが、例えば、1mg/L以下である。 When the trihalomethane precursor is present at 0.001 mg / L or more as the trihalomethane precursor (THMFP) (mg / L), trihalomethane is likely to be generated. When the concentration is L or more, preferably 0.01 mg / L or more, and more preferably 0.02 mg / L or more, the method for suppressing slime of the separation membrane according to this embodiment is more effective. Although there is no restriction | limiting in particular in the upper limit of the trihalomethane production ability of the feed water or washing water to a membrane separator, For example, it is 1 mg / L or less.
 また、トリハロメタン前駆物質がTOCとして0.5mg/L以上存在するとトリハロメタンが生成し易いため、膜分離装置への給水または洗浄水のTOCが0.5mg/L以上、好ましくは5.0mg/L以上、より好ましくは10.0mg/L以上であると、本実施形態に係る分離膜のスライム抑制方法がより効果を発揮する。膜分離装置への給水または洗浄水のTOCの上限には特に制限はないが、例えば、500mg/L以下である。なお、後述の実施例で測定した場合、トリハロメタン生成能0.01mg/Lは、TOC5.0mg/Lに相当する。 Further, since trihalomethane is easily generated when the trihalomethane precursor is present in a TOC of 0.5 mg / L or more, the TOC of water supplied to the membrane separation device or washing water is 0.5 mg / L or more, preferably 5.0 mg / L or more. More preferably, when it is 10.0 mg / L or more, the method for suppressing slime of the separation membrane according to the present embodiment is more effective. Although there is no restriction | limiting in particular in the upper limit of the TOC of the water supply or washing water to a membrane separator, For example, it is 500 mg / L or less. In addition, when measured in the Example mentioned later, trihalomethane production | generation ability 0.01 mg / L is corresponded to TOC5.0 mg / L.
 特にトリハロメタン前駆物質がフミン酸を含む場合は、フミン酸として0.89mg/L以上存在するとトリハロメタンが生成し易いため、膜分離装置への給水または洗浄水のフミン酸が0.89mg/L以上、好ましくは8.9mg/L以上、より好ましくは890mg/L以上であると、本実施形態に係る分離膜のスライム抑制方法がより効果を発揮する。膜分離装置への給水または洗浄水のフミン酸の上限には特に制限はないが、例えば、180mg/L以下である。なお、後述の実施例で測定した場合、トリハロメタン生成能0.01mg/Lは、フミン酸8.9mg/Lに相当する。 In particular, when the trihalomethane precursor contains humic acid, trihalomethane is easily generated when humic acid is present in an amount of 0.89 mg / L or more. The slime suppression method for a separation membrane according to the present embodiment is more effective when it is preferably 8.9 mg / L or more, more preferably 890 mg / L or more. Although there is no restriction | limiting in particular in the upper limit of the humic acid of the feed water or washing water to a membrane separator, For example, it is 180 mg / L or less. In addition, when measured in the below-mentioned Example, the trihalomethane production | generation ability 0.01 mg / L is equivalent to 8.9 mg / L humic acid.
 本実施形態に係る分離膜のスライム抑制方法において、分離膜を備える膜分離装置への給水または洗浄水が、臭化物イオンをさらに含有する場合に、より効果を発揮する。本実施形態に係る分離膜のスライム抑制方法によれば、トリハロメタン前駆物質と臭化物イオンとを含有する給水または洗浄水を用いる膜分離装置において、十分なスライム抑制効果を有しながら、透過水中のトリハロメタン含有量を低減することができる。 In the method for suppressing the slime of the separation membrane according to the present embodiment, when the water supply or the washing water to the membrane separation apparatus provided with the separation membrane further contains bromide ions, the effect is more exhibited. According to the slime suppression method for a separation membrane according to the present embodiment, in a membrane separation apparatus using feed water or washing water containing a trihalomethane precursor and bromide ions, the trihalomethane in the permeated water has a sufficient slime suppression effect. The content can be reduced.
 上記の通り、トリハロメタン前駆物質を含有する水に次亜塩素酸等の塩素系酸化剤を添加すると、クロロホルム等のトリハロメタンが生成するが、海水等のように、水中に臭化物イオンを含有し(例えば、5mg/L以上)、かつ、フミン質等のトリハロメタン前駆物質を含有する場合、スライム抑制剤として次亜塩素酸を添加すると、主に臭素系のトリハロメタンを生成する。臭素系トリハロメタンは、塩素系トリハロメタンよりも分子量が大きいため、総トリハロメタン濃度としては大きくなる。 As described above, when a chlorine-based oxidizing agent such as hypochlorous acid is added to water containing a trihalomethane precursor, trihalomethane such as chloroform is produced, but bromide ions are contained in water like seawater (for example, 5 mg / L or more) and containing a trihalomethane precursor such as humic substance, when hypochlorous acid is added as a slime inhibitor, bromine-based trihalomethane is mainly produced. Bromine-based trihalomethane has a higher molecular weight than chlorine-based trihalomethane, so the total trihalomethane concentration is high.
 本発明の実施形態に係る分離膜のスライム抑制方法で用いられる「次亜臭素酸」や「臭素系酸化剤とスルファミン酸とが共存する次亜臭素酸安定化組成物」等のスライム抑制剤は、次亜塩素酸と同等以上のスライム抑制効果(殺菌効果)を発揮する。また、系中にトリハロメタン前駆物質と臭化物イオンが存在する場合は、主に臭素系トリハロメタンを生成する。しかし、これらの「次亜臭素酸」や「次亜臭素酸安定化組成物」は、通常の次亜塩素酸と異なり、臭化物イオン濃度の増加に伴ってトリハロメタンの生成量が増えることはほとんどない。このため、「次亜臭素酸」や「臭素系酸化剤とスルファミン酸とが共存する次亜臭素酸安定化組成物」等のスライム抑制剤を用いる本実施形態に係る分離膜のスライム抑制方法によれば、臭化物イオンを含有する水においては、次亜塩素酸を用いる場合よりも、生成するトリハロメタン濃度が低くなると考えられる。 Slime inhibitors such as “hypobromite” and “hypobromite stabilizing composition in which bromine-based oxidant and sulfamic acid coexist” used in the method for suppressing slime of a separation membrane according to an embodiment of the present invention are Slime suppression effect (bactericidal effect) equivalent to or better than hypochlorous acid. When trihalomethane precursors and bromide ions are present in the system, bromine trihalomethane is mainly produced. However, these “hypobromite” and “hypobromite stabilization composition”, unlike ordinary hypochlorous acid, hardly increases the amount of trihalomethane generated with increasing bromide ion concentration. . For this reason, in the method for suppressing slime of the separation membrane according to this embodiment using a slime inhibitor such as “hypobromite” or “hypobromite stabilizing composition in which bromine-based oxidizing agent and sulfamic acid coexist”. Therefore, it is considered that the concentration of trihalomethane produced is lower in water containing bromide ions than in the case of using hypochlorous acid.
 一方、クロロスルファミン酸等の「安定化次亜塩素酸」は、安定化されているため、トリハロメタン生成能は抑制されているものの、「次亜臭素酸」や「次亜臭素酸安定化組成物」に比べると殺菌力が低く、十分なスライム抑制効果が得られない。 On the other hand, although "stabilized hypochlorous acid" such as chlorosulfamic acid is stabilized, trihalomethane formation ability is suppressed, but "hypobromous acid" and "hypobromite stabilization composition Compared with “,” the sterilizing power is low, and a sufficient slime suppressing effect cannot be obtained.
 本実施形態に係る分離膜のスライム抑制方法で用いられるスライム抑制剤は、次亜塩素酸と同等以上のスライム抑制効果を発揮するにも関わらず、被処理水中に臭化物イオンを含有する場合は、次亜塩素酸と比較すると、それにより生成するトリハロメタン量が少ない。このため、本実施形態に係る分離膜のスライム抑制方法は、トリハロメタン前駆物質と臭化物イオンとを含有する給水または洗浄水を用いる膜分離装置のスライム抑制方法としては好適である。 When the slime inhibitor used in the slime suppression method of the separation membrane according to the present embodiment exhibits a slime suppression effect equal to or higher than hypochlorous acid, but contains bromide ions in the water to be treated, Compared to hypochlorous acid, the amount of trihalomethane produced thereby is small. For this reason, the slime suppression method for a separation membrane according to this embodiment is suitable as a slime suppression method for a membrane separation device using feed water or washing water containing a trihalomethane precursor and bromide ions.
 このように、本実施形態に係る分離膜のスライム抑制方法は、高いスライム抑制効果を有しながら、分離膜の透過水中のトリハロメタン濃度を最小限に抑えたスライム抑制処理が可能となる。 As described above, the slime suppression method for a separation membrane according to the present embodiment enables a slime suppression treatment that minimizes the trihalomethane concentration in the permeated water of the separation membrane while having a high slime suppression effect.
 特に膜分離装置への給水または洗浄水中に臭化物イオンが5mg/L以上存在すると、次亜塩素酸の場合、トリハロメタンが生成し易いため、膜分離装置への給水または洗浄水の臭化物イオンの濃度が5mg/L以上、好ましくは18mg/L以上であると、本実施形態に係る分離膜のスライム抑制方法がより効果を発揮する。膜分離装置への給水または洗浄水の臭化物イオンの濃度の上限には特に制限はないが、例えば、1000mg/L以下である。 In particular, if bromide ions are present in the feed water or washing water to the membrane separation device in an amount of 5 mg / L or more, trichloromethane is likely to be generated in the case of hypochlorous acid, so the concentration of bromide ions in the feed water or washing water to the membrane separation device is When the concentration is 5 mg / L or more, preferably 18 mg / L or more, the slime suppression method for a separation membrane according to this embodiment is more effective. Although there is no restriction | limiting in particular in the upper limit of the bromide ion density | concentration of the feed water or washing water to a membrane separator, For example, it is 1000 mg / L or less.
 本実施形態に係る分離膜のスライム抑制方法では、例えば、トリハロメタン前駆物質を含有する給水または洗浄水を用いる膜分離装置への給水または洗浄水中に、「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」を薬注ポンプ等により注入すればよい。「臭素化合物」と「塩素系酸化剤」は別々に水系に添加してもよく、または、原液同士で混合させてから水系に添加してもよい。 In the method for suppressing slime of the separation membrane according to the present embodiment, for example, “bromine-based oxidant” or “bromine compound and chlorine” is fed into the feed water or the wash water to the membrane separator using the feed water or the wash water containing the trihalomethane precursor. What is necessary is just to inject | pour a reaction material with a type | system | group oxidizing agent with a chemical injection pump. The “bromine compound” and the “chlorine oxidant” may be added separately to the aqueous system, or may be added to the aqueous system after being mixed with the stock solution.
 例えば、トリハロメタン前駆物質を含有する給水または洗浄水を用いる膜分離装置への給水または洗浄水中に、「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」と、「スルファミン酸化合物」とを薬注ポンプ等により注入してもよい。「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」と、「スルファミン酸化合物」とは別々に水系に添加してもよく、または、原液同士で混合させてから水系に添加してもよい。 For example, in a feed water or a wash water to a membrane separation apparatus using a feed water or a wash water containing a trihalomethane precursor, a “bromine oxidant” or a “reaction product of a bromine compound and a chlorine oxidizer” and “sulfamic acid” The “compound” may be injected by a chemical injection pump or the like. The “bromine-based oxidant” or “reaction product of bromine compound and chlorine-based oxidant” and the “sulfamic acid compound” may be added separately to the aqueous system, or they are mixed together in the stock solution and then into the aqueous system. It may be added.
 また、例えば、トリハロメタン前駆物質を含有する給水または洗浄水を用いる膜分離装置への給水または洗浄水中に、「臭素系酸化剤とスルファミン酸化合物との反応生成物」、または「臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、の反応生成物」を薬注ポンプ等により注入してもよい。 Further, for example, in a feed water or a wash water to a membrane separation device using a feed water or a wash water containing a trihalomethane precursor, a “reaction product of a bromine-based oxidant and a sulfamic acid compound” or “a bromine compound and a chlorine-based water” You may inject | pour the reaction product with an oxidizing agent, and a sulfamic acid compound with a chemical injection pump.
 膜分離装置への給水または洗浄水中に添加された上述のスライム抑制剤は、分離膜の直前で還元剤等により分解されてもよい。 The above-mentioned slime inhibitor added to the water supplied to the membrane separator or the washing water may be decomposed by a reducing agent or the like immediately before the separation membrane.
 本実施形態に係る分離膜のスライム抑制方法により、運転と運転休止とを行う膜分離システムにおいても、分離膜の劣化を抑制して、運転休止中に分離膜を効果的に殺菌することが可能となる。 The separation membrane slime suppression method according to the present embodiment can suppress the deterioration of the separation membrane and effectively sterilize the separation membrane during the operation suspension even in the membrane separation system that operates and halts the operation. It becomes.
<膜分離システム>
 本発明の実施形態に係る膜分離システムの一例の概略を図1に示し、その構成について説明する。膜分離システム1は、原水槽10と、膜分離装置12とを備える。
<Membrane separation system>
An outline of an example of a membrane separation system according to an embodiment of the present invention is shown in FIG. The membrane separation system 1 includes a raw water tank 10 and a membrane separation device 12.
 図1の膜分離システム1において、原水槽10の入口には原水配管16が接続されている。原水槽10の出口と膜分離装置12の入口とは、ポンプ14を介して、原水供給配管18により接続されている。膜分離装置12の透過水出口には透過水配管20が接続され、濃縮水出口には濃縮水配管22が接続されている。原水供給配管18におけるポンプ14と膜分離装置12の入口との間には、殺菌剤供給配管24が接続されている。 In the membrane separation system 1 of FIG. 1, a raw water pipe 16 is connected to the inlet of the raw water tank 10. The outlet of the raw water tank 10 and the inlet of the membrane separation device 12 are connected by a raw water supply pipe 18 via a pump 14. A permeated water pipe 20 is connected to the permeated water outlet of the membrane separator 12, and a concentrated water pipe 22 is connected to the concentrated water outlet. A sterilizing agent supply pipe 24 is connected between the pump 14 in the raw water supply pipe 18 and the inlet of the membrane separation device 12.
 本実施形態に係る膜分離システム1の動作および分離膜の殺菌方法について説明する。 The operation of the membrane separation system 1 according to this embodiment and the method for sterilizing the separation membrane will be described.
 処理対象である原水は、必要に応じて原水槽10に貯留された後、ポンプ14により原水供給配管18を通して膜分離装置12に供給される。膜分離装置12において、分離膜により膜分離処理が行われる(膜分離処理工程)。膜分離処理により得られた透過水(処理水)は、透過水配管20を通して排出され、濃縮水は、濃縮水配管22を通して排出される。濃縮水は、原水槽10または原水供給配管18へ循環されてもよい。 The raw water to be treated is stored in the raw water tank 10 as necessary, and then supplied to the membrane separation device 12 through the raw water supply pipe 18 by the pump 14. In the membrane separation apparatus 12, membrane separation processing is performed by the separation membrane (membrane separation processing step). The permeated water (treated water) obtained by the membrane separation treatment is discharged through the permeated water pipe 20, and the concentrated water is discharged through the concentrated water pipe 22. The concentrated water may be circulated to the raw water tank 10 or the raw water supply pipe 18.
 例えば、原水供給配管18におけるポンプ14と膜分離装置12の入口との間に殺菌剤供給機構を設置し、膜分離装置12に原水槽10内の原水を通水するとともに、原水中に殺菌剤添加機構から殺菌剤供給配管24を通して所定の濃度の殺菌剤が添加される。膜分離システム1の運転が休止される場合にはポンプ14が停止され、膜分離システム1の運転休止中に殺菌剤を膜分離装置12内に存在させる。なお、殺菌剤供給機構は、原水供給配管18または原水槽10に設置してもよい。 For example, a disinfectant supply mechanism is installed between the pump 14 in the raw water supply pipe 18 and the inlet of the membrane separator 12, and the raw water in the raw water tank 10 is passed through the membrane separator 12 and the disinfectant is added to the raw water. A sterilizing agent having a predetermined concentration is added through the sterilizing agent supply pipe 24 from the adding mechanism. When the operation of the membrane separation system 1 is stopped, the pump 14 is stopped, and the disinfectant is present in the membrane separation device 12 while the operation of the membrane separation system 1 is stopped. The disinfectant supply mechanism may be installed in the raw water supply pipe 18 or the raw water tank 10.
 また、膜分離装置12に原水槽10内の原水を通水するとともに、原水中に殺菌剤添加機構から殺菌剤供給配管24を通して所定の濃度の殺菌剤が添加され、膜分離システム1の運転が休止される場合には原水中に殺菌剤添加機構から殺菌剤供給配管24を通して所定の濃度の殺菌剤が追加添加された後、ポンプ14が停止され、膜分離システム1の運転休止中に殺菌剤を膜分離装置12内に存在させてもよい。 In addition, the raw water in the raw water tank 10 is passed through the membrane separator 12 and a predetermined concentration of bactericide is added to the raw water through the bactericide supply pipe 24 from the bactericide supply mechanism, and the operation of the membrane separation system 1 is performed. In the case of stopping, after adding a predetermined concentration of bactericide from the bactericide addition mechanism 24 to the raw water through the bactericide supply pipe 24, the pump 14 is stopped and the bactericide is stopped during the operation of the membrane separation system 1. May be present in the membrane separation device 12.
 ここで、「運転休止」とは、膜分離システム1において、処理水(透過水)を得ていない状態のことをいう。 Here, “operation stop” means that the membrane separation system 1 has not obtained treated water (permeated water).
 なお、逆洗水を用いて、または透過水を逆洗水として用いて膜分離装置12を逆洗する場合には、逆洗水中に殺菌剤が添加されて、膜分離システム1の運転休止中に殺菌剤を膜分離装置12内に存在させてもよい。 In addition, when backwashing the membrane separation device 12 using backwashing water or using permeated water as backwashing water, a bactericidal agent is added to the backwashing water, and the membrane separation system 1 is not in operation. In addition, a disinfectant may be present in the membrane separation device 12.
 膜分離システム1において、原水槽10にレベルスイッチを設置し、運転時にレベルスイッチで検出された原水槽10内の水位が所定の高さより低くなると運転が休止され、運転休止中にレベルスイッチで検出された原水槽10内の水位が所定の高さより高くなると運転が再開されるように制御してもよい。 In the membrane separation system 1, a level switch is installed in the raw water tank 10, the operation is stopped when the water level in the raw water tank 10 detected by the level switch during operation is lower than a predetermined height, and the level switch is detected during the operation stop. Control may be performed so that the operation is resumed when the water level in the raw water tank 10 becomes higher than a predetermined height.
 本実施形態に係る分離膜のスライム抑制方法は、運転と運転休止とが行われる膜分離システム1の運転休止中に、殺菌剤(スライム抑制剤)として「臭素系酸化剤」と「スルファミン酸化合物」とを膜分離装置12内に存在させる方法、または「臭素化合物と塩素系酸化剤との反応物」と「スルファミン酸化合物」とを膜分離装置12内に存在させる方法である。これにより、殺菌剤含有逆洗水または殺菌剤含有水中で、次亜臭素酸安定化組成物が生成すると考えられる。 In the method for suppressing slime of the separation membrane according to the present embodiment, “bromine-based oxidizing agent” and “sulfamic acid compound” are used as disinfectants (slime suppressing agents) during the operation stop of the membrane separation system 1 in which the operation and the operation stop are performed. Is present in the membrane separation device 12 or “reaction product of bromine compound and chlorine-based oxidant” and “sulfamic acid compound” are present in the membrane separation device 12. Thereby, it is thought that a hypobromite stabilization composition produces | generates in disinfectant containing backwash water or disinfectant containing water.
 また、本実施形態に係る分離膜のスライム抑制方法は、運転と運転休止とが行われる膜分離システム1の運転休止中に、殺菌剤(スライム抑制剤)として「臭素系酸化剤とスルファミン酸化合物との反応生成物」である次亜臭素酸安定化組成物を膜分離装置12内に存在させる方法、または「臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、の反応生成物」である次亜臭素酸安定化組成物を膜分離装置12内に存在させる方法である。 Moreover, the slime suppression method of the separation membrane which concerns on this embodiment is a "bromine-type oxidizing agent and a sulfamic acid compound as a disinfectant (slime inhibitor) during the operation stop of the membrane separation system 1 in which an operation | movement and an operation stop are performed. Or a reaction product of a reaction product of a bromine compound and a chlorinated oxidant and a sulfamic acid compound. This is a method in which the hypobromite stabilizing composition, which is a product, is present in the membrane separation device 12.
 具体的には本実施形態に係る分離膜のスライム抑制方法は、運転と運転休止とが行われる膜分離システム1の運転休止中に、例えば、「臭素」、「塩化臭素」、「次亜臭素酸」または「臭化ナトリウムと次亜塩素酸との反応物」と、「スルファミン酸化合物」と、を膜分離装置12内に存在させる方法である。 Specifically, the method for suppressing the slime of the separation membrane according to the present embodiment includes, for example, “bromine”, “bromine chloride”, “hypobromine” during the operation stop of the membrane separation system 1 in which the operation and the operation stop are performed. In this method, the “acid” or “reaction product of sodium bromide and hypochlorous acid” and the “sulfamic acid compound” are present in the membrane separator 12.
 また、本実施形態に係る分離膜のスライム抑制方法は、運転と運転休止とが行われる膜分離システム1の運転休止中に、例えば、「臭素とスルファミン酸化合物との反応生成物」、「塩化臭素とスルファミン酸化合物との反応生成物」、または「臭化ナトリウムと次亜塩素酸との反応物と、スルファミン酸化合物と、の反応生成物」である次亜臭素酸安定化組成物を膜分離装置12内に存在させる方法である。 In addition, the method for suppressing slime of the separation membrane according to the present embodiment can be performed during, for example, “reaction product of bromine and sulfamic acid compound”, “salt chloride” during the operation stop of the membrane separation system 1 in which the operation and the operation stop are performed. The reaction product of bromine and sulfamic acid compound ", or the reaction product of sodium bromide and hypochlorous acid and the reaction product of sulfamic acid compound" hypobromite stabilization composition This is a method of existing in the separation device 12.
 これらの方法により、運転と運転休止とを行う膜分離システム1において、膜分離装置12の分離膜の劣化を抑制して、運転休止中に分離膜を効果的に殺菌することが可能となる。また、殺菌剤を定期的に供給するための煩雑な追加設備がなくてもよく、システムが簡素化される。 By these methods, in the membrane separation system 1 that performs operation and operation suspension, it is possible to suppress the deterioration of the separation membrane of the membrane separation device 12 and effectively sterilize the separation membrane during operation suspension. Moreover, there is no need for complicated additional equipment for supplying the bactericide periodically, and the system is simplified.
 本実施形態に係る分離膜のスライム抑制方法では、例えば、運転と運転休止とが行われる膜分離システム1の運転休止中に、「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」と、「スルファミン酸化合物」とを薬注ポンプ等により水系に注入してもよい。「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」と、「スルファミン酸化合物」とは別々に水系に添加してもよく、または、原液同士で混合させてから水系に添加してもよい。 In the method for suppressing slime of the separation membrane according to the present embodiment, for example, during the operation stop of the membrane separation system 1 in which the operation and the operation stop are performed, “bromine-based oxidant” or “bromine compound and chlorine-based oxidant”. The “reactant” and the “sulfamic acid compound” may be injected into the aqueous system by a chemical injection pump or the like. The “bromine-based oxidant” or “reaction product of bromine compound and chlorine-based oxidant” and the “sulfamic acid compound” may be added separately to the aqueous system, or they are mixed together in the stock solution and then into the aqueous system. It may be added.
 また、例えば、運転と運転休止とが行われる膜分離システム1の運転休止中に、「臭素系酸化剤とスルファミン酸化合物との反応生成物」、または「臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、の反応生成物」を薬注ポンプ等により水系に注入してもよい。 Further, for example, during the operation stop of the membrane separation system 1 in which the operation and the operation stop are performed, “reaction product of bromine-based oxidant and sulfamic acid compound” or “reaction of bromine compound and chlorine-based oxidant” The reaction product of the product and the sulfamic acid compound ”may be injected into the aqueous system by a chemical injection pump or the like.
 本実施形態に係る分離膜のスライム抑制方法において、「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」の当量に対する「スルファミン酸化合物」の当量の比は、1以上であることが好ましく、1以上2以下の範囲であることがより好ましい。「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」の当量に対する「スルファミン酸化合物」の当量の比が1未満であると、膜を劣化させる可能性があり、2を超えると、製造コストが増加する場合がある。 In the slime suppression method for a separation membrane according to the present embodiment, the ratio of the equivalent of “sulfamic acid compound” to the equivalent of “bromine-based oxidant” or “reaction product of bromine compound and chlorine-based oxidant” is 1 or more. It is preferable that it is in the range of 1 or more and 2 or less. If the ratio of the equivalent of “sulfamic acid compound” to the equivalent of “bromine-based oxidant” or “reaction product of bromine compound and chlorine-based oxidant” is less than 1, the film may be deteriorated. When it exceeds, manufacturing cost may increase.
 分離膜に接触する有効ハロゲン濃度は有効塩素濃度換算で、0.01~100mg/Lであることが好ましい。0.01mg/L未満であると、十分なスライム抑制効果を得ることができない場合があり、100mg/Lより多いと、分離膜の劣化、配管等の腐食を引き起こす可能性がある。 The effective halogen concentration in contact with the separation membrane is preferably 0.01 to 100 mg / L in terms of effective chlorine concentration. If it is less than 0.01 mg / L, a sufficient slime-inhibiting effect may not be obtained. If it is more than 100 mg / L, it may cause deterioration of the separation membrane and corrosion of piping.
 臭素系酸化剤としては、臭素(液体臭素)、塩化臭素、臭素酸、臭素酸塩、次亜臭素酸等が挙げられる。 Examples of bromine-based oxidizing agents include bromine (liquid bromine), bromine chloride, bromic acid, bromate, and hypobromite.
 これらのうち、臭素を用いた「臭素とスルファミン酸化合物(臭素とスルファミン酸化合物の混合物)」または「臭素とスルファミン酸化合物との反応生成物」の製剤は、「次亜塩素酸と臭素化合物とスルファミン酸」の製剤および「塩化臭素とスルファミン酸」の製剤等に比べて、トリハロメタンの生成量自体が少なく、逆浸透膜(RO膜)等をより劣化させず、逆浸透膜(RO膜)透過水等の膜透過水への有効ハロゲンのリーク量がより少ないため、逆浸透膜(RO膜)等の分離膜用スライム抑制剤としてはより好ましい。 Among these, the preparation of “bromine and sulfamic acid compound (mixture of bromine and sulfamic acid compound)” or “reaction product of bromine and sulfamic acid compound” using bromine is composed of “hypochlorous acid and bromine compound and Compared to sulfamic acid preparations and bromine chloride and sulfamic acid preparations, the amount of trihalomethane produced is small, and the reverse osmosis membrane (RO membrane) does not deteriorate further, and the reverse osmosis membrane (RO membrane) permeates. Since the amount of effective halogen leaked into membrane permeated water such as water is smaller, it is more preferable as a slime inhibitor for separation membranes such as reverse osmosis membranes (RO membranes).
 すなわち、本発明の実施形態に係る分離膜のスライム抑制方法は、トリハロメタン前駆物質を含有する、分離膜を備える膜分離装置への給水または洗浄水中に、臭素と、スルファミン酸化合物とを存在させる(臭素とスルファミン酸化合物の混合物を存在させる)ことが好ましい。また、トリハロメタン前駆物質を含有する、分離膜を備える膜分離装置への給水または洗浄水中に、臭素とスルファミン酸化合物との反応生成物を存在させることが好ましい。 That is, in the method for suppressing slime of a separation membrane according to an embodiment of the present invention, bromine and a sulfamic acid compound are present in feed water or washing water to a membrane separation apparatus including a separation membrane, which contains a trihalomethane precursor ( Preferably, a mixture of bromine and a sulfamic acid compound is present). In addition, it is preferable that a reaction product of bromine and a sulfamic acid compound is present in the feed water or the washing water containing a trihalomethane precursor and supplied to a membrane separation apparatus including a separation membrane.
 臭素化合物としては、臭化ナトリウム、臭化カリウム、臭化リチウム、臭化アンモニウム及び臭化水素酸等が挙げられる。これらのうち、製剤コスト等の点から、臭化ナトリウムが好ましい。 Examples of bromine compounds include sodium bromide, potassium bromide, lithium bromide, ammonium bromide and hydrobromic acid. Of these, sodium bromide is preferable from the viewpoint of formulation cost and the like.
 塩素系酸化剤としては、例えば、塩素ガス、二酸化塩素、次亜塩素酸またはその塩、亜塩素酸またはその塩、塩素酸またはその塩、過塩素酸またはその塩、塩素化イソシアヌル酸またはその塩等が挙げられる。これらのうち、塩としては、例えば、次亜塩素酸ナトリウム、次亜塩素酸カリウム等の次亜塩素酸アルカリ金属塩、次亜塩素酸カルシウム、次亜塩素酸バリウム等の次亜塩素酸アルカリ土類金属塩、亜塩素酸ナトリウム、亜塩素酸カリウム等の亜塩素酸アルカリ金属塩、亜塩素酸バリウム等の亜塩素酸アルカリ土類金属塩、亜塩素酸ニッケル等の他の亜塩素酸金属塩、塩素酸アンモニウム、塩素酸ナトリウム、塩素酸カリウム等の塩素酸アルカリ金属塩、塩素酸カルシウム、塩素酸バリウム等の塩素酸アルカリ土類金属塩等が挙げられる。これらの塩素系酸化剤は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。塩素系酸化剤としては、取り扱い性等の点から、次亜塩素酸ナトリウムを用いるのが好ましい。 Examples of the chlorine-based oxidizing agent include chlorine gas, chlorine dioxide, hypochlorous acid or a salt thereof, chlorous acid or a salt thereof, chloric acid or a salt thereof, perchloric acid or a salt thereof, chlorinated isocyanuric acid or a salt thereof. Etc. Among these, examples of the salt include alkali metal hypochlorites such as sodium hypochlorite and potassium hypochlorite, alkaline earth hypochlorite such as calcium hypochlorite and barium hypochlorite. Metal salts, alkali metal chlorites such as sodium chlorite and potassium chlorite, alkaline earth metal chlorites such as barium chlorite, and other metal chlorites such as nickel chlorite , Alkali metal chlorates such as ammonium chlorate, sodium chlorate and potassium chlorate, and alkaline earth metal chlorates such as calcium chlorate and barium chlorate. These chlorine-based oxidants may be used alone or in combination of two or more. As the chlorine-based oxidant, sodium hypochlorite is preferably used from the viewpoint of handleability.
 スルファミン酸化合物は、以下の一般式(1)で示される化合物である。
  RNSOH   (1)
(式中、Rは独立して水素原子または炭素数1~8のアルキル基である。)
The sulfamic acid compound is a compound represented by the following general formula (1).
R 2 NSO 3 H (1)
(In the formula, R is independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.)
 スルファミン酸化合物としては、例えば、2個のR基の両方が水素原子であるスルファミン酸(アミド硫酸)の他に、N-メチルスルファミン酸、N-エチルスルファミン酸、N-プロピルスルファミン酸、N-イソプロピルスルファミン酸、N-ブチルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数1~8のアルキル基であるスルファミン酸化合物、N,N-ジメチルスルファミン酸、N,N-ジエチルスルファミン酸、N,N-ジプロピルスルファミン酸、N,N-ジブチルスルファミン酸、N-メチル-N-エチルスルファミン酸、N-メチル-N-プロピルスルファミン酸等の2個のR基の両方が炭素数1~8のアルキル基であるスルファミン酸化合物、N-フェニルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数6~10のアリール基であるスルファミン酸化合物、またはこれらの塩等が挙げられる。スルファミン酸塩としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩、マンガン塩、銅塩、亜鉛塩、鉄塩、コバルト塩、ニッケル塩等の他の金属塩、アンモニウム塩およびグアニジン塩等が挙げられる。スルファミン酸化合物およびこれらの塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。スルファミン酸化合物としては、環境負荷等の点から、スルファミン酸(アミド硫酸)を用いるのが好ましい。 Examples of the sulfamic acid compound include sulfamic acid (amidosulfuric acid) in which both two R groups are hydrogen atoms, N-methylsulfamic acid, N-ethylsulfamic acid, N-propylsulfamic acid, N- A sulfamic acid compound in which one of two R groups such as isopropylsulfamic acid and N-butylsulfamic acid is a hydrogen atom and the other is an alkyl group having 1 to 8 carbon atoms, N, N-dimethylsulfamic acid, N, Two R groups such as N-diethylsulfamic acid, N, N-dipropylsulfamic acid, N, N-dibutylsulfamic acid, N-methyl-N-ethylsulfamic acid, N-methyl-N-propylsulfamic acid, etc. One of two R groups such as a sulfamic acid compound, N-phenylsulfamic acid and the like, both of which are alkyl groups having 1 to 8 carbon atoms Is a hydrogen atom and the other sulfamic acid compound or a salt thereof, such as an aryl group having 6 to 10 carbon atoms. Examples of the sulfamate include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt, strontium salt and barium salt, manganese salt, copper salt, zinc salt, iron salt, cobalt salt, Other metal salts such as nickel salts, ammonium salts, guanidine salts and the like can be mentioned. The sulfamic acid compounds and salts thereof may be used alone or in combination of two or more. As the sulfamic acid compound, sulfamic acid (amidosulfuric acid) is preferably used from the viewpoint of environmental load.
 本実施形態に係る分離膜のスライム抑制方法において、さらにアルカリを存在させてもよい。アルカリとしては、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ等が挙げられる。低温時の製品安定性等の点から、水酸化ナトリウムと水酸化カリウムとを併用してもよい。また、アルカリは、固形でなく、水溶液として用いてもよい。 In the method for suppressing slime of the separation membrane according to this embodiment, an alkali may be further present. Examples of the alkali include alkali hydroxides such as sodium hydroxide and potassium hydroxide. From the viewpoint of product stability at low temperatures, sodium hydroxide and potassium hydroxide may be used in combination. Further, the alkali is not solid and may be used as an aqueous solution.
 分離膜としては、逆浸透膜(RO膜)、ナノろ過膜(NF膜)、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)等が挙げられる。これらのうち、特に逆浸透膜(RO膜)に、本発明の実施形態に係る分離膜のスライム抑制方法を好適に適用することができる。また、逆浸透膜として昨今主流であるポリアミド系高分子膜に本発明の実施形態に係る分離膜のスライム抑制方法を好適に適用することができる。ポリアミド系高分子膜は、酸化剤に対する耐性が比較的低く、遊離塩素等をポリアミド系高分子膜に連続的に接触させると、膜性能の著しい低下が起こる。しかしながら、本実施形態に係る分離膜のスライム抑制方法ではポリアミド高分子膜においても、このような著しい膜性能の低下はほとんど起こらない。 Examples of the separation membrane include a reverse osmosis membrane (RO membrane), a nanofiltration membrane (NF membrane), a microfiltration membrane (MF membrane), and an ultrafiltration membrane (UF membrane). Among these, the method for suppressing slime of the separation membrane according to the embodiment of the present invention can be suitably applied particularly to a reverse osmosis membrane (RO membrane). Moreover, the slime suppression method of the separation membrane which concerns on embodiment of this invention is suitably applicable to the polyamide-type polymer membrane which is mainstream these days as a reverse osmosis membrane. Polyamide polymer membranes have a relatively low resistance to oxidizing agents, and when free chlorine or the like is continuously brought into contact with the polyamide polymer membrane, the membrane performance is significantly reduced. However, in the method for suppressing slime of the separation membrane according to the present embodiment, such a remarkable decrease in membrane performance hardly occurs even in the polyamide polymer membrane.
 本実施形態に係る分離膜のスライム抑制方法において、膜分離装置が分離膜として逆浸透膜(RO膜)を備えるRO装置の場合、RO装置への給水のpHが5.5以上であることが好ましく、6.0以上であることがより好ましく、6.5以上であることがさらに好ましい。RO装置への給水のpHが5.5未満であると、透過水量が低下する場合がある。また、RO装置への給水のpHの上限値については、通常の逆浸透膜(RO膜)の適用上限pH(例えば、pH10)以下であれば特に制限はないが、カルシウム等の硬度成分のスケール析出を考慮すると、pHは例えば9.0以下で運転することが好ましい。本実施形態に係る分離膜のスライム抑制方法を用いる場合、RO装置への給水のpHが5.5以上で運転することにより、逆浸透膜(RO膜)の劣化、処理水(透過水)の水質悪化を抑制し、十分なスライム抑制効果を発揮しつつ、十分な透過水量の確保も可能となる。 In the separation membrane slime suppression method according to the present embodiment, when the membrane separation device is a RO device including a reverse osmosis membrane (RO membrane) as a separation membrane, the pH of water supplied to the RO device may be 5.5 or more. Preferably, it is 6.0 or more, more preferably 6.5 or more. If the pH of the feed water to the RO device is less than 5.5, the amount of permeated water may decrease. Further, the upper limit value of the pH of water supplied to the RO device is not particularly limited as long as it is equal to or lower than the upper limit pH (for example, pH 10) of a normal reverse osmosis membrane (RO membrane), but the scale of hardness components such as calcium. Considering the precipitation, it is preferable to operate at a pH of, for example, 9.0 or less. When using the slime suppression method of the separation membrane according to the present embodiment, the reverse osmosis membrane (RO membrane) is deteriorated and treated water (permeated water) is deteriorated by operating at a pH of 5.5 or higher for the water supplied to the RO device. It is possible to secure a sufficient amount of permeated water while suppressing deterioration of water quality and exhibiting a sufficient slime suppressing effect.
 RO装置において、RO装置への給水のpH5.5以上でスケールが発生する場合には、スケール抑制のために分散剤を臭素系酸化剤または次亜臭素酸安定化組成物と併用してもよい。分散剤としては、例えば、ポリアクリル酸、ポリマレイン酸、ホスホン酸等が挙げられる。分散剤の給水への添加量は、例えば、RO濃縮水中の濃度として0.1~1,000mg/Lの範囲である。 In the RO device, when scale is generated at pH 5.5 or higher of the feed water to the RO device, a dispersant may be used in combination with a bromine-based oxidizing agent or a hypobromite stabilizing composition for scale control. . Examples of the dispersant include polyacrylic acid, polymaleic acid, and phosphonic acid. The amount of the dispersant added to the feed water is, for example, in the range of 0.1 to 1,000 mg / L as the concentration in the RO concentrated water.
 また、分散剤を使用せずにスケールの発生を抑制するためには、例えば、RO濃縮水中のシリカ濃度を溶解度以下に、カルシウムスケールの指標であるランゲリア指数を0以下になるように、RO装置の回収率等の運転条件を調整することが挙げられる。 Further, in order to suppress the generation of scale without using a dispersant, for example, an RO device is used so that the silica concentration in the RO concentrated water is less than the solubility and the Langeria index, which is a calcium scale index, is less than 0. Adjusting the operating conditions such as the recovery rate.
 RO装置の用途としては、例えば、海水淡水化、排水回収等が挙げられる。 Examples of the use of the RO device include seawater desalination and wastewater recovery.
<分離膜用スライム抑制剤組成物>
 本実施形態に係る分離膜用スライム抑制剤組成物は、「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」と、「スルファミン酸化合物」とを含有するものであり、さらにアルカリを含有してもよい。
<Slime inhibitor composition for separation membrane>
The slime inhibitor composition for separation membrane according to the present embodiment contains “bromine-based oxidant” or “reaction product of bromine compound and chlorine-based oxidant” and “sulfamic acid compound”, Furthermore, you may contain an alkali.
 また、本実施形態に係る分離膜用スライム抑制剤組成物は、「臭素系酸化剤とスルファミン酸化合物との反応生成物」、または「臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、の反応生成物」を含有するものであり、さらにアルカリを含有してもよい。 Further, the slime inhibitor composition for separation membrane according to the present embodiment includes a “reaction product of a bromine-based oxidant and a sulfamic acid compound” or a “reaction product of a bromine compound and a chlorine-based oxidant, and a sulfamic acid. It contains a reaction product of a compound and may further contain an alkali.
 臭素系酸化剤、臭素化合物、塩素系酸化剤およびスルファミン酸化合物については、上述した通りである。 The bromine-based oxidizing agent, bromine compound, chlorine-based oxidizing agent, and sulfamic acid compound are as described above.
 本実施形態に係る分離膜用スライム抑制剤組成物としては、逆浸透膜(RO膜)等をより劣化させず、RO透過水等の膜透過水への有効ハロゲンのリーク量がより少ないため、臭素と、スルファミン酸化合物とを含有するもの(臭素とスルファミン酸化合物の混合物を含有するもの)、例えば、臭素とスルファミン酸化合物とアルカリと水との混合物、または、臭素とスルファミン酸化合物との反応生成物を含有するもの、例えば、臭素とスルファミン酸化合物との反応生成物と、アルカリと、水との混合物が好ましい。 As the slime inhibitor composition for separation membrane according to this embodiment, the reverse osmosis membrane (RO membrane) or the like is not further deteriorated, and the amount of effective halogen leaked into membrane permeated water such as RO permeated water is smaller. Containing bromine and a sulfamic acid compound (containing a mixture of bromine and sulfamic acid compound), for example, a mixture of bromine, sulfamic acid compound, alkali and water, or reaction of bromine with sulfamic acid compound A product containing a product, for example, a mixture of a reaction product of bromine and a sulfamic acid compound, an alkali, and water is preferable.
 本実施形態に係る分離膜用スライム抑制剤組成物は、クロロスルファミン酸等の結合塩素系スライム抑制剤と比較すると、酸化力が高く、スライム抑制力、スライム剥離力が著しく高いにもかかわらず、同じく酸化力の高い次亜塩素酸のような著しい膜劣化をほとんど引き起こすことがない。通常の使用濃度では、膜劣化への影響は実質的に無視することができる。このため、逆浸透膜(RO膜)等の分離膜用スライム抑制剤としては最適である。 The slime inhibitor composition for a separation membrane according to the present embodiment has a high oxidizing power, slime inhibitory power, and slime peeling power, which is remarkably high compared to a combined chlorine-based slime inhibitor such as chlorosulfamic acid. Similarly, it hardly causes significant film deterioration like hypochlorous acid having high oxidizing power. At normal use concentrations, the effect on film degradation can be substantially ignored. Therefore, it is optimal as a slime inhibitor for separation membranes such as reverse osmosis membranes (RO membranes).
 本実施形態に係る分離膜用スライム抑制剤組成物は、次亜塩素酸とは異なり、逆浸透膜(RO膜)をほとんど透過しないため、処理水水質への影響がほとんどない。また、次亜塩素酸等と同様に現場で濃度を測定することができるため、より正確な濃度管理が可能である。また、本実施形態に係る分離膜用スライム抑制剤組成物は、トリハロメタン前駆物質と反応して臭素系トリハロメタンを生成するが、分離膜で排除され易く、分離膜の透過水中のトリハロメタンが大幅に低減されると考えられる。 Unlike the hypochlorous acid, the slime inhibitor composition for separation membrane according to the present embodiment hardly permeates the reverse osmosis membrane (RO membrane), and therefore has little influence on the quality of treated water. Further, since the concentration can be measured on site in the same manner as hypochlorous acid or the like, more accurate concentration management is possible. In addition, the slime inhibitor composition for separation membrane according to the present embodiment reacts with the trihalomethane precursor to produce bromine-based trihalomethane, but is easily eliminated by the separation membrane, and the trihalomethane in the permeated water of the separation membrane is greatly reduced. It is thought that it is done.
 組成物のpHは、例えば、13.0超であり、13.2超であることがより好ましい。組成物のpHが13.0以下であると組成物中の有効ハロゲンが不安定になる場合がある。 The pH of the composition is, for example, more than 13.0, more preferably more than 13.2. When the pH of the composition is 13.0 or less, the effective halogen in the composition may become unstable.
 分離膜用スライム抑制剤組成物中の臭素酸濃度は、5mg/kg未満であることが好ましい。分離膜用スライム抑制剤組成物中の臭素酸濃度が5mg/kg以上であると、透過水の臭素酸イオンの濃度が高くなる場合がある。 The bromic acid concentration in the slime inhibitor composition for separation membrane is preferably less than 5 mg / kg. If the bromate concentration in the slime inhibitor composition for separation membrane is 5 mg / kg or more, the concentration of bromate ions in the permeated water may increase.
<分離膜用スライム抑制剤組成物の製造方法>
 本実施形態に係る分離膜用スライム抑制剤組成物は、臭素系酸化剤とスルファミン酸化合物とを混合する、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物とを混合することにより得られ、さらにアルカリを混合してもよい。
<Method for Producing Slime Inhibitor Composition for Separation Membrane>
The slime inhibitor composition for a separation membrane according to the present embodiment is a mixture of a bromine-based oxidant and a sulfamic acid compound, or a reaction product of a bromine compound and a chlorine-based oxidant, and a sulfamic acid compound. And may be further mixed with an alkali.
 臭素と、スルファミン酸化合物とを含有する分離膜用スライム抑制剤組成物、または、臭素とスルファミン酸化合物との反応生成物を含有する分離膜用スライム抑制剤組成物の製造方法としては、水、アルカリおよびスルファミン酸化合物を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させる工程、または、水、アルカリおよびスルファミン酸化合物を含む混合液に臭素を不活性ガス雰囲気下で添加する工程を含むことが好ましい。不活性ガス雰囲気下で添加して反応させる、または、不活性ガス雰囲気下で添加することにより、組成物中の臭素酸イオン濃度が低くなり、RO透過水等の透過水中の臭素酸イオン濃度が低くなる。 As a method for producing a slime inhibitor composition for a separation membrane containing bromine and a sulfamic acid compound, or a slime inhibitor composition for a separation membrane containing a reaction product of bromine and a sulfamic acid compound, water, A step of adding bromine to a mixture liquid containing an alkali and a sulfamic acid compound in an inert gas atmosphere to react, or a step of adding bromine to a liquid mixture containing water, an alkali and a sulfamic acid compound in an inert gas atmosphere It is preferable to contain. By adding and reacting under an inert gas atmosphere, or adding under an inert gas atmosphere, the bromate ion concentration in the composition is lowered, and the bromate ion concentration in the permeated water such as RO permeated water is reduced. Lower.
 用いる不活性ガスとしては限定されないが、製造等の面から室素およびアルゴンのうち少なくとも1つが好ましく、特に製造コスト等の面から窒素が好ましい。 Although the inert gas to be used is not limited, at least one of nitrogen and argon is preferable from the viewpoint of production and the like, and nitrogen is particularly preferable from the viewpoint of manufacturing cost and the like.
 臭素の添加の際の反応器内の酸素濃度は6%以下が好ましいが、4%以下がより好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。臭素の反応の際の反応器内の酸素濃度が6%を超えると、反応系内の臭素酸の生成量が増加する場合がある。 The oxygen concentration in the reactor during the addition of bromine is preferably 6% or less, more preferably 4% or less, further preferably 2% or less, and particularly preferably 1% or less. If the oxygen concentration in the reactor during the bromine reaction exceeds 6%, the amount of bromic acid produced in the reaction system may increase.
 臭素の添加率は、組成物全体の量に対して25重量%以下であることが好ましく、1重量%以上20重量%以下であることがより好ましい。臭素の添加率が組成物全体の量に対して25重量%を超えると、反応系内の臭素酸の生成量が増加する場合がある。1重量%未満であると、殺菌力が劣る場合がある。 The addition ratio of bromine is preferably 25% by weight or less, more preferably 1% by weight or more and 20% by weight or less based on the total amount of the composition. If the bromine addition rate exceeds 25% by weight relative to the total amount of the composition, the amount of bromic acid produced in the reaction system may increase. If it is less than 1% by weight, the sterilizing power may be inferior.
 臭素添加の際の反応温度は、0℃以上25℃以下の範囲に制御することが好ましいが、製造コスト等の面から、0℃以上15℃以下の範囲に制御することがより好ましい。臭素添加の際の反応温度が25℃を超えると、反応系内の臭素酸の生成量が増加する場合があり、0℃未満であると、凍結する場合がある。 The reaction temperature at the time of bromine addition is preferably controlled in the range of 0 ° C. to 25 ° C., but more preferably in the range of 0 ° C. to 15 ° C. from the viewpoint of production cost. When the reaction temperature at the time of bromine addition exceeds 25 degreeC, the production amount of the bromic acid in a reaction system may increase, and when it is less than 0 degreeC, it may freeze.
 以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.
 スライム抑制剤として「臭素系酸化剤とスルファミン酸化合物との反応生成物」である次亜臭素酸安定化組成物を使用した場合(実施例1)、「臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、の反応生成物」である次亜臭素酸安定化組成物を使用した場合(実施例2)、「臭素系酸化剤」を使用した場合(実施例3)と、一般的なスライム抑制剤である次亜塩素酸を使用した場合(比較例1)との透過水中のトリハロメタン濃度、逆浸透膜(RO膜)性能への影響について比較した。 When a hypobromite stabilizing composition which is a “reaction product of bromine-based oxidant and sulfamic acid compound” is used as a slime inhibitor (Example 1), “reaction between bromine compound and chlorine-based oxidant” When a hypobromite stabilizing composition which is a reaction product of a product and a sulfamic acid compound is used (Example 2), a case where a “bromine-based oxidant” is used (Example 3), Comparison was made with respect to trihalomethane concentration in the permeated water and reverse osmosis membrane (RO membrane) performance when hypochlorous acid, which is a general slime inhibitor, was used (Comparative Example 1).
[組成物1の調製]
 窒素雰囲気下で、液体臭素:16.9重量%(wt%)、スルファミン酸:10.7重量%、水酸化ナトリウム:12.9重量%、水酸化カリウム:3.94重量%、水:残分を混合して、組成物1を調製した。組成物1のpHは14、有効ハロゲン濃度(有効塩素換算濃度)は7.5重量%であった。組成物1の詳細な調製方法は以下の通りである。
[Preparation of Composition 1]
Under nitrogen atmosphere, liquid bromine: 16.9% by weight (wt%), sulfamic acid: 10.7% by weight, sodium hydroxide: 12.9% by weight, potassium hydroxide: 3.94% by weight, water: remaining Minutes were mixed to prepare composition 1. The pH of Composition 1 was 14, and the effective halogen concentration (effective chlorine equivalent concentration) was 7.5% by weight. The detailed preparation method of the composition 1 is as follows.
 反応容器内の酸素濃度が1%に維持されるように、窒素ガスの流量をマスフローコントローラでコントロールしながら連続注入で封入した2Lの4つ口フラスコに1436gの水、361gの水酸化ナトリウムを加え混合し、次いで300gのスルファミン酸を加え混合した後、反応液の温度が0~15℃になるように冷却を維持しながら、473gの液体臭素を加え、さらに48%水酸化カリウム溶液230gを加え、組成物全体の量に対する重量比でスルファミン酸10.7%、臭素16.9%、臭素の当量に対するスルファミン酸の当量比が1.04である、目的の組成物1を得た。生じた溶液のpHは、ガラス電極法にて測定したところ、14であった。生じた溶液の臭素含有率は、臭素をヨウ化カリウムによりヨウ素に転換後、チオ硫酸ナトリウムを用いて酸化還元滴定する方法により測定したところ16.9%であり、理論含有率(16.9%)の100.0%であった。また、臭素反応の際の反応容器内の酸素濃度は、株式会社ジコー製の「酸素モニタJKO-02 LJDII」を用いて測定した。なお、臭素酸濃度は5mg/kg未満であった。 Add 1436 g of water and 361 g of sodium hydroxide to a 2 L four-necked flask sealed by continuous injection while controlling the flow rate of nitrogen gas with a mass flow controller so that the oxygen concentration in the reaction vessel is maintained at 1%. Next, after adding 300 g of sulfamic acid and mixing, 473 g of liquid bromine was added while maintaining cooling so that the temperature of the reaction solution was 0 to 15 ° C., and 230 g of 48% potassium hydroxide solution was added. The target composition 1 was obtained, in which the sulfamic acid was 10.7% by weight relative to the total amount of the composition, 16.9% bromine, and the equivalent ratio of sulfamic acid to the equivalent of bromine was 1.04. The pH of the resulting solution was 14 as measured by the glass electrode method. The bromine content of the resulting solution was 16.9% as measured by a redox titration method using sodium thiosulfate after bromine was converted to iodine with potassium iodide, and the theoretical content (16.9% ) Of 100.0%. The oxygen concentration in the reaction vessel during the bromine reaction was measured using “Oxygen Monitor JKO-02 LJDII” manufactured by Zico Corporation. The bromic acid concentration was less than 5 mg / kg.
[組成物2の調製]
 臭化ナトリウム:11重量%、12%次亜塩素酸ナトリウム水溶液:50重量%、スルファミン酸ナトリウム:14重量%、水酸化ナトリウム:8重量%、水:残分を混合して、組成物2を調製した。組成物2のpHは14、有効ハロゲン濃度(有効塩素換算濃度)は6重量%であった。組成物2の詳細な調製方法は以下の通りである。
[Preparation of Composition 2]
Sodium bromide: 11% by weight, 12% sodium hypochlorite aqueous solution: 50% by weight, sodium sulfamate: 14% by weight, sodium hydroxide: 8% by weight, water: the residue was mixed to prepare composition 2. Prepared. The pH of Composition 2 was 14, and the effective halogen concentration (effective chlorine equivalent concentration) was 6% by weight. The detailed preparation method of the composition 2 is as follows.
 反応容器に17gの水を入れ、11gの臭化ナトリウムを加え撹拌して溶解させた後、50gの12%次亜塩素酸ナトリウム水溶液を加え混合し、次いで14gのスルファミン酸ナトリウムを加え撹拌して溶解させた後、8gの水酸化ナトリウムを加え撹拌し溶解させて目的の組成物2を得た。 17 g of water was put into a reaction vessel, 11 g of sodium bromide was added and dissolved by stirring, 50 g of 12% aqueous sodium hypochlorite solution was added and mixed, and then 14 g of sodium sulfamate was added and stirred. After dissolution, 8 g of sodium hydroxide was added, stirred and dissolved to obtain the desired composition 2.
 なお、水道用次亜塩素酸ナトリウム規格(JWWA K 120 2008)に定められる方法に則り、イオンクロマトグラフ法で測定したところ、組成物中の塩素酸の含有量は、組成物2(1100mg/kg)よりも組成物1の方が少なかった(50mg/kg未満)。 In addition, according to the method stipulated in the sodium hypochlorite standard for water supply (JWWA K 120 2008), the content of chloric acid in the composition was determined to be composition 2 (1100 mg / kg). ) Less than composition 1 (less than 50 mg / kg).
[組成物3]
 9重量%次亜臭素酸ナトリウム水溶液(関東化学、鹿1級)を組成物3として使用した。
[Composition 3]
A 9% by weight aqueous sodium hypobromite solution (Kanto Chemical Co., Ltd., Deer Grade 1) was used as Composition 3.
[組成物4]
 12重量%次亜塩素酸ナトリウム水溶液を組成物4として使用した。
[Composition 4]
A 12 wt% aqueous sodium hypochlorite solution was used as Composition 4.
<実施例1~3、比較例1、参考例1,2>
 以下の条件で、逆浸透膜装置の原水に、組成物1~4をそれぞれ添加して、分離膜給水中と分離膜透過水中の総トリハロメタン濃度、総トリハロメタンの逆浸透膜(RO膜)での排除率を比較した。原水としては、実施例1~3、比較例1では、下記模擬水を、参考例1,2では純水を使用した。
<Examples 1 to 3, Comparative Example 1, Reference Examples 1 and 2>
Under the following conditions, compositions 1 to 4 were added to the raw water of the reverse osmosis membrane device, respectively, and the total trihalomethane concentration in the separation membrane feed water and the separation membrane permeated water, the total trihalomethane in the reverse osmosis membrane (RO membrane) Exclusion rates were compared. As raw water, the following simulated water was used in Examples 1 to 3 and Comparative Example 1, and pure water was used in Reference Examples 1 and 2.
(試験条件)
・試験装置:平膜試験装置
・分離膜:日東電工(株)製、ポリアミド系高分子逆浸透膜 ES15
・運転圧力:0.75MPa
・原水:トリハロメタン生成能が0.01mg/Lの模擬水(純水にトリハロメタン前駆物質としてフミン酸(和光純薬工業製)8.9mg/Lを添加したもの、TOC:5mg/L)または純水
・薬剤:組成物1~4を、有効ハロゲン濃度(有効塩素換算濃度)として3mg/Lとなるように添加
・原水pH:薬剤添加後に試験水のpHが8となるように調整
・試験温度:25℃
・トリハロメタン生成能測定方法:試料をpH7.0、温度20℃、反応時間24時間、24時間後の遊離残留塩素濃度が1~2mg/Lとなるように次亜塩素酸ナトリウムを添加した条件で、生成したトリハロメタン生成量をパージ・トラップ-ガスクロマトグラフ-質量分析計による一斉分析法で測定して、求めた。パージ・トラップ装置は「TEKMAR製、Tekmar Stratum」、ガスクロマトグラフは「Agilent製、7890」、質量分析計は「Agilent製、5975C」を使用した。
・有効ハロゲン濃度の測定方法:残留塩素測定装置(Hach社製、「DR-4000」)を使用してDPD法により測定)
(Test conditions)
Test apparatus: Flat membrane test apparatus Separation membrane: Polyamide polymer reverse osmosis membrane ES15 manufactured by Nitto Denko Corporation
・ Operating pressure: 0.75 MPa
・ Raw water: Simulated water with trihalomethane production ability of 0.01 mg / L (pure water added with 8.9 mg / L humic acid (manufactured by Wako Pure Chemical Industries) as a trihalomethane precursor, TOC: 5 mg / L) or pure Water / drug: Compositions 1 to 4 are added so that the effective halogen concentration (effective chlorine equivalent concentration) is 3 mg / L. Raw water pH: The pH of the test water is adjusted to 8 after the drug is added. : 25 ° C
・ Method for measuring trihalomethane production ability: Under conditions where sodium hypochlorite was added so that the free residual chlorine concentration of the sample was pH 7.0, temperature 20 ° C., reaction time 24 hours, and 24 hours later, 1 to 2 mg / L. The amount of trihalomethane produced was determined by simultaneous analysis using a purge / trap / gas chromatograph / mass spectrometer. The purge / trap apparatus used was “TEKMA, Tekmar Stratum”, the gas chromatograph was “Agilent, 7890”, and the mass spectrometer was “Agilent, 5975C”.
・ Measurement method of effective halogen concentration: measured by DPD method using residual chlorine measuring device (manufactured by Hach, “DR-4000”)
(評価方法)
[RO給水中とRO透過水中の総トリハロメタン濃度、総トリハロメタンの逆浸透膜(RO膜)での排除率]
 模擬水または純水に、表1に示す通り組成物1~4を添加し、pHを8に調整したものを、水温25℃に調整し、RO装置に循環通水した。4時間後にRO給水中とRO透過水中の総トリハロメタン濃度(mg/L)を測定した。RO給水中とRO透過水中の総トリハロメタン濃度から、総トリハロメタンの逆浸透膜(RO膜)での排除率(%)を求めた。結果を表1に示す。ここで、総トリハロメタンとは、クロロホルム、ブロモジクロロメタン、ジブロモクロロメタンおよびブロモホルムの4物質のことを指す。
(Evaluation methods)
[Total trihalomethane concentration in RO water supply and RO permeated water, removal rate of total trihalomethane in reverse osmosis membrane (RO membrane)]
Compositions 1 to 4 as shown in Table 1 were added to simulated water or pure water, and the pH was adjusted to 8. The water temperature was adjusted to 25 ° C. and circulated through the RO apparatus. Four hours later, the total trihalomethane concentration (mg / L) in the RO water supply and RO permeated water was measured. From the total trihalomethane concentration in the RO water supply and RO permeated water, the removal rate (%) of the total trihalomethane in the reverse osmosis membrane (RO membrane) was determined. The results are shown in Table 1. Here, the total trihalomethane refers to four substances of chloroform, bromodichloromethane, dibromochloromethane and bromoform.
 総トリハロメタン濃度は、水質基準に関する省令の規定に基づき厚生労働大臣が定める方法(平成15年厚生労働省告示第261号)に則り、パージ・トラップ-ガスクロマトグラフ-質量分析計による一斉分析法で測定した。 Total trihalomethane concentration was measured by a simultaneous analysis method using a purge / trap / gas chromatograph / mass spectrometer in accordance with the method (Ministry of Health, Labor and Welfare Notification No. 261) established by the Minister of Health, Labor and Welfare based on the provisions of the Ministerial Ordinance on Water Quality Standards. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 このように、実施例1~3では、比較例1に比べて、十分なスライム抑制効果を有しながら、透過水中のトリハロメタン含有量を低減することができた。なお、原水として純水を用いた参考例1,2の場合は、トリハロメタンはほとんど生成しなかった。 Thus, in Examples 1 to 3, the trihalomethane content in the permeated water could be reduced while having a sufficient slime suppressing effect as compared with Comparative Example 1. In the case of Reference Examples 1 and 2 using pure water as raw water, almost no trihalomethane was produced.
「逆浸透膜(RO膜)排除率への影響、透過水への影響、酸化力の比較試験」
 臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物とを使用した場合と、一般的なスライム抑制剤である次亜塩素酸、次亜臭素酸を使用した場合の逆浸透膜(RO膜)排除率への影響、透過水への影響、酸化力、殺菌力について比較した。
“Comparative test of reverse osmosis membrane (RO membrane) rejection rate, impact on permeated water, and oxidizing power”
When using bromine-based oxidants or reaction products of bromine compounds and chlorine-based oxidants and sulfamic acid compounds, and when using general slime inhibitors such as hypochlorite and hypobromite The effect on the reverse osmosis membrane (RO membrane) rejection rate, the effect on the permeated water, the oxidizing power, and the bactericidal power were compared.
 以下の条件で、逆浸透膜装置の原水に、組成物1,2,4~7を添加して、逆浸透膜(RO膜)の排除率への影響、透過水への影響、酸化力を比較した。 Under the following conditions, compositions 1, 2, 4 to 7 are added to the raw water of the reverse osmosis membrane device to influence the exclusion rate of the reverse osmosis membrane (RO membrane), the effect on the permeated water, and the oxidizing power. Compared.
[組成物5]
 組成物2の各組成を水中に別々に添加した。
[Composition 5]
Each composition of Composition 2 was added separately in water.
[組成物6]
 塩化臭素、スルファミン酸ナトリウム、水酸化ナトリウムを含有する組成物6を使用した。組成物6のpHは14、有効ハロゲン濃度(有効塩素換算濃度)は7重量%であった。
[Composition 6]
Composition 6 containing bromine chloride, sodium sulfamate, and sodium hydroxide was used. The pH of the composition 6 was 14, and the effective halogen concentration (effective chlorine equivalent concentration) was 7% by weight.
[組成物7]
 臭化ナトリウム:15重量%、12%次亜塩素酸ナトリウム水溶液:42.4重量%、を水中に別々に添加した。
[Composition 7]
Sodium bromide: 15% by weight, 12% sodium hypochlorite aqueous solution: 42.4% by weight were separately added to water.
(試験条件)
・試験装置:平膜試験装置
・分離膜:日東電工(株)製、ポリアミド系高分子逆浸透膜 ES20
・運転圧力:0.75MPa
・原水:相模原井水(pH7.2、導電率240μS/cm、臭化物イオン濃度1.0mg/L未満)
・薬剤:組成物1,2,4~7を、有効ハロゲン濃度(有効塩素換算濃度)として10mg/Lとなるように添加
(Test conditions)
Test apparatus: Flat membrane test apparatus Separation membrane: Polyamide polymer reverse osmosis membrane ES20 manufactured by Nitto Denko Corporation
・ Operating pressure: 0.75 MPa
Raw water: Sagamiharai water (pH 7.2, conductivity 240 μS / cm, bromide ion concentration less than 1.0 mg / L)
・ Drug: Compositions 1, 2, 4 to 7 are added so that the effective halogen concentration (effective chlorine equivalent concentration) is 10 mg / L.
(評価方法)
・逆浸透膜(RO膜)の排除率への影響:30日通水後の導電率排除率(%)
  (100-[透過水導電率/給水導電率]×100)
・透過水への影響:薬剤添加1時間後の透過水中の有効ハロゲン濃度(有効塩素換算濃度、mg/L)を、残留塩素測定装置(Hach社製、「DR-4000」)を使用してDPD法により測定
・酸化力:1時間後の給水の酸化還元電位(ORP)を、酸化還元電位測定装置(東亜DKK製、RM-20P型ORP計)を使用して測定
(Evaluation methods)
・ Effect on rejection rate of reverse osmosis membrane (RO membrane): Conductivity rejection rate after 30 days water flow (%)
(100- [permeated water conductivity / feed water conductivity] × 100)
・ Effect on permeated water: Effective halogen concentration (effective chlorine equivalent concentration, mg / L) in permeated water 1 hour after addition of chemicals was measured using a residual chlorine measuring device ("DR-4000" manufactured by Hach). Measured by DPD method / Oxidation power: Measures redox potential (ORP) of feed water after 1 hour using redox potential measuring device (RM-20P type ORP meter, manufactured by Toa DKK)
「殺菌力の比較試験」
 以下の条件で、模擬水に組成物1,2,4~7を添加して、殺菌力を比較した。
"Comparison test of bactericidal activity"
Under the following conditions, compositions 1, 2, 4 to 7 were added to simulated water, and the bactericidal power was compared.
(試験条件)
・水:相模原井水に普通ブイヨンを添加し、一般細菌数が10CFU/mlとなるよう調整した模擬水
・薬剤:組成物1,2,4~7を、有効ハロゲン濃度(有効塩素換算濃度)として1mg/Lとなるよう添加(有効ハロゲン濃度の測定方法:残留塩素測定装置(Hach社製、「DR-4000」)を使用してDPD法により測定)
(Test conditions)
・ Water: Simulated water prepared by adding normal bouillon to Sagamiharai water to adjust the number of general bacteria to 10 5 CFU / ml. Drug: Composition 1, 2, 4-7, effective halogen concentration (in terms of effective chlorine) Concentration) added to 1 mg / L (effective halogen concentration measurement method: measured by DPD method using a residual chlorine measuring device (“DR-4000” manufactured by Hach))
(評価方法)
・薬剤添加後24時間後の一般細菌数を菌数測定キット(三愛石油製、バイオチェッカーTTC)を使用して測定
(Evaluation methods)
・ Measures the number of general bacteria 24 hours after the addition of chemicals using a bacterial count kit (manufactured by Sanai Oil, BioChecker TTC)
 試験結果を表2に示す。 Table 2 shows the test results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 組成物1,2,5,6は、高い逆浸透膜(RO膜)の排除率を保持し、透過水の有効ハロゲン濃度(有効塩素換算濃度)も低く、酸化力、殺菌力も高かった。組成物1,2,5,6の中では、組成物1が、最も高い逆浸透膜(RO膜)の排除率を保持し、透過水の有効ハロゲン濃度(有効塩素換算濃度)が最も低かった。 Compositions 1, 2, 5, and 6 maintained a high reverse osmosis membrane (RO membrane) rejection rate, had low effective halogen concentration (effective chlorine equivalent concentration) of permeated water, and high oxidation power and bactericidal power. Among compositions 1, 2, 5, and 6, composition 1 maintained the highest reverse osmosis membrane (RO membrane) rejection rate and had the lowest effective halogen concentration (effective chlorine equivalent concentration) of permeated water. .
 組成物4は、酸化力、殺菌力は高いものの、逆浸透膜(RO膜)の排除率が低下し、透過水の有効ハロゲン濃度(有効塩素換算濃度)も高かった。組成物7は、酸化力、殺菌力は高いものの、透過水の有効ハロゲン濃度(有効塩素換算濃度)がやや高かった。 Composition 4 had high oxidizing power and bactericidal power, but the rejection rate of the reverse osmosis membrane (RO membrane) was reduced, and the effective halogen concentration (effective chlorine equivalent concentration) of the permeated water was also high. Although the composition 7 had high oxidizing power and bactericidal power, the effective halogen concentration (effective chlorine equivalent concentration) of permeated water was slightly high.
「透過水の臭素酸イオンの濃度の比較実験」
 組成物調製時の窒素ガスパージの有無による透過水の臭素酸イオンの濃度を比較した。
"Comparison experiment of bromate ion concentration in permeate"
The bromate ion concentration of permeated water with and without nitrogen gas purge during composition preparation was compared.
[組成物1’の調製]
 組成物1と同様にして、窒素雰囲気下で、液体臭素:17重量%(wt%)、スルファミン酸:10.7重量%、水酸化ナトリウム:12.9重量%、水酸化カリウム:3.95重量%、水:残分を混合して、組成物1’を調製した。組成物1’のpHは14、有効ハロゲン濃度(有効塩素換算濃度)は7.5重量%であり、臭素酸濃度は5mg/kg未満であった。
[Preparation of Composition 1 ']
In the same manner as in Composition 1, in a nitrogen atmosphere, liquid bromine: 17% by weight (wt%), sulfamic acid: 10.7% by weight, sodium hydroxide: 12.9% by weight, potassium hydroxide: 3.95 The composition 1 ′ was prepared by mixing the weight%, water: residue. Composition 1 ′ had a pH of 14, an effective halogen concentration (effective chlorine equivalent concentration) of 7.5% by weight, and a bromic acid concentration of less than 5 mg / kg.
[組成物8の調製]
 窒素パージを行わず、大気下で、液体臭素:17重量%(wt%)、スルファミン酸:10.7重量%、水酸化ナトリウム:12.9重量%、水酸化カリウム:3.95重量%、水:残分を混合して、組成物8を調製した。組成物8のpHは14、有効ハロゲン濃度(有効塩素換算濃度)は7.4重量%であり、臭素酸濃度は63mg/kgであった。
[Preparation of Composition 8]
In the atmosphere without nitrogen purge, liquid bromine: 17% by weight (wt%), sulfamic acid: 10.7% by weight, sodium hydroxide: 12.9% by weight, potassium hydroxide: 3.95% by weight, Water: the residue was mixed to prepare composition 8. Composition 8 had a pH of 14, an effective halogen concentration (effective chlorine equivalent concentration) of 7.4% by weight, and a bromic acid concentration of 63 mg / kg.
(試験条件)
・試験装置:平膜試験装置
・分離膜:日東電工(株)製、ポリアミド系高分子逆浸透膜 ES20
・運転圧力:0.75MPa
・原水:相模原井水(pH7.2、導電率240μS/cm)
・薬剤:組成物1’,8を、有効ハロゲン濃度(有効塩素換算濃度)として50mg/Lとなるように添加
(Test conditions)
Test apparatus: Flat membrane test apparatus Separation membrane: Polyamide polymer reverse osmosis membrane ES20 manufactured by Nitto Denko Corporation
・ Operating pressure: 0.75 MPa
Raw water: Sagamiharai water (pH 7.2, conductivity 240 μS / cm)
-Drug: Compositions 1 'and 8 are added so that the effective halogen concentration (effective chlorine equivalent concentration) is 50 mg / L.
(評価方法)
・透過水の臭素酸イオン濃度を、イオンクロマトグラフ-ポストカラム吸光光度法で測定した。
(Evaluation methods)
-The bromate ion concentration in the permeated water was measured by ion chromatography-post column absorptiometry.
 試験結果を表3に示す。 Table 3 shows the test results.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 組成物1’では、給水、透過水中の臭素酸イオン濃度は1μg/L未満であった。組成物8では、給水、透過水中の臭素酸イオン濃度は、組成物1’に比べて高かった。 In composition 1 ', the bromate ion concentration in the feed water and permeate was less than 1 μg / L. In composition 8, the bromate ion concentration in the feed water and permeated water was higher than in composition 1 '.
 次に、スライム抑制剤として「臭素系酸化剤とスルファミン酸化合物との反応生成物」である次亜臭素酸安定化組成物を使用した場合(実施例4)、「臭素系酸化剤」を使用した場合(実施例5)と、一般的なスライム抑制剤である次亜塩素酸を使用した場合(比較例2)、「次亜塩素酸とスルファミン酸化合物との反応生成物」である次亜塩素酸安定化組成物を使用した場合(比較例3)との処理水中のトリハロメタン濃度、殺菌性能への影響について比較した。 Next, when a hypobromite stabilizing composition which is a “reaction product of bromine-based oxidant and sulfamic acid compound” is used as a slime inhibitor (Example 4), “bromine-based oxidant” is used. (Example 5) and when hypochlorous acid, which is a general slime inhibitor, is used (Comparative Example 2), hypochlorous acid is a reaction product of hypochlorous acid and a sulfamic acid compound. It compared about the trihalomethane density | concentration in a treated water with the case where a chloric acid stabilization composition is used (comparative example 3), and the influence on disinfection performance.
[組成物9]
 12%次亜塩素酸ナトリウム水溶液:50重量%、スルファミン酸:10重量%、水酸化ナトリウム:8重量%、水:残分を混合して、組成物9を調製した。組成物9のpHは14、有効ハロゲン濃度(有効塩素換算濃度)は6重量%であった。
[Composition 9]
Composition 9 was prepared by mixing 12% aqueous sodium hypochlorite solution: 50% by weight, sulfamic acid: 10% by weight, sodium hydroxide: 8% by weight, water: residue. The pH of the composition 9 was 14, and the effective halogen concentration (effective chlorine equivalent concentration) was 6% by weight.
<実施例4,5、比較例2,3>
 以下の条件で、原水に、組成物1,3,4をそれぞれ添加して、処理水中の総トリハロメタン濃度を比較した。原水としては、下記模擬水を使用した。
<Examples 4 and 5, Comparative Examples 2 and 3>
Under the following conditions, compositions 1, 3, and 4 were added to the raw water, and the total trihalomethane concentrations in the treated water were compared. The following simulated water was used as raw water.
(試験条件)
・原水:模擬水(純水にトリハロメタン前駆物質としてフミン酸(和光純薬工業製)8.9mg/Lと、臭化物イオン源として臭化ナトリウム(関東化学製、特級)を濃度が0.1~300mg/Lとなるように添加したもの)
・薬剤:組成物1,3,4を、有効ハロゲン濃度(有効塩素換算濃度)として3mg/Lとなるように添加
・原水pH:薬剤添加後に試験水のpHが8となるように調整
・試験温度:25℃
・有効ハロゲン濃度の測定方法:残留塩素測定装置(Hach社製、「DR-4000」)を使用してDPD法により測定)
(Test conditions)
Raw water: Simulated water (pure water with humic acid (manufactured by Wako Pure Chemical Industries) 8.9 mg / L as a trihalomethane precursor and sodium bromide (manufactured by Kanto Kagaku, special grade) as a bromide ion source with a concentration of 0.1 to Added to 300mg / L)
-Drug: Compositions 1, 3, and 4 are added so that the effective halogen concentration (effective chlorine equivalent concentration) is 3 mg / L.-Raw water pH: adjusted so that the pH of the test water is 8 after the drug is added. Temperature: 25 ° C
・ Measurement method of effective halogen concentration: measured by DPD method using residual chlorine measuring device (manufactured by Hach, “DR-4000”)
(評価方法)
[処理水中の総トリハロメタン濃度]
 模擬水に、組成物1,3,4をそれぞれ添加し、pHを8に調整したものを、水温25℃に調整し、4時間撹拌した。撹拌4時間後に処理水中の総トリハロメタン濃度(mg/L)を測定した。結果を図2に示す。ここで、総トリハロメタンとは、クロロホルム、ブロモジクロロメタン、ジブロモクロロメタンおよびブロモホルムの4物質のことを指す。
(Evaluation methods)
[Total trihalomethane concentration in treated water]
Compositions 1, 3, and 4 were added to the simulated water and the pH was adjusted to 8, and the water temperature was adjusted to 25 ° C. and stirred for 4 hours. After 4 hours of stirring, the total trihalomethane concentration (mg / L) in the treated water was measured. The results are shown in FIG. Here, the total trihalomethane refers to four substances of chloroform, bromodichloromethane, dibromochloromethane and bromoform.
 総トリハロメタン濃度は、水質基準に関する省令の規定に基づき厚生労働大臣が定める方法(平成15年厚生労働省告示第261号)に則り、パージ・トラップ-ガスクロマトグラフ-質量分析計による一斉分析法で測定した。 Total trihalomethane concentration was measured by a simultaneous analysis method using a purge / trap / gas chromatograph / mass spectrometer in accordance with the method (Ministry of Health, Labor and Welfare Notification No. 261) established by the Minister of Health, Labor and Welfare based on the provisions of the Ministerial Ordinance on Water Quality Standards. .
[殺菌力の比較試験]
 以下の条件で、模擬水に組成物1,9をそれぞれ添加して、殺菌力を比較した。
[Comparison test of bactericidal activity]
Under the following conditions, compositions 1 and 9 were added to the simulated water, and the bactericidal power was compared.
(試験条件)
・水:相模原井水に普通ブイヨンを添加し、一般細菌数が10CFU/mlとなるよう調整した模擬水
・薬剤:組成物1,9をそれぞれ、有効ハロゲン濃度(有効塩素換算濃度)として1mg/Lとなるよう添加(有効ハロゲン濃度の測定方法:残留塩素測定装置(Hach社製、「DR-4000」)を使用してDPD法により測定)
(Test conditions)
・ Water: Simulated water prepared by adding normal bouillon to Sagamiharai water and adjusting the number of general bacteria to 10 5 CFU / ml. ・ Drugs: Compositions 1 and 9 as effective halogen concentrations (effective chlorine equivalent concentrations). Added to 1 mg / L (effective halogen concentration measurement method: measured by DPD method using a residual chlorine measuring device (manufactured by Hach, “DR-4000”))
(評価方法)
・薬剤添加後24時間後の一般細菌数を、菌数測定キット(三愛石油製、バイオチェッカーTTC)を使用して測定
(Evaluation methods)
・ Measure the number of general bacteria 24 hours after adding the drug using a bacterial count kit (manufactured by Sanai Oil, Bio Checker TTC)
 試験結果を表4に示す。 Table 4 shows the test results.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 このように、実施例4,5では、比較例2,3に比べて、トリハロメタン前駆物質と臭化物イオンとを含有する水におけるスライムの生成を抑制しつつ、簡易にトリハロメタンの生成を抑制することができた。 Thus, in Examples 4 and 5, compared with Comparative Examples 2 and 3, it is possible to easily suppress the production of trihalomethane while suppressing the production of slime in water containing a trihalomethane precursor and bromide ions. did it.
「トリハロメタン前駆物質含有水中の有効ハロゲン濃度経時変化」
[組成物2’の調製]
 特表平11-506139号公報の記載内容に基づき、下記手順で作製した組成物である。組成物2’のpHは14、有効ハロゲン濃度(有効塩素換算濃度)は5重量%、臭素酸濃度は15mg/kgであった。
(1)27.0gの40重量%臭化ナトリウム純水溶液に、12%次亜塩素酸ナトリウム溶液を41.7g加え、撹拌した。
(2)56.0gの純水、26.0gのスルファミン酸、18.0gの水酸化ナトリウムから組成された安定化溶液を作製した。
(3)(1)の溶液に、(2)の安定化溶液を31.3g撹拌させながら加え、目的の組成物2’を得た。
"Time-dependent change in effective halogen concentration in water containing trihalomethane precursors"
[Preparation of Composition 2 ′]
A composition prepared according to the following procedure based on the contents described in JP-T-11-506139. Composition 2 ′ had a pH of 14, an effective halogen concentration (effective chlorine equivalent concentration) of 5% by weight, and a bromic acid concentration of 15 mg / kg.
(1) To 27.0 g of 40 wt% sodium bromide pure aqueous solution, 41.7 g of 12% sodium hypochlorite solution was added and stirred.
(2) A stabilized solution composed of 56.0 g of pure water, 26.0 g of sulfamic acid, and 18.0 g of sodium hydroxide was prepared.
(3) 31.3 g of the stabilized solution of (2) was added to the solution of (1) while stirring to obtain the target composition 2 ′.
<実施例6、比較例4>
 表5に示す条件で、トリハロメタン生成能が0.11mg/Lの模擬海水A(人工海水にトリハロメタン前駆物質としてフミン酸(和光純薬工業製)8.9mg/Lを添加したもの、TOC:5mg/L)、またはトリハロメタン生成能が0.04mg/Lの模擬海水B(人工海水にトリハロメタン前駆物質としてフミン酸(和光純薬工業製)8.9mg/Lを添加したもの、TOC:5mg/L)、またはトリハロメタン生成能が0.01mg/Lの模擬水C(純水にトリハロメタン前駆物質としてフミン酸(和光純薬工業製)8.9mg/Lを添加したもの、TOC:5mg/L)のそれぞれに、組成物1、組成物2’、または組成物4を、有効ハロゲンとして10mg/L asClまたは5mg/L asClになるように添加した。水酸化ナトリウム水溶液または硫酸水溶液を用いて、試験液のpHが8.4になるように調整し、遮光条件下で室温(25℃)において静置保管し、全ハロゲン濃度の経時変化を測定した。結果を表5に示す。なお、模擬海水A、Bは、人工海水(八洲薬品株式会社製、アクアマリン(登録商標))を用いて、表6に示す組成になるように各成分を純水に溶解させて調製したものである。トリハロメタン生成能は、実施例1と同様の方法で測定した。
<Example 6, Comparative Example 4>
Under the conditions shown in Table 5, simulated seawater A having a trihalomethane production capacity of 0.11 mg / L (artificial seawater with humic acid (manufactured by Wako Pure Chemical Industries, Ltd.) 8.9 mg / L added as a trihalomethane precursor, TOC: 5 mg / L), or simulated seawater B having a trihalomethane production capacity of 0.04 mg / L (artificial seawater added with 8.9 mg / L of humic acid (manufactured by Wako Pure Chemical Industries) as a trihalomethane precursor, TOC: 5 mg / L) ), Or simulated water C having a trihalomethane production capacity of 0.01 mg / L (a mixture of pure water with 8.9 mg / L humic acid (manufactured by Wako Pure Chemical Industries, Ltd.) as a trihalomethane precursor, TOC: 5 mg / L) respectively, composition 1, composition 2 ', or a composition 4 was added to a 10 mg / L AsCl 2 or 5 mg / L AsCl 2 as an active halogen . Using a sodium hydroxide aqueous solution or a sulfuric acid aqueous solution, the pH of the test solution was adjusted to 8.4, and stored at room temperature (25 ° C.) under light-shielding conditions, and the change with time in the total halogen concentration was measured. . The results are shown in Table 5. Simulated seawater A and B were prepared by dissolving each component in pure water so as to have the composition shown in Table 6 using artificial seawater (manufactured by Yashima Pharmaceutical Co., Ltd., Aquamarine (registered trademark)). Is. The trihalomethane production ability was measured by the same method as in Example 1.
 なお、全ハロゲン濃度(有効塩素換算濃度)は、下記の手順にしたがって測定した。 The total halogen concentration (effective chlorine equivalent concentration) was measured according to the following procedure.
 有効ハロゲン濃度は、試料を希釈し、HACH社の多項目水質分析計DR/4000を用いて(全ハロゲン濃度の場合、測定項目は「全塩素」)、有効塩素測定法(DPD(ジエチル-p-フェニレンジアミン)法)により測定した値(mg/L asCl)である。なお、ここで言う有効ハロゲンとは有効塩素測定法(DPD法)により測定した値とする。また有効塩素濃度より、塩素換算の有効ハロゲン濃度である有効臭素濃度(mg/L asCl)を算出することができ、有効塩素測定法(DPD法)による測定値に2.25(159.8(g/mol)/70.9(g/mol))を掛けた値で計算することができる(塩素(Cl)の分子量は70.9(g/mol)、臭素(Br)の分子量は159.8(g/mol)とする。)。 The effective halogen concentration is determined by diluting the sample and using a multi-item water quality analyzer DR / 4000 manufactured by HACH (in the case of the total halogen concentration, the measurement item is “total chlorine”), and the effective chlorine measurement method (DPD (diethyl-p -Phenylenediamine) method) (mg / L asCl 2 ). The effective halogen referred to here is a value measured by an effective chlorine measuring method (DPD method). In addition, an effective bromine concentration (mg / L asCl 2 ), which is an effective halogen concentration in terms of chlorine, can be calculated from the effective chlorine concentration, and the measured value by the effective chlorine measurement method (DPD method) is 2.25 (159.8). (G / mol) /70.9 (g / mol)) (Molecular weight of chlorine (Cl 2 ) is 70.9 (g / mol), and molecular weight of bromine (Br 2 ) Is 159.8 (g / mol).)
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5において、実施例と比較例との比較より、組成物1と組成物2’は、組成物4に比べ、残留ハロゲンが長期間にわたって高く維持され、膜分離装置が長期間休止しても効果的に分離膜を殺菌できることがわかる。ここで、比較例4-1,4-2と比較例4-3との比較より、模擬海水A,Bにおける全ハロゲン濃度の低下速度の方が模擬水Cと比べて大きくなった理由として、次亜塩素酸と模擬海水中の臭化物イオンとが反応して、より不安定な次亜臭素酸に変化したためと考えられる。一方、実施例6-1,6-2,6-4より、次亜臭素酸安定化組成物である組成物1,2’は組成物4に比べ、模擬海水においても全ハロゲン濃度の低下が抑制された。この理由として、次亜臭素酸安定化組成物が次亜塩素酸や次亜臭素酸と比べて安定性が高いことのほか、次亜臭素酸安定化組成物の一部と人工海水中の塩化物イオンとが反応して、極めて安定性が高い結合塩素が生成されたためと考えられる。 In Table 5, the comparison between the example and the comparative example shows that the composition 1 and the composition 2 ′ have a higher residual halogen than the composition 4 over a long period of time, and the membrane separation apparatus is stopped for a long period of time. It can be seen that the separation membrane can be sterilized effectively. Here, the reason why the decrease rate of the total halogen concentration in the simulated seawaters A and B is larger than that in the simulated water C than in the comparison between the comparative examples 4-1 and 4-2 and the comparative example 4-3. This is probably because hypochlorous acid and bromide ions in simulated seawater reacted to change to more unstable hypobromous acid. On the other hand, from Examples 6-1, 6-2, and 6-4, compositions 1, 2 ′, which are hypobromite stabilizing compositions, have a lower total halogen concentration in simulated seawater than composition 4. Suppressed. This is because the hypobromite stabilization composition is more stable than hypochlorous acid and hypobromite, and a portion of the hypobromite stabilization composition and chlorination in artificial seawater. This is thought to be due to the reaction of the product ions and the production of bound chlorine with extremely high stability.
「殺菌剤溶液浸漬保管後の逆浸透膜(RO膜)排除率、透過水量への影響」
<実施例7>
 分離膜を、各殺菌剤溶液に30日間浸漬保管した後の膜の導電率排除率と透過水量保持率を測定した結果を表7に示す。
“Reverse osmosis membrane (RO membrane) exclusion rate after immersion in bactericidal solution and effect on permeated water”
<Example 7>
Table 7 shows the results of measuring the conductivity exclusion rate and the permeated water retention rate of the membrane after the separation membrane was immersed and stored in each bactericide solution for 30 days.
(試験条件)
・分離膜:日東電工株式会社製、ポリアミド系高分子逆浸透膜ES15
・試験水:模擬海水Aまたは模擬海水Bまたは模擬水C
・薬剤:全ハロゲン濃度として10mg/L asClになるように添加
・試験水pH:水酸化ナトリウム水溶液または硫酸水溶液を用いて所定のpHに調整
・分離膜の浸漬保管期間:30日間
・浸漬保管条件:遮光条件下、室温(25℃)
(Test conditions)
-Separation membrane: Nitto Denko Corporation, polyamide polymer reverse osmosis membrane ES15
Test water: Simulated seawater A or simulated seawater B or simulated water C
・ Chemicals: added to a total halogen concentration of 10 mg / L asCl 2・ Test water pH: adjusted to a predetermined pH using sodium hydroxide aqueous solution or sulfuric acid aqueous solution ・ Immersion storage period of separation membrane: 30 days Conditions: room temperature (25 ° C) under light-shielding conditions
(排除率の測定方法)
・試験装置:平膜試験装置
・運転圧力:0.75MPa
・原水:相模原井水(pH7.2、導電率24mS/m)
・導電率排除率[%]=100-[透過水導電率/給水導電率]×100
・透過水量保持率[%]=[試験水に浸漬保管した分離膜の透過水量/新品分離膜の透過水量]×100
(Exclusion rate measurement method)
・ Test equipment: Flat membrane test equipment ・ Operating pressure: 0.75 MPa
・ Raw water: Sagamiharai water (pH 7.2, conductivity 24 mS / m)
Conductivity rejection rate [%] = 100− [permeated water conductivity / feed water conductivity] × 100
Permeate retention rate [%] = [permeate amount of separation membrane immersed in test water / permeate amount of new separation membrane] × 100
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 組成物4は、分離膜を長期間浸漬保管すると分離膜が劣化し、阻止率が大きく低下したが、組成物1,2’は分離膜を長期間浸漬保管しても阻止率が高く維持され、膜劣化が抑制された。 In composition 4, when the separation membrane is stored for a long period of time, the separation membrane deteriorates and the rejection rate is greatly reduced. However, compositions 1 and 2 'maintain a high rejection rate even if the separation membrane is stored for a long period of time. Film deterioration was suppressed.
 このように、次亜臭素酸安定化組成物を用いた実施例では、運転と運転休止とを行う膜分離システムにおいて、分離膜の劣化を抑制して、運転休止中に分離膜を効果的に殺菌することができることがわかった。 As described above, in the examples using the hypobromite stabilizing composition, in the membrane separation system that operates and shuts down, the degradation of the separation membrane is suppressed, and the separation membrane is effectively removed during the shutdown. It was found that it can be sterilized.
 1 膜分離システム、10 原水槽、12 膜分離装置、14 ポンプ、16 原水配管、18 原水供給配管、20 透過水配管、22 濃縮水配管、24 殺菌剤供給配管。 1 membrane separation system, 10 raw water tank, 12 membrane separator, 14 pump, 16 raw water piping, 18 raw water supply piping, 20 permeated water piping, 22 concentrated water piping, 24 disinfectant supply piping.

Claims (13)

  1.  トリハロメタン前駆物質を含有する、分離膜を備える膜分離装置への給水または洗浄水中に、
     臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物を存在させることを特徴とする分離膜のスライム抑制方法。
    In the feed water or wash water to a membrane separation device comprising a separation membrane containing a trihalomethane precursor,
    A method for suppressing slime of a separation membrane, comprising the presence of a bromine-based oxidant or a reaction product of a bromine compound and a chlorine-based oxidant.
  2.  トリハロメタン前駆物質を含有する、分離膜を備える膜分離装置への給水または洗浄水中に、
     臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、
     スルファミン酸化合物と、
     を存在させることを特徴とする分離膜のスライム抑制方法。
    In the feed water or wash water to a membrane separation device comprising a separation membrane containing a trihalomethane precursor,
    A brominated oxidant or a reaction product of a bromine compound and a chlorinated oxidant;
    A sulfamic acid compound;
    A method for suppressing slime of a separation membrane, wherein
  3.  トリハロメタン前駆物質を含有する、分離膜を備える膜分離装置への給水または洗浄水中に、
     臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、
     スルファミン酸化合物と、
     の反応生成物を存在させることを特徴とする分離膜のスライム抑制方法。
    In the feed water or wash water to a membrane separation device comprising a separation membrane containing a trihalomethane precursor,
    A brominated oxidant or a reaction product of a bromine compound and a chlorinated oxidant;
    A sulfamic acid compound;
    A slime-suppressing method for a separation membrane, characterized by including the reaction product of
  4.  トリハロメタン前駆物質を含有する、分離膜を備える膜分離装置への給水または洗浄水中に、
     臭素とスルファミン酸化合物の混合物、または、臭素とスルファミン酸化合物との反応生成物を存在させることを特徴とする分離膜のスライム抑制方法。
    In the feed water or wash water to a membrane separation device comprising a separation membrane containing a trihalomethane precursor,
    A method for suppressing slime of a separation membrane, comprising the presence of a mixture of bromine and a sulfamic acid compound or a reaction product of bromine and a sulfamic acid compound.
  5.  請求項4に記載の分離膜のスライム抑制方法であって、
     前記臭素とスルファミン酸化合物との反応生成物が、水、アルカリおよびスルファミン酸化合物を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させる工程を含む方法により得られたものであることを特徴とする分離膜のスライム抑制方法。
    It is a slime suppression method of the separation membrane of Claim 4, Comprising:
    The reaction product of bromine and a sulfamic acid compound is obtained by a method including a step of reacting a mixed liquid containing water, an alkali and a sulfamic acid compound by adding bromine in an inert gas atmosphere. A method for suppressing slime in a separation membrane.
  6.  請求項1~5のいずれか1項に記載の分離膜のスライム抑制方法であって、
     前記給水または洗浄水のトリハロメタン前駆物質の濃度が、トリハロメタン生成能として0.001mg/L以上であることを特徴とする分離膜のスライム抑制方法。
    A method for suppressing slime of a separation membrane according to any one of claims 1 to 5,
    The method for suppressing slime of a separation membrane, wherein the concentration of the trihalomethane precursor in the feed water or the washing water is 0.001 mg / L or more as a trihalomethane generating ability.
  7.  請求項1~6のいずれか1項に記載の分離膜のスライム抑制方法であって、
     前記分離膜が、ポリアミド系高分子膜であることを特徴とする分離膜のスライム抑制方法。
    A method for suppressing slime of a separation membrane according to any one of claims 1 to 6,
    A method for suppressing slime of a separation membrane, wherein the separation membrane is a polyamide polymer membrane.
  8.  請求項1~7のいずれか1項に記載の分離膜のスライム抑制方法であって、
     前記トリハロメタン前駆物質が、フミン質を含むことを特徴とする分離膜のスライム抑制方法。
    A method for suppressing slime of a separation membrane according to any one of claims 1 to 7,
    The method for suppressing slime of a separation membrane, wherein the trihalomethane precursor contains humic substances.
  9.  請求項1~8のいずれか1項に記載の分離膜のスライム抑制方法であって、
     前記給水または洗浄水が、臭化物イオンをさらに含有することを特徴とする分離膜のスライム抑制方法。
    A method for suppressing slime of a separation membrane according to any one of claims 1 to 8,
    The method for suppressing slime of a separation membrane, wherein the water supply or washing water further contains bromide ions.
  10.  請求項9に記載の分離膜のスライム抑制方法であって、
     前記給水または洗浄水中の臭化物イオンの濃度が、5mg/L以上であることを特徴とする分離膜のスライム抑制方法。
    A method for suppressing slime of a separation membrane according to claim 9,
    A method for suppressing slime of a separation membrane, wherein a concentration of bromide ions in the water supply or washing water is 5 mg / L or more.
  11.  請求項1~10のいずれか1項に記載の分離膜のスライム抑制方法であって、
     前記分離膜を備える膜分離装置が、運転と運転休止とが行われる膜分離装置であり、
     前記膜分離装置の運転休止中に、
     前記臭素系酸化剤、もしくは臭素化合物と塩素系酸化剤との反応物を存在させる、
     前記臭素系酸化剤、もしくは臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物とを存在させる、
     前記臭素系酸化剤、もしくは臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物との反応生成物を存在させる、または、
     前記臭素とスルファミン酸化合物との反応生成物を存在させる、
     ことを特徴とする分離膜のスライム抑制方法。
    A method for suppressing slime of a separation membrane according to any one of claims 1 to 10,
    The membrane separation device comprising the separation membrane is a membrane separation device in which operation and shutdown are performed,
    During the shutdown of the membrane separator,
    The presence of the bromine-based oxidant or a reaction product of a bromine compound and a chlorine-based oxidant;
    The bromine-based oxidant or a reaction product of a bromine compound and a chlorine-based oxidant and a sulfamic acid compound are present;
    The brominated oxidant, or the reaction product of a bromine compound and a chlorinated oxidant and the reaction product of a sulfamic acid compound, or
    The presence of a reaction product of the bromine with a sulfamic acid compound;
    A method for suppressing slime of a separation membrane.
  12.  請求項11に記載の分離膜のスライム抑制方法であって、
     前記膜分離装置内に存在させる水のpHが、pH5.5以上であることを特徴とする分離膜のスライム抑制方法。
    It is a slime suppression method of the separation membrane of Claim 11, Comprising:
    A method for suppressing slime of a separation membrane, wherein the pH of water present in the membrane separation device is pH 5.5 or more.
  13.  請求項10または11に記載の分離膜のスライム抑制方法であって、
     前記膜分離装置内に存在させる水が、海水およびかん水のうち少なくとも一つであることを特徴とする分離膜のスライム抑制方法。
    A method for suppressing slime of a separation membrane according to claim 10 or 11,
    The method for suppressing slime of a separation membrane, wherein the water present in the membrane separation device is at least one of seawater and brine.
PCT/JP2015/085476 2014-12-25 2015-12-18 Method for controlling slime on separation membrane WO2016104356A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177016226A KR101966569B1 (en) 2014-12-25 2015-12-18 Method for controlling slime on separation membrane
SG11201704614YA SG11201704614YA (en) 2014-12-25 2015-12-18 Method for controlling slime on separation membrane
MYPI2017702134A MY188356A (en) 2014-12-25 2015-12-18 Method for controlling slime on separation membrane
CN201580070782.9A CN107108277B (en) 2014-12-25 2015-12-18 Method for inhibiting viscosity of separation membrane
SA517381683A SA517381683B1 (en) 2014-12-25 2017-06-07 Method for Controlling Slime on Separation Membrane

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-261946 2014-12-25
JP2014261945 2014-12-25
JP2014261946 2014-12-25
JP2014-261945 2014-12-25
JP2015034205A JP6513424B2 (en) 2015-02-24 2015-02-24 Method of sterilizing separation membrane
JP2015-034205 2015-02-24

Publications (1)

Publication Number Publication Date
WO2016104356A1 true WO2016104356A1 (en) 2016-06-30

Family

ID=56150376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085476 WO2016104356A1 (en) 2014-12-25 2015-12-18 Method for controlling slime on separation membrane

Country Status (7)

Country Link
KR (1) KR101966569B1 (en)
CN (1) CN107108277B (en)
MY (1) MY188356A (en)
SA (1) SA517381683B1 (en)
SG (1) SG11201704614YA (en)
TW (1) TWI651123B (en)
WO (1) WO2016104356A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071177A1 (en) * 2018-10-05 2020-04-09 オルガノ株式会社 Water treatment device, water treatment method, forward osmosis membrane treatment method, forward osmosis membrane treatment system, and water treatment system
JP2020058963A (en) * 2018-10-05 2020-04-16 オルガノ株式会社 Water treatment device and water treatment method
JP2021030189A (en) * 2019-08-29 2021-03-01 オルガノ株式会社 Water treatment apparatus and water treatment method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102291224B1 (en) * 2016-10-25 2021-08-19 오르가노 코포레이션 Water treatment method and water treatment device using reverse osmosis membrane
WO2019208405A1 (en) * 2018-04-26 2019-10-31 栗田工業株式会社 Method for treating reverse osmosis membrane, method for suppressing aqueous biofouling, and apparatus for suppressing aqueous biofouling
JP6706702B1 (en) * 2019-03-07 2020-06-10 オルガノ株式会社 Water treatment method and water treatment apparatus using reverse osmosis membrane
CN113648836A (en) * 2021-05-12 2021-11-16 同济大学 Method for controlling leakage of membrane source disinfection by-product precursor
CN116422152B (en) * 2023-06-15 2023-09-26 杭州尚善若水环保科技有限公司 Operation method of reverse osmosis membrane treatment system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11506139A (en) * 1996-03-22 1999-06-02 ナルコ ケミカル カンパニー Stabilized alkali or alkaline earth metal hypobromite and process for producing the same
JP2002516827A (en) * 1998-06-01 2002-06-11 アルベマール・コーポレーシヨン Aqueous bromine solution and its production
JP2002543048A (en) * 1999-04-21 2002-12-17 ナルコ ケミカル カンパニー Stable oxidized bromine formulations, methods for their preparation and use for biofouling control
JP2003117553A (en) * 2001-10-16 2003-04-22 Toray Ind Inc Method and apparatus for producing fresh water
JP2004267896A (en) * 2003-03-07 2004-09-30 Katayama Chem Works Co Ltd Contamination preventing method for industrial/waste water system
JP2005537920A (en) * 2002-09-04 2005-12-15 バイオラブ、インコーポレーテッド Disinfection of reverse osmosis membranes
WO2008090854A1 (en) * 2007-01-24 2008-07-31 Kurita Water Industries Ltd. Method for the treatment with reverse osmosis membrane

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3641854B2 (en) 1995-08-28 2005-04-27 東レ株式会社 Reverse osmosis membrane separation method and reverse osmosis membrane separation device
US5942126A (en) * 1997-01-03 1999-08-24 Nalco Chemical Company Process to manufacture stabilized alkali or alkaline earth metal hypobromite and uses thereof in water treatment to control microbial fouling
US6652889B2 (en) * 1998-06-01 2003-11-25 Albemarle Corporation Concentrated aqueous bromine solutions and their preparation and use
US6270722B1 (en) * 1999-03-31 2001-08-07 Nalco Chemical Company Stabilized bromine solutions, method of manufacture and uses thereof for biofouling control
US20040074847A1 (en) * 2002-10-16 2004-04-22 Jaquess Percy A. Stable N-bromo-2-pyrrolidone and methods to make the same
US20060003023A1 (en) * 2004-07-02 2006-01-05 Williams Terry M Microbicidal composition
TWI537046B (en) * 2011-07-06 2016-06-11 栗田工業股份有限公司 Method of membrane separation
JP5918109B2 (en) * 2012-11-20 2016-05-18 オルガノ株式会社 Method for producing hypobromite stabilized composition and hypobromite stabilized composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11506139A (en) * 1996-03-22 1999-06-02 ナルコ ケミカル カンパニー Stabilized alkali or alkaline earth metal hypobromite and process for producing the same
JP2002516827A (en) * 1998-06-01 2002-06-11 アルベマール・コーポレーシヨン Aqueous bromine solution and its production
JP2002543048A (en) * 1999-04-21 2002-12-17 ナルコ ケミカル カンパニー Stable oxidized bromine formulations, methods for their preparation and use for biofouling control
JP2003117553A (en) * 2001-10-16 2003-04-22 Toray Ind Inc Method and apparatus for producing fresh water
JP2005537920A (en) * 2002-09-04 2005-12-15 バイオラブ、インコーポレーテッド Disinfection of reverse osmosis membranes
JP2004267896A (en) * 2003-03-07 2004-09-30 Katayama Chem Works Co Ltd Contamination preventing method for industrial/waste water system
WO2008090854A1 (en) * 2007-01-24 2008-07-31 Kurita Water Industries Ltd. Method for the treatment with reverse osmosis membrane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020071177A1 (en) * 2018-10-05 2020-04-09 オルガノ株式会社 Water treatment device, water treatment method, forward osmosis membrane treatment method, forward osmosis membrane treatment system, and water treatment system
JP2020058963A (en) * 2018-10-05 2020-04-16 オルガノ株式会社 Water treatment device and water treatment method
JP7212490B2 (en) 2018-10-05 2023-01-25 オルガノ株式会社 Water treatment device and water treatment method
JP2021030189A (en) * 2019-08-29 2021-03-01 オルガノ株式会社 Water treatment apparatus and water treatment method
JP7228492B2 (en) 2019-08-29 2023-02-24 オルガノ株式会社 Water treatment device and water treatment method

Also Published As

Publication number Publication date
KR20170084257A (en) 2017-07-19
SG11201704614YA (en) 2017-07-28
KR101966569B1 (en) 2019-04-05
CN107108277A (en) 2017-08-29
TW201627057A (en) 2016-08-01
MY188356A (en) 2021-12-02
SA517381683B1 (en) 2021-10-16
CN107108277B (en) 2020-12-15
TWI651123B (en) 2019-02-21

Similar Documents

Publication Publication Date Title
JP6401491B2 (en) Method for inhibiting slime of separation membrane, slime inhibitor composition for reverse osmosis membrane or nanofiltration membrane, and method for producing slime inhibitor composition for separation membrane
WO2016104356A1 (en) Method for controlling slime on separation membrane
JP6534524B2 (en) Filtration treatment system and filtration treatment method
JP6533056B2 (en) Filtration treatment system and filtration treatment method
JP6837301B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP6513424B2 (en) Method of sterilizing separation membrane
JP6630562B2 (en) Slime suppression method for separation membrane
WO2018078988A1 (en) Water treatment method using reverse osmosis membrane, and water treatment apparatus
JP7013141B2 (en) Water treatment method using reverse osmosis membrane
JP6682401B2 (en) Water treatment method using reverse osmosis membrane
WO2018037582A1 (en) Water processing method using reverse-osmosis membrane
JP7250612B2 (en) Water-based sterilization method and water-based nitrosamine compound removal method
JP2018153749A (en) Water treatment method and water treatment system using reverse osmosis membrane
JP2018008182A (en) Water treatment method using reverse osmosis membrane, and agent for improving blocking rate of silica in reverse osmosis membrane
JP7008470B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP6974936B2 (en) Water treatment method using reverse osmosis membrane
JP6630563B2 (en) Water sterilization method
JP2018069124A (en) Water treatment apparatus and method using reverse osmosis membrane
JP7141919B2 (en) Reverse osmosis membrane treatment method, reverse osmosis membrane treatment system, water treatment method, and water treatment system
JP2020142211A (en) Water treatment method and apparatus using reverse osmosis membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872924

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201704614Y

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 20177016226

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872924

Country of ref document: EP

Kind code of ref document: A1