JP6837301B2 - Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system - Google Patents

Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system Download PDF

Info

Publication number
JP6837301B2
JP6837301B2 JP2016145247A JP2016145247A JP6837301B2 JP 6837301 B2 JP6837301 B2 JP 6837301B2 JP 2016145247 A JP2016145247 A JP 2016145247A JP 2016145247 A JP2016145247 A JP 2016145247A JP 6837301 B2 JP6837301 B2 JP 6837301B2
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
water
treated
total chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016145247A
Other languages
Japanese (ja)
Other versions
JP2018015679A (en
Inventor
賢吾 河原
賢吾 河原
吉川 浩
浩 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2016145247A priority Critical patent/JP6837301B2/en
Publication of JP2018015679A publication Critical patent/JP2018015679A/en
Application granted granted Critical
Publication of JP6837301B2 publication Critical patent/JP6837301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、逆浸透膜処理方法および逆浸透膜処理システムに関する。 The present invention relates to a reverse osmosis membrane treatment method and a reverse osmosis membrane treatment system.

逆浸透膜(RO膜)を用いる逆浸透膜処理方法において、各種のスライム抑制剤(殺菌剤)が使用される。次亜塩素酸等の塩素系酸化剤は代表的なスライム抑制剤であり、系内のスライム抑制目的で通常は逆浸透膜の前段に添加される。塩素系酸化剤は逆浸透膜を劣化させる可能性が高いため、一般的には逆浸透膜の直前で塩素系酸化剤を還元分解するか、間欠的に塩素系酸化剤を逆浸透膜に流入させることで運用されている。 In the reverse osmosis membrane treatment method using a reverse osmosis membrane (RO membrane), various slime inhibitors (bactericides) are used. Chlorine-based oxidizing agents such as hypochlorous acid are typical slime inhibitors, and are usually added to the pre-stage of the reverse osmosis membrane for the purpose of suppressing slime in the system. Since chlorine-based oxidants have a high possibility of deteriorating the reverse osmosis membrane, generally, the chlorine-based oxidizer is reduced and decomposed immediately before the reverse osmosis membrane, or the chlorine-based oxidant intermittently flows into the reverse osmosis membrane. It is operated by letting it.

また、スライム抑制剤として塩素系酸化剤とスルファミン酸化合物とからなる結合塩素剤を逆浸透膜の被処理水中に存在させる方法(特許文献1参照)や、臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物との混合物もしくは反応生成物を被処理水に添加する方法(特許文献2参照)が知られている。 Further, as a slime inhibitor, a method of allowing a bound chlorine agent composed of a chlorine-based oxidant and a sulfamic acid compound to exist in the water to be treated of the back-penetration film (see Patent Document 1), a bromine-based oxidant, or a bromine compound and chlorine. A method of adding a mixture of a reaction product with a system oxidizing agent and a sulfamic acid compound or a reaction product to water to be treated (see Patent Document 2) is known.

特許文献1の結合塩素剤は、スライム抑制効果が十分ではない。特許文献2では、被処理水中の有効ハロゲン濃度(有効塩素換算濃度)が0.01〜100mg/Lが好ましいと記載されているものの、詳細な検討はなされていない。 The combined chlorine agent of Patent Document 1 does not have a sufficient slime suppressing effect. Although Patent Document 2 describes that the effective halogen concentration (effective chlorine equivalent concentration) in the water to be treated is preferably 0.01 to 100 mg / L, detailed studies have not been made.

特許文献3には、逆浸透膜処理において、好ましくは濃縮水の酸化剤濃度が2ppm以下、より好ましくは0.05ppm以下となるように、被処理水を逆浸透膜ユニットによって膜分離することが記載されている。しかし、逆浸透膜処理においてスライム抑制を確実に実施するためには、酸化剤の濃度を管理するのでは不十分であった。 According to Patent Document 3, in the reverse osmosis membrane treatment, the water to be treated is membrane-separated by a reverse osmosis membrane unit so that the oxidant concentration of the concentrated water is preferably 2 ppm or less, more preferably 0.05 ppm or less. Have been described. However, it was not sufficient to control the concentration of the oxidizing agent in order to reliably suppress slime in the reverse osmosis membrane treatment.

特許文献4には、被処理水中に次亜塩素酸ナトリウム等の酸化性の物質が含まれる場合や、被処理水のORP(酸化還元電位)が高い場合、逆浸透膜が劣化することが記載されている。 Patent Document 4 describes that the reverse osmosis membrane deteriorates when the water to be treated contains an oxidizing substance such as sodium hypochlorite or when the ORP (oxidation-reduction potential) of the water to be treated is high. Has been done.

特開2006−263510号公報Japanese Unexamined Patent Publication No. 2006-263510 特開2015−062889号公報JP 2015-062889 特開2014−188473号公報Japanese Unexamined Patent Publication No. 2014-188473 特開2006−224049号公報Japanese Unexamined Patent Publication No. 2006-224049

本発明の目的は、逆浸透膜のスライム抑制効果を有し、かつ逆浸透膜の酸化劣化を抑制する逆浸透膜処理方法および逆浸透膜処理システムを提供することにある。 An object of the present invention is to provide a reverse osmosis membrane treatment method and a reverse osmosis membrane treatment system which have a slime suppressing effect of a reverse osmosis membrane and suppress oxidative deterioration of the reverse osmosis membrane.

本発明は、逆浸透膜に被処理水を通水して処理水および濃縮水を得る逆浸透膜処理方法であって、前記濃縮水の全塩素濃度を測定し、前記濃縮水中の全塩素濃度が0.1mg/L以上5.0mg/L以下の範囲となるように、前記被処理水に臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を存在させる、逆浸透膜処理方法である。 The present invention is a reverse osmosis membrane treatment method in which water to be treated is passed through a reverse osmosis membrane to obtain treated water and concentrated water. The total chlorine concentration of the concentrated water is measured, and the total chlorine concentration of the concentrated water is measured. A stabilized hypobromic acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound is present in the water to be treated so that the concentration is in the range of 0.1 mg / L or more and 5.0 mg / L or less. This is a reverse osmosis membrane treatment method.

本発明は、逆浸透膜に被処理水を通水して処理水および濃縮水を得る逆浸透膜処理方法であって、前記濃縮水の全塩素濃度を測定し、前記濃縮水中の全塩素濃度が0.1mg/L以上5.0mg/L以下の範囲となるように、前記被処理水に臭素とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を存在させる、逆浸透膜処理方法である。 The present invention is a reverse osmosis membrane treatment method in which water to be treated is passed through a reverse osmosis membrane to obtain treated water and concentrated water. The total chlorine concentration of the concentrated water is measured, and the total chlorine concentration of the concentrated water is measured. A reverse osmosis membrane in which a stabilized hypobromic acid composition containing bromine and a sulfamic acid compound is present in the water to be treated so that the concentration is in the range of 0.1 mg / L or more and 5.0 mg / L or less. It is a processing method.

本発明は、逆浸透膜に被処理水を通水して処理水および濃縮水を得る逆浸透膜処理システムであって、逆浸透膜を有する逆浸透膜処理装置と;前記濃縮水中の全塩素濃度が0.1mg/L以上5.0mg/L以下の範囲となるように、前記被処理水に臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を添加する添加手段と;前記濃縮水の全塩素濃度を測定する全塩素濃度測定手段と;を備える、逆浸透膜処理システムである。 The present invention is a reverse osmosis membrane treatment system for obtaining treated water and concentrated water by passing water to be treated through the reverse osmosis membrane, and a reverse osmosis membrane treatment apparatus having a reverse osmosis membrane; total chlorine in the concentrated water. A stabilized hypobromic acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound is added to the water to be treated so that the concentration is in the range of 0.1 mg / L or more and 5.0 mg / L or less. and adding means; and the total chlorine concentration measuring means for measuring the total chlorine concentration before Symbol concentrate; comprises a reverse osmosis membrane treatment system.

本発明は、逆浸透膜に被処理水を通水して処理水および濃縮水を得る逆浸透膜処理システムであって、逆浸透膜を有する逆浸透膜処理装置と;前記濃縮水中の全塩素濃度が0.1mg/L以上5.0mg/L以下の範囲となるように、前記被処理水に臭素とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を添加する添加手段と;前記濃縮水の全塩素濃度を測定する全塩素濃度測定手段と;を備える、逆浸透膜処理システムである。 The present invention is a reverse osmosis membrane treatment system for obtaining treated water and concentrated water by passing water to be treated through the reverse osmosis membrane, and a reverse osmosis membrane treatment apparatus having a reverse osmosis membrane; total chlorine in the concentrated water. As an addition means for adding a stabilized hypobromic acid composition containing bromine and a sulfamic acid compound to the water to be treated so that the concentration is in the range of 0.1 mg / L or more and 5.0 mg / L or less. ; and the total chlorine concentration measuring means for measuring the total chlorine concentration before Symbol concentrate; comprises a reverse osmosis membrane treatment system.

本発明では、逆浸透膜に被処理水を通水して処理水および濃縮水を得る逆浸透膜処理において、逆浸透膜のスライム抑制効果を有し、かつ逆浸透膜の酸化劣化を抑制することができる。 In the present invention, in the reverse osmosis membrane treatment in which the water to be treated is passed through the reverse osmosis membrane to obtain treated water and concentrated water, the reverse osmosis membrane has a slime-suppressing effect and suppresses oxidative deterioration of the reverse osmosis membrane. be able to.

本発明の実施形態に係る逆浸透膜処理システムの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the reverse osmosis membrane treatment system which concerns on embodiment of this invention. 本発明の実施形態に係る逆浸透膜処理システムの他の例を示す概略構成図である。It is a schematic block diagram which shows another example of the reverse osmosis membrane treatment system which concerns on embodiment of this invention.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. The present embodiment is an example of carrying out the present invention, and the present invention is not limited to the present embodiment.

本発明の実施形態に係る逆浸透膜処理システムの一例の概略を図1に示し、その構成について説明する。 An outline of an example of a reverse osmosis membrane treatment system according to an embodiment of the present invention is shown in FIG. 1, and its configuration will be described.

逆浸透膜処理システム1は、逆浸透膜を有する逆浸透膜処理装置12を備える。逆浸透膜処理システム1は、被処理水を貯留する被処理水槽10を備えてもよい。 The reverse osmosis membrane treatment system 1 includes a reverse osmosis membrane treatment device 12 having a reverse osmosis membrane. The reverse osmosis membrane treatment system 1 may include a water tank 10 to be treated to store water to be treated.

図1の逆浸透膜処理システム1において、被処理水槽10の入口には被処理水配管18が接続され、被処理水槽10の出口と逆浸透膜処理装置12の入口とは、ポンプ14を介して被処理水供給配管20により接続されている。逆浸透膜処理装置12の透過水出口には透過水配管22が接続され、濃縮水出口には濃縮水配管24が接続されている。濃縮水配管24には、全塩素濃度測定手段として、全塩素濃度測定装置16が接続されている。被処理水槽10には、スライム抑制剤である安定化次亜臭素酸組成物を添加する添加手段として、添加配管26が接続されている。 In the reverse osmosis membrane treatment system 1 of FIG. 1, a water pipe 18 to be treated is connected to the inlet of the water tank 10 to be treated, and the outlet of the water tank 10 to be treated and the inlet of the reverse osmosis membrane treatment device 12 are connected via a pump 14. It is connected by the water supply pipe 20 to be treated. A permeated water pipe 22 is connected to the permeated water outlet of the reverse osmosis membrane treatment device 12, and a concentrated water pipe 24 is connected to the concentrated water outlet. A total chlorine concentration measuring device 16 is connected to the concentrated water pipe 24 as a total chlorine concentration measuring means. An addition pipe 26 is connected to the water tank 10 to be treated as an addition means for adding the stabilized hypobromous acid composition which is a slime inhibitor.

本実施形態に係る逆浸透膜処理方法および逆浸透膜処理システム1の動作について説明する。 The reverse osmosis membrane treatment method and the operation of the reverse osmosis membrane treatment system 1 according to the present embodiment will be described.

被処理水は、被処理水配管18を通して必要に応じて被処理水槽10に貯留される。被処理水槽10において被処理水に安定化次亜臭素酸組成物が添加配管26を通して添加された後、被処理水は、ポンプ14により被処理水供給配管20を通して、逆浸透膜処理装置12に供給される。逆浸透膜処理装置12において被処理水の逆浸透膜処理が行われる(逆浸透膜処理工程)。逆浸透膜処理で得られた透過水は、透過水配管22を通して排出され、濃縮水は、濃縮水配管24を通して排出される。濃縮水配管24において、全塩素濃度測定装置16により、濃縮水の全塩素濃度が測定される(全塩素濃度測定工程)。なお、安定化次亜臭素酸組成物は、被処理水供給配管20におけるポンプ14の吸込側、吐出側において被処理水に添加されてもよい。 The water to be treated is stored in the water tank 10 to be treated as needed through the water pipe 18 to be treated. After the stabilized hypobromic acid composition is added to the water to be treated in the water tank 10 to be treated through the addition pipe 26, the water to be treated is passed through the water supply pipe 20 to be treated by the pump 14 to the reverse osmosis membrane treatment device 12. Be supplied. The reverse osmosis membrane treatment of the water to be treated is performed in the reverse osmosis membrane treatment apparatus 12 (reverse osmosis membrane treatment step). The permeated water obtained by the reverse osmosis membrane treatment is discharged through the permeated water pipe 22, and the concentrated water is discharged through the concentrated water pipe 24. In the concentrated water pipe 24, the total chlorine concentration of the concentrated water is measured by the total chlorine concentration measuring device 16 (total chlorine concentration measuring step). The stabilized hypobromous acid composition may be added to the water to be treated on the suction side and the discharge side of the pump 14 in the water to be treated water supply pipe 20.

濃縮水は、図2の逆浸透膜処理システム3に示すように、濃縮水循環配管28により、逆浸透膜処理装置12の前段側、例えば被処理水槽10に循環されてもよい。図2の逆浸透膜処理システム3では、全塩素濃度測定手段として、全塩素濃度測定装置16が濃縮水循環配管28に接続されている。図2の逆浸透膜処理システム3の場合、全塩素濃度測定装置16は、通常は濃縮水循環配管28に接続されているが、濃縮水の全塩素濃度と、安定化次亜臭素酸組成物添加後の被処理水の全塩素濃度とがほぼ同じである場合には、被処理水供給配管20に接続されていてもよい。 As shown in the reverse osmosis membrane treatment system 3 of FIG. 2, the concentrated water may be circulated by the concentrated water circulation pipe 28 to the front stage side of the reverse osmosis membrane treatment device 12, for example, the water tank 10 to be treated. In the reverse osmosis membrane treatment system 3 of FIG. 2, the total chlorine concentration measuring device 16 is connected to the concentrated water circulation pipe 28 as a total chlorine concentration measuring means. In the case of the reverse osmosis membrane treatment system 3 of FIG. 2, the total chlorine concentration measuring device 16 is normally connected to the concentrated water circulation pipe 28, but the total chlorine concentration of the concentrated water and the addition of the stabilized hypobromic acid composition When the total chlorine concentration of the water to be treated is almost the same, it may be connected to the water supply pipe 20 to be treated.

本実施形態に係る逆浸透膜処理方法では、濃縮水中の全塩素濃度が0.05mg/L以上10mg/L未満の範囲となるように、被処理水に臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を存在させる。「臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物」は、「臭素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜臭素酸組成物であってもよいし、「臭素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜臭素酸組成物であってもよい。 In the reverse osmosis membrane treatment method according to the present embodiment, a bromine-based oxidizing agent and a sulfamic acid compound are added to the water to be treated so that the total chlorine concentration in the concentrated water is in the range of 0.05 mg / L or more and less than 10 mg / L. A stabilized hypobromous acid composition containing is present. The "stabilized hypobromous acid composition containing a bromine-based oxidant and a sulfamic acid compound" is a stabilized hypobromous acid composition containing a mixture of a "bromine-based oxidant" and a "sulfamic acid compound". It may be a stabilized hypobromous acid composition containing "a reaction product of a bromine-based oxidizing agent and a sulfamic acid compound".

すなわち、本実施形態に係る逆浸透膜処理方法は、濃縮水中の全塩素濃度が0.05mg/L以上10mg/L未満の範囲となるように、被処理水に、「臭素系酸化剤」と「スルファミン酸化合物」との混合物を存在させる方法である。これにより、被処理水中で、安定化次亜臭素酸組成物が生成すると考えられる。 That is, in the reverse osmosis membrane treatment method according to the present embodiment, "bromine-based oxidant" is added to the water to be treated so that the total chlorine concentration in the concentrated water is in the range of 0.05 mg / L or more and less than 10 mg / L. A method of allowing a mixture with a "sulfamic acid compound" to be present. It is considered that this produces a stabilized hypobromous acid composition in the water to be treated.

また、本実施形態に係る逆浸透膜処理方法は、濃縮水中の全塩素濃度が0.05mg/L以上10mg/L未満の範囲となるように、被処理水に、「臭素系酸化剤とスルファミン酸化合物との反応生成物」である安定化次亜臭素酸組成物を存在させる方法である。 Further, in the reverse osmosis membrane treatment method according to the present embodiment, "bromium-based oxidant and sulfamine" are added to the water to be treated so that the total chlorine concentration in the concentrated water is in the range of 0.05 mg / L or more and less than 10 mg / L. This is a method for allowing a stabilized hypobromous acid composition to be present, which is a "reaction product with an acid compound".

具体的には本実施形態に係る逆浸透膜処理方法は、濃縮水中の全塩素濃度が0.05mg/L以上10mg/L未満の範囲となるように、被処理水に、例えば、「臭素」、「塩化臭素」、「次亜臭素酸」または「臭化ナトリウムと次亜塩素酸との反応物」と、「スルファミン酸化合物」との混合物を存在させる方法である。 Specifically, the reverse osmosis membrane treatment method according to the present embodiment uses, for example, "bromine" in the water to be treated so that the total chlorine concentration in the concentrated water is in the range of 0.05 mg / L or more and less than 10 mg / L. , "Bromide chloride", "hypobromous acid" or "reactant of sodium bromide and hypochlorous acid" and a mixture of "sulfamic acid compound".

また、本実施形態に係る逆浸透膜処理方法は、濃縮水中の全塩素濃度が0.05mg/L以上10mg/L未満の範囲となるように、被処理水に、例えば、「臭素とスルファミン酸化合物との反応生成物」、「塩化臭素とスルファミン酸化合物との反応生成物」、または「臭化ナトリウムと次亜塩素酸との反応物と、スルファミン酸化合物と、の反応生成物」である安定化次亜臭素酸組成物を存在させる方法である。 Further, in the back-penetration membrane treatment method according to the present embodiment, for example, "bromium and sulfamic acid" are added to the water to be treated so that the total chlorine concentration in the concentrated water is in the range of 0.05 mg / L or more and less than 10 mg / L. "Reaction product with compound", "Reaction product with bromine chloride and sulfamic acid compound", or "Reaction product with sodium bromide and hypochlorous acid and sulfamic acid compound". A method in which a stabilized hypobromous acid composition is present.

これらの方法により、逆浸透膜のスライム抑制効果を有し、かつ逆浸透膜の酸化劣化を抑制することができ、逆浸透膜のスライム抑制効果を長期的に維持することができる。本発明者らは、逆浸透膜の長期的なスライム抑制効果を有し、かつ逆浸透膜の酸化劣化を抑制するために、被処理水中ではなく濃縮水中の安定化次亜臭素酸組成物を適切な濃度に維持することが重要であることを見出した。本実施形態では、濃縮水中の全塩素濃度が0.05mg/L以上10mg/L未満の範囲となるように維持するが、0.1mg/L以上5mg/L未満の範囲となるように維持することが好ましく、0.1mg/L以上0.5mg/L未満の範囲となるように維持することがより好ましく、0.1mg/L以上0.2mg/L未満の範囲となるように維持することがさらに好ましい。濃縮水中の全塩素濃度が0.05mg/L未満の場合、スライムが十分に抑制できず、10mg/L以上であると逆浸透膜を劣化させるおそれがある。被処理水中の全塩素濃度が0.05mg/L以上であっても、被処理水および逆浸透膜の汚染度等によっては逆浸透膜の濃縮水中の全塩素濃度が0.05mg/L未満となり、スライムが抑制できない場合があるため、被処理水の全塩素濃度管理だけでは不十分である。 By these methods, the slime suppressing effect of the reverse osmosis membrane can be obtained, the oxidative deterioration of the reverse osmosis membrane can be suppressed, and the slime suppressing effect of the reverse osmosis membrane can be maintained for a long period of time. In order to have a long-term slime-suppressing effect on the reverse osmosis membrane and to suppress oxidative deterioration of the reverse osmosis membrane, the present inventors have prepared a stabilized hypobromous acid composition in concentrated water instead of the water to be treated. We have found that it is important to maintain an appropriate concentration. In the present embodiment, the total chlorine concentration in the concentrated water is maintained in the range of 0.05 mg / L or more and less than 10 mg / L, but is maintained in the range of 0.1 mg / L or more and less than 5 mg / L. It is preferable to maintain it in the range of 0.1 mg / L or more and less than 0.5 mg / L, and it is more preferable to maintain it in the range of 0.1 mg / L or more and less than 0.2 mg / L. Is even more preferable. If the total chlorine concentration in the concentrated water is less than 0.05 mg / L, slime cannot be sufficiently suppressed, and if it is 10 mg / L or more, the reverse osmosis membrane may be deteriorated. Even if the total chlorine concentration in the water to be treated is 0.05 mg / L or more, the total chlorine concentration in the concentrated water of the reverse osmosis membrane may be less than 0.05 mg / L depending on the degree of contamination of the water to be treated and the reverse osmosis membrane. Since slime may not be suppressed, it is not enough to control the total chlorine concentration of the water to be treated.

このように、本実施形態に係る逆浸透膜処理方法において、安定化次亜臭素酸組成物は次亜塩素酸等の塩素系酸化剤と同等以上のスライム抑制効果を発揮するにも関わらず、塩素系酸化剤と比較すると、逆浸透膜への劣化影響が低い。このため、本実施形態に係る逆浸透膜処理方法で用いられる安定化次亜臭素酸組成物は、スライム抑制剤としては好適である。 As described above, in the reverse osmosis membrane treatment method according to the present embodiment, the stabilized hypobromous acid composition exerts a slime suppressing effect equal to or higher than that of a chlorine-based oxidizing agent such as hypochlorous acid. Compared with chlorine-based oxidants, the effect of deterioration on the reverse osmosis membrane is low. Therefore, the stabilized hypobromous acid composition used in the reverse osmosis membrane treatment method according to the present embodiment is suitable as a slime inhibitor.

本実施形態に係る逆浸透膜処理方法において、「臭素系酸化剤」が臭素である場合、塩素系酸化剤が存在しないため、逆浸透膜への劣化影響が著しく低く、逆浸透膜の長期的なスライム抑制効果を有する。塩素系酸化剤を含む場合は、塩素酸の生成が懸念される。 In the reverse osmosis membrane treatment method according to the present embodiment, when the "bromine-based oxidant" is bromine, the effect of deterioration on the reverse osmosis membrane is extremely low because there is no chlorine-based oxidant, and the reverse osmosis membrane is long-term. Has a slime-suppressing effect. When a chlorine-based oxidizing agent is contained, there is concern about the formation of chloric acid.

本実施形態に係る逆浸透膜処理方法では、例えば、濃縮水中の全塩素濃度が0.05mg/L以上10mg/L未満の範囲となるように、被処理水に、「臭素系酸化剤」と「スルファミン酸化合物」とを薬注ポンプ等により注入してもよい。「臭素系酸化剤」と「スルファミン酸化合物」とは別々に被処理水に添加してもよく、または、原液同士で混合させてから被処理水に添加してもよい。 In the reverse osmosis membrane treatment method according to the present embodiment, for example, the water to be treated is referred to as a "bromine-based oxidant" so that the total chlorine concentration in the concentrated water is in the range of 0.05 mg / L or more and less than 10 mg / L. The "sulfamic acid compound" may be injected by a chemical injection pump or the like. The "bromine-based oxidizing agent" and the "sulfamic acid compound" may be added to the water to be treated separately, or the stock solutions may be mixed with each other and then added to the water to be treated.

また、例えば、濃縮水中の全塩素濃度が0.05mg/L以上10mg/L未満の範囲となるように、被処理水に、「臭素系酸化剤とスルファミン酸化合物との反応生成物」を薬注ポンプ等により注入してもよい。 Further, for example, a "reaction product of a bromine-based oxidant and a sulfamic acid compound" is added to the water to be treated so that the total chlorine concentration in the concentrated water is in the range of 0.05 mg / L or more and less than 10 mg / L. Injection It may be injected by a pump or the like.

全塩素濃度測定手段としては、安定化次亜臭素酸組成物が添加された被処理水または濃縮水の安定化次亜臭素酸組成物の濃度を全塩素濃度として測定することができるものであればよく、特に制限はないが、例えば、ジエチル−p−フェニレンジアミン(DPD)比色法、ジエチル−p−フェニレンジアミン(DPD)吸光光度法、電流滴定法、ジエチル−p−フェニレンジアミン(DPD)滴定法、ヨウ素滴定法、ポーラログラフ法、オルトトリジン法等による測定装置が挙げられる。 As the means for measuring the total chlorine concentration, the concentration of the stabilized hypobromic acid composition in the water to be treated or the concentrated water to which the stabilized hypobromic acid composition is added can be measured as the total chlorine concentration. However, there are no particular restrictions, but for example, diethyl-p-phenylenediamine (DPD) colorimetric method, diethyl-p-phenylenediamine (DPD) absorptiometry, current titration method, diethyl-p-phenylenediamine (DPD). Examples thereof include a measuring device using a titration method, an iodine titration method, a polarograph method, an orthotridin method, or the like.

本実施形態に係る逆浸透膜処理方法において、「臭素系酸化剤」の当量に対する「スルファミン酸化合物」の当量の比は、1以上であることが好ましく、1以上2以下の範囲であることがより好ましい。「臭素系酸化剤」の当量に対する「スルファミン酸化合物」の当量の比が1未満であると、膜を劣化させる可能性があり、2を超えると、製造コストが増加する場合がある。 In the reverse osmosis membrane treatment method according to the present embodiment, the ratio of the equivalent of the "sulfamic acid compound" to the equivalent of the "bromine-based oxidizing agent" is preferably 1 or more, and preferably in the range of 1 or more and 2 or less. More preferred. If the ratio of the equivalent of the "sulfamic acid compound" to the equivalent of the "bromine-based oxidant" is less than 1, the film may be deteriorated, and if it exceeds 2, the production cost may increase.

逆浸透膜に接触する全塩素濃度は有効塩素濃度換算で、0.01〜100mg/Lであることが好ましい。0.01mg/L未満であると、十分なスライム抑制効果を得ることができない場合があり、100mg/Lより多いと、逆浸透膜の劣化、配管等の腐食を引き起こす可能性がある。 The total chlorine concentration in contact with the reverse osmosis membrane is preferably 0.01 to 100 mg / L in terms of effective chlorine concentration. If it is less than 0.01 mg / L, a sufficient slime suppressing effect may not be obtained, and if it is more than 100 mg / L, deterioration of the reverse osmosis membrane and corrosion of pipes and the like may be caused.

臭素系酸化剤としては、臭素(液体臭素)、塩化臭素、臭素酸、臭素酸塩、次亜臭素酸等が挙げられる。次亜臭素酸は、臭化ナトリウム等の臭化物と次亜塩素酸等の塩素系酸化剤とを反応させて生成させたものであってもよい。 Examples of the bromine-based oxidizing agent include bromine (liquid bromine), bromine chloride, bromate, bromate, hypobromous acid and the like. Hypobromous acid may be produced by reacting a bromide such as sodium bromide with a chlorine-based oxidizing agent such as hypochlorous acid.

これらのうち、臭素を用いた「臭素とスルファミン酸化合物(臭素とスルファミン酸化合物の混合物)」または「臭素とスルファミン酸化合物との反応生成物」の製剤は、「次亜塩素酸と臭素化合物とスルファミン酸」の製剤および「塩化臭素とスルファミン酸」の製剤等に比べて、臭素酸の副生が少なく、逆浸透膜をより劣化させないため、逆浸透膜用スライム抑制剤としてはより好ましい。 Of these, the preparations of "bromic acid and sulfamic acid compound (mixture of bromic acid and sulfamic acid compound)" or "reaction product of bromic acid and sulfamic acid compound" using bromine are "hypochlorous acid and bromic acid compound". Compared with the preparations of "sulfamic acid" and "bromine chloride and sulfamic acid", the by-product of bromic acid is less and the back-penetrating membrane is not further deteriorated, so that it is more preferable as a slime inhibitor for back-penetrating membranes.

すなわち、本発明の実施形態に係る逆浸透膜処理方法は、濃縮水中の全塩素濃度が0.05mg/L以上10mg/L未満の範囲となるように、被処理水に、臭素と、スルファミン酸化合物とを存在させる(臭素とスルファミン酸化合物の混合物を存在させる)ことが好ましい。また、濃縮水中の全塩素濃度が0.05mg/L以上10mg/L未満の範囲となるように、被処理水中に、臭素とスルファミン酸化合物との反応生成物を存在させることが好ましい。 That is, in the reverse osmosis membrane treatment method according to the embodiment of the present invention, bromine and sulfamic acid are added to the water to be treated so that the total chlorine concentration in the concentrated water is in the range of 0.05 mg / L or more and less than 10 mg / L. It is preferable that the compound is present (a mixture of bromine and a sulfamic acid compound is present). Further, it is preferable that the reaction product of bromine and the sulfamic acid compound is present in the water to be treated so that the total chlorine concentration in the concentrated water is in the range of 0.05 mg / L or more and less than 10 mg / L.

臭素化合物としては、臭化ナトリウム、臭化カリウム、臭化リチウム、臭化アンモニウムおよび臭化水素酸等が挙げられる。これらのうち、製剤コスト等の点から、臭化ナトリウムが好ましい。 Examples of the bromine compound include sodium bromide, potassium bromide, lithium bromide, ammonium bromide, hydrobromic acid and the like. Of these, sodium bromide is preferable from the viewpoint of formulation cost and the like.

塩素系酸化剤としては、例えば、塩素ガス、二酸化塩素、次亜塩素酸またはその塩、亜塩素酸またはその塩、塩素酸またはその塩、過塩素酸またはその塩、塩素化イソシアヌル酸またはその塩等が挙げられる。これらのうち、塩としては、例えば、次亜塩素酸ナトリウム、次亜塩素酸カリウム等の次亜塩素酸アルカリ金属塩、次亜塩素酸カルシウム、次亜塩素酸バリウム等の次亜塩素酸アルカリ土類金属塩、亜塩素酸ナトリウム、亜塩素酸カリウム等の亜塩素酸アルカリ金属塩、亜塩素酸バリウム等の亜塩素酸アルカリ土類金属塩、亜塩素酸ニッケル等の他の亜塩素酸金属塩、塩素酸アンモニウム、塩素酸ナトリウム、塩素酸カリウム等の塩素酸アルカリ金属塩、塩素酸カルシウム、塩素酸バリウム等の塩素酸アルカリ土類金属塩等が挙げられる。これらの塩素系酸化剤は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。塩素系酸化剤としては、取り扱い性等の点から、次亜塩素酸ナトリウムを用いるのが好ましい。 Examples of the chlorine-based oxidant include chlorine gas, chlorine dioxide, hypochlorous acid or a salt thereof, chloric acid or a salt thereof, chloric acid or a salt thereof, perchloric acid or a salt thereof, and chlorinated isocyanuric acid or a salt thereof. And so on. Among these, examples of the salt include an alkali metal hypochlorite salt such as sodium hypochlorite and potassium hypochlorite, and an alkaline soil hypochlorite such as calcium hypochlorite and barium hypochlorite. Metallic salts, alkali metal chlorite salts such as sodium chlorate and potassium chlorate, alkaline earth metal chlorite salts such as barium chlorate, and other metal chlorite salts such as nickel chlorite. , Chlorate alkali metal salts such as ammonium chlorate, sodium chlorate, potassium chlorate, and chlorate alkaline earth metal salts such as calcium chlorate and barium chlorate. These chlorine-based oxidizing agents may be used alone or in combination of two or more. As the chlorine-based oxidizing agent, sodium hypochlorite is preferably used from the viewpoint of handleability and the like.

スルファミン酸化合物は、以下の一般式(1)で示される化合物である。
NSOH (1)
(式中、Rは独立して水素原子または炭素数1〜8のアルキル基である。)
The sulfamic acid compound is a compound represented by the following general formula (1).
R 2 NSO 3 H (1)
(In the formula, R is independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.)

スルファミン酸化合物としては、例えば、2個のR基の両方が水素原子であるスルファミン酸(アミド硫酸)の他に、N−メチルスルファミン酸、N−エチルスルファミン酸、N−プロピルスルファミン酸、N−イソプロピルスルファミン酸、N−ブチルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数1〜8のアルキル基であるスルファミン酸化合物、N,N−ジメチルスルファミン酸、N,N−ジエチルスルファミン酸、N,N−ジプロピルスルファミン酸、N,N−ジブチルスルファミン酸、N−メチル−N−エチルスルファミン酸、N−メチル−N−プロピルスルファミン酸等の2個のR基の両方が炭素数1〜8のアルキル基であるスルファミン酸化合物、N−フェニルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数6〜10のアリール基であるスルファミン酸化合物、またはこれらの塩等が挙げられる。スルファミン酸塩としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩、マンガン塩、銅塩、亜鉛塩、鉄塩、コバルト塩、ニッケル塩等の他の金属塩、アンモニウム塩およびグアニジン塩等が挙げられる。スルファミン酸化合物およびこれらの塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。スルファミン酸化合物としては、環境負荷等の点から、スルファミン酸(アミド硫酸)を用いるのが好ましい。 Examples of the sulfamic acid compound include N-methylsulfamic acid, N-ethylsulfamic acid, N-propylsulfamic acid, and N-, in addition to sulfamic acid (amide sulfate) in which both of the two R groups are hydrogen atoms. Sulfamic acid compounds, N, N-dimethylsulfamic acid, N, where one of the two R groups such as isopropylsulfamic acid and N-butylsulfamic acid is a hydrogen atom and the other is an alkyl group having 1 to 8 carbon atoms. Two R groups such as N-diethylsulfamic acid, N, N-dipropylsulfamic acid, N, N-dibutylsulfamic acid, N-methyl-N-ethylsulfamic acid, N-methyl-N-propylsulfamic acid, etc. Sulfamic acid is a sulfamic acid compound in which both are alkyl groups having 1 to 8 carbon atoms, one of two R groups such as N-phenylsulfamic acid is a hydrogen atom, and the other is an aryl group having 6 to 10 carbon atoms. Examples include compounds and salts thereof. Examples of sulfamates include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt, strontium salt and barium salt, manganese salt, copper salt, zinc salt, iron salt and cobalt salt. Other metal salts such as nickel salts, ammonium salts, guanidine salts and the like can be mentioned. The sulfamic acid compound and salts thereof may be used alone or in combination of two or more. As the sulfamic acid compound, it is preferable to use sulfamic acid (amide sulfate) from the viewpoint of environmental load and the like.

本実施形態に係る逆浸透膜処理方法において、さらにアルカリを存在させてもよい。アルカリとしては、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ等が挙げられる。低温時の製品安定性等の点から、水酸化ナトリウムと水酸化カリウムとを併用してもよい。また、アルカリは、固形でなく、水溶液として用いてもよい。 In the reverse osmosis membrane treatment method according to the present embodiment, an alkali may be further present. Examples of the alkali include alkali hydroxides such as sodium hydroxide and potassium hydroxide. Sodium hydroxide and potassium hydroxide may be used in combination from the viewpoint of product stability at low temperature. Further, the alkali may be used as an aqueous solution instead of being solid.

本実施形態に係る逆浸透膜処理方法は、逆浸透膜として昨今主流であるポリアミド系高分子膜に好適に適用することができる。ポリアミド系高分子膜は、酸化剤に対する耐性が比較的低く、遊離塩素等をポリアミド系高分子膜に連続的に接触させると、膜性能の著しい低下が起こる。しかしながら、本実施形態に係る逆浸透膜処理方法ではポリアミド高分子膜においても、このような著しい膜性能の低下はほとんど起こらない。 The reverse osmosis membrane treatment method according to the present embodiment can be suitably applied to a polyamide-based polymer membrane which is the mainstream in recent years as a reverse osmosis membrane. The polyamide-based polymer film has a relatively low resistance to an oxidizing agent, and when free chlorine or the like is continuously brought into contact with the polyamide-based polymer film, the film performance is significantly reduced. However, in the reverse osmosis membrane treatment method according to the present embodiment, such a significant decrease in membrane performance hardly occurs even in the polyamide polymer membrane.

本実施形態に係る逆浸透膜処理方法において、逆浸透膜を備える逆浸透膜装置へ給水される被処理水のpHが5.5以上であることが好ましく、6.0以上であることがより好ましく、6.5以上であることがさらに好ましい。被処理水のpHが5.5未満であると、透過水量が低下する場合がある。また、被処理水のpHの上限値については、通常の逆浸透膜の適用上限pH(例えば、pH10)以下であれば特に制限はないが、カルシウム等の硬度成分のスケール析出を考慮すると、pHは例えば9.0以下で運転することが好ましい。本実施形態に係る逆浸透膜処理方法を用いる場合、被処理水のpHが5.5以上で運転することにより、逆浸透膜の劣化、処理水(透過水)の水質悪化を抑制し、十分なスライム抑制効果を発揮しつつ、十分な透過水量の確保も可能となる。 In the reverse osmosis membrane treatment method according to the present embodiment, the pH of the water to be treated supplied to the reverse osmosis membrane apparatus provided with the reverse osmosis membrane is preferably 5.5 or more, and more preferably 6.0 or more. It is preferably 6.5 or more, and more preferably 6.5 or more. If the pH of the water to be treated is less than 5.5, the amount of permeated water may decrease. The upper limit of the pH of the water to be treated is not particularly limited as long as it is equal to or lower than the applicable upper limit pH of a normal reverse osmosis membrane (for example, pH 10), but considering the scale precipitation of hardness components such as calcium, the pH is Is preferably operated at, for example, 9.0 or less. When the reverse osmosis membrane treatment method according to the present embodiment is used, by operating the water to be treated at a pH of 5.5 or higher, deterioration of the reverse osmosis membrane and deterioration of the water quality of the treated water (permeated water) can be suppressed sufficiently. It is possible to secure a sufficient amount of permeated water while exerting a slime suppressing effect.

逆浸透膜装置において、被処理水のpH5.5以上でスケールが発生する場合には、スケール抑制のために分散剤を安定化次亜臭素酸組成物と併用してもよい。分散剤としては、例えば、ポリアクリル酸、ポリマレイン酸、ホスホン酸等が挙げられる。分散剤の被処理水への添加量は、例えば、RO濃縮水中の濃度として0.1〜1,000mg/Lの範囲である。 In the reverse osmosis membrane device, when scale is generated at pH 5.5 or higher of the water to be treated, a dispersant may be used in combination with a stabilized hypobromous acid composition to suppress scale. Examples of the dispersant include polyacrylic acid, polymaleic acid, phosphonic acid and the like. The amount of the dispersant added to the water to be treated is, for example, in the range of 0.1 to 1,000 mg / L as the concentration in RO concentrated water.

また、分散剤を使用せずにスケールの発生を抑制するためには、例えば、RO濃縮水中のシリカ濃度を溶解度以下に、カルシウムスケールの指標であるランゲリア指数を0以下になるように、逆浸透膜装置の回収率等の運転条件を調整することが挙げられる。 Further, in order to suppress the generation of scale without using a dispersant, for example, reverse osmosis is performed so that the silica concentration in RO concentrated water is less than the solubility and the Langeria index, which is an index of the calcium scale, is 0 or less. It is possible to adjust operating conditions such as the recovery rate of the membrane device.

逆浸透膜装置の用途としては、例えば、海水淡水化、排水回収等が挙げられる。 Applications of the reverse osmosis membrane device include, for example, seawater desalination, wastewater recovery, and the like.

<逆浸透膜用スライム抑制剤>
本実施形態に係る逆浸透膜用スライム抑制剤は、「臭素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜臭素酸組成物を含有するものであり、さらにアルカリを含有してもよい。
<Slime inhibitor for reverse osmosis membrane>
The slime inhibitor for reverse osmosis membrane according to the present embodiment contains a stabilized hypobromous acid composition containing a mixture of a "bromine-based oxidizing agent" and a "sulfamic acid compound", and further contains an alkali. You may.

また、本実施形態に係る逆浸透膜用スライム抑制剤は、「臭素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜臭素酸組成物を含有するものであり、さらにアルカリを含有してもよい。 Further, the slime inhibitor for reverse osmosis membrane according to the present embodiment contains a stabilized hypobromous acid composition containing "a reaction product of a bromine-based oxidizing agent and a sulfamic acid compound", and further contains an alkali. May be contained.

臭素系酸化剤、臭素化合物、塩素系酸化剤およびスルファミン酸化合物については、上述した通りである。 The bromine-based oxidizing agent, bromine compound, chlorine-based oxidizing agent and sulfamic acid compound are as described above.

本実施形態に係る逆浸透膜用スライム抑制剤としては、逆浸透膜をより劣化させないため、臭素と、スルファミン酸化合物とを含有するもの(臭素とスルファミン酸化合物の混合物を含有するもの)、例えば、臭素とスルファミン酸化合物とアルカリと水との混合物、または、臭素とスルファミン酸化合物との反応生成物を含有するもの、例えば、臭素とスルファミン酸化合物との反応生成物と、アルカリと、水との混合物が好ましい。 The slime inhibitor for a back-penetrating membrane according to the present embodiment contains bromine and a sulfamic acid compound (containing a mixture of bromine and a sulfamic acid compound) in order not to further deteriorate the back-penetrating membrane, for example. , A mixture of bromine, sulfamic acid compound, alkali and water, or a reaction product of bromine and sulfamic acid compound, for example, reaction product of bromine and sulfamic acid compound, alkali, water and Mixtures of are preferred.

本実施形態に係る逆浸透膜用スライム抑制剤は、クロロスルファミン酸等の結合塩素系スライム抑制剤と比較すると、酸化力が高く、スライム抑制力、スライム剥離力が著しく高いにもかかわらず、同じく酸化力の高い次亜塩素酸のような著しい膜劣化をほとんど引き起こすことがない。通常の使用濃度では、膜劣化への影響は実質的に無視することができる。このため、逆浸透膜用スライム抑制剤としては最適である。 The slime inhibitor for reverse osmosis membranes according to the present embodiment has higher oxidizing power, slime suppressing power, and slime peeling power as compared with a bound chlorine-based slime inhibitor such as chlorosulfamic acid. It hardly causes remarkable film deterioration like hypochlorous acid, which has high oxidizing power. At normal working concentrations, the effect on film deterioration is virtually negligible. Therefore, it is most suitable as a slime inhibitor for reverse osmosis membranes.

本実施形態に係る逆浸透膜用スライム抑制剤は、次亜塩素酸とは異なり、逆浸透膜をほとんど透過しないため、処理水水質への影響がほとんどない。また、次亜塩素酸等と同様に現場で濃度を測定することができるため、より正確な濃度管理が可能である。 Unlike hypochlorous acid, the slime inhibitor for reverse osmosis membranes according to the present embodiment has almost no effect on the quality of treated water because it hardly permeates the reverse osmosis membrane. In addition, since the concentration can be measured on-site in the same manner as hypochlorous acid and the like, more accurate concentration control is possible.

逆浸透膜用スライム抑制剤のpHは、例えば、13.0超であり、13.2超であることがより好ましい。逆浸透膜用スライム抑制剤のpHが13.0以下であると逆浸透膜用スライム抑制剤中の有効ハロゲンが不安定になる場合がある。 The pH of the slime inhibitor for reverse osmosis membrane is, for example, more than 13.0, more preferably more than 13.2. If the pH of the reverse osmosis membrane slime inhibitor is 13.0 or less, the effective halogen in the reverse osmosis membrane slime inhibitor may become unstable.

逆浸透膜用スライム抑制剤中の臭素酸濃度は、5mg/kg未満であることが好ましい。逆浸透膜用スライム抑制剤中の臭素酸濃度が5mg/kg以上であると、RO透過水の臭素酸イオンの濃度が高くなる場合がある。 The bromic acid concentration in the slime inhibitor for reverse osmosis membranes is preferably less than 5 mg / kg. When the bromate concentration in the slime inhibitor for reverse osmosis membrane is 5 mg / kg or more, the concentration of bromate ion in RO permeated water may increase.

<逆浸透膜用スライム抑制剤の製造方法>
本実施形態に係る逆浸透膜用スライム抑制剤は、臭素系酸化剤とスルファミン酸化合物とを混合することにより得られ、さらにアルカリを混合してもよい。
<Manufacturing method of slime inhibitor for reverse osmosis membrane>
The slime inhibitor for reverse osmosis membrane according to the present embodiment can be obtained by mixing a bromine-based oxidizing agent and a sulfamic acid compound, and may be further mixed with an alkali.

臭素と、スルファミン酸化合物とを含む安定化次亜臭素酸組成物を含有する逆浸透膜用スライム抑制剤の製造方法としては、水、アルカリおよびスルファミン酸化合物を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させる工程、または、水、アルカリおよびスルファミン酸化合物を含む混合液に臭素を不活性ガス雰囲気下で添加する工程を含むことが好ましい。不活性ガス雰囲気下で添加して反応させる、または、不活性ガス雰囲気下で添加することにより、逆浸透膜用スライム抑制剤中の臭素酸イオン濃度が低くなり、RO透過水中の臭素酸イオン濃度が低くなる。 As a method for producing a slime inhibitor for a back-penetrating membrane containing a stabilized hypobromous acid composition containing bromine and a sulfamic acid compound, bromine is added to an inert gas in a mixed solution containing water, an alkali and a sulfamic acid compound. It is preferable to include a step of adding and reacting in an atmosphere, or a step of adding bromine to a mixed solution containing water, an alkali and a sulfamic acid compound in an inert gas atmosphere. By adding and reacting in an inert gas atmosphere, or by adding in an inert gas atmosphere, the bromate ion concentration in the slime inhibitor for reverse osmosis membrane becomes low, and the bromate ion concentration in RO permeated water becomes low. Will be low.

用いる不活性ガスとしては限定されないが、製造等の面から素およびアルゴンのうち少なくとも1つが好ましく、特に製造コスト等の面から窒素が好ましい。 Used but are not limited to inert gas, at least one and preferably one in terms of nitrogen and argon, such as production, nitrogen is particularly preferred from the viewpoint of production cost and the like.

臭素の添加の際の反応器内の酸素濃度は6%以下が好ましいが、4%以下がより好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。臭素の反応の際の反応器内の酸素濃度が6%を超えると、反応系内の臭素酸の生成量が増加する場合がある。 The oxygen concentration in the reactor at the time of adding bromine is preferably 6% or less, more preferably 4% or less, further preferably 2% or less, and particularly preferably 1% or less. If the oxygen concentration in the reactor during the bromine reaction exceeds 6%, the amount of bromic acid produced in the reaction system may increase.

臭素の添加率は、逆浸透膜用スライム抑制剤全体の量に対して25重量%以下であることが好ましく、1重量%以上20重量%以下であることがより好ましい。臭素の添加率が逆浸透膜用スライム抑制剤全体の量に対して25重量%を超えると、反応系内の臭素酸の生成量が増加する場合がある。1重量%未満であると、殺菌力が劣る場合がある。 The addition rate of bromine is preferably 25% by weight or less, and more preferably 1% by weight or more and 20% by weight or less, based on the total amount of the slime inhibitor for reverse osmosis membrane. If the addition rate of bromine exceeds 25% by weight based on the total amount of the slime inhibitor for reverse osmosis membrane, the amount of bromic acid produced in the reaction system may increase. If it is less than 1% by weight, the bactericidal activity may be inferior.

臭素添加の際の反応温度は、0℃以上25℃以下の範囲に制御することが好ましいが、製造コスト等の面から、0℃以上15℃以下の範囲に制御することがより好ましい。臭素添加の際の反応温度が25℃を超えると、反応系内の臭素酸の生成量が増加する場合があり、0℃未満であると、凍結する場合がある。 The reaction temperature at the time of adding bromine is preferably controlled in the range of 0 ° C. or higher and 25 ° C. or lower, but more preferably controlled in the range of 0 ° C. or higher and 15 ° C. or lower from the viewpoint of manufacturing cost and the like. If the reaction temperature at the time of adding bromine exceeds 25 ° C., the amount of bromic acid produced in the reaction system may increase, and if it is less than 0 ° C., it may freeze.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

[安定化次亜臭素酸組成物の調製]
窒素雰囲気下で、液体臭素:16.9重量%(wt%)、スルファミン酸:10.7重量%、水酸化ナトリウム:12.9重量%、水酸化カリウム:3.94重量%、水:残分を混合して、安定化次亜臭素酸組成物を調製した。安定化次亜臭素酸組成物のpHは14、全塩素濃度は7.5重量%であった。安定化次亜臭素酸組成物の詳細な調製方法は以下の通りである。
[Preparation of stabilized hypobromous acid composition]
Liquid bromine: 16.9% by weight (wt%), sulfamic acid: 10.7% by weight, sodium hydroxide: 12.9% by weight, potassium hydroxide: 3.94% by weight, water: residue under a nitrogen atmosphere. The minutes were mixed to prepare a stabilized hypobromous acid composition. The pH of the stabilized hypobromous acid composition was 14, and the total chlorine concentration was 7.5% by weight. The detailed preparation method of the stabilized hypobromous acid composition is as follows.

反応容器内の酸素濃度が1%に維持されるように、窒素ガスの流量をマスフローコントローラでコントロールしながら連続注入で封入した2Lの4つ口フラスコに1436gの水、361gの水酸化ナトリウムを加えて混合し、次いで300gのスルファミン酸を加えて混合した後、反応液の温度が0〜15℃になるように冷却を維持しながら、473gの液体臭素を加え、さらに48%水酸化カリウム溶液230gを加え、組成物全体の量に対する重量比でスルファミン酸10.7%、臭素16.9%、臭素の当量に対するスルファミン酸の当量比が1.04である、目的の安定化次亜臭素酸組成物を得た。生じた溶液のpHは、ガラス電極法にて測定したところ、14であった。生じた溶液の臭素含有率は、臭素をヨウ化カリウムによりヨウ素に転換後、チオ硫酸ナトリウムを用いて酸化還元滴定する方法により測定したところ16.9%であり、理論含有率(16.9%)の100.0%であった。また、臭素反応の際の反応容器内の酸素濃度は、株式会社ジコー製の「酸素モニタJKO−02 LJDII」を用いて測定した。なお、臭素酸濃度は5mg/kg未満であった。 1436 g of water and 361 g of sodium hydroxide were added to a 2 L 4-port flask sealed by continuous injection while controlling the flow rate of nitrogen gas with a mass flow controller so that the oxygen concentration in the reaction vessel was maintained at 1%. After mixing, 300 g of sulfamic acid was added and mixed, and then 473 g of liquid bromine was added while maintaining cooling so that the temperature of the reaction solution became 0 to 15 ° C., and 230 g of 48% potassium hydroxide solution was further added. The desired stabilized hypobromous acid composition is 10.7% sulfamic acid, 16.9% bromine, and the equivalent ratio of sulfamic acid to the equivalent of bromine is 1.04 as a weight ratio to the total amount of the composition. I got something. The pH of the resulting solution was 14 as measured by the glass electrode method. The bromine content of the resulting solution was 16.9% as measured by a method of converting bromine to iodine with potassium iodide and then redox titrating with sodium thiosulfate, and the theoretical content (16.9%). ) Was 100.0%. The oxygen concentration in the reaction vessel during the bromine reaction was measured using "Oxygen Monitor JKO-02 LJDII" manufactured by Jiko Co., Ltd. The bromic acid concentration was less than 5 mg / kg.

なお、pHの測定は、以下の条件で行った。
電極タイプ:ガラス電極式
pH測定計:東亜ディーケーケー社製、IOL−30型
電極の校正:関東化学社製中性リン酸塩pH(6.86)標準液(第2種)、同社製ホウ酸塩pH(9.18)標準液(第2種)の2点校正で行った
測定温度:25℃
測定値:測定液に電極を浸漬し、安定後の値を測定値とし、3回測定の平均値
The pH was measured under the following conditions.
Electrode type: Glass electrode type pH meter: DKK-TOA Corporation, IOL-30 type Electrode calibration: Kanto Chemical Co., Inc. Neutral phosphate pH (6.86) standard solution (Type 2), Borate manufactured by Kanto Chemical Co., Inc. Measurement temperature performed by two-point calibration of salt pH (9.18) standard solution (type 2): 25 ° C.
Measured value: The electrode is immersed in the measuring solution, and the value after stabilization is used as the measured value, which is the average value of three measurements.

<実施例1〜3、比較例1,2>
[殺菌力の比較試験]
逆浸透膜用スライム抑制剤として「臭素とスルファミン酸化合物との反応生成物」である安定化次亜臭素酸組成物を使用して、下記の通りに濃縮水中の全塩素濃度で管理した結果を比較した。
<Examples 1 to 3 and Comparative Examples 1 and 2>
[Comparative test of bactericidal power]
Using a stabilized hypobromous acid composition, which is a "reaction product of bromine and a sulfamic acid compound", as a slime inhibitor for reverse osmosis membranes, the results of controlling the total chlorine concentration in concentrated water as shown below are shown. Compared.

(試験条件)
・試験装置:エレメント試験装置
・逆浸透膜:LF10(日東電工製)
・運転圧力:0.75MPa
・被処理水:相模原井水(pH7.2、導電率240μS/cm)
・薬剤:安定化次亜臭素酸組成物
・試験温度:25℃
(Test condition)
・ Test equipment: Element test equipment ・ Reverse osmosis membrane: LF10 (manufactured by Nitto Denko)
・ Operating pressure: 0.75 MPa
-Water to be treated: Sagamihara well water (pH 7.2, conductivity 240 μS / cm)
-Drug: Stabilized hypobromous acid composition-Test temperature: 25 ° C

全塩素濃度は、HACH社の多項目水質分析計DR/4000を用いて、全塩素測定法(DPD(ジエチル−p−フェニレンジアミン)法)により測定した値(mg/L asCl)である。 The total chlorine concentration is a value (mg / LasCl 2 ) measured by a total chlorine measurement method (DPD (diethyl-p-phenylenediamine) method) using a multi-item water quality analyzer DR / 4000 manufactured by HACH.

菌数(一般細菌数)は、菌数測定キット(三愛石油製、バイオチェッカーTTC)を使用して測定した。酸化還元電位(ORP)は、酸化還元電位測定装置(東亜DKK製、RM−20P型ORP計)を使用して測定した。 The number of bacteria (general number of bacteria) was measured using a bacterial count measurement kit (manufactured by San-Ai Oil, Biochecker TTC). The redox potential (ORP) was measured using an oxidation-reduction potential measuring device (RM-20P type ORP meter manufactured by Toa DKK).

導電率は、電気伝導率計(東亜ディーケーケー社製、AOL−10)により測定した。導電率阻止率の変化率は、以下の式により計算した。
(0時間後導電率阻止率[%])÷(100時間後導電率阻止率[%])×100
The conductivity was measured with an electric conductivity meter (AOL-10, manufactured by DKK-TOA CORPORATION). The rate of change in the conductivity blocking rate was calculated by the following formula.
(Conductivity blocking rate after 0 hours [%]) ÷ (Conductivity blocking rate after 100 hours [%]) x 100

評価結果を表1に示す。 The evaluation results are shown in Table 1.

Figure 0006837301
Figure 0006837301

(比較例1)
比較例1は、濃縮水中の全塩素濃度を0.03mg/L以下に維持して通水した例である。24時間通水後、濃縮水中の菌数はほとんど減少しないことがわかった。また、酸化還元電位(ORP)が200mV以下のため、100時間通水後、導電率阻止率がほとんど低下しないことがわかった。
(Comparative Example 1)
Comparative Example 1 is an example in which the total chlorine concentration in the concentrated water was maintained at 0.03 mg / L or less and water was passed. After 24 hours of water flow, it was found that the number of bacteria in the concentrated water hardly decreased. Further, it was found that since the redox potential (ORP) was 200 mV or less, the conductivity blocking rate hardly decreased after 100 hours of water flow.

(比較例2)
比較例2は、濃縮水中の全塩素濃度を10mg/Lで通水した例である。24時間通水後、濃縮水中の菌数は減少したが、酸化還元電位(ORP)が700mVを超えたため、膜劣化により100時間通水後、導電率阻止率が低下したことがわかった。
(Comparative Example 2)
Comparative Example 2 is an example in which the total chlorine concentration in the concentrated water was passed at 10 mg / L. After 24 hours of water flow, the number of bacteria in the concentrated water decreased, but since the redox potential (ORP) exceeded 700 mV, it was found that the conductivity inhibition rate decreased after 100 hours of water flow due to membrane deterioration.

(実施例1〜3)
実施例1〜3は、濃縮水中の全塩素濃度をそれぞれ0.1、1.0、5mg/Lで通水した例である。24時間通水後、濃縮水中菌数は減少し、ORPが200mVを超え、700mV以下になったため、100時間通水後、導電率阻止率がほとんど低下しないことがわかった。
(Examples 1 to 3)
Examples 1 to 3 are examples in which the total chlorine concentration in the concentrated water was 0.1, 1.0, and 5 mg / L, respectively. After 24 hours of water flow, the number of bacteria in the concentrated water decreased, and the ORP exceeded 200 mV and became 700 mV or less. Therefore, it was found that the conductivity blocking rate hardly decreased after 100 hours of water flow.

<実施例4〜6、比較例3>
[汚染した膜への効果検証試験]
次に、逆浸透膜用スライム抑制剤として「臭素とスルファミン酸化合物との反応生成物」である安定化次亜臭素酸組成物を使用して、汚染した膜への効果検証を試験した。
<Examples 4 to 6, Comparative Example 3>
[Effect verification test on contaminated membrane]
Next, a stabilized hypobromous acid composition, which is a “reaction product of bromine and a sulfamic acid compound”, was used as a slime inhibitor for reverse osmosis membranes, and verification of its effect on contaminated membranes was tested.

(試験条件)
・試験装置:現場実運用装置
・逆浸透膜:RE4040−FEN(東レ製)
・水:工水+回収水
・薬剤:安定化次亜臭素酸組成物
(Test condition)
・ Test equipment: On-site actual operation equipment ・ Reverse osmosis membrane: RE4040-FEN (manufactured by Toray Industries, Inc.)
・ Water: Reclaimed water + Recovered water ・ Chemicals: Stabilized hypobromous acid composition

全塩素濃度は、実施例1と同様にして測定した。菌数(一般細菌数)は、3M製、ペトリフィルムACプレートを使用して測定した。 The total chlorine concentration was measured in the same manner as in Example 1. The number of bacteria (general number of bacteria) was measured using a Petrifilm AC plate manufactured by 3M.

評価結果を表2に示す。 The evaluation results are shown in Table 2.

Figure 0006837301
Figure 0006837301

(比較例3)
比較例3は、汚染した逆浸透膜に安定化次亜臭素酸組成物を供給し、通水した例である。被処理水中の全塩素濃度が0.07mg/Lの場合、汚染した逆浸透膜に通水することにより、濃縮水中の全塩素濃度が0.04mg/Lとなった。濃縮水中の菌数は380CFU/mLとなった。被処理水中の全塩素濃度が0.05mg/L以上であっても、濃縮水中の全塩素濃度が0.05mg/L未満となり、スライムが抑制できず、被処理水の全塩素濃度管理だけでは不十分であることがわかる。
(Comparative Example 3)
Comparative Example 3 is an example in which a stabilized hypobromous acid composition was supplied to a contaminated reverse osmosis membrane and water was passed through the membrane. When the total chlorine concentration in the water to be treated was 0.07 mg / L, the total chlorine concentration in the concentrated water became 0.04 mg / L by passing water through the contaminated reverse osmosis membrane. The number of bacteria in the concentrated water was 380 CFU / mL. Even if the total chlorine concentration in the water to be treated is 0.05 mg / L or more, the total chlorine concentration in the concentrated water is less than 0.05 mg / L, slime cannot be suppressed, and only the total chlorine concentration control of the water to be treated is sufficient. It turns out to be inadequate.

(実施例4,5)
実施例4,5は、汚染した逆浸透膜に安定化次亜臭素酸組成物を供給し、通水した例である。被処理水中の全塩素濃度がそれぞれ0.21、0.28mg/Lの場合、汚染した逆浸透膜に通水することにより、濃縮水中の全塩素濃度がそれぞれ0.05、0.12mg/Lとなった。濃縮水中の菌数はそれぞれ151、68CFU/mLとなり、比較例3と比べて濃縮水中の菌数が減少したことがわかった。
(Examples 4 and 5)
Examples 4 and 5 are examples in which the stabilized hypobromous acid composition was supplied to the contaminated reverse osmosis membrane and water was passed through the contaminated reverse osmosis membrane. When the total chlorine concentration in the water to be treated is 0.21 and 0.28 mg / L, respectively, the total chlorine concentration in the concentrated water is 0.05 and 0.12 mg / L, respectively, by passing water through the contaminated reverse osmosis membrane. It became. The numbers of bacteria in the concentrated water were 151 and 68 CFU / mL, respectively, and it was found that the number of bacteria in the concentrated water was reduced as compared with Comparative Example 3.

(実施例6)
実施例6は、汚染していない逆浸透膜に安定化次亜臭素酸組成物を供給し、通水した例である。被処理水中の全塩素濃度が0.22mg/Lの場合、濃縮水中の全塩素濃度が0.2mg/Lとなった。濃縮水中の菌数は56CFU/mLとなり、比較例3および実施例4〜5と比べて濃縮水中の菌数が減少したことがわかった。
(Example 6)
Example 6 is an example in which a stabilized hypobromous acid composition is supplied to an uncontaminated reverse osmosis membrane and water is passed through the membrane. When the total chlorine concentration in the water to be treated was 0.22 mg / L, the total chlorine concentration in the concentrated water was 0.2 mg / L. The number of bacteria in the concentrated water was 56 CFU / mL, and it was found that the number of bacteria in the concentrated water was reduced as compared with Comparative Example 3 and Examples 4 to 5.

このように、実施例の方法により、逆浸透膜のスライム抑制効果を有し、かつ逆浸透膜の酸化劣化を抑制することができた。実施例の方法により、逆浸透膜のスライム抑制効果を長期的に維持することができる。 As described above, according to the method of the example, it was possible to have the slime suppressing effect of the reverse osmosis membrane and suppress the oxidative deterioration of the reverse osmosis membrane. By the method of the example, the slime suppressing effect of the reverse osmosis membrane can be maintained for a long period of time.

1,3 逆浸透膜処理システム、10 被処理水槽、12 逆浸透膜処理装置、14 ポンプ、16 全塩素濃度測定装置、18 被処理水配管、20 被処理水供給配管、22 透過水配管、24 濃縮水配管、26 添加配管、28 濃縮水循環配管。 1,3 Reverse osmosis membrane treatment system, 10 Reverse osmosis membrane treatment equipment, 12 Reverse osmosis membrane treatment equipment, 14 pumps, 16 Total chlorine concentration measuring equipment, 18 Treatment water pipes, 20 Water treatment water supply pipes, 22 Permeated water pipes, 24 Concentrated water piping, 26 additive piping, 28 concentrated water circulation piping.

Claims (4)

逆浸透膜に被処理水を通水して処理水および濃縮水を得る逆浸透膜処理方法であって、
前記濃縮水の全塩素濃度を測定し、前記濃縮水中の全塩素濃度が0.1mg/L以上5.0mg/L以下の範囲となるように、前記被処理水に臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を存在させることを特徴とする逆浸透膜処理方法。
A reverse osmosis membrane treatment method in which treated water is passed through a reverse osmosis membrane to obtain treated water and concentrated water.
The total chlorine concentration of the concentrated water is measured, and a bromine-based oxidizing agent is added to the water to be treated so that the total chlorine concentration of the concentrated water is in the range of 0.1 mg / L or more and 5.0 mg / L or less. A method for treating a reverse osmosis membrane, which comprises the presence of a stabilized hypobromous acid composition containing a sulfamic acid compound.
逆浸透膜に被処理水を通水して処理水および濃縮水を得る逆浸透膜処理方法であって、
前記濃縮水の全塩素濃度を測定し、前記濃縮水中の全塩素濃度が0.1mg/L以上5.0mg/L以下の範囲となるように、前記被処理水に臭素とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を存在させることを特徴とする逆浸透膜処理方法。
A reverse osmosis membrane treatment method in which treated water is passed through a reverse osmosis membrane to obtain treated water and concentrated water.
The total chlorine concentration of the concentrated water is measured, and bromine and a sulfamic acid compound are added to the water to be treated so that the total chlorine concentration of the concentrated water is in the range of 0.1 mg / L or more and 5.0 mg / L or less. A method for treating a reverse osmosis membrane, which comprises the presence of a stabilized hypobromous acid composition containing and.
逆浸透膜に被処理水を通水して処理水および濃縮水を得る逆浸透膜処理システムであって、
逆浸透膜を有する逆浸透膜処理装置と;
前記濃縮水中の全塩素濃度が0.1mg/L以上5.0mg/L以下の範囲となるように、前記被処理水に臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を添加する添加手段と;
記濃縮水の全塩素濃度を測定する全塩素濃度測定手段と;
を備えることを特徴とする逆浸透膜処理システム。
A reverse osmosis membrane treatment system that obtains treated water and concentrated water by passing water to be treated through the reverse osmosis membrane.
With a reverse osmosis membrane treatment device having a reverse osmosis membrane;
Stabilized hypobromous acid containing a bromine-based oxidizing agent and a sulfamic acid compound in the water to be treated so that the total chlorine concentration in the concentrated water is in the range of 0.1 mg / L or more and 5.0 mg / L or less. With the addition means for adding the acid composition;
And the total chlorine concentration measuring means for measuring the total chlorine concentration before Symbol concentrate;
A reverse osmosis membrane treatment system characterized by comprising.
逆浸透膜に被処理水を通水して処理水および濃縮水を得る逆浸透膜処理システムであって、
逆浸透膜を有する逆浸透膜処理装置と;
前記濃縮水中の全塩素濃度が0.1mg/L以上5.0mg/L以下の範囲となるように、前記被処理水に臭素とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を添加する添加手段と;
記濃縮水の全塩素濃度を測定する全塩素濃度測定手段と;
を備えることを特徴とする逆浸透膜処理システム。
A reverse osmosis membrane treatment system that obtains treated water and concentrated water by passing water to be treated through the reverse osmosis membrane.
With a reverse osmosis membrane treatment device having a reverse osmosis membrane;
A stabilized hypobromous acid composition containing bromine and a sulfamic acid compound in the water to be treated so that the total chlorine concentration in the concentrated water is in the range of 0.1 mg / L or more and 5.0 mg / L or less. With the addition means to add
And the total chlorine concentration measuring means for measuring the total chlorine concentration before Symbol concentrate;
A reverse osmosis membrane treatment system characterized by comprising.
JP2016145247A 2016-07-25 2016-07-25 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system Active JP6837301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016145247A JP6837301B2 (en) 2016-07-25 2016-07-25 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016145247A JP6837301B2 (en) 2016-07-25 2016-07-25 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system

Publications (2)

Publication Number Publication Date
JP2018015679A JP2018015679A (en) 2018-02-01
JP6837301B2 true JP6837301B2 (en) 2021-03-03

Family

ID=61075526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016145247A Active JP6837301B2 (en) 2016-07-25 2016-07-25 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system

Country Status (1)

Country Link
JP (1) JP6837301B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7127464B2 (en) * 2018-10-03 2022-08-30 三浦工業株式会社 water treatment system
JP6706702B1 (en) * 2019-03-07 2020-06-10 オルガノ株式会社 Water treatment method and water treatment apparatus using reverse osmosis membrane
JP7471143B2 (en) 2020-05-20 2024-04-19 オルガノ株式会社 Water treatment method and water treatment device
JPWO2023149310A1 (en) * 2022-02-01 2023-08-10

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6401491B2 (en) * 2013-08-28 2018-10-10 オルガノ株式会社 Method for inhibiting slime of separation membrane, slime inhibitor composition for reverse osmosis membrane or nanofiltration membrane, and method for producing slime inhibitor composition for separation membrane
SG11201609169UA (en) * 2014-05-08 2016-12-29 Organo Corp Filtration treatment system and filtration treatment method

Also Published As

Publication number Publication date
JP2018015679A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
KR102061679B1 (en) Slime inhibition method for separation membrane
JP6533056B2 (en) Filtration treatment system and filtration treatment method
KR101966569B1 (en) Method for controlling slime on separation membrane
JP6534524B2 (en) Filtration treatment system and filtration treatment method
JP6807219B2 (en) Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method
JP6837301B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JPWO2016175006A1 (en) Ammonia nitrogen-containing wastewater treatment method and ammonia nitrogen decomposing agent
JP7013141B2 (en) Water treatment method using reverse osmosis membrane
KR102291224B1 (en) Water treatment method and water treatment device using reverse osmosis membrane
JP6970516B2 (en) Water treatment method using reverse osmosis membrane
JP2016155071A (en) Sterilization method for separation membrane
JP6779706B2 (en) Water treatment method using reverse osmosis membrane
JP2016120486A (en) Method for inhibiting slime in separation membrane
JP6682401B2 (en) Water treatment method using reverse osmosis membrane
JP2018008182A (en) Water treatment method using reverse osmosis membrane, and agent for improving blocking rate of silica in reverse osmosis membrane
JP7008470B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP7144922B2 (en) Reverse osmosis membrane operation method and reverse osmosis membrane device
JP6974936B2 (en) Water treatment method using reverse osmosis membrane
JP2020131134A (en) Slime inhibition agent for separation membrane, manufacturing method of slime inhibition agent for separation membrane, and slime inhibition method of separation membrane
JP7050414B2 (en) Water treatment method using reverse osmosis membrane
JP6823401B2 (en) Method for treating water containing low molecular weight organic substances and method for modifying reverse osmosis membranes
WO2020179789A1 (en) Water treatment method and water treatment device using reverse osmosis membrane
JP7471143B2 (en) Water treatment method and water treatment device
JP6933902B2 (en) Method for modifying reverse osmosis membrane and method for treating uncharged substance-containing water
JP2023183541A (en) Sterilization method of ion exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210209

R150 Certificate of patent or registration of utility model

Ref document number: 6837301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250