JP7471143B2 - Water treatment method and water treatment device - Google Patents

Water treatment method and water treatment device Download PDF

Info

Publication number
JP7471143B2
JP7471143B2 JP2020088295A JP2020088295A JP7471143B2 JP 7471143 B2 JP7471143 B2 JP 7471143B2 JP 2020088295 A JP2020088295 A JP 2020088295A JP 2020088295 A JP2020088295 A JP 2020088295A JP 7471143 B2 JP7471143 B2 JP 7471143B2
Authority
JP
Japan
Prior art keywords
water
treated
chemical
concentration
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020088295A
Other languages
Japanese (ja)
Other versions
JP2021181074A (en
Inventor
浩 吉川
美弥 福田
淳 宇田川
雄大 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2020088295A priority Critical patent/JP7471143B2/en
Publication of JP2021181074A publication Critical patent/JP2021181074A/en
Application granted granted Critical
Publication of JP7471143B2 publication Critical patent/JP7471143B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、分離膜を用いる水処理方法および水処理装置に関する。 The present invention relates to a water treatment method and a water treatment device that use a separation membrane.

逆浸透膜等の分離膜の運転において、バイオファウリングの抑制は大きな課題である。バイオファウリングの抑制には、殺菌剤の添加が有効である。ただし、殺菌剤の必要十分量を正確に把握することは困難であり、バイオファウリングを確実に抑制するためには、過剰に殺菌剤を添加しているのが一般的である。 Suppressing biofouling is a major issue when operating separation membranes such as reverse osmosis membranes. Adding a disinfectant is effective in suppressing biofouling. However, it is difficult to accurately determine the necessary and sufficient amount of disinfectant, and in order to reliably suppress biofouling, it is common to add an excessive amount of disinfectant.

分離膜のバイオファウリング抑制に必要な殺菌剤を過不足なく添加し、過剰な殺菌剤の添加を抑制するために、濃縮水中の残留有効成分濃度が所定値を保つように殺菌剤の添加量を調整することが行われている。 The amount of bactericide added is adjusted so that the concentration of residual active ingredients in the concentrated water remains at a specified value, in order to add just the right amount of bactericide necessary to suppress biofouling of the separation membrane and prevent the addition of excessive bactericide.

例えば、特許文献1には、逆浸透膜の濃縮水中の全塩素濃度が0.05mg/L以上10mg/L未満の範囲となるように、殺菌剤として安定化次亜臭素酸組成物を存在させることが提案されている。 For example, Patent Document 1 proposes the use of a stabilized hypobromous acid composition as a disinfectant so that the total chlorine concentration in the concentrated water from the reverse osmosis membrane is in the range of 0.05 mg/L or more and less than 10 mg/L.

しかし、濃縮水中の残留有効成分濃度のみを観察していても、分離膜面でのバイオファウリングの増減を正しく検知することができず、適正な殺菌剤の添加量の調整を行うことができない場合がある。つまり、濃縮水の残留有効成分濃度が同じであったとしても、分離膜面のバイオファウリング状態が異なる場合がある。 However, even if you only observe the concentration of residual active ingredients in the concentrated water, it may not be possible to correctly detect an increase or decrease in biofouling on the separation membrane surface, and it may not be possible to adjust the amount of bactericide added appropriately. In other words, even if the concentration of residual active ingredients in the concentrated water is the same, the state of biofouling on the separation membrane surface may differ.

特開2018-015679号公報JP 2018-015679 A

本発明の目的は、分離膜を用いる水処理において、分離膜のバイオファウリングを効率的に抑制することができる水処理方法および水処理装置を提供することにある。 The object of the present invention is to provide a water treatment method and water treatment device that can efficiently suppress biofouling of a separation membrane in water treatment using a separation membrane.

本発明は、薬剤が添加された被処理水について分離膜処理を行い透過水と濃縮水とを得る分離膜処理工程において、「濃縮水中における薬剤濃度/被処理水中の薬剤濃度」が所定値以上になるように、前記分離膜処理の前段において前記薬剤を前記被処理水に添加し、前記被処理水の流量をFf、前記濃縮水の流量をFc、前記透過水の流量をFp、前記被処理水中の前記薬剤の濃度をCf、前記濃縮水中の前記薬剤の濃度をCc、前記透過水中の前記薬剤の濃度をCpとしたときに、下記式で表される有効成分残留率Rが0.4以上である、水処理方法である。
R=Cc/Cct
ここで、Cct=(Cf×Ff-Cp×Fp)/Fc
The present invention is a water treatment method in which a separation membrane treatment is performed on water to be treated to which a chemical has been added to obtain permeate and concentrated water, in which the chemical is added to the water to be treated in a stage prior to the separation membrane treatment so that "chemical concentration in concentrated water/chemical concentration in water to be treated" is a predetermined value or more, and the active ingredient residual rate R represented by the following formula is 0.4 or more when the flow rate of the water to be treated is Ff, the flow rate of the concentrated water is Fc, the flow rate of the permeated water is Fp, the concentration of the chemical in the water to be treated is Cf, the concentration of the chemical in the concentrated water is Cc, and the concentration of the chemical in the permeated water is Cp .
R = Cc/Cct
Here, Cct = (Cf x Ff - Cp x Fp) / Fc

前記水処理方法において、前記薬剤が、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を含有することが好ましい。 In the water treatment method, it is preferable that the agent contains a stabilized hypobromous acid composition that includes a bromine-based oxidizing agent and a sulfamic acid compound.

本発明は、薬剤が添加された被処理水について分離膜処理を行い透過水と濃縮水とを得る分離膜処理手段と、「濃縮水中における薬剤濃度/被処理水中の薬剤濃度」が所定値以上になるように、前記分離膜処理の前段において前記薬剤を前記被処理水に添加するよう制御する制御手段と、を備え、前記制御手段は、前記被処理水の流量をFf、前記濃縮水の流量をFc、前記透過水の流量をFp、前記被処理水中の前記薬剤の濃度をCf、前記濃縮水中の前記薬剤の濃度をCc、前記透過水中の前記薬剤の濃度をCpとしたときに、下記式で表される有効成分残留率Rが0.4以上となるように、前記分離膜処理の前段において前記薬剤を前記被処理水に添加するよう制御する、水処理装置である。
R=Cc/Cct
ここで、Cct=(Cf×Ff-Cp×Fp)/Fc
The present invention is a water treatment device that includes a separation membrane treatment means for performing a separation membrane treatment on the water to be treated to which a chemical has been added, to obtain a permeate and a concentrated water, and a control means for controlling the addition of the chemical to the water to be treated in the upstream of the separation membrane treatment so that "chemical concentration in the concentrated water/chemical concentration in the water to be treated" is a predetermined value or more, and the control means controls the addition of the chemical to the water to be treated in the upstream of the separation membrane treatment so that the active ingredient residual rate R represented by the following formula is 0.4 or more, where Ff is the flow rate of the water to be treated, Fc is the flow rate of the concentrated water, Fp is the flow rate of the permeated water, Cf is the concentration of the chemical in the water to be treated, Cc is the concentration of the chemical in the concentrated water, and Cp is the concentration of the chemical in the permeated water .
R = Cc/Cct
Here, Cct = (Cf x Ff - Cp x Fp) / Fc

前記水処理装置において、前記薬剤が、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を含有することが好ましい。 In the water treatment device, it is preferable that the chemical agent contains a stabilized hypobromous acid composition that includes a bromine-based oxidizing agent and a sulfamic acid compound.

本発明によって、分離膜を用いる水処理において、分離膜のバイオファウリングを効率的に抑制することができる水処理方法および水処理装置を提供することができる。 The present invention provides a water treatment method and water treatment device that can efficiently suppress biofouling of a separation membrane in water treatment using a separation membrane.

本発明の実施形態に係る水処理装置の一例を示す概略構成図である。1 is a schematic configuration diagram illustrating an example of a water treatment device according to an embodiment of the present invention. 本発明の実施形態に係る水処理装置の他の例を示す概略構成図である。FIG. 4 is a schematic configuration diagram showing another example of a water treatment device according to an embodiment of the present invention.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 The following describes an embodiment of the present invention. This embodiment is an example of implementing the present invention, and the present invention is not limited to this embodiment.

本発明の実施形態に係る水処理装置の一例の概略を図1に示し、その構成について説明する。 An example of a water treatment device according to an embodiment of the present invention is outlined in FIG. 1, and its configuration will be described.

水処理装置1は、薬剤が添加された被処理水について分離膜処理を行い透過水と濃縮水とを得る分離膜処理手段として、分離膜処理装置12と、分離膜処理装置12の前段において薬剤の被処理水への添加を制御する制御手段として、制御装置32と、を備える。水処理装置1は、被処理水を貯留するための被処理水槽10を備えてもよい。 The water treatment device 1 includes a separation membrane treatment device 12 as a separation membrane treatment means for performing separation membrane treatment on the water to be treated to which a chemical has been added to obtain permeate water and concentrated water, and a control device 32 as a control means for controlling the addition of the chemical to the water to be treated upstream of the separation membrane treatment device 12. The water treatment device 1 may also include a water tank 10 for storing the water to be treated.

図1の水処理装置1において、被処理水槽10の被処理水入口には、被処理水配管22が接続されている。被処理水槽10の被処理水出口と、分離膜処理装置12の入口とは、ポンプ14を介して被処理水配管24により接続されている。分離膜処理装置12の透過水出口には、透過水配管26が接続され、濃縮水出口には、濃縮水配管28が接続されている。被処理水槽10の薬剤入口には、薬剤添加配管30が接続されている。被処理水配管24におけるポンプ14の上流側には、被処理水中の薬剤濃度を測定する被処理水薬剤濃度測定手段として、被処理水薬剤濃度測定装置16が設置されている。透過水配管26には、透過水中の薬剤濃度を測定する透過水薬剤濃度測定手段として、透過水薬剤濃度測定装置18が設置されている。濃縮水配管28には、濃縮水中の薬剤濃度を測定する濃縮水薬剤濃度測定手段として、濃縮水薬剤濃度測定装置20が設置されている。制御装置32は、被処理水薬剤濃度測定装置16、透過水薬剤濃度測定装置18、濃縮水薬剤濃度測定装置20、薬剤添加配管30に設置された薬剤の添加量を調整する薬剤添加量調整手段(図示せず)と、それぞれ電気的接続等により接続されている。 In the water treatment device 1 of FIG. 1, a treated water pipe 22 is connected to the treated water inlet of the treated water tank 10. The treated water outlet of the treated water tank 10 and the inlet of the separation membrane treatment device 12 are connected by a treated water pipe 24 via a pump 14. A permeated water pipe 26 is connected to the permeated water outlet of the separation membrane treatment device 12, and a concentrated water pipe 28 is connected to the concentrated water outlet. A chemical addition pipe 30 is connected to the chemical inlet of the treated water tank 10. A treated water chemical concentration measuring device 16 is installed upstream of the pump 14 in the treated water pipe 24 as a treated water chemical concentration measuring means for measuring the chemical concentration in the treated water. A permeated water chemical concentration measuring device 18 is installed in the permeated water pipe 26 as a permeated water chemical concentration measuring means for measuring the chemical concentration in the permeated water. A concentrated water chemical concentration measuring device 20 is installed in the concentrated water pipe 28 as a concentrated water chemical concentration measuring means for measuring the chemical concentration in the concentrated water. The control device 32 is electrically connected to the treated water drug concentration measuring device 16, the permeate water drug concentration measuring device 18, the concentrated water drug concentration measuring device 20, and a drug addition amount adjustment means (not shown) that adjusts the amount of drug added installed in the drug addition piping 30.

本実施形態に係る水処理方法および水処理装置1の動作について説明する。 The water treatment method and operation of the water treatment device 1 according to this embodiment will be described.

被処理水は、被処理水配管22を通して必要に応じて被処理水槽10へ貯留される。被処理水槽10において、被処理水へ薬剤添加配管30を通して、薬剤が添加される(薬剤添加工程)。 The water to be treated is stored in the water tank 10 as needed through the water pipe 22. In the water tank 10, chemicals are added to the water to be treated through the chemical addition pipe 30 (chemical addition process).

薬剤は分離膜処理装置12の前段において添加されればよく、被処理水配管22において添加されてもよいし、被処理水配管24において添加されてもよい。 The chemicals may be added upstream of the separation membrane treatment device 12, and may be added in the treated water pipe 22 or in the treated water pipe 24.

薬剤が添加された被処理水は、ポンプ14により被処理水配管24を通して分離膜処理装置12へ送液される。分離膜処理装置12において、薬剤が添加された被処理水について分離膜処理が行われ、透過水と濃縮水とが得られる(分離膜処理工程)。透過水は、透過水配管26を通して排出され、濃縮水は、濃縮水配管28を通して排出される。 The water to be treated with the chemicals added is pumped by pump 14 through water to be treated pipe 24 to separation membrane treatment device 12. In separation membrane treatment device 12, separation membrane treatment is performed on the water to be treated with the chemicals added, and permeated water and concentrated water are obtained (separation membrane treatment process). The permeated water is discharged through permeated water pipe 26, and the concentrated water is discharged through concentrated water pipe 28.

図2に示す水処理装置3のように、濃縮水配管28が分離膜処理装置12の前段、例えば、被処理水槽10に接続されて、濃縮水は、濃縮水配管28を通して、分離膜処理装置12の前段、例えば、被処理水槽10へ返送されてもよい(返送工程)。 As in the water treatment device 3 shown in FIG. 2, the concentrated water pipe 28 may be connected to the upstream stage of the separation membrane treatment device 12, for example, the water tank 10 to be treated, and the concentrated water may be returned through the concentrated water pipe 28 to the upstream stage of the separation membrane treatment device 12, for example, the water tank 10 to be treated (return process).

本発明者らは、分離膜処理の前段で薬剤を添加する水処理において、分離膜処理の分離膜面のバイオファウリングの増減を検知するには、分離膜を通過する間に薬剤の有効成分がどれだけ消費されたかを把握または検知し、その消費量を所定値以下に低減するように、薬剤を添加する、または薬剤の添加量を調整することが、バイオファウリングの抑制に効率的であるということを見出した。例えば、分離膜の前段において被処理水に添加する薬剤を、分離膜の通過する間の薬剤の消費度合に応じて、所定値以上に薬剤が残留するように添加制御することによって、必要最低限の薬剤添加量で、分離膜のバイオファウリングを効率的に抑制することができる。 The inventors have found that in water treatment in which a chemical is added before the separation membrane treatment, in order to detect an increase or decrease in biofouling on the separation membrane surface in the separation membrane treatment, it is effective to grasp or detect how much of the active ingredient of the chemical is consumed while passing through the separation membrane, and to add the chemical or adjust the amount of chemical added so as to reduce the consumption amount to a predetermined value or less. For example, by controlling the addition of the chemical added to the treated water before the separation membrane so that the chemical remains at a predetermined value or more according to the degree of consumption of the chemical while passing through the separation membrane, biofouling on the separation membrane can be efficiently suppressed with the minimum amount of chemical added.

例えば、本実施形態に係る水処理方法および水処理装置1では、分離膜処理工程において、「濃縮水中における薬剤濃度/被処理水中の薬剤濃度」が所定値以上になるように、分離膜処理の前段において薬剤を被処理水に添加する。 For example, in the water treatment method and water treatment device 1 according to this embodiment, in the separation membrane treatment process, a chemical is added to the water to be treated prior to the separation membrane treatment so that the "chemical concentration in the concentrated water/chemical concentration in the water to be treated" is equal to or greater than a predetermined value.

また、例えば、本実施形態に係る水処理方法および水処理装置1では、分離膜処理工程において、下記式で表される有効成分残留率Rが所定値以上である。例えば、分離膜処理工程において、下記式で表される有効成分残留率Rが所定値以上となるように、分離膜処理の前段において薬剤を被処理水に添加すればよい。
R=Cc/Cct
ここで、Cct=(Cf×Ff-Cp×Fp)/Fc
Ff:被処理水の流量
Fc:濃縮水の流量
Fp:透過水の流量
Cf:被処理水中の薬剤の濃度
Cc:濃縮水中の薬剤の濃度
Cp:透過水中の薬剤の濃度
In the water treatment method and water treatment device 1 according to the present embodiment, for example, in the separation membrane treatment step, the active ingredient residual rate R represented by the following formula is equal to or greater than a predetermined value. For example, in the separation membrane treatment step, a chemical may be added to the water to be treated in a stage prior to the separation membrane treatment so that the active ingredient residual rate R represented by the following formula is equal to or greater than a predetermined value.
R = Cc/Cct
Here, Cct = (Cf x Ff - Cp x Fp) / Fc
Ff: flow rate of treated water Fc: flow rate of concentrated water Fp: flow rate of permeated water Cf: concentration of chemical in treated water Cc: concentration of chemical in concentrated water Cp: concentration of chemical in permeated water

上記式で表される有効成分残留率Rは、0.4以上であることが好ましく、0.5以上0.9以下の範囲であることがより好ましい。また、上記式で表される有効成分残留率Rが0.4以上となるように、分離膜処理の前段において薬剤を被処理水に添加することが好ましく、有効成分残留率Rが0.5以上0.9以下の範囲となるように、分離膜処理の前段において薬剤を被処理水に添加することがより好ましい。有効成分残留率Rが0.4未満であると、分離膜のバイオファウリングを効率的に抑制することができない場合があり、0.9を超えると、透過水の水質を悪化させる場合がある。また、有効成分残留率Rが常時、所定値以上となるように、分離膜処理の前段において薬剤を被処理水に添加してもよいし、有効成分残留率Rが定期的に所定値以上となるように、分離膜処理の前段において薬剤を被処理水に添加してもよい。ここで、「定期的」とは、0.1時間~200時間間隔のことをいう。有効成分残留率Rは、制御装置32によって自動で制御してもよいし、手動で制御してもよい。 The active ingredient residual rate R expressed by the above formula is preferably 0.4 or more, and more preferably in the range of 0.5 to 0.9. In addition, it is preferable to add a chemical to the water to be treated in the stage before the separation membrane treatment so that the active ingredient residual rate R expressed by the above formula is 0.4 or more, and it is more preferable to add a chemical to the water to be treated in the stage before the separation membrane treatment so that the active ingredient residual rate R is in the range of 0.5 to 0.9. If the active ingredient residual rate R is less than 0.4, biofouling of the separation membrane may not be efficiently suppressed, and if it exceeds 0.9, the water quality of the permeate may be deteriorated. In addition, a chemical may be added to the water to be treated in the stage before the separation membrane treatment so that the active ingredient residual rate R is always a predetermined value or more, or a chemical may be added to the water to be treated in the stage before the separation membrane treatment so that the active ingredient residual rate R is periodically a predetermined value or more. Here, "periodic" means at intervals of 0.1 to 200 hours. The active ingredient residual rate R may be automatically controlled by the control device 32 or may be manually controlled.

<分離膜>
分離膜としては、特に制限はないが、逆浸透膜(RO膜)、ナノろ過膜(NF膜)、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)等が挙げられる。これらのうち、特に分離膜として逆浸透膜(RO膜)を用いる場合に、本発明の実施形態に係る水処理方法を好適に適用することができる。また、逆浸透膜として昨今主流であるポリアミド系高分子膜を用いる場合に、本発明の実施形態に係る水処理方法を好適に適用することができる。
<Separation membrane>
The separation membrane is not particularly limited, but examples thereof include reverse osmosis membranes (RO membranes), nanofiltration membranes (NF membranes), microfiltration membranes (MF membranes), and ultrafiltration membranes (UF membranes). Among these, when a reverse osmosis membrane (RO membrane) is used as the separation membrane, the water treatment method according to the embodiment of the present invention can be suitably applied. Furthermore, when a polyamide-based polymer membrane, which is currently mainstream, is used as the reverse osmosis membrane, the water treatment method according to the embodiment of the present invention can be suitably applied.

<被処理水>
被処理水としては、特に制限はないが、有機物を含む有機物含有水、特に、有機物濃度が高い有機物含有水ではバイオファウリングが起こり易く、その結果、分離膜通過中の薬剤の消費量も多くなるため、本発明の実施形態に係る水処理方法を好適に適用することができる。具体的には有機物含有水のTOC濃度として、0.1mg/L以上が好ましく、1mg/L以上がさらに好ましい。
<Water to be treated>
The water to be treated is not particularly limited, but organic matter-containing water, particularly organic matter-containing water with a high organic matter concentration, is prone to biofouling, which results in a large consumption of chemicals during passage through the separation membrane, and therefore the water treatment method according to the embodiment of the present invention can be suitably applied. Specifically, the TOC concentration of the organic matter-containing water is preferably 0.1 mg/L or more, and more preferably 1 mg/L or more.

被処理水のpHは、例えば、2~12の範囲であり、4~11の範囲であることが好ましい。被処理水のpHの下限は、5.5以上であることが好ましく、6.0以上であることがより好ましく、6.5以上であることがさらに好ましい。被処理水のpHの上限は、9.0以下であることが好ましく、8.0以下であることがより好ましい。 The pH of the water to be treated is, for example, in the range of 2 to 12, and preferably in the range of 4 to 11. The lower limit of the pH of the water to be treated is preferably 5.5 or more, more preferably 6.0 or more, and even more preferably 6.5 or more. The upper limit of the pH of the water to be treated is preferably 9.0 or less, and more preferably 8.0 or less.

<添加する薬剤>
添加を制御する薬剤としては、特に制限はないが、殺菌剤(スライム抑制剤)、分散剤等が挙げられる。
<Additives>
The agent for controlling the addition is not particularly limited, but examples thereof include bactericides (slime inhibitors), dispersants, etc.

その中でも殺菌剤が好適であり、殺菌剤としては、DBNPA(2,2-ジブロモ-3-ニトリロプロピオンアミド)等のハロシアノアセトアミド化合物、イソチアゾロン化合物、ブロノポール(2-ブロモ-2-ニトロプロパン-1,3-ジオール)等の有機臭素系化合物や、酸化剤等が挙げられ、分離膜通過中に有効成分が消費され易い、DBNPA(2,2-ジブロモ-3-ニトリロプロピオンアミド)等のハロシアノアセトアミド化合物や酸化剤が好ましい。 Among these, bactericides are preferred. Examples of bactericides include halocyanoacetamide compounds such as DBNPA (2,2-dibromo-3-nitrilopropionamide), isothiazolone compounds, organic bromine compounds such as bronopol (2-bromo-2-nitropropane-1,3-diol), and oxidizing agents. Halocyanoacetamide compounds such as DBNPA (2,2-dibromo-3-nitrilopropionamide) and oxidizing agents are preferred, as their active ingredients are easily consumed during passage through the separation membrane.

酸化剤としては、次亜塩素酸や次亜臭素酸等の遊離ハロゲン化合物、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む安定化組成物、クロラミン等の結合ハロゲン化合物等が挙げられる。 Examples of oxidizing agents include free halogen compounds such as hypochlorous acid and hypobromous acid, stabilized compositions containing bromine-based or chlorine-based oxidizing agents and sulfamic acid compounds, and combined halogen compounds such as chloramine.

この中でも、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを含む安定化組成物が好適である。 Among these, a stabilized composition containing a bromine-based or chlorine-based oxidizing agent and a sulfamic acid compound is preferred.

「臭素系酸化剤とスルファミン酸化合物とを含む安定化組成物」は、「臭素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜臭素酸組成物であってもよいし、「臭素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜臭素酸組成物であってもよい。「塩素系酸化剤とスルファミン酸化合物とを含む安定化組成物」は、「塩素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜塩素酸組成物であってもよいし、「塩素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜塩素酸組成物であってもよい。 The "stabilized composition containing a bromine-based oxidizing agent and a sulfamic acid compound" may be a stabilized hypobromous acid composition containing a mixture of a "bromine-based oxidizing agent" and a "sulfamic acid compound", or may be a stabilized hypobromous acid composition containing a "reaction product of a bromine-based oxidizing agent and a sulfamic acid compound". The "stabilized composition containing a chlorine-based oxidizing agent and a sulfamic acid compound" may be a stabilized hypochlorous acid composition containing a mixture of a "chlorine-based oxidizing agent" and a "sulfamic acid compound", or may be a stabilized hypochlorous acid composition containing a "reaction product of a chlorine-based oxidizing agent and a sulfamic acid compound".

臭素系酸化剤としては、臭素(液体臭素)、塩化臭素、臭素酸、臭素酸塩、次亜臭素酸等が挙げられる。次亜臭素酸は、臭化ナトリウム等の臭素化合物と次亜塩素酸等の塩素系酸化剤とを反応させて生成させたものであってもよい。臭素系酸化剤が、臭素である場合、塩素系酸化剤が存在しないため、逆浸透膜等の分離膜への劣化影響が著しく低い。 Bromine-based oxidizing agents include bromine (liquid bromine), bromine chloride, bromic acid, bromates, hypobromous acid, etc. Hypobromous acid may be produced by reacting a bromine compound such as sodium bromide with a chlorine-based oxidizing agent such as hypochlorous acid. When the bromine-based oxidizing agent is bromine, there is no chlorine-based oxidizing agent present, and therefore the deterioration effect on separation membranes such as reverse osmosis membranes is significantly reduced.

塩素系酸化剤としては、例えば、塩素ガス、二酸化塩素、次亜塩素酸またはその塩、亜塩素酸またはその塩、塩素酸またはその塩、過塩素酸またはその塩、塩素化イソシアヌル酸またはその塩等が挙げられる。これらのうち、塩としては、例えば、次亜塩素酸ナトリウム、次亜塩素酸カリウム等の次亜塩素酸アルカリ金属塩、次亜塩素酸カルシウム、次亜塩素酸バリウム等の次亜塩素酸アルカリ土類金属塩、亜塩素酸ナトリウム、亜塩素酸カリウム等の亜塩素酸アルカリ金属塩、亜塩素酸バリウム等の亜塩素酸アルカリ土類金属塩、亜塩素酸ニッケル等の他の亜塩素酸金属塩、塩素酸アンモニウム、塩素酸ナトリウム、塩素酸カリウム等の塩素酸アルカリ金属塩、塩素酸カルシウム、塩素酸バリウム等の塩素酸アルカリ土類金属塩等が挙げられる。これらの塩素系酸化剤は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。塩素系酸化剤としては、取り扱い性等の点から、次亜塩素酸ナトリウムを用いるのが好ましい。 Examples of chlorine-based oxidizing agents include chlorine gas, chlorine dioxide, hypochlorous acid or its salts, chlorous acid or its salts, chloric acid or its salts, perchloric acid or its salts, and chlorinated isocyanuric acid or its salts. Among these, examples of salts include alkali metal hypochlorite salts such as sodium hypochlorite and potassium hypochlorite, alkaline earth metal hypochlorite salts such as calcium hypochlorite and barium hypochlorite, alkali metal chlorite salts such as sodium chlorite and potassium chlorite, alkaline earth metal chlorite salts such as barium chlorite, other metal chlorite salts such as nickel chlorite, alkali metal chlorate salts such as ammonium chlorate, sodium chlorate and potassium chlorate, alkaline earth metal chlorate salts such as calcium chlorate and barium chlorate, etc. These chlorine-based oxidizing agents may be used alone or in combination of two or more. As the chlorine-based oxidizing agent, it is preferable to use sodium hypochlorite from the viewpoint of handling and the like.

臭素化合物としては、臭化ナトリウム、臭化カリウム、臭化リチウム、臭化アンモニウムおよび臭化水素酸等が挙げられる。これらのうち、製剤コスト等の点から、臭化ナトリウムが好ましい。 Bromine compounds include sodium bromide, potassium bromide, lithium bromide, ammonium bromide, and hydrobromic acid. Of these, sodium bromide is preferred from the standpoint of formulation costs, etc.

スルファミン酸化合物は、以下の一般式(1)で示される化合物である。
NSOH (1)
(式中、Rは独立して水素原子または炭素数1~8のアルキル基である。)
The sulfamic acid compound is a compound represented by the following general formula (1).
R2NSO3H ( 1 )
(In the formula, R is independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.)

スルファミン酸化合物としては、例えば、2個のR基の両方が水素原子であるスルファミン酸(アミド硫酸)の他に、N-メチルスルファミン酸、N-エチルスルファミン酸、N-プロピルスルファミン酸、N-イソプロピルスルファミン酸、N-ブチルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数1~8のアルキル基であるスルファミン酸化合物、N,N-ジメチルスルファミン酸、N,N-ジエチルスルファミン酸、N,N-ジプロピルスルファミン酸、N,N-ジブチルスルファミン酸、N-メチル-N-エチルスルファミン酸、N-メチル-N-プロピルスルファミン酸等の2個のR基の両方が炭素数1~8のアルキル基であるスルファミン酸化合物、N-フェニルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数6~10のアリール基であるスルファミン酸化合物、またはこれらの塩等が挙げられる。スルファミン酸塩としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩、マンガン塩、銅塩、亜鉛塩、鉄塩、コバルト塩、ニッケル塩等の他の金属塩、アンモニウム塩およびグアニジン塩等が挙げられる。スルファミン酸化合物およびこれらの塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。スルファミン酸化合物としては、環境負荷等の点から、スルファミン酸(アミド硫酸)を用いるのが好ましい。 Examples of sulfamic acid compounds include sulfamic acid (amidosulfuric acid) in which both R groups are hydrogen atoms, as well as sulfamic acid compounds in which one of the R groups is a hydrogen atom and the other is an alkyl group having 1 to 8 carbon atoms, such as N-methylsulfamic acid, N-ethylsulfamic acid, N-propylsulfamic acid, N-isopropylsulfamic acid, and N-butylsulfamic acid, sulfamic acid compounds in which both of the R groups are alkyl groups having 1 to 8 carbon atoms, such as N,N-dimethylsulfamic acid, N,N-diethylsulfamic acid, N,N-dipropylsulfamic acid, N,N-dibutylsulfamic acid, N-methyl-N-ethylsulfamic acid, and N-methyl-N-propylsulfamic acid, sulfamic acid compounds in which one of the R groups is a hydrogen atom and the other is an aryl group having 6 to 10 carbon atoms, such as N-phenylsulfamic acid, and salts thereof. Examples of sulfamic acid salts include alkali metal salts such as sodium salts and potassium salts, alkaline earth metal salts such as calcium salts, strontium salts and barium salts, other metal salts such as manganese salts, copper salts, zinc salts, iron salts, cobalt salts and nickel salts, ammonium salts and guanidine salts. Sulfamic acid compounds and their salts may be used alone or in combination of two or more. As the sulfamic acid compound, it is preferable to use sulfamic acid (amidosulfuric acid) from the viewpoint of environmental load, etc.

安定化次亜臭素酸組成物は、さらにアルカリを含んでもよい。アルカリとしては、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ等が挙げられる。低温の製品安定性等の点から、水酸化ナトリウムと水酸化カリウムとを併用してもよい。また、アルカリは、固形でなく、水溶液として用いてもよい。 The stabilized hypobromous acid composition may further contain an alkali. Examples of the alkali include alkali hydroxides such as sodium hydroxide and potassium hydroxide. From the viewpoint of product stability at low temperatures, sodium hydroxide and potassium hydroxide may be used in combination. The alkali may be used as an aqueous solution instead of a solid.

分散剤としては、例えば、ポリアクリル酸、ポリマレイン酸、ホスホン酸等が挙げられる。 Examples of dispersants include polyacrylic acid, polymaleic acid, and phosphonic acid.

<残留薬剤の把握>
被処理水薬剤濃度測定装置16、透過水薬剤濃度測定装置18、濃縮水薬剤濃度測定装置20としては、薬剤の濃度を測定することができるものであればよく特に制限はない。
<Identifying residual drugs>
There are no particular limitations on the treated water pesticide concentration measuring device 16, the permeate water pesticide concentration measuring device 18, and the concentrated water pesticide concentration measuring device 20 as long as they are capable of measuring pesticide concentrations.

ハロゲン系酸化剤の残留濃度の測定方法としては、DPD法やポーラログラフ法等が挙げられる。 Methods for measuring the residual concentration of halogen-based oxidizing agents include the DPD method and the polarographic method.

分離膜の透過水中の薬剤濃度は、透過水薬剤濃度測定装置18によって自動または手動で実測してもよく、または被処理水中の薬剤濃度と薬剤固有の膜透過率とから算出してもよい。透過水の流量は、透過水配管26に透過水流量測定装置を設置して、透過水流量測定装置によって自動または手動で実測すればよい。 The concentration of the drug in the permeate of the separation membrane may be measured automatically or manually by a permeate drug concentration measuring device 18, or may be calculated from the concentration of the drug in the water to be treated and the membrane permeability specific to the drug. The flow rate of the permeate may be measured automatically or manually by a permeate flow rate measuring device installed in the permeate piping 26.

分離膜の濃縮水中の薬剤濃度は、濃縮水薬剤濃度測定装置20によって自動または手動で実測してもよく、または被処理水中の薬剤濃度と薬剤固有の膜透過率とから算出してもよい。濃縮水の流量は、濃縮水配管28に濃縮水流量測定装置を設置して、濃縮水流量測定装置によって自動または手動で実測すればよい。 The drug concentration in the concentrate water of the separation membrane may be measured automatically or manually by a concentrate water drug concentration measuring device 20, or may be calculated from the drug concentration in the water to be treated and the membrane permeability specific to the drug. The flow rate of the concentrate water may be measured automatically or manually by a concentrate water flow rate measuring device installed in the concentrate water piping 28.

分離膜の被処理水中の薬剤濃度は、被処理水薬剤濃度測定装置16によって自動または手動で実測してもよく、または被処理水中に添加される薬剤量と被処理水量とから算出してもよい。被処理水の流量は、被処理水配管24に被処理水流量測定装置を設置して、被処理水流量測定装置によって自動または手動で実測すればよい。 The concentration of the chemical in the water to be treated at the separation membrane may be measured automatically or manually by a chemical concentration measuring device 16, or may be calculated from the amount of chemical added to the water to be treated and the amount of water to be treated. The flow rate of the water to be treated may be measured automatically or manually by a water to be treated flow rate measuring device installed in the water to be treated piping 24.

制御装置32は、例えば、プログラムを演算するCPU等の演算手段、プログラムや演算結果を記憶するROMおよびRAM等の記憶手段等を含んで構成されるマイクロコンピュータと電子回路等で構成され、被処理水薬剤濃度測定装置16、透過水薬剤濃度測定装置18、濃縮水薬剤濃度測定装置20により測定された被処理水薬剤濃度、透過水薬剤濃度、濃縮水薬剤濃度、またはこれらのうちの少なくとも1つの測定値に基づいて算出された被処理水薬剤濃度、透過水薬剤濃度、濃縮水薬剤濃度に基づいて、薬剤添加配管30に設置されたポンプの流量やバルブの開閉度等を調整して、被処理水への薬剤の添加量を制御する機能を有するものである。また、制御装置32は、被処理水薬剤濃度測定装置16、透過水薬剤濃度測定装置18、濃縮水薬剤濃度測定装置20により測定された被処理水薬剤濃度、透過水薬剤濃度、濃縮水薬剤濃度、またはこれらのうちの少なくとも1つの測定値に基づいて算出された被処理水薬剤濃度、透過水薬剤濃度、濃縮水薬剤濃度と、透過水流量測定装置、濃縮水流量測定装置、被処理水流量測定装置により測定された透過水流量、濃縮水流量、被処理水流量と、に基づいて、薬剤添加配管30に設置されたポンプの流量やバルブの開閉度等を調整して、被処理水への薬剤の添加量を制御する機能を有するものである。 The control device 32 is composed of a microcomputer and electronic circuits, which include, for example, a calculation means such as a CPU that calculates a program, and storage means such as ROM and RAM that store the program and the calculation results, and has the function of controlling the amount of chemical added to the treated water by adjusting the flow rate of the pump and the opening and closing degree of the valve installed in the chemical addition piping 30 based on the treated water chemical concentration, permeate water chemical concentration, and concentrated water chemical concentration measured by the treated water chemical concentration measuring device 16, the permeate water chemical concentration measuring device 18, and the concentrated water chemical concentration measuring device 20, or the treated water chemical concentration, permeate water chemical concentration, and concentrated water chemical concentration calculated based on at least one of these measured values. In addition, the control device 32 has the function of controlling the amount of chemicals added to the water being treated by adjusting the flow rate of the pump and the opening and closing degree of the valve installed in the chemical addition piping 30 based on the chemical concentration in the water being treated, the chemical concentration in the permeate water, and the chemical concentration in the concentrated water measured by the chemical concentration measuring device 16, the chemical concentration in the permeate water, and the chemical concentration in the concentrated water measured by the chemical concentration measuring device 18, and the chemical concentration in the treated water calculated based on at least one of these measured values, and the permeate flow rate, concentrated flow rate, and water being treated measured by the permeate flow rate measuring device, concentrated flow rate measuring device, and water being treated flow rate measuring device.

<薬剤の添加方法>
分離膜処理の前段において添加される薬剤は、連続的に添加されてもよいし、間欠的に添加されてもよい。
<How to add chemicals>
The agent added in the upstream stage of the separation membrane treatment may be added continuously or intermittently.

<その他の構成>
分離膜処理の後段において、逆浸透膜処理装置、UV処理装置、または、イオン交換処理装置のうち少なくとも1つを備えてもよく、分離膜処理の透過水について逆浸透膜処理、UV処理、または、イオン交換処理のうち少なくとも1つの処理を行ってもよい。
<Other configurations>
At a downstream stage of the separation membrane treatment, at least one of a reverse osmosis membrane treatment device, a UV treatment device, or an ion exchange treatment device may be provided, and at least one of a reverse osmosis membrane treatment, a UV treatment, or an ion exchange treatment may be performed on the permeate of the separation membrane treatment.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to the following examples.

[安定化次亜臭素酸組成物の調製]
窒素雰囲気下で、液体臭素:16.9重量%(wt%)、スルファミン酸:10.7重量%、水酸化ナトリウム:12.9重量%、水酸化カリウム:3.94重量%、水:残分を混合して、安定化次亜臭素酸組成物を調製した。安定化次亜臭素酸組成物のpHは14、全塩素濃度は7.5重量%であった。全塩素濃度は、HACH社の多項目水質分析計DR/4000を用いて、全塩素測定法(DPD(ジエチル-p-フェニレンジアミン)法)により測定した値(mg-Cl/L)である。安定化次亜臭素酸組成物の詳細な調製方法は以下の通りである。
[Preparation of stabilized hypobromous acid composition]
A stabilized hypobromous acid composition was prepared by mixing 16.9% by weight (wt%) of liquid bromine, 10.7% by weight of sulfamic acid, 12.9% by weight of sodium hydroxide, 3.94% by weight of potassium hydroxide, and the remainder of water under a nitrogen atmosphere. The pH of the stabilized hypobromous acid composition was 14, and the total chlorine concentration was 7.5% by weight. The total chlorine concentration was a value (mg-Cl 2 /L) measured by a total chlorine measurement method (DPD (diethyl-p-phenylenediamine) method) using a HACH multi-item water quality analyzer DR/4000. The detailed preparation method of the stabilized hypobromous acid composition is as follows.

反応容器内の酸素濃度が1%に維持されるように、窒素ガスの流量をマスフローコントローラでコントロールしながら連続注入で封入した2Lの4つ口フラスコに1436gの水、361gの水酸化ナトリウムを加え混合し、次いで300gのスルファミン酸を加え混合した後、反応液の温度が0~15℃になるように冷却を維持しながら、473gの液体臭素を加え、さらに48%水酸化カリウム溶液230gを加え、組成物全体の量に対する重量比でスルファミン酸10.7%、臭素16.9%、臭素の当量に対するスルファミン酸の当量比が1.04である、目的の安定化次亜臭素酸組成物を得た。生じた溶液のpHは、ガラス電極法にて測定したところ、14であった。生じた溶液の臭素含有率は、臭素をヨウ化カリウムによりヨウ素に転換後、チオ硫酸ナトリウムを用いて酸化還元滴定する方法により測定したところ16.9%であり、理論含有率(16.9%)の100.0%であった。また、臭素反応の際の反応容器内の酸素濃度は、株式会社ジコー製の「酸素モニタJKO-02 LJDII」を用いて測定した。なお、臭素酸濃度は5mg/kg未満であった。 1436g of water and 361g of sodium hydroxide were added and mixed into a 2L four-necked flask sealed with continuous injection while controlling the flow rate of nitrogen gas with a mass flow controller so that the oxygen concentration in the reaction vessel was maintained at 1%, and then 300g of sulfamic acid was added and mixed. After that, 473g of liquid bromine was added while maintaining cooling so that the temperature of the reaction liquid was 0-15°C, and further 230g of 48% potassium hydroxide solution was added, and the target stabilized hypobromous acid composition was obtained, which has a weight ratio of 10.7% sulfamic acid and 16.9% bromine to the total amount of the composition, and the equivalent ratio of sulfamic acid to bromine is 1.04. The pH of the resulting solution was measured by the glass electrode method and was 14. The bromine content of the resulting solution was 16.9% when measured by a method of converting bromine to iodine with potassium iodide and then performing oxidation-reduction titration with sodium thiosulfate, which was 100.0% of the theoretical content (16.9%). In addition, the oxygen concentration in the reaction vessel during the bromine reaction was measured using an oxygen monitor JKO-02 LJDII manufactured by JIKO Co., Ltd. The bromate concentration was less than 5 mg/kg.

なお、pHの測定は、以下の条件で行った。
電極タイプ:ガラス電極式
pH測定計:東亜ディーケーケー社製、IOL-30型
電極の校正:関東化学社製中性リン酸塩pH(6.86)標準液(第2種)、同社製ホウ酸塩pH(9.18)標準液(第2種)の2点校正で行った
測定温度:25℃
測定値:測定液に電極を浸漬し、安定後の値を測定値とし、3回測定の平均値
The pH was measured under the following conditions.
Electrode type: Glass electrode type pH meter: IOL-30 type, manufactured by DKK-TOA Electrode calibration: Two-point calibration was performed using neutral phosphate pH (6.86) standard solution (type 2) manufactured by Kanto Chemical Co., Ltd. and borate pH (9.18) standard solution (type 2) manufactured by the same company. Measurement temperature: 25°C
Measurement value: Immerse the electrode in the measurement solution, and the value after stabilization is the measurement value, which is the average of three measurements.

<実施例1~5>
以下の実験条件で分離膜処理を行った。実施例1~5では、被処理水、透過水、濃縮水中の薬剤濃度を測定し、「濃縮水中における薬剤濃度/被処理水中の薬剤濃度」が所定値以上になるように、薬剤を被処理水に添加した。結果を表1に示す。
<Examples 1 to 5>
Separation membrane treatment was carried out under the following experimental conditions. In Examples 1 to 5, the concentrations of chemicals in the water to be treated, the permeate, and the concentrated water were measured, and chemicals were added to the water to be treated so that the ratio of "chemical concentration in the concentrated water/chemical concentration in the water to be treated" was equal to or greater than a predetermined value. The results are shown in Table 1.

(実験条件)
・試験水:模擬水(地下水+有機物(TOCとして10mg/L))
・分離膜:逆浸透膜(DOW BW30-XFR)
・流量:被処理水=840L/h、濃縮水=700L/h、透過水=140L/h
・分離膜処理における透過水回収率:17%
・薬剤:上記で調製した安定化次亜臭素酸組成物
・薬剤有効成分検出方法:DPD法(Hach社製 吸光光度計「DR-3900」)
(Experimental conditions)
Test water: Mock water (groundwater + organic matter (10 mg/L as TOC))
Separation membrane: reverse osmosis membrane (DOW BW30-XFR)
Flow rate: treated water = 840 L/h, concentrated water = 700 L/h, permeated water = 140 L/h
Permeate recovery rate in separation membrane treatment: 17%
Drug: the stabilized hypobromous acid composition prepared above. Drug active ingredient detection method: DPD method (Hach spectrophotometer "DR-3900")

バイオファウリングが発生すると、逆浸透膜表面が閉塞し、膜の透水性(Flux)が低下する。ここで、Fluxとは逆浸透膜の透過水の透過流束のことを指し、所定条件下における膜の単位面積あたりの透過水量を示す。Fluxの低下率については、「直前7日間のRO膜の透過水Flux低下率(下式)」で評価した。実施例1~3では、R値を0.4以上に保持し、透過水Fluxの低下がほとんど確認されなかった。なお、濃度測定装置の計器の精度上、2%以下の変動は有意な差とは言えない。
「直前7日間のRO膜の透過水Flux低下率」=100-(測定時のFlux/測定時の7日前のFlux)×100
When biofouling occurs, the reverse osmosis membrane surface is clogged, and the permeability (flux) of the membrane decreases. Here, flux refers to the permeation flux of the permeated water of the reverse osmosis membrane, and indicates the amount of permeated water per unit area of the membrane under specified conditions. The decrease rate of flux was evaluated by "decrease rate of permeated water flux of RO membrane in the last 7 days (following formula)". In Examples 1 to 3, the R value was maintained at 0.4 or more, and almost no decrease in permeated water flux was confirmed. In addition, due to the accuracy of the meter of the concentration measurement device, a variation of 2% or less cannot be said to be a significant difference.
"Reduction rate of RO membrane permeate flux in the last 7 days" = 100 - (Flux at time of measurement / Flux 7 days before measurement) x 100

一方、実施例4,5では、濃縮水中の薬剤の有効濃度は、実施例1~3と同レベルであるのにも関わらず、R値は0.4未満であったため、透過水Fluxにバイオファウリングによる低下がわずかに見られた。 On the other hand, in Examples 4 and 5, although the effective concentration of the drug in the concentrated water was at the same level as in Examples 1 to 3, the R value was less than 0.4, and a slight decrease in the permeate flux due to biofouling was observed.

<実施例6,7>
実施例1~5と同様の実験条件でより長期間、分離膜処理を行った。実施例6,7では、被処理水、透過水、濃縮水中の薬剤濃度を測定し、「濃縮水中における薬剤濃度/被処理水中の薬剤濃度」が所定値以上になるように、薬剤を被処理水に添加した。結果を表2に示す。
<Examples 6 and 7>
Separation membrane treatment was carried out for a longer period of time under the same experimental conditions as in Examples 1 to 5. In Examples 6 and 7, the concentrations of chemicals in the water to be treated, the permeate, and the concentrated water were measured, and chemicals were added to the water to be treated so that the ratio of "chemical concentration in the concentrated water/chemical concentration in the water to be treated" was equal to or greater than a predetermined value. The results are shown in Table 2.

実施例6と実施例7の結果から、薬剤添加をR値で制御すると、より長期間にわたってバイオファウリングを抑制することができることがわかる。 The results of Examples 6 and 7 show that controlling the addition of chemicals using the R value can suppress biofouling for a longer period of time.

このように、実施例の方法によって、分離膜を用いる水処理において、分離膜のバイオファウリングを効率的に抑制することができた。 In this way, the method of the embodiment was able to effectively suppress biofouling of the separation membrane in water treatment using the separation membrane.

1,3 水処理装置、10 被処理水槽、12 分離膜処理装置、14 ポンプ、16 被処理水薬剤濃度測定装置、18 透過水薬剤濃度測定装置、20 濃縮水薬剤濃度測定装置、22,24 被処理水配管、26 透過水配管、28 濃縮水配管、30 薬剤添加配管、32 制御装置。 1, 3 Water treatment device, 10 Treated water tank, 12 Separation membrane treatment device, 14 Pump, 16 Treated water pesticide concentration measuring device, 18 Permeate water pesticide concentration measuring device, 20 Concentrated water pesticide concentration measuring device, 22, 24 Treated water piping, 26 Permeate water piping, 28 Concentrated water piping, 30 Pesticide addition piping, 32 Control device.

Claims (4)

薬剤が添加された被処理水について分離膜処理を行い透過水と濃縮水とを得る分離膜処理工程において、
「濃縮水中における薬剤濃度/被処理水中の薬剤濃度」が所定値以上になるように、前記分離膜処理の前段において前記薬剤を前記被処理水に添加し、
前記被処理水の流量をFf、前記濃縮水の流量をFc、前記透過水の流量をFp、前記被処理水中の前記薬剤の濃度をCf、前記濃縮水中の前記薬剤の濃度をCc、前記透過水中の前記薬剤の濃度をCpとしたときに、下記式で表される有効成分残留率Rが0.4以上であることを特徴とする水処理方法。
R=Cc/Cct
ここで、Cct=(Cf×Ff-Cp×Fp)/Fc
In a separation membrane treatment process, a separation membrane treatment is performed on the treated water to which a chemical has been added to obtain a permeate and a concentrated water,
The chemical is added to the water to be treated in the preceding stage of the separation membrane treatment so that the "chemical concentration in the concentrated water/chemical concentration in the water to be treated" is equal to or greater than a predetermined value;
A water treatment method characterized in that, when the flow rate of the water to be treated is Ff, the flow rate of the concentrated water is Fc, the flow rate of the permeated water is Fp, the concentration of the drug in the water to be treated is Cf, the concentration of the drug in the concentrated water is Cc, and the concentration of the drug in the permeated water is Cp, the active ingredient residual rate R represented by the following formula is 0.4 or more .
R = Cc/Cct
Here, Cct = (Cf x Ff - Cp x Fp) / Fc
請求項1に記載の水処理方法であって、
前記薬剤が、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を含有することを特徴とする水処理方法。
The water treatment method according to claim 1 ,
The water treatment method according to claim 1, wherein the agent contains a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound.
薬剤が添加された被処理水について分離膜処理を行い透過水と濃縮水とを得る分離膜処理手段と、
「濃縮水中における薬剤濃度/被処理水中の薬剤濃度」が所定値以上になるように、前記分離膜処理の前段において前記薬剤を前記被処理水に添加するよう制御する制御手段と、
を備え
前記制御手段は、前記被処理水の流量をFf、前記濃縮水の流量をFc、前記透過水の流量をFp、前記被処理水中の前記薬剤の濃度をCf、前記濃縮水中の前記薬剤の濃度をCc、前記透過水中の前記薬剤の濃度をCpとしたときに、下記式で表される有効成分残留率Rが0.4以上となるように、前記分離膜処理の前段において前記薬剤を前記被処理水に添加するよう制御することを特徴とする水処理装置。
R=Cc/Cct
ここで、Cct=(Cf×Ff-Cp×Fp)/Fc
A separation membrane treatment means for performing a separation membrane treatment on the water to be treated to which the chemical has been added to obtain a permeate and a concentrated water;
A control means for controlling the addition of the chemical to the water to be treated in the upstream of the separation membrane treatment so that the "chemical concentration in the concentrated water/chemical concentration in the water to be treated" is equal to or greater than a predetermined value;
Equipped with
The control means controls the addition of the chemical to the water to be treated in the upstream of the separation membrane treatment so that the effective ingredient residual rate R, expressed by the following formula, is 0.4 or more, when the flow rate of the water to be treated is Ff, the flow rate of the concentrated water is Fc, the flow rate of the permeated water is Fp, the concentration of the chemical in the water to be treated is Cf, the concentration of the chemical in the concentrated water is Cc, and the concentration of the chemical in the permeated water is Cp .
R = Cc/Cct
Here, Cct = (Cf x Ff - Cp x Fp) / Fc
請求項に記載の水処理装置であって、
前記薬剤が、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を含有することを特徴とする水処理装置。
The water treatment device according to claim 3 ,
13. A water treatment device, wherein the chemical agent contains a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound.
JP2020088295A 2020-05-20 2020-05-20 Water treatment method and water treatment device Active JP7471143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020088295A JP7471143B2 (en) 2020-05-20 2020-05-20 Water treatment method and water treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020088295A JP7471143B2 (en) 2020-05-20 2020-05-20 Water treatment method and water treatment device

Publications (2)

Publication Number Publication Date
JP2021181074A JP2021181074A (en) 2021-11-25
JP7471143B2 true JP7471143B2 (en) 2024-04-19

Family

ID=78605873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020088295A Active JP7471143B2 (en) 2020-05-20 2020-05-20 Water treatment method and water treatment device

Country Status (1)

Country Link
JP (1) JP7471143B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158633A1 (en) 2015-03-31 2016-10-06 栗田工業株式会社 Reverse osmosis membrane treatment system operation method and reverse osmosis membrane treatment system
JP2018015679A (en) 2016-07-25 2018-02-01 オルガノ株式会社 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP2018153749A (en) 2017-03-17 2018-10-04 オルガノ株式会社 Water treatment method and water treatment system using reverse osmosis membrane
JP2020039993A (en) 2018-09-06 2020-03-19 株式会社神鋼環境ソリューション Water treatment method and water treatment facility

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016158633A1 (en) 2015-03-31 2016-10-06 栗田工業株式会社 Reverse osmosis membrane treatment system operation method and reverse osmosis membrane treatment system
JP2018015679A (en) 2016-07-25 2018-02-01 オルガノ株式会社 Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP2018153749A (en) 2017-03-17 2018-10-04 オルガノ株式会社 Water treatment method and water treatment system using reverse osmosis membrane
JP2020039993A (en) 2018-09-06 2020-03-19 株式会社神鋼環境ソリューション Water treatment method and water treatment facility

Also Published As

Publication number Publication date
JP2021181074A (en) 2021-11-25

Similar Documents

Publication Publication Date Title
US11666055B2 (en) Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane
JP6534524B2 (en) Filtration treatment system and filtration treatment method
JP6533056B2 (en) Filtration treatment system and filtration treatment method
KR101966569B1 (en) Method for controlling slime on separation membrane
JP6837301B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP6513424B2 (en) Method of sterilizing separation membrane
WO2018078988A1 (en) Water treatment method using reverse osmosis membrane, and water treatment apparatus
WO2017141717A1 (en) Water treatment system and water treatment method using reverse osmosis membrane
JP7471143B2 (en) Water treatment method and water treatment device
JP7013141B2 (en) Water treatment method using reverse osmosis membrane
JP6682401B2 (en) Water treatment method using reverse osmosis membrane
JP2018008182A (en) Water treatment method using reverse osmosis membrane, and agent for improving blocking rate of silica in reverse osmosis membrane
JP7008470B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP6974936B2 (en) Water treatment method using reverse osmosis membrane
JP7144922B2 (en) Reverse osmosis membrane operation method and reverse osmosis membrane device
JP7050414B2 (en) Water treatment method using reverse osmosis membrane
JP2016120467A (en) Water treatment equipment and water treatment method
JP6706702B1 (en) Water treatment method and water treatment apparatus using reverse osmosis membrane
JP7141919B2 (en) Reverse osmosis membrane treatment method, reverse osmosis membrane treatment system, water treatment method, and water treatment system
JP6779706B2 (en) Water treatment method using reverse osmosis membrane
JP2020131134A (en) Slime inhibition agent for separation membrane, manufacturing method of slime inhibition agent for separation membrane, and slime inhibition method of separation membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240409

R150 Certificate of patent or registration of utility model

Ref document number: 7471143

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150