JP2021030189A - Water treatment apparatus and water treatment method - Google Patents

Water treatment apparatus and water treatment method Download PDF

Info

Publication number
JP2021030189A
JP2021030189A JP2019156729A JP2019156729A JP2021030189A JP 2021030189 A JP2021030189 A JP 2021030189A JP 2019156729 A JP2019156729 A JP 2019156729A JP 2019156729 A JP2019156729 A JP 2019156729A JP 2021030189 A JP2021030189 A JP 2021030189A
Authority
JP
Japan
Prior art keywords
osmosis membrane
water
treatment
forward osmosis
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019156729A
Other languages
Japanese (ja)
Other versions
JP7228492B2 (en
Inventor
勇規 中村
Yuki Nakamura
勇規 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2019156729A priority Critical patent/JP7228492B2/en
Priority to CN201980064798.7A priority patent/CN112805247B/en
Priority to PCT/JP2019/037279 priority patent/WO2020071177A1/en
Priority to TW108135957A priority patent/TWI835878B/en
Priority to TW112136510A priority patent/TW202404904A/en
Publication of JP2021030189A publication Critical patent/JP2021030189A/en
Application granted granted Critical
Publication of JP7228492B2 publication Critical patent/JP7228492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To provide a water treatment apparatus and a water treatment method capable of treating treated water containing at least one of soluble silica and hardness components at a low cost.SOLUTION: A water treatment apparatus 1 treats treated water containing at least one of soluble silica and hardness components. It includes a pre-treatment apparatus 10 which has at least one of soluble silica removal means and hardness component removal means, a reverse osmosis membrane treatment apparatus 12 which is used as first concentration treatment means to concentrate the pre-treated water obtained in the pre-treatment apparatus 10, a positive osmosis membrane treatment apparatus 14 which is used for treating the concentrated water obtained in the reverse osmosis membrane treatment apparatus 12 by positive osmosis membrane, and a concentration apparatus 16 which is used for concentrating a part of the dilute attraction solution used in the positive osmosis membrane treatment apparatus 14. In the water treatment apparatus 1, a part of the dilute attractant solution used in the positive osmosis membrane treatment apparatus 14 is used in the pre-treatment apparatus 10, and the concentrated attractant solution concentrated in the concentration apparatus 16 is used again as the attractant solution in the positive osmosis membrane treatment apparatus 14.SELECTED DRAWING: Figure 1

Description

本発明は、溶解性シリカおよび硬度成分のうち少なくとも1つを含む被処理水の処理を行う水処理装置および水処理方法に関する。 The present invention relates to a water treatment apparatus and a water treatment method for treating water to be treated containing at least one of soluble silica and a hardness component.

排水の放流が環境に与える影響を低減するため、排水の浄化や減容化等の処理を行ってから、放流、廃棄する動きが進んでいる。排水処理には固液分離、膜分離、減圧濃縮等が用いられるが、排水に含まれる溶解性シリカや、カルシウム等の硬度成分が不溶化して、排水処理に用いる配管や装置に付着する、いわゆるスケーリングが起こることで、システムの性能が低下することが知られている。効率的な排水処理を行うため、排水中の溶解性シリカや硬度成分を除去する必要がある。 In order to reduce the impact of wastewater discharge on the environment, there is a growing movement to discharge and dispose of wastewater after purifying and reducing its volume. Solid-liquid separation, membrane separation, vacuum concentration, etc. are used for wastewater treatment, but the hardness components such as soluble silica and calcium contained in the wastewater are insolubilized and adhere to the piping and equipment used for wastewater treatment, so-called. It is known that the performance of the system deteriorates due to scaling. In order to carry out efficient wastewater treatment, it is necessary to remove soluble silica and hardness components in the wastewater.

例えば特許文献1には、溶解性シリカ含有排水について、アルカリ条件下でマグネシウム塩を添加して溶解性シリカを不溶化したのちに固液分離し、得られた処理水を逆浸透膜処理または正浸透膜処理して、排水から淡水を回収する方法が記載されている。 For example, in Patent Document 1, for soluble silica-containing wastewater, a magnesium salt is added under alkaline conditions to insolubilize the soluble silica, and then solid-liquid separation is performed, and the obtained treated water is subjected to reverse osmosis membrane treatment or forward osmosis. A method of membrane treatment to recover fresh water from wastewater is described.

正浸透膜処理では、正浸透膜を介して、供給水と誘引溶液を存在させることにより、加圧せずとも浸透圧で水を誘引溶液に移動させることができる。さらに希釈された誘引溶液を、例えば加温等の手段により相変化させることで、淡水を得つつ、誘引溶液を再利用することができる。 In the forward osmosis membrane treatment, by allowing the supply water and the attractant solution to exist through the forward osmosis membrane, water can be moved to the attractant solution by osmotic pressure without pressurization. By changing the phase of the diluted attractant solution by means such as heating, the attractant solution can be reused while obtaining fresh water.

正浸透膜処理の誘引溶液として、炭酸アンモニウム水溶液や、無機塩と温度感応性薬剤の混合物が用いられる(特許文献2参照)。 As an attracting solution for the forward osmosis membrane treatment, an aqueous solution of ammonium carbonate or a mixture of an inorganic salt and a temperature-sensitive agent is used (see Patent Document 2).

誘引溶液を再利用するためには加温等の外的エネルギーを加える必要があり、誘引溶液の再利用のための装置を追加で備える必要があるため(例えば、図8参照:誘引溶液を貯留する誘引溶液槽204に加熱装置206が必要)、トータルとしてシステムのコスト増大につながる。 In order to reuse the attractant solution, it is necessary to apply external energy such as heating, and it is necessary to additionally provide a device for reusing the attractant solution (see, for example, FIG. 8: storing the attractant solution). The heating device 206 is required for the attracting solution tank 204), which leads to an increase in the cost of the system as a whole.

硬度成分の除去方法として、特許文献3には、硬度成分含有排水にアルカリ剤を添加して析出させ(いわゆる石灰軟化法)、凝集、ろ過処理の後にろ過水を逆浸透膜処理する方法が記載されている。また、特許文献4には、イオン交換樹脂を用いて硬度成分を吸着除去する方法(樹脂軟化法)が記載されている。 As a method for removing the hardness component, Patent Document 3 describes a method in which an alkaline agent is added to the wastewater containing the hardness component to precipitate it (so-called lime softening method), and the filtered water is subjected to reverse osmosis film treatment after aggregation and filtration treatment. Has been done. Further, Patent Document 4 describes a method (resin softening method) of adsorbing and removing a hardness component using an ion exchange resin.

しかし、石灰軟化法ではアルカリ剤の添加が必要であり、樹脂軟化法では、硬度成分が吸着したイオン交換樹脂を再生するため、高濃度塩水(塩化ナトリウム水溶液)を通水する必要があり、薬品コストの低減が求められている。 However, the lime softening method requires the addition of an alkaline agent, and the resin softening method requires the passage of high-concentration salt water (sodium chloride aqueous solution) in order to regenerate the ion exchange resin on which the hardness component is adsorbed. Cost reduction is required.

国際特許出願公開第2013/153587号パンフレットInternational Patent Application Publication No. 2013/153587 Pamphlet 特開2017−056424号公報JP-A-2017-056424 特開2017−170275号公報JP-A-2017-170275 特開2014−231039号公報Japanese Unexamined Patent Publication No. 2014-231039

本発明の目的は、溶解性シリカおよび硬度成分のうち少なくとも1つを含む被処理水を低コストで処理することができる水処理装置および水処理方法を提供することにある。 An object of the present invention is to provide a water treatment apparatus and a water treatment method capable of treating water to be treated containing at least one of soluble silica and a hardness component at low cost.

本発明は、溶解性シリカおよび硬度成分のうち少なくとも1つを含む被処理水の処理を行う水処理装置であって、溶解性シリカ除去手段および硬度成分除去手段のうちいずれか1つを備える前処理手段と、前記前処理手段で得られた前処理水を濃縮処理する第1濃縮処理手段と、前記第1濃縮処理手段で得られた濃縮水を正浸透膜処理する正浸透膜処理手段と、前記正浸透膜処理手段で使用された希薄誘引溶液の一部を濃縮処理する第2濃縮処理手段と、を備え、前記正浸透膜処理手段で使用された希薄誘引溶液の一部が前記前処理手段で使用され、前記第2濃縮処理手段で濃縮された濃縮誘引溶液が前記正浸透膜処理手段における誘引溶液として再度使用される、水処理装置である。 The present invention is a water treatment apparatus that treats water to be treated containing at least one of soluble silica and a hardness component, and is provided before any one of the soluble silica removing means and the hardness component removing means is provided. A treatment means, a first concentration treatment means for concentrating the pretreated water obtained by the pretreatment means, and a forward osmosis membrane treatment means for treating the concentrated water obtained by the first concentration treatment means with a forward osmosis membrane. A second concentration treatment means for concentrating a part of the dilute attractant solution used in the forward osmosis membrane treatment means, and a part of the dilute attractant solution used in the forward osmosis membrane treatment means is said to be the above. It is a water treatment apparatus used in the treatment means, in which the concentrated attracting solution concentrated by the second concentration treating means is used again as the attracting solution in the forward osmosis membrane treating means.

前記水処理装置において、前記第2濃縮処理手段は、半透膜を用いる濃縮手段であることが好ましい。 In the water treatment apparatus, the second concentration treatment means is preferably a concentration means using a semipermeable membrane.

前記水処理装置において、前記第1濃縮処理手段は、逆浸透膜処理手段であることが好ましい。 In the water treatment apparatus, the first concentration treatment means is preferably a reverse osmosis membrane treatment means.

前記水処理装置において、前記正浸透膜処理手段で用いる誘引溶液がマグネシウム塩水溶液であり、前記正浸透膜処理手段で使用されたマグネシウム塩希薄水溶液が、前記溶解性シリカ除去手段で使用されることが好ましい。 In the water treatment apparatus, the attracting solution used in the forward osmosis membrane treatment means is a magnesium salt aqueous solution, and the magnesium salt dilute aqueous solution used in the forward osmosis membrane treatment means is used in the soluble silica removing means. Is preferable.

前記水処理装置において、前記正浸透膜処理手段で用いる誘引溶液がアルカリ剤水溶液であり、前記正浸透膜処理手段で使用されたアルカリ剤希薄水溶液が、前記硬度成分除去手段で使用されることが好ましい。 In the water treatment apparatus, the attracting solution used in the forward osmosis membrane treatment means is an alkaline agent aqueous solution, and the alkaline agent dilute aqueous solution used in the forward osmosis membrane treatment means may be used in the hardness component removing means. preferable.

前記水処理装置において、前記正浸透膜処理手段で用いる誘引溶液が酸水溶液または塩化ナトリウム水溶液であり、前記正浸透膜処理手段で使用された酸希薄水溶液または塩化ナトリウム希薄水溶液が、前記硬度成分除去手段で使用されることが好ましい。 In the water treatment apparatus, the attractant solution used in the forward osmosis membrane treatment means is an acid aqueous solution or a sodium chloride aqueous solution, and the acid dilute aqueous solution or the sodium chloride dilute aqueous solution used in the forward osmosis membrane treatment means removes the hardness component. It is preferably used by means.

また、本発明は、溶解性シリカおよび硬度成分のうち少なくとも1つを含む被処理水の処理を行う水処理方法であって、溶解性シリカ除去工程および硬度成分除去工程のうちいずれか1つを含む前処理工程と、前記前処理工程で得られた前処理水を濃縮処理する第1濃縮処理工程と、前記第1濃縮処理工程で得られた濃縮水を正浸透膜処理する正浸透膜処理工程と、前記正浸透膜処理工程で使用された希薄誘引溶液の一部を濃縮処理する第2濃縮処理工程と、を含み、前記正浸透膜処理工程で使用した希薄誘引溶液の一部を前記前処理工程で使用し、前記第2濃縮処理工程で濃縮した濃縮誘引溶液を前記正浸透膜処理工程における誘引溶液として再度使用する、水処理方法である。 Further, the present invention is a water treatment method for treating water to be treated containing at least one of soluble silica and a hardness component, wherein any one of a soluble silica removing step and a hardness component removing step is performed. A pretreatment step including, a first concentration treatment step for concentrating the pretreated water obtained in the pretreatment step, and a forward osmosis membrane treatment for treating the concentrated water obtained in the first concentration treatment step with a forward osmosis membrane. A part of the dilute attractant solution used in the forward osmosis membrane treatment step is said to include a step and a second concentration treatment step of concentrating a part of the dilute attractant solution used in the forward osmosis membrane treatment step. This is a water treatment method in which the concentrated attracting solution used in the pretreatment step and concentrated in the second concentration treatment step is used again as the attracting solution in the forward osmosis membrane treatment step.

前記水処理方法において、前記第2濃縮処理工程は、半透膜を用いる濃縮工程であることが好ましい。 In the water treatment method, the second concentration treatment step is preferably a concentration step using a semipermeable membrane.

前記水処理方法において、前記第1濃縮処理工程は、逆浸透膜処理工程であることが好ましい。 In the water treatment method, the first concentration treatment step is preferably a reverse osmosis membrane treatment step.

前記水処理方法において、前記正浸透膜処理工程で用いる誘引溶液がマグネシウム塩水溶液であり、前記正浸透膜処理工程で使用したマグネシウム塩希薄水溶液を、前記溶解性シリカ除去工程で使用することが好ましい。 In the water treatment method, the attractant solution used in the forward osmosis membrane treatment step is a magnesium salt aqueous solution, and the magnesium salt dilute aqueous solution used in the forward osmosis membrane treatment step is preferably used in the soluble silica removal step. ..

前記水処理方法において、前記正浸透膜処理工程で用いる誘引溶液がアルカリ剤水溶液であり、前記正浸透膜処理工程で使用したアルカリ剤希薄水溶液を、前記硬度成分除去工程で使用することが好ましい。 In the water treatment method, it is preferable that the attracting solution used in the forward osmosis membrane treatment step is an alkaline agent aqueous solution, and the alkaline agent dilute aqueous solution used in the forward osmosis membrane treatment step is used in the hardness component removing step.

前記水処理方法において、前記正浸透膜処理工程で用いる誘引溶液が酸水溶液または塩化ナトリウム水溶液であり、前記正浸透膜処理工程で使用した酸希薄水溶液または塩化ナトリウム希薄水溶液を、前記硬度成分除去工程で使用することが好ましい。 In the water treatment method, the attractant solution used in the forward osmosis membrane treatment step is an acid aqueous solution or a sodium chloride aqueous solution, and the acid dilute aqueous solution or the sodium chloride dilute aqueous solution used in the forward osmosis membrane treatment step is used in the hardness component removing step. It is preferable to use in.

本発明により、溶解性シリカおよび硬度成分のうち少なくとも1つを含む被処理水を低コストで処理することができる。 According to the present invention, water to be treated containing at least one of soluble silica and a hardness component can be treated at low cost.

本発明の実施形態に係る水処理装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置における濃縮装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the concentrating apparatus in the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置における濃縮装置の他の例を示す概略構成図である。It is a schematic block diagram which shows another example of the concentrator in the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置における濃縮装置の他の例を示す概略構成図である。It is a schematic block diagram which shows another example of the concentrator in the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置における濃縮装置の他の例を示す概略構成図である。It is a schematic block diagram which shows another example of the concentrator in the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置における濃縮装置の他の例を示す概略構成図である。It is a schematic block diagram which shows another example of the concentrator in the water treatment apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る水処理装置における濃縮装置の他の例を示す概略構成図である。It is a schematic block diagram which shows another example of the concentrator in the water treatment apparatus which concerns on embodiment of this invention. 従来の水処理装置を示す概略構成図である。It is a schematic block diagram which shows the conventional water treatment apparatus.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. The present embodiment is an example of carrying out the present invention, and the present invention is not limited to the present embodiment.

本発明の実施形態に係る水処理装置の一例の概略を図1に示し、その構成について説明する。 An outline of an example of a water treatment apparatus according to an embodiment of the present invention is shown in FIG. 1, and its configuration will be described.

水処理装置1は、溶解性シリカ除去手段および硬度成分除去手段のうち少なくとも1つを備える前処理手段としての前処理装置10と、前処理装置10で得られた前処理水を濃縮処理する第1濃縮処理手段としての逆浸透膜処理装置12と、逆浸透膜処理装置12で得られた濃縮水を正浸透膜処理する正浸透膜処理手段としての正浸透膜処理装置14と、正浸透膜処理装置14で使用された希薄誘引溶液の一部を濃縮処理する第2濃縮処理手段として濃縮装置16と、を備える。 The water treatment device 1 concentrates the pretreatment device 10 as a pretreatment means including at least one of the soluble silica removing means and the hardness component removing means, and the pretreatment water obtained by the pretreatment device 10. 1 A reverse osmosis membrane treatment device 12 as a concentration treatment means, a forward osmosis membrane treatment device 14 as a forward osmosis membrane treatment means for treating the concentrated water obtained by the reverse osmosis membrane treatment device 12, and a forward osmosis membrane. A concentrating device 16 is provided as a second concentrating treatment means for concentrating a part of the dilute attractant solution used in the processing device 14.

図1の水処理装置1において、被処理水配管18が前処理装置10の被処理水入口に接続され、前処理装置10の出口と逆浸透膜処理装置12の入口とは、前処理水配管20により接続されている。逆浸透膜処理装置12の濃縮水出口と正浸透膜処理装置14の濃縮水入口とは、濃縮水配管22により接続され、逆浸透膜処理装置12の透過水出口には、透過水配管24が接続されている。正浸透膜処理装置14の誘引溶液入口には、誘引溶液配管26が接続され、正浸透膜処理装置14の希薄誘引溶液出口と、前処理装置10の希薄誘引溶液入口とは、希薄誘引溶液配管28により接続され、正浸透膜処理装置14のFO濃縮水出口には、FO濃縮水配管30が接続されている。希薄誘引溶液配管28から分岐した希薄誘引溶液配管32は、濃縮装置16の入口に接続され、濃縮装置16の濃縮誘引溶液出口と誘引溶液配管26の途中とは、濃縮誘引溶液配管34により接続されている。濃縮装置16の希釈液出口には、希釈液配管36が接続されている。 In the water treatment device 1 of FIG. 1, the water treatment pipe 18 is connected to the water inlet of the pretreatment device 10, and the outlet of the pretreatment device 10 and the inlet of the reverse osmosis membrane treatment device 12 are the pretreatment water piping. It is connected by 20. The concentrated water outlet of the reverse osmosis membrane treatment device 12 and the concentrated water inlet of the forward osmosis membrane treatment device 14 are connected by a concentrated water pipe 22, and a permeated water pipe 24 is provided at the permeated water outlet of the reverse osmosis membrane treatment device 12. It is connected. An attractant solution pipe 26 is connected to the attractant solution inlet of the forward osmosis membrane treatment device 14, and the dilute attractant solution outlet of the forward osmosis membrane treatment device 14 and the dilute attractant solution inlet of the pretreatment device 10 are connected to the dilute attractant solution pipe. The FO concentrated water pipe 30 is connected to the FO concentrated water outlet of the forward osmosis membrane treatment device 14 which is connected by 28. The dilute attractant solution pipe 32 branched from the dilute attractant solution pipe 28 is connected to the inlet of the concentrating device 16, and the outlet of the concentrated attracting solution of the concentrating device 16 and the middle of the attracting solution pipe 26 are connected by the concentrated attracting solution pipe 34. ing. A diluent pipe 36 is connected to the diluent outlet of the concentrator 16.

本実施形態に係る水処理方法および水処理装置1の動作について説明する。 The water treatment method and the operation of the water treatment device 1 according to the present embodiment will be described.

溶解性シリカおよび硬度成分のうち少なくとも1つを含む被処理水は、被処理水配管18を通して前処理装置10へ送液される。前処理装置10において、溶解性シリカおよび硬度成分のうち少なくとも1つの除去処理が行われる(前処理工程)。 The water to be treated containing at least one of the soluble silica and the hardness component is sent to the pretreatment apparatus 10 through the water to be treated pipe 18. In the pretreatment apparatus 10, at least one of the soluble silica and the hardness component is removed (pretreatment step).

被処理水が溶解性シリカを含む場合、前処理装置10は、例えば、被処理水にマグネシウム塩を添加して反応させ、溶解性シリカを不溶化させるマグネシウム反応手段と、反応後の被処理水に凝集剤を添加して、凝集させる凝集処理手段と、凝集処理させた被処理水から凝集物を分離する固液分離手段と、を有する。前処理装置10において、例えばアルカリ条件(例えば、pH10〜12)下で被処理水にマグネシウム塩が添加され、溶解性シリカが不溶化される(マグネシウム反応工程)。その後、必要に応じて凝集剤が添加されて、凝集処理され(凝集処理工程)、凝集物が固液分離される(固液分離工程)。固液分離で得られた前処理水は、前処理水配管20を通して、逆浸透膜処理装置12へ送液される。 When the water to be treated contains soluble silica, the pretreatment apparatus 10 uses, for example, a magnesium reaction means for adding a magnesium salt to the water to be treated and reacting the water to be treated to insolubilize the soluble silica, and the water to be treated after the reaction. It has a coagulation treatment means for adding a coagulant to coagulate, and a solid-liquid separation means for separating agglomerates from the coagulated water to be treated. In the pretreatment apparatus 10, a magnesium salt is added to the water to be treated under alkaline conditions (for example, pH 10 to 12) to insolubilize the soluble silica (magnesium reaction step). Then, if necessary, a coagulant is added to perform agglutination treatment (aggregation treatment step), and the agglomerates are solid-liquid separated (solid-liquid separation step). The pretreated water obtained by solid-liquid separation is sent to the reverse osmosis membrane treatment device 12 through the pretreated water pipe 20.

被処理水が硬度成分を含み、石灰軟化法により硬度成分の除去が行われる場合、前処理装置10は、例えば、被処理水にアルカリ剤を添加して反応させ、硬度成分を不溶化させるアルカリ剤反応手段と、反応後の被処理水に必要に応じて凝集剤を添加して、凝集させる凝集処理手段と、凝集処理させた被処理水から凝集物を分離する固液分離手段と、を有する。前処理装置10において、例えば被処理水にアルカリ剤が添加され、硬度成分が不溶化される(アルカリ剤反応工程)。その後、凝集剤が添加されて、凝集処理され(凝集処理工程)、凝集物が固液分離される(固液分離工程)。固液分離で得られた前処理水は、前処理水配管20を通して、逆浸透膜処理装置12へ送液される。 When the water to be treated contains a hardness component and the hardness component is removed by a lime softening method, the pretreatment apparatus 10 is, for example, an alkaline agent that insolubilizes the hardness component by adding an alkaline agent to the water to be treated and reacting it. It has a reaction means, a coagulation treatment means for coagulating by adding a coagulant to the water to be treated after the reaction as needed, and a solid-liquid separation means for separating agglomerates from the coagulated water to be treated. .. In the pretreatment apparatus 10, for example, an alkaline agent is added to the water to be treated to insolubilize the hardness component (alkaline agent reaction step). After that, a coagulant is added, agglutination treatment is performed (coagulation treatment step), and agglomerates are solid-liquid separated (solid-liquid separation step). The pretreated water obtained by solid-liquid separation is sent to the reverse osmosis membrane treatment device 12 through the pretreated water pipe 20.

被処理水が硬度成分を含み、樹脂軟化法により硬度成分の除去が行われる場合、前処理装置10は、例えば、イオン交換樹脂等を用いてイオン交換処理を行うイオン交換処理手段を有する。前処理装置10において、例えばイオン交換処理手段としてイオン交換樹脂が充填されたイオン交換塔に被処理水が通液され、硬度成分が吸着除去される(イオン交換工程)。イオン交換処理で得られた前処理水は、前処理水配管20を通して逆浸透膜処理装置12へ送液される。イオン交換樹脂の再生が必要になった場合は、再生剤が通液されることによりイオン交換樹脂が再生される。 When the water to be treated contains a hardness component and the hardness component is removed by a resin softening method, the pretreatment apparatus 10 has an ion exchange treatment means for performing an ion exchange treatment using, for example, an ion exchange resin. In the pretreatment apparatus 10, for example, water to be treated is passed through an ion exchange tower filled with an ion exchange resin as an ion exchange treatment means, and a hardness component is adsorbed and removed (ion exchange step). The pretreated water obtained by the ion exchange treatment is sent to the reverse osmosis membrane treatment device 12 through the pretreated water pipe 20. When it becomes necessary to regenerate the ion exchange resin, the ion exchange resin is regenerated by passing a regenerating agent through the liquid.

次に、前処理工程で得られた前処理水は、逆浸透膜処理装置12において濃縮処理される(第1濃縮処理工程)。第1濃縮処理(逆浸透膜処理)により得られた濃縮水(RO濃縮水)は、濃縮水配管22を通して正浸透膜処理装置14へ送液され、透過水(RO透過水)は、透過水配管24を通して排出される。 Next, the pretreated water obtained in the pretreatment step is concentrated in the reverse osmosis membrane treatment device 12 (first concentration treatment step). The concentrated water (RO concentrated water) obtained by the first concentration treatment (reverse osmosis membrane treatment) is sent to the forward osmosis membrane treatment device 14 through the concentrated water pipe 22, and the permeated water (RO permeated water) is permeated water. It is discharged through the pipe 24.

第1濃縮処理(逆浸透膜処理)により得られた濃縮水は、正浸透膜処理装置14において正浸透膜処理される(正浸透膜処理工程)。正浸透膜処理装置14において、誘引溶液が誘引溶液配管26を通して正浸透膜の2次側に送液され、正浸透膜を介して、濃縮水と誘引溶液を存在させることにより、浸透圧で水が誘引溶液に移動される。 The concentrated water obtained by the first concentration treatment (reverse osmosis membrane treatment) is subjected to a forward osmosis membrane treatment in the forward osmosis membrane treatment apparatus 14 (forward osmosis membrane treatment step). In the forward osmosis membrane treatment apparatus 14, the attractant solution is sent to the secondary side of the forward osmosis membrane through the attractant solution pipe 26, and the concentrated water and the attractant solution are present through the forward osmosis membrane to cause water at osmotic pressure. Is transferred to the attractant solution.

正浸透膜処理工程で使用された希薄誘引溶液の一部は、希薄誘引溶液配管28を通して前処理装置10へ送液され、前処理装置10において前処理工程で使用される。正浸透膜処理工程で得られたFO濃縮水は、FO濃縮水配管30を通して排出される。FO濃縮水は、必要に応じて濃縮装置や結晶化装置等によりさらに濃縮、固形化処理してもよい。 A part of the dilute attractant solution used in the forward osmosis membrane treatment step is sent to the pretreatment apparatus 10 through the dilute attractant solution pipe 28, and is used in the pretreatment apparatus 10 in the pretreatment apparatus 10. The FO concentrated water obtained in the forward osmosis membrane treatment step is discharged through the FO concentrated water pipe 30. The FO concentrated water may be further concentrated and solidified by a concentrating device, a crystallization device or the like, if necessary.

正浸透膜処理工程で使用された希薄誘引溶液の一部は、希薄誘引溶液配管28から分岐されて希薄誘引溶液配管32を通して濃縮装置16へ送液され、濃縮装置16において濃縮処理される(第2濃縮処理工程)。第2濃縮処理により得られた濃縮誘引溶液は、濃縮誘引溶液配管34を通して誘引溶液配管26の途中へ供給され、正浸透膜処理装置14における誘引溶液として再度使用される。第2濃縮処理により得られた希釈液は、希釈液配管36を通して排出される。希釈液は、必要に応じて限外ろ過膜(UF膜)処理、逆浸透膜(RO膜)処理、イオン交換処理等を実施したのち、回収、再利用されてもよい。 A part of the dilute attractant solution used in the forward osmosis membrane treatment step is branched from the dilute attractant solution pipe 28, sent to the concentrator 16 through the dilute attractant solution pipe 32, and concentrated in the concentrator 16 (No. 1). 2 Concentration treatment step). The concentrated attracting solution obtained by the second concentration treatment is supplied to the middle of the attracting solution pipe 26 through the concentrated attracting solution pipe 34, and is used again as the attracting solution in the forward osmosis membrane treatment apparatus 14. The diluent obtained by the second concentration treatment is discharged through the diluent pipe 36. The diluted solution may be recovered and reused after undergoing ultrafiltration membrane (UF membrane) treatment, reverse osmosis membrane (RO membrane) treatment, ion exchange treatment and the like, if necessary.

前処理装置10が溶解性シリカ除去を行う装置を含む場合、例えば、正浸透膜処理装置14における誘引溶液として、マグネシウム塩水溶液が用いられ、正浸透膜処理装置14で使用された希薄誘引溶液(マグネシウム塩希薄水溶液)の一部は、前処理装置10において添加されるマグネシウム塩として使用されればよい。また、正浸透膜処理装置14で使用された希薄誘引溶液(マグネシウム塩希薄水溶液)の一部は、濃縮装置16において濃縮処理され、正浸透膜処理装置14における誘引溶液として再度使用されればよい。 When the pretreatment apparatus 10 includes an apparatus for removing soluble silica, for example, a magnesium salt aqueous solution is used as the attractant solution in the forward osmosis membrane treatment apparatus 14, and the dilute attractant solution used in the forward osmosis membrane treatment apparatus 14 ( A part of the magnesium salt dilute aqueous solution) may be used as the magnesium salt added in the pretreatment apparatus 10. Further, a part of the dilute attractant solution (magnesium salt dilute aqueous solution) used in the forward osmosis membrane treatment device 14 may be concentrated in the concentration device 16 and used again as the attractant solution in the forward osmosis membrane treatment device 14. ..

前処理装置10が石灰軟化法により硬度成分の除去を行う装置を含む場合、例えば、正浸透膜処理装置14における誘引溶液として、アルカリ剤水溶液が用いられ、正浸透膜処理装置14で使用された希薄誘引溶液(アルカリ剤希薄水溶液)の一部は、前処理装置10において添加されるアルカリ剤として使用されればよい。また、正浸透膜処理装置14で使用された希薄誘引溶液(アルカリ剤希薄水溶液)の一部は、濃縮装置16において濃縮処理され、正浸透膜処理装置14における誘引溶液として再度使用されればよい。 When the pretreatment device 10 includes a device that removes a hardness component by a lime softening method, for example, an alkaline agent aqueous solution is used as an attracting solution in the forward osmosis membrane treatment device 14, and is used in the forward osmosis membrane treatment device 14. A part of the dilute attractant solution (dilute aqueous solution of alkaline agent) may be used as an alkaline agent added in the pretreatment apparatus 10. Further, a part of the dilute attractant solution (alkaline agent dilute aqueous solution) used in the forward osmosis membrane treatment apparatus 14 may be concentrated in the concentrator 16 and used again as the attractant solution in the forward osmosis membrane treatment apparatus 14. ..

前処理装置10が樹脂軟化法により硬度成分の除去を行う装置を含む場合、例えば、正浸透膜処理装置14における誘引溶液として、酸水溶液または塩化ナトリウム水溶液が用いられ、正浸透膜処理装置14で使用された希薄誘引溶液(酸希薄水溶液または塩化ナトリウム希薄水溶液)の一部は、前処理装置10においてイオン交換樹脂の再生剤として使用されればよい。また、正浸透膜処理装置14で使用された希薄誘引溶液(酸希薄水溶液または塩化ナトリウム希薄水溶液)の一部は、濃縮装置16において濃縮処理され、正浸透膜処理装置14における誘引溶液として再度使用されればよい。 When the pretreatment apparatus 10 includes an apparatus for removing a hardness component by a resin softening method, for example, an acid aqueous solution or a sodium chloride aqueous solution is used as an attracting solution in the forward osmosis membrane treatment apparatus 14, and the forward osmosis membrane treatment apparatus 14 is used. A part of the dilute attractant solution (diluted acid aqueous solution or dilute aqueous solution of sodium chloride) used may be used as a regenerating agent for the ion exchange resin in the pretreatment apparatus 10. Further, a part of the dilute attractant solution (acid dilute aqueous solution or sodium chloride dilute aqueous solution) used in the forward osmosis membrane treatment apparatus 14 is concentrated in the concentrator 16 and used again as the attractant solution in the forward osmosis membrane treatment apparatus 14. It should be done.

本実施形態に係る水処理方法および水処理装置により、溶解性シリカおよび硬度成分のうち少なくとも1つを含む被処理水を低コストで処理することができる。 According to the water treatment method and the water treatment apparatus according to the present embodiment, the water to be treated containing at least one of the soluble silica and the hardness component can be treated at low cost.

正浸透膜処理で希釈された希薄誘引溶液が前処理工程で使用されることで、本来必要であった誘引溶液の再利用に必要なコストが削減され、また、再生設備を備えなくてもよい。希薄誘引溶液は前処理工程で本来使用するものが希釈されているだけなので、追加のコストがほとんど発生しない。 By using the dilute attractant solution diluted by the forward osmosis membrane treatment in the pretreatment step, the cost required for reusing the attractant solution, which was originally required, can be reduced, and it is not necessary to provide a regeneration facility. .. The dilute attractant solution is only diluted from what is originally used in the pretreatment step, so there is almost no additional cost.

正浸透膜処理で希釈された希薄誘引溶液が前処理工程で使用するのに必要な量よりも多くなった場合、正浸透膜処理で使用した希薄誘引溶液の一部を前処理工程で使用し、前処理工程で使用しなかった希薄誘引溶液の一部を濃縮し、誘引溶液として正浸透膜処理工程で再度使用することにより、希薄誘引溶液のロスを少なくすることができる。このとき濃縮する希薄誘引溶液は一部であるため、希薄誘引溶液の全量を濃縮して再利用するよりも、コストが著しく低下する。 If the dilute attractant solution diluted in the forward osmosis membrane treatment is greater than the amount required for use in the pretreatment step, a portion of the dilute attractant solution used in the forward osmosis membrane treatment is used in the pretreatment step. By concentrating a part of the dilute attractant solution that was not used in the pretreatment step and reusing it as the attractant solution in the forward osmosis membrane treatment step, the loss of the dilute attractant solution can be reduced. Since the dilute attractant solution to be concentrated at this time is a part, the cost is significantly lower than that of concentrating and reusing the entire amount of the dilute attractant solution.

本実施形態に係る水処理方法および水処理装置の処理対象となる被処理水は、溶解性シリカおよび硬度成分のうち少なくとも1つを含む水であればよく、特に制限はないが、例えば、工業用水、表層水、水道水、地下水、海水、海水を逆浸透法もしくは蒸発法によって脱塩した海水淡水化処理水、各種排水、例えば半導体製造工程で排出される排水等が挙げられる。 The water to be treated by the water treatment method and the water treatment apparatus according to the present embodiment may be water containing at least one of soluble silica and a hardness component, and is not particularly limited. Examples thereof include irrigation water, surface water, tap water, groundwater, seawater, seawater desalted treated water obtained by desalting seawater by a back-penetration method or an evaporation method, and various types of wastewater, such as wastewater discharged in a semiconductor manufacturing process.

被処理水中に溶解性シリカが含まれる場合、溶解性シリカの濃度は、例えば、5〜400mg/Lの範囲である。被処理水中に硬度成分が含まれる場合、カルシウム硬度成分の濃度は、5〜600mg/Lの範囲である。被処理水中の全蒸発残留物(TDS:Total Dissolved Solid)は、例えば、100〜50000mg/Lの範囲である。 When soluble silica is contained in the water to be treated, the concentration of soluble silica is, for example, in the range of 5 to 400 mg / L. When the water to be treated contains a hardness component, the concentration of the calcium hardness component is in the range of 5 to 600 mg / L. Total evaporation residue (TDS: Total Dissolved Solids) in the water to be treated is, for example, in the range of 100 to 50,000 mg / L.

本実施形態に係る水処理方法および水処理装置において、被処理水が溶解性シリカおよび硬度成分の両者を含む場合は、前処理手段(前処理工程)は、溶解性シリカ除去手段(溶解性シリカ除去工程)および硬度成分除去手段(硬度成分除去工程)の両者を備えてもよい。溶解性シリカ除去手段(溶解性シリカ除去工程)および硬度成分除去手段(硬度成分除去工程)の順序は、第1に溶解性シリカ除去手段(溶解性シリカ除去工程)、第2に硬度成分除去手段(硬度成分除去工程)であっても、第1に硬度成分除去手段(硬度成分除去工程)、第2に溶解性シリカ除去手段(溶解性シリカ除去工程)であってもよい。 In the water treatment method and the water treatment apparatus according to the present embodiment, when the water to be treated contains both soluble silica and a hardness component, the pretreatment means (pretreatment step) is a soluble silica removing means (soluble silica). Both a removal step) and a hardness component removing means (hardness component removing step) may be provided. The order of the soluble silica removing means (soluble silica removing step) and the hardness component removing means (hardness component removing step) is as follows: first, the soluble silica removing means (soluble silica removing step), and second, the hardness component removing means. The (hardness component removing step) may be first, a hardness component removing means (hardness component removing step), and secondly, a soluble silica removing means (soluble silica removing step).

この場合、正浸透膜処理装置14(正浸透膜処理工程)における誘引溶液として、マグネシウム塩水溶液、アルカリ剤水溶液、酸水溶液および塩化ナトリウム水溶液のうち少なくとも1つが用いられ、正浸透膜処理装置14で使用された希薄誘引溶液(マグネシウム塩希薄水溶液、アルカリ剤希薄水溶液、酸希薄水溶液および塩化ナトリウム希薄水溶液のうち少なくとも1つ)が、前処理装置10(前処理工程)の溶解性シリカ除去手段(溶解性シリカ除去工程)および硬度成分除去手段(硬度成分除去工程)のうち適した方において使用されればよい。 In this case, at least one of a magnesium salt aqueous solution, an alkaline agent aqueous solution, an acid aqueous solution and a sodium chloride aqueous solution is used as the attracting solution in the normal osmotic membrane treatment apparatus 14 (normal osmotic membrane treatment step). The dilute attracting solution used (at least one of a magnesium salt dilute aqueous solution, an alkaline agent dilute aqueous solution, an acid dilute aqueous solution and a sodium chloride dilute aqueous solution) is a soluble silica removing means (dissolving) of the pretreatment apparatus 10 (pretreatment step). It may be used in whichever of the sex silica removing step) and the hardness component removing means (hardness component removing step) is suitable.

本実施形態に係る水処理方法および水処理装置において、被処理水中の濁質成分等を除去する濁質除去手段をさらに備えてもよい。濁質除去手段としては、例えば、砂ろ過装置、限外ろ過(UF)膜等の膜ろ過装置、加圧浮上装置等が挙げられる。濁質除去手段の設置位置は、特に制限はないが、濁質除去手段が砂ろ過装置の場合、例えば、前処理装置10(前処理工程)の前段であり、濁質除去手段が膜ろ過装置や加圧浮上装置の場合、例えば、前処理装置10(前処理工程)と逆浸透膜処理装置12(第1濃縮処理工程)との間である。 The water treatment method and the water treatment apparatus according to the present embodiment may further include turbidity removing means for removing turbidity components and the like in the water to be treated. Examples of the turbidity removing means include a sand filtration device, a membrane filtration device such as an ultrafiltration (UF) membrane, and a pressure levitation device. The installation position of the turbidity removing means is not particularly limited, but when the turbidity removing means is a sand filtration device, for example, it is a pre-stage of the pretreatment device 10 (pretreatment step), and the turbidity removing means is a membrane filtration device. In the case of a pressure levitation device, for example, it is between the pretreatment device 10 (pretreatment step) and the reverse osmosis membrane treatment device 12 (first concentration treatment step).

[前処理工程:溶解性シリカ除去]
被処理水が溶解性シリカを含む場合の前処理工程において、例えば、アルカリ条件下で被処理水にマグネシウム塩が添加され、溶解性シリカが不溶化される(マグネシウム反応工程)。
[Pretreatment step: Removal of soluble silica]
In the pretreatment step when the water to be treated contains soluble silica, for example, a magnesium salt is added to the water to be treated under alkaline conditions to insolubilize the soluble silica (magnesium reaction step).

用いられるマグネシウム塩としては、塩化マグネシウム(MgCl)、硫酸マグネシウム(MgSO)等のマグネシウム塩またはその水和物であればよく、特に制限はないが、硫酸塩添加による難溶解性物質生成を抑制する等の観点から、塩化マグネシウムが好ましい。 The magnesium salt used may be a magnesium salt such as magnesium chloride (MgCl 2 ) or magnesium sulfate (sulfonyl 4 ) or a hydrate thereof, and is not particularly limited, but the production of a sparingly soluble substance by the addition of the sulfate is performed. Magnesium chloride is preferable from the viewpoint of suppression and the like.

マグネシウム反応工程におけるpHはアルカリ条件であればよく、特に制限はないが、例えば、pH10〜12の範囲であり、10.5〜11.5の範囲であることが好ましく、11〜11.5の範囲であることがより好ましい。マグネシウム反応工程におけるpHが10未満、または12を超えると、シリカ除去率が低くなる場合がある。 The pH in the magnesium reaction step may be alkaline, and is not particularly limited. For example, the pH is in the range of 10 to 12, preferably in the range of 10.5 to 11.5, and is in the range of 11 to 11.5. More preferably, it is in the range. If the pH in the magnesium reaction step is less than 10 or more than 12, the silica removal rate may be low.

pH調整剤としては、水酸化ナトリウム、水酸化カルシウム等のアルカリを用いればよく、必要に応じて塩酸、硫酸等の無機酸を用いてもよい。 As the pH adjuster, an alkali such as sodium hydroxide or calcium hydroxide may be used, and if necessary, an inorganic acid such as hydrochloric acid or sulfuric acid may be used.

マグネシウム反応工程における温度は、シリカの不溶化反応が進行する温度であればよく、特に制限はないが、例えば、1℃〜50℃未満の範囲であり、10℃〜50℃未満の範囲であることがより好ましい。マグネシウム反応工程における温度が1℃未満であると、シリカの不溶化反応が不十分となる場合があり、50℃以上であると、処理コストが高くなる場合がある。 The temperature in the magnesium reaction step may be any temperature as long as the insolubilization reaction of silica proceeds, and is not particularly limited, but is, for example, in the range of 1 ° C. to less than 50 ° C. and in the range of 10 ° C. to less than 50 ° C. Is more preferable. If the temperature in the magnesium reaction step is less than 1 ° C., the insolubilization reaction of silica may be insufficient, and if it is 50 ° C. or higher, the treatment cost may be high.

マグネシウム反応工程における反応時間は、シリカの不溶化反応が進行することができればよく、特に制限はないが、例えば、1分〜60分の範囲であり、5分〜30分の範囲であることがより好ましい。マグネシウム反応工程における反応時間が1分未満であると、シリカの不溶化反応が不十分となる場合があり、60分を超えると、反応槽が過大になる場合がある。 The reaction time in the magnesium reaction step is not particularly limited as long as the insolubilization reaction of silica can proceed, but is, for example, in the range of 1 minute to 60 minutes, and more preferably in the range of 5 minutes to 30 minutes. preferable. If the reaction time in the magnesium reaction step is less than 1 minute, the insolubilization reaction of silica may be insufficient, and if it exceeds 60 minutes, the reaction vessel may become excessive.

マグネシウム塩の添加量は、被処理水中のシリカの重量濃度に対して、マグネシウム濃度として0.1〜10倍量の範囲であることが好ましく、0.5〜5倍量の範囲であることがより好ましい。マグネシウム塩の添加量が被処理水中のシリカの重量濃度に対して0.1倍量未満であると、シリカの不溶化反応が不十分となる場合があり、10倍量を超えると、汚泥発生量が過剰になってしまう場合がある。 The amount of the magnesium salt added is preferably in the range of 0.1 to 10 times the magnesium concentration, preferably 0.5 to 5 times the weight concentration of silica in the water to be treated. More preferred. If the amount of magnesium salt added is less than 0.1 times the weight concentration of silica in the water to be treated, the insolubilization reaction of silica may be insufficient, and if it exceeds 10 times, the amount of sludge generated. May become excessive.

溶解性シリカを不溶化させるために、マグネシウム塩の他に、ポリ塩化アルミニウム(PAC)、硫酸アルミニウム等のアルミニウム塩、塩化第二鉄、硫酸第二鉄等の鉄塩等が用いられてもよい。シリカ除去率等の点から、マグネシウム塩を用いることが好ましい。 In addition to the magnesium salt, an aluminum salt such as polyaluminum chloride (PAC) and aluminum sulfate, an iron salt such as ferric chloride and ferric sulfate may be used in order to insolubilize the soluble silica. It is preferable to use a magnesium salt from the viewpoint of silica removal rate and the like.

凝集処理工程では、例えば、凝集槽において、無機凝集剤が、マグネシウム反応後の被処理水に添加され、不溶化物が凝集される(凝集工程)。その後、フロック形成槽において、高分子凝集剤が、添加され、フロックが形成される(フロック形成工程)。 In the coagulation treatment step, for example, in a coagulation tank, an inorganic coagulant is added to the water to be treated after the magnesium reaction, and the insoluble matter is agglomerated (coagulation step). Then, in the floc forming tank, a polymer flocculant is added to form flocs (flock forming step).

凝集工程で用いられる無機凝集剤としては、塩化鉄等の鉄系無機凝集剤、ポリ塩化アルミニウム(PAC)等のアルミニウム系無機凝集剤等が挙げられ、薬品コストおよび凝集pH範囲等の点から、鉄系無機凝集剤が好ましい。 Examples of the inorganic aggregating agent used in the aggregating step include iron-based inorganic aggregating agents such as iron chloride and aluminum-based inorganic aggregating agents such as polyaluminum chloride (PAC). An iron-based inorganic flocculant is preferable.

無機凝集剤の添加量は、添加したマグネシウム塩の量に対して重量比で0.1〜10倍量の範囲であることが好ましく、1〜5倍量の範囲であることがより好ましい。無機凝集剤の添加量が添加したマグネシウム塩の量に対して重量比で0.1倍量未満であると、凝集が不十分となる場合があり、10倍量を超えると、汚泥発生量が過剰になる場合がある。 The amount of the inorganic flocculant added is preferably in the range of 0.1 to 10 times by weight, more preferably 1 to 5 times the amount of the added magnesium salt. If the amount of the inorganic flocculant added is less than 0.1 times the amount of the added magnesium salt by weight, the agglutination may be insufficient, and if it exceeds 10 times, the amount of sludge generated may increase. It may be excessive.

凝集工程におけるpHは、例えば、3〜11の範囲である。凝集工程におけるpHが3未満、または11を超えると、凝集不良を生じる場合がある。さらに、凝集工程におけるpHが9未満となると、フロックからシリカが溶け出してしまうことがあることから、pH9〜11の範囲で凝集工程を行うことが望ましい。 The pH in the aggregation step is, for example, in the range of 3-11. If the pH in the agglutination step is less than 3 or more than 11, agglutination failure may occur. Further, if the pH in the aggregation step is less than 9, silica may dissolve out from the flocs, so it is desirable to perform the aggregation step in the range of pH 9 to 11.

凝集工程における温度は、例えば、1℃〜80℃の範囲である。凝集工程における温度が1℃未満、または80℃を超えると、凝集不良を生じる場合がある。 The temperature in the agglomeration step is, for example, in the range of 1 ° C. to 80 ° C. If the temperature in the agglutination step is less than 1 ° C. or exceeds 80 ° C., poor agglutination may occur.

フロック形成工程で用いられる高分子凝集剤としては、ポリアクリルアミド系、ポリアクリル酸エステル系等のカチオン系高分子凝集剤、アニオン系高分子凝集剤、ノニオン系高分子凝集剤等が挙げられ、凝集性等の点から、アニオン系高分子凝集剤が好ましい。 Examples of the polymer flocculant used in the floc forming step include cationic polymer flocculants such as polyacrylamide and polyacrylic acid ester, anionic polymer flocculants, and nonionic polymer flocculants. An anionic polymer flocculant is preferable from the viewpoint of properties and the like.

市販の高分子凝集剤としては、オルフロックOA−3H(オルガノ株式会社製)等のアニオン系高分子凝集剤が挙げられる。 Examples of commercially available polymer flocculants include anionic polymer flocculants such as Orfflock OA-3H (manufactured by Organo Corporation).

高分子凝集剤の添加量は、原水の水量に対して0.1〜10mg/Lの範囲であることが好ましく、1〜5mg/Lの範囲であることがより好ましい。高分子凝集剤の添加量が原水の水量に対して0.1mg/L未満であると、フロック形成が向上しない場合があり、10mg/Lを超えると、処理水中に溶存の高分子凝集剤が残留してしまう場合がある。 The amount of the polymer flocculant added is preferably in the range of 0.1 to 10 mg / L, more preferably in the range of 1 to 5 mg / L with respect to the amount of raw water. If the amount of the polymer flocculant added is less than 0.1 mg / L with respect to the amount of raw water, floc formation may not be improved, and if it exceeds 10 mg / L, the polymer flocculant dissolved in the treated water may be present. It may remain.

フロック形成工程におけるpHは、例えば、3〜11の範囲である。フロック形成工程におけるpHが3未満、または11を超えると、凝集不良を生じる場合がある。さらに、フロック工程におけるpHが9未満となると、フロックからシリカが溶け出してしまうことがあることから、pH9〜11の範囲でフロック形成工程を行うことが望ましい。 The pH in the floc forming step is, for example, in the range of 3-11. If the pH in the floc forming step is less than 3 or more than 11, agglutination failure may occur. Further, if the pH in the flock step is less than 9, silica may be dissolved from the flock. Therefore, it is desirable to carry out the flock forming step in the range of pH 9 to 11.

フロック形成工程における温度は、例えば、1℃〜80℃の範囲である。フロック形成工程における温度が1℃未満、または80℃を超えると、凝集不良を生じる場合がある。 The temperature in the floc forming step is, for example, in the range of 1 ° C. to 80 ° C. If the temperature in the floc forming step is less than 1 ° C. or exceeds 80 ° C., poor aggregation may occur.

上記凝集処理では、凝集工程およびフロック形成工程として、無機凝集剤および高分子凝集剤を用いているが、無機凝集剤、高分子凝集剤等のうちの少なくとも1つを用いればよく、鉄系無機凝集剤およびアニオン系高分子凝集剤のうちの少なくとも1つを用いることが好ましい。マグネシウム塩と反応し不溶化されたシリカを凝集させる際、鉄系無機凝集剤およびアニオン系高分子凝集剤のうちの少なくとも1つを用いることで、凝集性および固液分離性が向上する。 In the above coagulation treatment, an inorganic coagulant and a polymer coagulant are used as the coagulation step and the floc forming step, but at least one of the inorganic coagulant, the polymer coagulant and the like may be used, and iron-based inorganic. It is preferable to use at least one of a flocculant and an anionic polymer flocculant. When at least one of an iron-based inorganic flocculant and an anionic polymer flocculant is used when agglomerating insolubilized silica by reacting with a magnesium salt, cohesiveness and solid-liquid separability are improved.

固液分離工程では、例えば、沈殿槽において、フロック形成された凝集物が固液分離される(固液分離工程)。固液分離で得られた前処理水は、逆浸透膜処理装置12へ送液される。一方、汚泥は、汚泥配管を通して排出される。汚泥は、回収、再利用されてもよい。 In the solid-liquid separation step, for example, in a settling tank, floc-formed agglomerates are solid-liquid separated (solid-liquid separation step). The pretreated water obtained by solid-liquid separation is sent to the reverse osmosis membrane treatment device 12. On the other hand, sludge is discharged through sludge piping. Sludge may be collected and reused.

固液分離工程における固液分離としては、自然沈降による沈降分離の他に、加圧浮上処理、膜ろ過処理等が挙げられ、分離性等の点から、沈降分離が好ましい。 Examples of the solid-liquid separation in the solid-liquid separation step include settling separation by natural sedimentation, pressure flotation treatment, membrane filtration treatment, and the like, and sedimentation separation is preferable from the viewpoint of separability and the like.

[前処理工程:石灰軟化法による硬度成分除去]
被処理水が硬度成分を含む場合、石灰軟化法により硬度成分を除去すればよい。硬度成分は一次硬度と永久硬度とに分類され、一次硬度は水酸化ナトリウム(NaOH)等のアルカリ剤によって、永久硬度は炭酸ナトリウム(NaCO)等の炭酸塩の添加によって除去される。本明細書では便宜上、炭酸塩もアルカリ剤として記載する。すなわち、前処理工程において、被処理水にアルカリ剤が添加され、硬度成分が不溶化される(アルカリ剤反応工程)。
[Pretreatment process: Removal of hardness components by lime softening method]
When the water to be treated contains a hardness component, the hardness component may be removed by a lime softening method. The hardness components are classified into primary hardness and permanent hardness. The primary hardness is removed by an alkaline agent such as sodium hydroxide (NaOH), and the permanent hardness is removed by the addition of a carbonate such as sodium carbonate (NaCO 3). For convenience, carbonates are also described herein as alkaline agents. That is, in the pretreatment step, an alkaline agent is added to the water to be treated to insolubilize the hardness component (alkaline agent reaction step).

用いられるアルカリ剤としては、例えば、水酸化カルシウム(Ca(OH))、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、炭酸水素カルシウム(Ca(HCO)、炭酸水素マグネシウム(Mg(HCO)、炭酸ナトリウム(NaCO)、炭酸カリウム(KCO)等が挙げられ、これらのうち一つ以上を用いることができる。すなわち、必要に応じて水酸化ナトリウムと炭酸ナトリウムをそれぞれ添加することも可能である。不溶化効率等の観点から炭酸ナトリウムが好ましい。 Examples of the alkaline agent used include calcium hydroxide (Ca (OH) 2 ), sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydrogen carbonate (Ca (HCO 3 ) 2 ), magnesium hydrogen carbonate (). Mg (HCO 3 ) 2 ), sodium carbonate (Na 2 CO 3 ), potassium carbonate (K 2 CO 3 ) and the like can be mentioned, and one or more of these can be used. That is, it is also possible to add sodium hydroxide and sodium carbonate, respectively, as needed. Sodium carbonate is preferable from the viewpoint of insolubilization efficiency and the like.

アルカリ剤反応工程におけるpHはアルカリ条件であればよく、特に制限はないが、例えば、pH9〜13の範囲であり、11〜12の範囲であることが好ましい。アルカリ剤反応工程におけるpHが9未満であると、硬度成分除去率が低くなり、13を超えると、アルカリ剤の添加量が多くなる場合がある。 The pH in the alkaline agent reaction step may be an alkaline condition and is not particularly limited, but is preferably in the range of pH 9 to 13, preferably in the range of 11 to 12. If the pH in the alkaline agent reaction step is less than 9, the hardness component removal rate is low, and if it exceeds 13, the amount of the alkaline agent added may be large.

アルカリ剤反応工程における温度は、硬度成分の不溶化反応が進行する温度であればよく、特に制限はないが、例えば、1℃〜80℃の範囲である。アルカリ剤反応工程における温度が1℃未満であると、硬度成分の不溶化反応が不十分となる場合があり、80℃を超えると、設備の耐熱温度が問題となる場合がある。 The temperature in the alkaline agent reaction step may be any temperature as long as the insolubilization reaction of the hardness component proceeds, and is not particularly limited, but is, for example, in the range of 1 ° C. to 80 ° C. If the temperature in the alkaline agent reaction step is less than 1 ° C., the insolubilization reaction of the hardness component may be insufficient, and if it exceeds 80 ° C., the heat resistant temperature of the equipment may become a problem.

アルカリ剤反応工程における反応時間は、硬度成分の不溶化反応が進行することができればよく、特に制限はないが、例えば、10分〜30分の範囲である。アルカリ剤反応工程における反応時間が10分未満であると、硬度成分の不溶化反応が不十分となる場合があり、30分を超えると、反応槽が大きくなって設備コストが高くなる場合がある。 The reaction time in the alkaline agent reaction step is not particularly limited as long as the insolubilization reaction of the hardness component can proceed, but is, for example, in the range of 10 minutes to 30 minutes. If the reaction time in the alkaline agent reaction step is less than 10 minutes, the insolubilization reaction of the hardness component may be insufficient, and if it exceeds 30 minutes, the reaction vessel may become large and the equipment cost may increase.

アルカリ剤の添加量は、被処理水中の硬度成分のモル濃度に対して、1.0〜2.0倍量の範囲であることが好ましく、1.0〜1.2倍量の範囲であることがより好ましい。アルカリ剤の添加量が被処理水中の硬度成分のモル濃度に対して1.0倍量未満であると、硬度成分の不溶化反応が不十分となる場合があり、2.0倍量を超えると、薬品コストが高くなる場合がある。 The amount of the alkaline agent added is preferably in the range of 1.0 to 2.0 times, preferably 1.0 to 1.2 times the molar concentration of the hardness component in the water to be treated. Is more preferable. If the amount of the alkaline agent added is less than 1.0 times the molar concentration of the hardness component in the water to be treated, the insolubilization reaction of the hardness component may be insufficient, and if it exceeds 2.0 times the amount. , Chemical costs may be high.

以降の凝集処理工程および固液分離工程は、上記前処理工程(マグネシウム塩によるシリカ除去)と同様である。固液分離で得られた前処理水は、逆浸透膜処理装置12へ送液される。 Subsequent agglomeration treatment step and solid-liquid separation step are the same as the above pretreatment step (silica removal with magnesium salt). The pretreated water obtained by solid-liquid separation is sent to the reverse osmosis membrane treatment device 12.

[前処理工程:樹脂軟化法による硬度成分除去]
被処理水が硬度成分を含む場合の樹脂軟化法による前処理工程において、例えば、イオン交換樹脂が充填されたイオン交換塔に被処理水が通液され、硬度成分が吸着除去される(イオン交換工程)。イオン交換処理で得られた前処理水は、逆浸透膜処理装置12へ送液される。
[Pretreatment process: Removal of hardness components by resin softening method]
In the pretreatment step by the resin softening method when the water to be treated contains a hardness component, for example, the water to be treated is passed through an ion exchange tower filled with an ion exchange resin, and the hardness component is adsorbed and removed (ion exchange). Process). The pretreated water obtained by the ion exchange treatment is sent to the reverse osmosis membrane treatment device 12.

イオン交換工程で用いられるイオン交換樹脂は、陽イオン交換樹脂であり、例えば、Amberrex100Na、IRC−76(オルガノ株式会社製)等が挙げられる。 The ion exchange resin used in the ion exchange step is a cation exchange resin, and examples thereof include Amberlex 100Na and IRC-76 (manufactured by Organo Corporation).

イオン交換樹脂の再生が必要になった場合は、再生剤が通液されることによりイオン交換樹脂が再生される。 When it becomes necessary to regenerate the ion exchange resin, the ion exchange resin is regenerated by passing a regenerating agent through the liquid.

用いられる再生剤としては、塩酸、硫酸、硝酸等の酸水溶液、塩化ナトリウム水溶液、塩化カリウム水溶液等が挙げられ、これらのうち一つ以上を用いることができる。すなわち、必要に応じて酸水溶液で再生をしたのちに、塩化ナトリウム水溶液で追加再生をすることも可能である。誘引溶液の再利用等の観点から、酸水溶液、塩化ナトリウム水溶液が好ましい。酸水溶液で再生されれば、イオン交換樹脂はH形となり、塩化ナトリウム水溶液で再生されれば、イオン交換樹脂はNa形となる。 Examples of the regenerating agent used include acid aqueous solutions such as hydrochloric acid, sulfuric acid and nitric acid, sodium chloride aqueous solutions, potassium chloride aqueous solutions and the like, and one or more of these can be used. That is, it is also possible to regenerate with an aqueous acid solution and then additionally regenerate with an aqueous sodium chloride solution, if necessary. From the viewpoint of reusing the attractant solution, an acid aqueous solution and a sodium chloride aqueous solution are preferable. When regenerated with an aqueous acid solution, the ion exchange resin becomes H-type, and when regenerated with an aqueous sodium chloride solution, the ion exchange resin becomes Na-type.

[第1濃縮処理工程]
第1濃縮処理手段としては、前処理水を濃縮することができるものであればよく、特に制限はないが、逆浸透膜処理装置の他に、ナノろ過膜等を用いる膜ろ過装置、蒸留装置、電気透析装置等のうち一つ以上を用いることができる。すなわち、必要に応じて逆浸透膜処理装置によって得られた濃縮水を電気透析処理によってさらに濃縮してもよいし、第1の逆浸透処理によって得られた濃縮水を第2の逆浸透処理によってさらに濃縮してもよい。前処理水中のTDSが低い場合に効率的に処理することができる等の点から、逆浸透膜処理装置が好ましい。
[First concentration treatment step]
The first concentration treatment means may be any one capable of concentrating the pretreated water, and is not particularly limited, but in addition to the reverse osmosis membrane treatment device, a membrane filtration device using a nanofiltration membrane or the like, and a distillation device. , One or more of electrodialysis devices and the like can be used. That is, if necessary, the concentrated water obtained by the reverse osmosis membrane treatment apparatus may be further concentrated by the electrodialysis treatment, or the concentrated water obtained by the first reverse osmosis treatment may be further concentrated by the second reverse osmosis treatment. It may be further concentrated. A reverse osmosis membrane treatment apparatus is preferable because it can be efficiently treated when the TDS in the pretreatment water is low.

逆浸透膜処理装置で使用される逆浸透膜としては、純水製造用途や排水回収等の用途に使用される超低圧逆浸透膜、低圧逆浸透膜の他に、海水淡水化等の用途に使用される中圧逆浸透膜や高圧逆浸透膜等が挙げられる。超低圧逆浸透膜、低圧逆浸透膜としては、例えば、ES15(日東電工製)、TM720D(東レ製)、BW30HRLE(ダウケミカル製)、LFC3−LD(Hydranautics製)が挙げられる。高圧逆浸透膜としては、例えば、SWC5−LD(Hydranautics製)、TM820V(東レ製)、XUS180808(ダウケミカル製)が挙げられる。 Reverse osmosis membranes used in reverse osmosis membrane treatment equipment include ultra-low pressure reverse osmosis membranes and low pressure reverse osmosis membranes used for pure water production and wastewater recovery, as well as for seawater desalination. Examples thereof include medium-pressure reverse osmosis membranes and high-pressure reverse osmosis membranes used. Examples of the ultra-low pressure reverse osmosis membrane and the low pressure reverse osmosis membrane include ES15 (manufactured by Nitto Denko), TM720D (manufactured by Toray), BW30HRLE (manufactured by Dow Chemical), and LFC3-LD (manufactured by Hydranatics). Examples of the high-pressure reverse osmosis membrane include SWC5-LD (manufactured by Hydranatics), TM820V (manufactured by Toray), and XUS180808 (manufactured by Dow Chemical).

第1濃縮処理工程において、pH調整剤や、系内での無機塩のスケーリングを抑制するスケール分散剤、系内での微生物発生を抑制する殺菌剤等の薬品を添加してもよい。 In the first concentration treatment step, chemicals such as a pH adjuster, a scale dispersant that suppresses scaling of inorganic salts in the system, and a fungicide that suppresses the generation of microorganisms in the system may be added.

[正浸透膜処理工程]
正浸透膜処理工程で用いられる正浸透膜の形状としては、特に制限はないが、例えば、中空糸膜、スパイラル膜、チューブラ膜、プレートアンドフレーム構造の膜等を使用することができる。正浸透膜の膜材質としては、芳香族ポリアミド系、酢酸セルロース系等が挙げられる。また、分離膜の基材に、機能性たんぱく質や無機材料等を組み込んで分離性能や透水性等を付与した膜を用いることも可能である。正浸透膜としては、例えば、HP5230(東洋紡製)、HFFO2(アクアポリン製)、OsmoF2O(Fruid Technology Solutions製)が挙げられる。これら正浸透膜は、単段で使用してもよいし、複数段を直列に接続して使用してもよい。すなわち、第1の正浸透膜処理によって得られたFO濃縮水を第2の正浸透膜処理によってさらに濃縮してもよい。
[Forward osmosis membrane treatment process]
The shape of the forward osmosis membrane used in the forward osmosis membrane treatment step is not particularly limited, and for example, a hollow fiber membrane, a spiral membrane, a tubular membrane, a membrane having a plate-and-frame structure, or the like can be used. Examples of the membrane material of the forward osmosis membrane include aromatic polyamide type and cellulose acetate type. It is also possible to use a membrane in which a functional protein, an inorganic material, or the like is incorporated into the base material of the separation membrane to impart separation performance, water permeability, and the like. Examples of the forward osmotic membrane include HP5230 (manufactured by Toyobo), HFFO2 (manufactured by Aquaporin), and OsmoF2O (manufactured by Fruid Technology Solutions). These forward osmosis membranes may be used in a single stage or may be used by connecting a plurality of stages in series. That is, the FO concentrated water obtained by the first forward osmosis membrane treatment may be further concentrated by the second forward osmosis membrane treatment.

正浸透膜処理工程で用いられる誘引溶液としては、上記の通り、マグネシウム塩水溶液、アルカリ剤水溶液、酸水溶液、塩化ナトリウム水溶液等が挙げられる。また、上記以外にも、本水処理装置で使用する薬品であれば制限なく使用することができる。すなわち、凝集処理工程で使用される各種凝集剤や、濃縮処理工程で使用されるスケール分散剤や殺菌剤等を、誘引溶液として用いることも可能である。 As described above, examples of the attracting solution used in the forward osmosis membrane treatment step include a magnesium salt aqueous solution, an alkaline agent aqueous solution, an acid aqueous solution, and a sodium chloride aqueous solution. In addition to the above, any chemical used in this water treatment device can be used without limitation. That is, it is also possible to use various coagulants used in the coagulation treatment step, a scale dispersant, a bactericidal agent, etc. used in the concentration treatment step as the attracting solution.

正浸透膜処理工程において複数段の正浸透膜処理を行う場合、上記誘引溶液を組み合わせて用いてもよい。例えば、第1の正浸透膜処理工程の誘引溶液として塩化ナトリウム水溶液を用い、第2の正浸透膜処理工程の誘引溶液としてマグネシウム塩水溶液を用いる。また、例えば、第1の正浸透膜処理工程によって得られた希薄塩化ナトリウム溶液は、軟化樹脂の再生液として、第2の正浸透膜処理工程によって得られた希薄マグネシウム塩溶液は、溶解性シリカ除去工程のマグネシウム源として使用することができる。 When performing a plurality of stages of forward osmosis membrane treatment in the forward osmosis membrane treatment step, the above-mentioned attractant solutions may be used in combination. For example, an aqueous sodium chloride solution is used as the attractant solution for the first forward osmosis membrane treatment step, and an aqueous magnesium salt solution is used as the attractant solution for the second forward osmosis membrane treatment step. Further, for example, the dilute sodium chloride solution obtained in the first forward osmosis membrane treatment step is used as a regenerating solution for the softened resin, and the dilute magnesium salt solution obtained in the second forward osmosis membrane treatment step is soluble silica. It can be used as a magnesium source in the removal process.

[第2濃縮処理工程]
第2濃縮処理手段としては、正浸透膜処理工程で使用された希薄誘引溶液を濃縮することができるものであればよく、特に制限はないが、ナノろ過膜処理装置、逆浸透膜処理装置、正浸透膜処理装置、圧力補助逆浸透膜処理装置等の半透膜を用いる濃縮装置、ナノろ過膜等を用いる膜ろ過装置、蒸留装置、電気透析装置等のうち一つ以上を用いることができる。濃縮コスト低減等の観点から、半透膜を用いる濃縮装置が好ましく、特に被処理水のTDS濃度が5%を超える場合に浸透圧の影響を低減できる圧力補助逆浸透膜処理装置がより好ましい。
[Second concentration treatment step]
The second concentration treatment means may be any as long as it can concentrate the dilute attractant solution used in the forward osmosis membrane treatment step, and is not particularly limited, but a nanofiltration membrane treatment apparatus, a reverse osmosis membrane treatment apparatus, and the like. One or more of a concentrator using a semipermeable membrane such as a forward osmosis membrane treatment device and a pressure assisted reverse osmosis membrane treatment device, a membrane filtration device using a nanofiltration membrane, a distillation device, an electrodialysis device, and the like can be used. .. From the viewpoint of reducing the concentration cost and the like, a concentrator using a semipermeable membrane is preferable, and a pressure-assisted reverse osmosis membrane treatment device capable of reducing the influence of osmotic pressure when the TDS concentration of the water to be treated exceeds 5% is more preferable.

図2に、本実施形態に係る水処理装置における濃縮装置の一例を示す。 FIG. 2 shows an example of a concentrating device in the water treatment device according to the present embodiment.

図2に示す濃縮装置160は、圧力補助逆浸透膜処理装置の一例である。濃縮装置160は、半透膜を用いて処理対象水を濃縮する濃縮手段を2つ以上備え、第1段の半透膜の一次側に上記希薄誘引溶液を供給し、二次側に希薄液を供給し、一次側のもう一方の流路より濃縮液を、二次側のもう一方の流路から希釈液を得て、その希釈液を次段の半透膜の一次側に供給していき、各段の半透膜の一次側を加圧してその一次側に含まれる水を二次側に透過させ、順次濃縮液と希釈液を得る装置である。 The concentrator 160 shown in FIG. 2 is an example of a pressure-assisted reverse osmosis membrane treatment device. The concentrator 160 includes two or more concentrating means for concentrating the water to be treated using a semipermeable membrane, supplies the diluted attractant solution to the primary side of the semipermeable membrane in the first stage, and dilutes the liquid to the secondary side. Is supplied, a concentrated solution is obtained from the other flow path on the primary side, a diluted solution is obtained from the other flow path on the secondary side, and the diluted solution is supplied to the primary side of the semipermeable membrane of the next stage. This is a device that pressurizes the primary side of the semipermeable membrane of each stage to allow the water contained in the primary side to permeate through the secondary side to sequentially obtain a concentrated solution and a diluted solution.

濃縮装置160は、例えば、1段目半透膜処理装置40、2段目半透膜処理装置42、3段目半透膜処理装置44を備える。それぞれの半透膜処理装置は、半透膜50で仕切られた一次側(第一空間)46および二次側(第二空間)48を有する。 The concentrator 160 includes, for example, a first-stage semipermeable membrane processing device 40, a second-stage semipermeable membrane processing device 42, and a third-stage semipermeable membrane processing device 44. Each semipermeable membrane processing apparatus has a primary side (first space) 46 and a secondary side (second space) 48 partitioned by the semipermeable membrane 50.

図2に示す濃縮装置160において、1段目半透膜処理装置40の一次側46の入口には配管52がポンプ67を介して接続され、一次側46の出口には配管54が接続されている。2段目半透膜処理装置42の一次側46の出口と1段目半透膜処理装置40の二次側48の入口とは配管56により接続され、1段目半透膜処理装置40の二次側48の出口と2段目半透膜処理装置42の一次側46の入口とはポンプ68を介して配管58により接続されている。3段目半透膜処理装置44の一次側46の出口と2段目半透膜処理装置42の二次側48の入口とは配管60により接続され、2段目半透膜処理装置42の二次側48の出口と3段目半透膜処理装置44の一次側46の入口とはポンプ70を介して配管62により接続されている。3段目半透膜処理装置44の二次側48の入口には配管64が接続され、二次側48の出口には配管66が接続されている。 In the concentrating device 160 shown in FIG. 2, a pipe 52 is connected to the inlet of the primary side 46 of the first stage semipermeable membrane processing device 40 via a pump 67, and a pipe 54 is connected to the outlet of the primary side 46. There is. The outlet of the primary side 46 of the second-stage semipermeable membrane processing device 42 and the inlet of the secondary side 48 of the first-stage semipermeable membrane processing device 40 are connected by a pipe 56, and the first-stage semipermeable membrane processing device 40 The outlet of the secondary side 48 and the inlet of the primary side 46 of the second stage semipermeable membrane processing device 42 are connected by a pipe 58 via a pump 68. The outlet of the primary side 46 of the third-stage semipermeable membrane processing device 44 and the inlet of the secondary side 48 of the second-stage semipermeable membrane processing device 42 are connected by a pipe 60, and the second-stage semipermeable membrane processing device 42 The outlet of the secondary side 48 and the inlet of the primary side 46 of the third stage semipermeable membrane processing device 44 are connected by a pipe 62 via a pump 70. A pipe 64 is connected to the inlet of the secondary side 48 of the third-stage semipermeable membrane processing device 44, and a pipe 66 is connected to the outlet of the secondary side 48.

濃縮装置160は、半透膜50で仕切られた一次側46および二次側48を有する多段式の半透膜処理装置を用いる装置である。1段目半透膜処理装置40の一次側46にポンプ67により配管52を通して、被処理水である正浸透膜処理装置14で使用された希薄誘引溶液(例えば、MgCl:8質量%)の一部を通水し、二次側48に配管56を通して後述する2段目半透膜処理装置42で得られた第2濃縮液(例えば、MgCl:10質量%)を通水し、一次側46が加圧されてその一次側46に含まれる水が二次側48に透過され、第1濃縮液(例えば、MgCl:30質量%)および第1希釈液(例えば、MgCl:5質量%)を得る(濃縮工程(1段目))。第1濃縮液(濃縮誘引溶液)は、配管54を通して排出され、正浸透膜処理装置14における誘引溶液として再度使用される。 The concentrating device 160 is a device using a multi-stage semipermeable membrane processing device having a primary side 46 and a secondary side 48 partitioned by a semipermeable membrane 50. A dilute attracting solution (for example, MgCl 2 : 8% by mass) used in the forward osmosis membrane treatment device 14 which is the water to be treated is passed through a pipe 52 through a pump 67 through the primary side 46 of the first stage semipermeable membrane treatment device 40. some were passed through, the second concentrate obtained in the second stage semipermeable membrane treatment apparatus 42 to be described later through the pipe 56 to the secondary side 48 (e.g., MgCl 2: 10 wt%) was passed through the primary the water side 46 is included in the primary side 46 is pressurized is transmitted to the secondary side 48, the first concentrate (e.g., MgCl 2: 30 wt%) and a first diluent (e.g., MgCl 2: 5 Mass%) is obtained (concentration step (first stage)). The first concentrated solution (concentrated attracting solution) is discharged through the pipe 54 and is used again as the attracting solution in the forward osmosis membrane treatment device 14.

第1希釈液は、配管58を通してポンプ68により2段目半透膜処理装置42の一次側46に通水し、二次側48に配管60を通して後述する3段目半透膜処理装置44で得られた第3濃縮液(例えば、MgCl:3質量%)を通水し、一次側46が加圧されてその一次側46に含まれる水が二次側48に透過され、第2濃縮液(例えば、MgCl:10質量%)および第2希釈液(例えば、MgCl:1質量%)を得る(濃縮工程(2段目))。第2濃縮液は、配管56を通して1段目半透膜処理装置40の二次側48に通水される。 The first diluent is passed through the pipe 58 to the primary side 46 of the second stage semipermeable membrane treatment device 42 by the pump 68, and is passed through the pipe 60 to the secondary side 48 in the third stage semipermeable membrane treatment device 44 described later. The obtained third concentrate (for example, MgCl 2 : 3% by mass) is passed through the water, the primary side 46 is pressurized, and the water contained in the primary side 46 is permeated through the secondary side 48 to concentrate the second. A liquid (for example, MgCl 2 : 10% by mass) and a second diluted liquid (for example, MgCl 2 : 1% by mass) are obtained (concentration step (second stage)). The second concentrated liquid is passed through the pipe 56 to the secondary side 48 of the first-stage semipermeable membrane processing device 40.

第2希釈液は、配管62を通してポンプ70により3段目半透膜処理装置44の一次側46に通水し、二次側48に配管64を通して希薄液(例えば、MgCl:1質量%)を通水し、一次側46が加圧されてその一次側46に含まれる水が二次側48に透過され、第3濃縮液(例えば、MgCl:3質量%)および第3希釈液(例えば、MgCl:<1質量%)を得る(濃縮工程(3段目))。第3濃縮液は、配管60を通して2段目半透膜処理装置42の二次側48に通水される。第3希釈液は、配管66を通して排出される。第2濃縮液、第3濃縮液の一部が正浸透膜処理装置14における誘引溶液として再度使用されてもよい。第3希釈液は、必要に応じて限外ろ過膜(UF膜)処理、逆浸透膜(RO膜)処理、イオン交換処理等を実施したのち、回収、再利用されてもよい。 The second diluent is passed through the pipe 62 to the primary side 46 of the third stage semipermeable membrane processing device 44 by the pump 70, and passed through the pipe 64 to the secondary side 48 to be a dilute liquid (for example, MgCl 2 : 1% by mass). Water is passed through, the primary side 46 is pressurized, and the water contained in the primary side 46 is permeated through the secondary side 48, so that the third concentrated solution (for example, MgCl 2 : 3% by mass) and the third diluted solution (for example, MgCl 2: 3% by mass) are passed. For example, MgCl 2 : <1% by mass) is obtained (concentration step (third stage)). The third concentrated liquid is passed through the pipe 60 to the secondary side 48 of the second stage semipermeable membrane processing device 42. The third diluent is discharged through the pipe 66. A part of the second concentrated solution and the third concentrated solution may be used again as an attracting solution in the forward osmosis membrane treatment apparatus 14. The third diluent may be recovered and reused after undergoing ultrafiltration membrane (UF membrane) treatment, reverse osmosis membrane (RO membrane) treatment, ion exchange treatment, etc., if necessary.

この圧力補助逆浸透膜処理装置は、一次側46と二次側48との浸透圧差を小さくして、通常の逆浸透膜処理装置よりも少ないエネルギーで運転を行うことができ、より低コストで運転を行うことができる。 This pressure-assisted reverse osmosis membrane treatment device can reduce the osmotic pressure difference between the primary side 46 and the secondary side 48, and can be operated with less energy than a normal reverse osmosis membrane treatment device, and at a lower cost. Can drive.

以上のようにして、上記希薄誘引溶液から得られた濃縮誘引溶液は、正浸透膜処理装置14における誘引溶液として再度使用される。 As described above, the concentrated attractant solution obtained from the dilute attractant solution is used again as the attractant solution in the forward osmosis membrane treatment apparatus 14.

図2に示す濃縮装置160において、1段目の半透膜処理装置40の二次側48および2段目以降の半透膜処理装置に通水する液は、1段目の半透膜処理装置40の一次側46に通水する希薄誘引溶液とは別成分の液であってもよい。図3に、このような濃縮装置の例を示す。 In the concentrating device 160 shown in FIG. 2, the liquid passing through the secondary side 48 of the first-stage semipermeable membrane processing device 40 and the second-stage and subsequent semipermeable membrane processing devices is subjected to the first-stage semipermeable membrane treatment. It may be a liquid having a component different from the dilute attracting solution that allows water to pass through the primary side 46 of the device 40. FIG. 3 shows an example of such a concentrator.

図3に示す濃縮装置161は、図2に示す濃縮装置160と同様の構成を有する装置である。1段目半透膜処理装置40の一次側46にポンプ67により配管52を通して、被処理水である正浸透膜処理装置14で使用された希薄誘引溶液(例えば、MgCl:8質量%)の一部を通水し、二次側48に配管56を通して後述する2段目半透膜処理装置42で得られた第2濃縮液(例えば、グルコース:20質量%)を通水し、一次側46が加圧されてその一次側46に含まれる水が二次側48に透過され、第1濃縮液(例えば、MgCl:30質量%)および第1希釈液(例えば、グルコース:10質量%)を得る(濃縮工程(1段目))。第1濃縮液(濃縮誘引溶液)は、配管54を通して排出され、正浸透膜処理装置14における誘引溶液として再度使用される。 The concentrator 161 shown in FIG. 3 is an apparatus having the same configuration as the concentrator 160 shown in FIG. A dilute attracting solution (for example, MgCl 2 : 8% by mass) used in the forward osmosis membrane treatment apparatus 14 which is water to be treated is passed through a pipe 52 through a pump 67 through the primary side 46 of the first stage semipermeable membrane treatment apparatus 40. A part of water is passed through the secondary side 48, and the second concentrated solution (for example, glucose: 20% by mass) obtained by the second-stage semipermeable membrane processing device 42 described later is passed through the secondary side 48, and the primary side is passed. The 46 is pressurized and the water contained in the primary side 46 is permeated through the secondary side 48, so that the first concentrated solution (for example, MgCl 2 :30% by mass) and the first diluted solution (for example, glucose: 10% by mass) are permeated. ) (Concentration step (first stage)). The first concentrated solution (concentrated attracting solution) is discharged through the pipe 54 and is used again as the attracting solution in the forward osmosis membrane treatment device 14.

第1希釈液は、配管58を通してポンプ68により2段目半透膜処理装置42の一次側46に通水し、二次側48に配管60を通して後述する3段目半透膜処理装置44で得られた第3濃縮液(例えば、NaCl:3質量%)を通水し、一次側46が加圧されてその一次側46に含まれる水が二次側48に透過され、第2濃縮液(例えば、グルコース:20質量%)および第2希釈液(例えば、NaCl:1質量%)を得る(濃縮工程(2段目))。第2濃縮液は、配管56を通して1段目半透膜処理装置40の二次側48に通水される。 The first diluent is passed through the pipe 58 to the primary side 46 of the second stage semipermeable membrane treatment device 42 by the pump 68, and is passed through the pipe 60 to the secondary side 48 in the third stage semipermeable membrane treatment device 44 described later. The obtained third concentrated solution (for example, NaCl: 3% by mass) is passed through the water, the primary side 46 is pressurized, and the water contained in the primary side 46 is permeated through the secondary side 48, and the second concentrated solution is used. (For example, glucose: 20% by mass) and a second diluent (for example, NaCl: 1% by mass) are obtained (concentration step (second stage)). The second concentrated liquid is passed through the pipe 56 to the secondary side 48 of the first-stage semipermeable membrane processing device 40.

第2希釈液は、配管62を通してポンプ70により3段目半透膜処理装置44の一次側46に通水し、二次側48に配管64を通して希薄液(例えば、NaCl:1質量%)を通水し、一次側46が加圧されてその一次側46に含まれる水が二次側48に透過され、第3濃縮液(例えば、NaCl:3質量%)および第3希釈液(例えば、NaCl:<1質量%)を得る(濃縮工程(3段目))。第3濃縮液は、配管60を通して2段目半透膜処理装置42の二次側48に通水される。第3希釈液は、配管66を通して排出される。第3希釈液は、必要に応じて限外ろ過膜(UF膜)処理、逆浸透膜(RO膜)処理、イオン交換処理等を実施したのち、回収、再利用されてもよい。 The second diluent is passed through the pipe 62 to the primary side 46 of the third stage semipermeable membrane processing device 44 by the pump 70, and the dilute liquid (for example, NaCl: 1% by mass) is passed through the pipe 64 to the secondary side 48. Water is passed, the primary side 46 is pressurized, and the water contained in the primary side 46 is permeated through the secondary side 48, and a third concentrated solution (for example, NaCl: 3% by mass) and a third diluted solution (for example, for example) are passed. NaCl: <1% by mass) is obtained (concentration step (third stage)). The third concentrated liquid is passed through the pipe 60 to the secondary side 48 of the second stage semipermeable membrane processing device 42. The third diluent is discharged through the pipe 66. The third diluent may be recovered and reused after undergoing ultrafiltration membrane (UF membrane) treatment, reverse osmosis membrane (RO membrane) treatment, ion exchange treatment, etc., if necessary.

1段目の半透膜処理装置40の二次側48および2段目以降の半透膜処理装置に通水する液は、浸透圧を有している液であればよく、特に制限はない。例えば、塩化ナトリウム等の無機塩類を含む水溶液、グルコース等の有機物を含む水溶液、ポリマーを含む水溶液や、イオン液体等が挙げられる。1次側から2次側への成分拡散の影響を低減する等の観点から、1段目の半透膜処理装置40の一次側46に通水する希薄誘引溶液と同じ成分の液を用いることが好ましい。 The liquid that passes through the secondary side 48 of the first-stage semipermeable membrane treatment device 40 and the second-stage and subsequent semipermeable membrane treatment devices may be a liquid having an osmotic pressure, and is not particularly limited. .. Examples thereof include an aqueous solution containing an inorganic salt such as sodium chloride, an aqueous solution containing an organic substance such as glucose, an aqueous solution containing a polymer, and an ionic liquid. From the viewpoint of reducing the influence of component diffusion from the primary side to the secondary side, use a solution having the same component as the dilute attracting solution that allows water to pass through the primary side 46 of the first-stage semipermeable membrane processing device 40. Is preferable.

図4に、本実施形態に係る水処理装置1における濃縮装置16の他の例を示す。 FIG. 4 shows another example of the concentrating device 16 in the water treatment device 1 according to the present embodiment.

図4に示す濃縮装置162は、圧力補助逆浸透膜処理装置の一例である。濃縮装置162は、半透膜を用いて処理対象水を濃縮し、その濃縮液をさらに半透膜を用いて濃縮する濃縮手段を1つ以上備え、第1段の半透膜の一次側に前記希薄誘引溶液を供給し、その濃縮液を各段の半透膜の一次側に順に供給し、各段の半透膜の二次側に前記希薄誘引溶液の一部またはいずれかの段の濃縮液の一部を供給し、各段の半透膜の一次側を加圧してその一次側に含まれる水を二次側に透過させる装置である。 The concentrator 162 shown in FIG. 4 is an example of a pressure-assisted reverse osmosis membrane treatment device. The concentrator 162 is provided with one or more concentrating means for concentrating the water to be treated using a semipermeable membrane and further concentrating the concentrated solution using the semipermeable membrane, and is provided on the primary side of the semipermeable membrane in the first stage. The dilute attractant solution is supplied, and the concentrated solution is sequentially supplied to the primary side of the semipermeable membrane of each stage, and a part or any of the dilute attractant solutions is supplied to the secondary side of the semipermeable membrane of each stage. It is a device that supplies a part of the concentrated solution, pressurizes the primary side of the semipermeable membrane of each stage, and allows the water contained in the primary side to permeate to the secondary side.

濃縮装置162は、例えば、1段目半透膜処理装置78、2段目半透膜処理装置80、3段目半透膜処理装置82を備える。それぞれの半透膜処理装置は、半透膜88で仕切られた一次側(第一空間)84および二次側(第二空間)86を有する。 The concentrator 162 includes, for example, a first-stage semipermeable membrane processing device 78, a second-stage semipermeable membrane processing device 80, and a third-stage semipermeable membrane processing device 82. Each semipermeable membrane processing apparatus has a primary side (first space) 84 and a secondary side (second space) 86 partitioned by the semipermeable membrane 88.

図4に示す濃縮装置162において、1段目半透膜処理装置78の一次側84の入口には配管90がポンプ106を介して接続されている。1段目半透膜処理装置78の一次側84の出口と2段目半透膜処理装置80の一次側84の入口とは配管92により接続されている。2段目半透膜処理装置80の一次側84の出口と3段目半透膜処理装置82の一次側84の入口とは配管94により接続されている。3段目半透膜処理装置82の一次側84の出口には配管96が接続されている。配管96から分岐した配管98が、3段目半透膜処理装置82の二次側86の入口に接続されている。3段目半透膜処理装置82の二次側86の出口と2段目半透膜処理装置80の二次側86の入口とは配管100により接続されている。2段目半透膜処理装置80の二次側86の出口と1段目半透膜処理装置78の二次側86の入口とは配管102により接続されている。1段目半透膜処理装置78の二次側86の出口には配管104が接続されている。必要に応じて、配管92,94,96,98,100,102に、加圧、送液用のポンプ、半透膜にかかる圧力を調整するための、バルブ等の圧力調整機構、処理水を一時的に貯留するためのタンク等を備えてもよい。 In the concentrating device 162 shown in FIG. 4, a pipe 90 is connected to the inlet of the primary side 84 of the first-stage semipermeable membrane processing device 78 via a pump 106. The outlet of the primary side 84 of the first-stage semipermeable membrane processing device 78 and the inlet of the primary side 84 of the second-stage semipermeable membrane processing device 80 are connected by a pipe 92. The outlet of the primary side 84 of the second-stage semipermeable membrane processing device 80 and the inlet of the primary side 84 of the third-stage semipermeable membrane processing device 82 are connected by a pipe 94. A pipe 96 is connected to the outlet of the primary side 84 of the third-stage semipermeable membrane processing device 82. The pipe 98 branched from the pipe 96 is connected to the inlet of the secondary side 86 of the third stage semipermeable membrane processing device 82. The outlet of the secondary side 86 of the third-stage semipermeable membrane processing device 82 and the inlet of the secondary side 86 of the second-stage semipermeable membrane processing device 80 are connected by a pipe 100. The outlet of the secondary side 86 of the second-stage semipermeable membrane processing device 80 and the inlet of the secondary side 86 of the first-stage semipermeable membrane processing device 78 are connected by a pipe 102. A pipe 104 is connected to the outlet of the secondary side 86 of the first-stage semipermeable membrane processing device 78. If necessary, pipes 92, 94, 96, 98, 100, 102 are provided with a pressure adjusting mechanism such as a valve and treated water for adjusting the pressure applied to the pressurizing and liquid feeding pumps and the semipermeable membrane. A tank or the like for temporary storage may be provided.

濃縮装置162において、被処理水である正浸透膜処理装置14で使用された希薄誘引溶液(例えば、MgCl:10質量%)の一部は、ポンプ106により配管90を通して、1段目半透膜処理装置78の一次側84へ送液される。一方、後述する最終段の3段目半透膜処理装置82から2段目半透膜処理装置80の二次側86を経由して返送された希釈液(二次側処理水)(例えば、MgCl:6質量%)が配管102を通して、1段目半透膜処理装置78の二次側86へ送液される。1段目半透膜処理装置78において、半透膜の一次側84が加圧されてその一次側84に含まれる水が二次側86に透過される(濃縮工程(1段目))。 In concentrator 162, dilute attraction solution used in the forward osmosis membrane treatment apparatus 14 is a treated water (e.g., MgCl 2: 10 wt%) part of, through the pipe 90 by the pump 106, the first stage semipermeable The liquid is sent to the primary side 84 of the membrane processing device 78. On the other hand, the diluent (secondary treated water) (for example, the secondary treated water) returned from the third-stage semipermeable membrane treatment device 82 in the final stage to be described later via the secondary side 86 of the second-stage semipermeable membrane treatment device 80. MgCl 2 : 6% by mass) is sent to the secondary side 86 of the first-stage semipermeable membrane processing device 78 through the pipe 102. In the first-stage semipermeable membrane processing apparatus 78, the primary side 84 of the semipermeable membrane is pressurized and the water contained in the primary side 84 is permeated through the secondary side 86 (concentration step (first stage)).

1段目半透膜処理装置78の濃縮液(一次側処理水)(例えば、MgCl:18質量%)は、配管92を通して、2段目半透膜処理装置80の一次側84へ送液される。一方、後述する最終段の3段目半透膜処理装置82から返送された希釈液(二次側処理水)(例えば、MgCl:15質量%)が配管100を通して、2段目半透膜処理装置80の二次側86へ送液される。1段目と同様にして、2段目半透膜処理装置80において、半透膜の一次側84が加圧されてその一次側84に含まれる水が二次側86に透過される(濃縮工程(2段目))。 The concentrated liquid (primary side treated water) (for example, MgCl 2 : 18% by mass) of the first-stage semipermeable membrane treatment device 78 is sent to the primary side 84 of the second-stage semipermeable membrane treatment device 80 through the pipe 92. Will be done. On the other hand, the diluent (secondary side treated water) (for example, MgCl 2 : 15% by mass) returned from the third-stage semipermeable membrane treatment device 82 in the final stage, which will be described later, passes through the pipe 100 and the second-stage semipermeable membrane. The liquid is sent to the secondary side 86 of the processing device 80. In the same manner as in the first stage, in the second stage semipermeable membrane processing apparatus 80, the primary side 84 of the semipermeable membrane is pressurized and the water contained in the primary side 84 is permeated through the secondary side 86 (concentration). Process (second stage)).

2段目半透膜処理装置80の濃縮液(一次側処理水)(例えば、MgCl:23質量%)は、配管94を通して、3段目半透膜処理装置82の一次側84へ送液される。一方、後述する最終段の3段目半透膜処理装置82から返送された濃縮液(例えば、MgCl:30質量%)は、配管98を通して、3段目半透膜処理装置82の二次側86へ送液される。1,2段目と同様にして、3段目半透膜処理装置82において、半透膜の一次側84が加圧されてその一次側84に含まれる水が二次側86に透過される(濃縮工程(3段目))。 The concentrated liquid (primary side treated water) (for example, MgCl 2 : 23% by mass) of the second stage semipermeable membrane treatment device 80 is sent to the primary side 84 of the third stage semipermeable membrane treatment device 82 through the pipe 94. Will be done. On the other hand, the concentrated liquid (for example, MgCl 2 : 30% by mass) returned from the third-stage semipermeable membrane processing device 82 in the final stage, which will be described later, passes through the pipe 98 to the secondary of the third-stage semipermeable membrane processing device 82. The liquid is sent to the side 86. In the same manner as in the first and second stages, in the third stage semipermeable membrane processing device 82, the primary side 84 of the semipermeable membrane is pressurized and the water contained in the primary side 84 is permeated through the secondary side 86. (Concentration step (third stage)).

最終段の3段目半透膜処理装置82の濃縮液(一次側処理水)(例えば、MgCl:30質量%)の一部は、配管96を通して排出され、正浸透膜処理装置14における誘引溶液として再度使用される。3段目半透膜処理装置82の濃縮液の残りの一部は、配管96,98を通して、3段目半透膜処理装置82の二次側86へ送液される。上記の通り、3段目半透膜処理装置82において、半透膜の一次側84が加圧されてその一次側84に含まれる水が二次側86に透過される(濃縮工程(3段目))。 A part of the concentrated solution (primary treated water) (for example, MgCl 2 : 30% by mass) of the third-stage semipermeable membrane treatment device 82 in the final stage is discharged through the pipe 96 and attracted by the forward osmosis membrane treatment device 14. Used again as a solution. The remaining part of the concentrated liquid of the third-stage semipermeable membrane processing device 82 is sent to the secondary side 86 of the third-stage semipermeable membrane processing device 82 through the pipes 96 and 98. As described above, in the third-stage semipermeable membrane processing apparatus 82, the primary side 84 of the semipermeable membrane is pressurized and the water contained in the primary side 84 is permeated through the secondary side 86 (concentration step (three stages (three stages)). Eye)).

3段目半透膜処理装置82の希釈液(二次側処理水)(例えば、MgCl:15質量%)は、配管100を通して、2段目半透膜処理装置80の二次側86へ送液される。上記の通り、2段目半透膜処理装置80において、半透膜の一次側84が加圧されてその一次側84に含まれる水が二次側86に透過される(濃縮工程(2段目))。 The diluted solution (secondary side treated water) (for example, MgCl 2 : 15% by mass) of the third stage semipermeable membrane treatment device 82 is passed through the pipe 100 to the secondary side 86 of the second stage semipermeable membrane treatment device 80. The liquid is sent. As described above, in the second-stage semipermeable membrane processing apparatus 80, the primary side 84 of the semipermeable membrane is pressurized and the water contained in the primary side 84 is permeated through the secondary side 86 (concentration step (second stage). Eye)).

2段目半透膜処理装置80の希釈液(二次側処理水)(例えば、MgCl:6質量%)は、配管102を通して、1段目半透膜処理装置78の二次側86へ送液される。上記の通り、1段目半透膜処理装置78において、半透膜の一次側84が加圧されてその一次側84に含まれる水が二次側86に透過される(濃縮工程(1段目))。1段目半透膜処理装置78の希釈液(二次側処理水)(例えば、MgCl:<1質量%)は、配管104を通して排出される。希釈液は、必要に応じて限外ろ過膜(UF膜)処理、逆浸透膜(RO膜)処理、イオン交換処理等を実施したのち、回収、再利用されてもよい。 The diluted solution (secondary side treated water) (for example, MgCl 2 : 6% by mass) of the second stage semipermeable membrane treatment device 80 is passed through the pipe 102 to the secondary side 86 of the first stage semipermeable membrane treatment device 78. The liquid is sent. As described above, in the first-stage semipermeable membrane processing apparatus 78, the primary side 84 of the semipermeable membrane is pressurized and the water contained in the primary side 84 is permeated through the secondary side 86 (concentration step (1st stage). Eye)). The diluent (secondary treated water) of the first-stage semipermeable membrane treatment device 78 (for example, MgCl 2 : <1% by mass) is discharged through the pipe 104. The diluted solution may be recovered and reused after undergoing ultrafiltration membrane (UF membrane) treatment, reverse osmosis membrane (RO membrane) treatment, ion exchange treatment and the like, if necessary.

この濃縮装置162のような圧力補助逆浸透膜処理装置は、被処理水の一部を浸透圧補助用の希釈用液として使用するため、別途希釈液を用意しなくてもよく、装置構成も濃縮装置160のような圧力補助逆浸透膜処理装置より簡略化することができる。 Since a pressure-assisted reverse osmosis membrane treatment device such as this concentrator 162 uses a part of the water to be treated as a diluent for osmotic pressure assistance, it is not necessary to prepare a separate diluent, and the device configuration is also as follows. It can be simplified from a pressure-assisted reverse osmosis membrane treatment device such as the concentrator 160.

以上のようにして、上記希薄誘引溶液から得られた濃縮誘引溶液は、正浸透膜処理装置14における誘引溶液として再度使用される。 As described above, the concentrated attractant solution obtained from the dilute attractant solution is used again as the attractant solution in the forward osmosis membrane treatment apparatus 14.

濃縮装置162のような圧力補助逆浸透膜処理装置において、各段の半透膜の二次側に正浸透膜処理装置14で使用された希薄誘引溶液の一部またはいずれかの段の濃縮液の一部を供給すればよく、その方法に特に制限はない。 In a pressure-assisted reverse osmosis membrane treatment device such as the concentrator 162, a concentrated solution of a part or any of the dilute attractant solutions used in the forward osmosis membrane treatment device 14 is placed on the secondary side of the semipermeable membrane of each stage. It suffices to supply a part of the above, and there is no particular limitation on the method.

例えば、図5の濃縮装置164として示すように、被処理水である正浸透膜処理装置14で使用された希薄誘引溶液を分配して、1段目半透膜処理装置78の一次側84、二次側86にそれぞれ供給し、その濃縮液および透過液を各段の半透膜の一次側84および二次側86にそれぞれ順に供給し、各段の半透膜の一次側を加圧してその一次側に含まれる水を二次側に透過させでもよい。 For example, as shown as the concentrator 164 in FIG. 5, the dilute attractant solution used in the forward osmosis membrane treatment device 14 which is the water to be treated is distributed, and the primary side 84 of the first stage semipermeable membrane treatment device 78, The concentrated solution and the permeated solution are supplied to the secondary side 86, respectively, and the concentrated solution and the permeated solution are sequentially supplied to the primary side 84 and the secondary side 86 of the semipermeable membrane of each stage, and the primary side of the semipermeable membrane of each stage is pressurized. The water contained in the primary side may be permeated to the secondary side.

図6の濃縮装置166として示すように、被処理水である正浸透膜処理装置14で使用された希薄誘引溶液を1段目半透膜処理装置78の一次側84に供給し、その濃縮液を各段の半透膜の一次側に順に供給し、最終段の3段目半透膜処理装置82の濃縮液の一部を1段目半透膜処理装置78の二次側86に供給し、その透過液を各段の半透膜の二次側に順に供給し、各段の半透膜の一次側を加圧してその一次側に含まれる水を二次側に透過させてもよい。 As shown as the concentrator 166 in FIG. 6, the dilute attractant solution used in the forward osmosis membrane treatment device 14 which is the water to be treated is supplied to the primary side 84 of the first stage semipermeable membrane treatment device 78, and the concentrate solution thereof. Is sequentially supplied to the primary side of the semipermeable membrane of each stage, and a part of the concentrated solution of the third-stage semipermeable membrane processing device 82 of the final stage is supplied to the secondary side 86 of the first-stage semipermeable membrane processing device 78. Then, even if the permeate is sequentially supplied to the secondary side of the semipermeable membrane of each stage and the primary side of the semipermeable membrane of each stage is pressurized to allow the water contained in the primary side to permeate to the secondary side. Good.

図7の濃縮装置168として示すように、被処理水である正浸透膜処理装置14で使用された希薄誘引溶液を1段目半透膜処理装置78の一次側84に供給し、その濃縮液を各段の半透膜の一次側に順に供給し、各段の半透膜処理装置の濃縮液の一部をその半透膜処理装置自身の二次側86に供給し、各段の半透膜の一次側を加圧してその一次側に含まれる水を二次側に透過させてもよい。 As shown as the concentrator 168 in FIG. 7, the dilute attractant solution used in the forward osmosis membrane treatment device 14 which is the water to be treated is supplied to the primary side 84 of the first-stage semipermeable membrane treatment device 78, and the concentrate solution thereof. Is sequentially supplied to the primary side of the semipermeable membrane of each stage, and a part of the concentrated solution of the semipermeable membrane processing device of each stage is supplied to the secondary side 86 of the semipermeable membrane processing device itself. The primary side of the permeable membrane may be pressurized to allow the water contained in the primary side to permeate to the secondary side.

上記濃縮装置160,161,162,164,166,168において、半透膜処理装置の段数は、目的の処理水の濃度等によって決めればよい。例えば、濃縮装置162,164,166,168において、より薄い濃度の希薄誘引溶液からより濃い濃度の処理水(濃縮誘引溶液)を得たい場合には、半透膜処理装置の段数を増やせばよい。 In the above-mentioned concentrators 160, 161, 162, 164, 166, 168, the number of stages of the semipermeable membrane treatment device may be determined according to the concentration of the target treated water and the like. For example, in the concentrators 162, 164, 166, 168, when it is desired to obtain a concentrated treated water (concentrated attracting solution) from a dilute attracting solution having a lower concentration, the number of stages of the semipermeable membrane treating device may be increased. ..

上記濃縮装置160,161,162,164,166,168において、各段の半透膜処理装置として、並列的に接続された2つ以上の膜モジュールを備える膜モジュールユニットを用いてもよい。各膜モジュールユニットにおける膜モジュールの本数は、処理対象の希薄誘引溶液の流量等によって決めればよい。 In the concentrating device 160, 161, 162, 164, 166, 168, a membrane module unit including two or more membrane modules connected in parallel may be used as the semipermeable membrane processing device of each stage. The number of membrane modules in each membrane module unit may be determined by the flow rate of the dilute attractant solution to be treated or the like.

半透膜処理装置が備える半透膜としては、例えば、逆浸透膜(RO膜)、正浸透膜(FO膜)、ナノろ過膜(NF膜)等の半透膜が挙げられる。半透膜は、逆浸透膜、正浸透膜、ナノろ過膜が好ましい。なお、半透膜として逆浸透膜または正浸透膜、ナノろ過膜を用いる場合、一次側の対象溶液の圧力は、好ましくは0.5〜10.0MPaである。 Examples of the semipermeable membrane included in the semipermeable membrane processing apparatus include a semipermeable membrane such as a reverse osmosis membrane (RO membrane), a forward osmosis membrane (FO membrane), and a nanofiltration membrane (NF membrane). The semipermeable membrane is preferably a reverse osmosis membrane, a forward osmosis membrane, or a nanofiltration membrane. When a reverse osmosis membrane, a forward osmosis membrane, or a nanofiltration membrane is used as the semipermeable membrane, the pressure of the target solution on the primary side is preferably 0.5 to 10.0 MPa.

半透膜を構成する材料としては、特に限定されないが、例えば、酢酸セルロース系樹脂等のセルロース系樹脂、ポリエーテルスルホン系樹脂等のポリスルホン系樹脂、ポリアミド系樹脂等が挙げられる。半透膜を構成する材料は、酢酸セルロース系樹脂であることが好ましい。 The material constituting the semipermeable membrane is not particularly limited, and examples thereof include cellulose-based resins such as cellulose acetate-based resins, polysulfone-based resins such as polyethersulfone-based resins, and polyamide-based resins. The material constituting the semipermeable membrane is preferably a cellulose acetate resin.

半透膜の形状としては、膜の一次側と二次側にそれぞれ溶液が供給できる構造をとっていれば特に限定されず、スパイラル型、中空糸膜、プレートアンドフレーム型等が挙げられる。 The shape of the semipermeable membrane is not particularly limited as long as it has a structure in which a solution can be supplied to the primary side and the secondary side of the membrane, and examples thereof include a spiral type, a hollow fiber membrane, and a plate and frame type.

[水処理装置の他の例]
本発明の実施形態に係る水処理装置において、水酸化マグネシウムと酸とを混合し、pH7以下で反応させて、誘引溶液として使用するマグネシウム塩水溶液を調製する調製手段として誘引溶液調製槽をさらに備えてもよい。誘引溶液調製槽において、水酸化マグネシウムと酸とを混合し、pH7以下で反応させて、マグネシウム塩水溶液を調製し(調製工程)、調製したマグネシウム塩水溶液を正浸透膜処理装置14の正浸透膜の2次側に送液し、誘引溶液として使用すればよい。
[Other examples of water treatment equipment]
In the water treatment apparatus according to the embodiment of the present invention, an attractant solution preparation tank is further provided as a preparation means for preparing a magnesium salt aqueous solution to be used as an attractant solution by mixing magnesium hydroxide and an acid and reacting them at pH 7 or less. You may. In the attractant solution preparation tank, magnesium hydroxide and acid are mixed and reacted at pH 7 or less to prepare a magnesium salt aqueous solution (preparation step), and the prepared magnesium salt aqueous solution is used as a forward osmosis membrane of the forward osmosis membrane treatment apparatus 14. The solution may be sent to the secondary side of the above and used as an attracting solution.

調製工程で用いられる酸としては、塩酸、硫酸、硝酸等が挙げられ、難溶解性物質生成抑制等の観点から、塩酸または硝酸が好ましい。 Examples of the acid used in the preparation step include hydrochloric acid, sulfuric acid, nitric acid and the like, and hydrochloric acid or nitric acid is preferable from the viewpoint of suppressing the production of poorly soluble substances.

調製工程におけるpHは7以下であればよく、特に制限はないが、例えば、pH1〜7の範囲であり、2〜5の範囲であることが好ましい。調製工程におけるpHが7を超えると、マグネシウム塩の溶解が不十分となる場合があり、1未満であると、酸の添加量が過剰となる場合がある。 The pH in the preparation step may be 7 or less and is not particularly limited, but is, for example, in the range of pH 1 to 7, preferably in the range of 2 to 5. If the pH in the preparation step exceeds 7, the magnesium salt may be insufficiently dissolved, and if it is less than 1, the amount of acid added may be excessive.

調製工程における温度は、マグネシウム塩の溶解反応が進行する温度であればよく、特に制限はないが、例えば、1℃〜80℃の範囲である。調製工程における温度が1℃未満であると、マグネシウム塩の溶解反応が不十分となる場合があり、80℃を超えると、設備の耐熱性等が問題となる場合がある。 The temperature in the preparation step may be any temperature as long as the dissolution reaction of the magnesium salt proceeds, and is not particularly limited, but is, for example, in the range of 1 ° C. to 80 ° C. If the temperature in the preparation step is less than 1 ° C., the dissolution reaction of the magnesium salt may be insufficient, and if it exceeds 80 ° C., the heat resistance of the equipment may become a problem.

調製工程における反応時間は、マグネシウム塩の溶解反応が進行することができればよく、特に制限はないが、例えば、5分〜120分の範囲である。調製工程における反応時間が5分未満であると、マグネシウム塩の溶解反応が不十分となる場合があり、120分を超えると、設備が課題となる場合がある。 The reaction time in the preparation step is not particularly limited as long as the dissolution reaction of the magnesium salt can proceed, and is, for example, in the range of 5 minutes to 120 minutes. If the reaction time in the preparation step is less than 5 minutes, the dissolution reaction of the magnesium salt may be insufficient, and if it exceeds 120 minutes, the equipment may become a problem.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

<実施例1>
TDS100ppm、溶解性シリカ15ppmを含む工業用水について、図1に記載の水処理装置を用いて濃縮処理を実施した。逆浸透膜処理装置によって、TDS8%まで濃縮した。この濃縮水を正浸透膜処理装置(正浸透膜:HP5230(東洋紡製))に供給し、さらに誘引溶液として30重量%塩化マグネシウム溶液を供給し、TDS20%のFO濃縮水を得た。正浸透膜処理によって希釈された希薄塩化マグネシウム溶液の一部は、溶解性シリカ除去装置にそのまま添加し、残りは、図4の構成の濃縮装置を用いて塩化マグネシウム30%まで濃縮し、正浸透膜処理装置の誘引溶液として再利用した。正浸透膜処理に用いたエネルギーコストを算出した。結果を表1に示す。
<Example 1>
Industrial water containing 100 ppm of TDS and 15 ppm of soluble silica was concentrated using the water treatment apparatus shown in FIG. It was concentrated to 8% TDS by a reverse osmosis membrane treatment device. This concentrated water was supplied to a forward osmosis membrane treatment apparatus (forward osmosis membrane: HP5230 (manufactured by Toyobo)), and a 30 wt% magnesium chloride solution was further supplied as an attractant solution to obtain FO concentrated water having a TDS of 20%. A part of the dilute magnesium chloride solution diluted by the forward osmosis membrane treatment is added as it is to the soluble silica removing device, and the rest is concentrated to 30% magnesium chloride using the concentrator having the configuration shown in FIG. It was reused as an attractant solution for the membrane treatment device. The energy cost used for the forward osmosis membrane treatment was calculated. The results are shown in Table 1.

<比較例1>
実施例1で用いた水処理装置において、正浸透膜処理装置の代わりにエバポレータを用いた濃縮操作を実施し、同じくTDS20%の濃縮水を得た。エバポレータに用いたエネルギーコストを算出し、実施例1と比較した。結果を表1に示す。
<Comparative example 1>
In the water treatment apparatus used in Example 1, a concentration operation using an evaporator instead of the forward osmosis membrane treatment apparatus was carried out to obtain concentrated water having a TDS of 20%. The energy cost used for the evaporator was calculated and compared with Example 1. The results are shown in Table 1.

<比較例2>
実施例1で用いた水処理装置において、正浸透膜処理装置の誘引溶液として、30重量%炭酸アンモニウム溶液を用い、同じくTDS20%の濃縮水を得た。正浸透膜処理によって希釈された希薄炭酸アンモニウム溶液は、再生装置に送り、熱による再生を実施した(再生工程)。正浸透膜処理に用いたエネルギーコストを算出した(再生工程に供したエネルギーを含む)。結果を表1に示す。
<Comparative example 2>
In the water treatment apparatus used in Example 1, a 30 wt% ammonium carbonate solution was used as an attractant solution for the forward osmosis membrane treatment apparatus, and concentrated water having a TDS of 20% was also obtained. The dilute ammonium carbonate solution diluted by the forward osmosis membrane treatment was sent to a regeneration device and regenerated by heat (regeneration step). The energy cost used for the forward osmosis membrane treatment was calculated (including the energy used in the regeneration process). The results are shown in Table 1.

Figure 2021030189
Figure 2021030189

このように、実施例1の処理方法により、比較例1,2の処理方法に比べて、低いエネルギーコストで濃縮することができ、溶解性シリカおよび硬度成分のうち少なくとも1つを含む被処理水を低コストで処理することができることがわかった。 As described above, the treatment method of Example 1 can be concentrated at a lower energy cost than the treatment methods of Comparative Examples 1 and 2, and the water to be treated containing at least one of the soluble silica and the hardness component. Was found to be able to be processed at low cost.

1,3 水処理装置、10,200 前処理装置、12 逆浸透膜処理装置、14,202 正浸透膜処理装置、16,160,161,162,164,166,168 濃縮装置、18 被処理水配管、20 前処理水配管、22 濃縮水配管、24 透過水配管、26 誘引溶液配管、28,32 希薄誘引溶液配管、30 FO濃縮水配管、34 濃縮誘引溶液配管、36 希釈液配管、40,78 1段目半透膜処理装置、42,80 2段目半透膜処理装置、44,82 3段目半透膜処理装置、46,84 一次側、48,86 二次側、50,88 半透膜、52,54,56,58,60,62,64,66,90,92,94,96,98,100,102,104 配管、67,68,70,106 ポンプ、204 誘引溶液槽、206 加熱装置。 1,3 Water treatment equipment, 10,200 Pretreatment equipment, 12 Reverse osmosis membrane treatment equipment, 14,202 Normal osmosis membrane treatment equipment, 16,160,161,162,164,166,168 Concentrator, 18 Water to be treated Piping, 20 pre-treated water piping, 22 concentrated water piping, 24 permeable water piping, 26 attracting solution piping, 28, 32 dilute attracting solution piping, 30 FO concentrated water piping, 34 concentrated attracting solution piping, 36 diluted solution piping, 40, 78 1st stage semipermeable membrane treatment device, 42,80 2nd stage semipermeable membrane treatment device, 44,82 3rd stage semipermeable membrane treatment device, 46,84 primary side, 48,86 secondary side, 50,88 Semipermeable membrane, 52,54,56,58,60,62,64,66,90,92,94,96,98,100,102,104 piping, 67,68,70,106 pump, 204 attractant solution tank , 206 Heating device.

Claims (10)

溶解性シリカおよび硬度成分のうち少なくとも1つを含む被処理水の処理を行う水処理装置であって、
溶解性シリカ除去手段および硬度成分除去手段のうちいずれか1つを備える前処理手段と、
前記前処理手段で得られた前処理水を濃縮処理する第1濃縮処理手段と、
前記第1濃縮処理手段で得られた濃縮水を正浸透膜処理する正浸透膜処理手段と、
前記正浸透膜処理手段で使用された希薄誘引溶液の一部を濃縮処理する第2濃縮処理手段と、
を備え、
前記正浸透膜処理手段で使用された希薄誘引溶液の一部が前記前処理手段で使用され、前記第2濃縮手段で濃縮された濃縮誘引溶液が前記正浸透膜処理手段における誘引溶液として再度使用されることを特徴とする水処理装置。
A water treatment apparatus that treats water to be treated containing at least one of soluble silica and a hardness component.
A pretreatment means including any one of a soluble silica removing means and a hardness component removing means, and a pretreatment means.
The first concentration treatment means for concentrating the pretreatment water obtained by the pretreatment means, and
A forward osmosis membrane treatment means for treating the concentrated water obtained by the first concentration treatment means with a forward osmosis membrane, and a forward osmosis membrane treatment means.
A second concentration treatment means for concentrating a part of the dilute attractant solution used in the forward osmosis membrane treatment means, and a second concentration treatment means.
With
A part of the dilute attractant solution used in the forward osmosis membrane treatment means is used in the pretreatment means, and the concentrated attractant solution concentrated by the second concentration means is reused as an attractant solution in the forward osmosis membrane treatment means. A water treatment device characterized by being osmotic.
請求項1に記載の水処理装置であって、
前記第2濃縮処理手段は、半透膜を用いる濃縮処理手段であることを特徴とする水処理装置。
The water treatment apparatus according to claim 1.
The water treatment apparatus, wherein the second concentration treatment means is a concentration treatment means using a semipermeable membrane.
請求項1または2に記載の水処理装置であって、
前記第1濃縮処理手段は、逆浸透膜処理手段であることを特徴とする水処理装置。
The water treatment apparatus according to claim 1 or 2.
The water treatment apparatus, wherein the first concentration treatment means is a reverse osmosis membrane treatment means.
請求項1〜3のいずれか1項に記載の水処理装置であって、
前記正浸透膜処理手段で用いる誘引溶液がマグネシウム塩水溶液であり、前記正浸透膜処理手段で使用されたマグネシウム塩希薄水溶液が、前記溶解性シリカ除去手段で使用されることを特徴とする水処理装置。
The water treatment apparatus according to any one of claims 1 to 3.
A water treatment characterized in that the attractant solution used in the forward osmosis membrane treatment means is a magnesium salt aqueous solution, and the magnesium salt dilute aqueous solution used in the forward osmosis membrane treatment means is used in the soluble silica removing means. apparatus.
請求項1〜3のいずれか1項に記載の水処理装置であって、
前記正浸透膜処理手段で用いる誘引溶液がアルカリ剤水溶液であり、前記正浸透膜処理手段で使用されたアルカリ剤希薄水溶液が、前記硬度成分除去手段で使用されることを特徴とする水処理装置。
The water treatment apparatus according to any one of claims 1 to 3.
A water treatment apparatus characterized in that the attractant solution used in the forward osmosis membrane treatment means is an alkaline agent aqueous solution, and the alkaline agent dilute aqueous solution used in the forward osmosis membrane treatment means is used in the hardness component removing means. ..
請求項1〜3のいずれか1項に記載の水処理装置であって、
前記正浸透膜処理手段で用いる誘引溶液が酸水溶液または塩化ナトリウム水溶液であり、前記正浸透膜処理手段で使用された酸希薄水溶液または塩化ナトリウム希薄水溶液が、前記硬度成分除去手段で使用されることを特徴とする水処理装置。
The water treatment apparatus according to any one of claims 1 to 3.
The attractant solution used in the forward osmosis membrane treatment means is an acid aqueous solution or a sodium chloride aqueous solution, and the acid dilute aqueous solution or the sodium chloride dilute aqueous solution used in the forward osmosis membrane treatment means is used in the hardness component removing means. A water treatment device characterized by.
溶解性シリカおよび硬度成分のうち少なくとも1つを含む被処理水の処理を行う水処理方法であって、
溶解性シリカ除去工程および硬度成分除去工程のうちいずれか1つを含む前処理工程と、
前記前処理工程で得られた前処理水を濃縮処理する第1濃縮処理工程と、
前記第1濃縮処理工程で得られた濃縮水を正浸透膜処理する正浸透膜処理工程と、
前記正浸透膜処理工程で使用された希薄誘引溶液の一部を濃縮処理する第2濃縮処理工程と、
を含み、
前記正浸透膜処理工程で使用した希薄誘引溶液の一部を前記前処理工程で使用し、前記第2濃縮処理工程で濃縮した濃縮誘引溶液を前記正浸透膜処理工程における誘引溶液として再度使用することを特徴とする水処理方法。
A water treatment method for treating water to be treated containing at least one of soluble silica and a hardness component.
A pretreatment step including any one of a soluble silica removing step and a hardness component removing step, and a pretreatment step.
The first concentration treatment step of concentrating the pretreatment water obtained in the pretreatment step, and
A forward osmosis membrane treatment step of treating the concentrated water obtained in the first concentration treatment step with a forward osmosis membrane, and a forward osmosis membrane treatment step.
A second concentration treatment step of concentrating a part of the dilute attractant solution used in the forward osmosis membrane treatment step, and a second concentration treatment step.
Including
A part of the dilute attractant solution used in the forward osmosis membrane treatment step is used in the pretreatment step, and the concentrated attractant solution concentrated in the second concentration treatment step is reused as an attractant solution in the forward osmosis membrane treatment step. A water treatment method characterized by that.
請求項7に記載の水処理方法であって、
前記第2濃縮処理工程は、半透膜を用いる濃縮処理工程であることを特徴とする水処理方法。
The water treatment method according to claim 7.
The water treatment method, wherein the second concentration treatment step is a concentration treatment step using a semipermeable membrane.
請求項7または8に記載の水処理方法であって、
前記第1濃縮処理工程は、逆浸透膜処理工程であることを特徴とする水処理方法。
The water treatment method according to claim 7 or 8.
The water treatment method, wherein the first concentration treatment step is a reverse osmosis membrane treatment step.
請求項7〜9のいずれか1項に記載の水処理方法であって、
前記正浸透膜処理工程で用いる誘引溶液がマグネシウム塩水溶液であり、前記正浸透膜処理工程で使用したマグネシウム塩希薄水溶液を、前記溶解性シリカ除去工程で使用することを特徴とする水処理方法。
The water treatment method according to any one of claims 7 to 9.
A water treatment method characterized in that the attractant solution used in the forward osmosis membrane treatment step is a magnesium salt aqueous solution, and the magnesium salt dilute aqueous solution used in the forward osmosis membrane treatment step is used in the soluble silica removal step.
JP2019156729A 2018-10-05 2019-08-29 Water treatment device and water treatment method Active JP7228492B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019156729A JP7228492B2 (en) 2019-08-29 2019-08-29 Water treatment device and water treatment method
CN201980064798.7A CN112805247B (en) 2018-10-05 2019-09-24 Water treatment device, water treatment method, forward osmosis membrane treatment system, and water treatment system
PCT/JP2019/037279 WO2020071177A1 (en) 2018-10-05 2019-09-24 Water treatment device, water treatment method, forward osmosis membrane treatment method, forward osmosis membrane treatment system, and water treatment system
TW108135957A TWI835878B (en) 2018-10-05 2019-10-04 Water treatment device, and water treatment method
TW112136510A TW202404904A (en) 2018-10-05 2019-10-04 Water treatment device, and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019156729A JP7228492B2 (en) 2019-08-29 2019-08-29 Water treatment device and water treatment method

Publications (2)

Publication Number Publication Date
JP2021030189A true JP2021030189A (en) 2021-03-01
JP7228492B2 JP7228492B2 (en) 2023-02-24

Family

ID=74675027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019156729A Active JP7228492B2 (en) 2018-10-05 2019-08-29 Water treatment device and water treatment method

Country Status (1)

Country Link
JP (1) JP7228492B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008394A1 (en) * 2021-07-26 2023-02-02 住友重機械工業株式会社 Carbonate production apparatus and carbonate production method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100032375A1 (en) * 2008-08-05 2010-02-11 Venkataraman Jagannathan Reverse osmosis enhanced recovery hybrid process
WO2013153587A1 (en) * 2012-04-11 2013-10-17 Jfeエンジニアリング株式会社 Method and device for treating accompanying water from well
JP2015062889A (en) * 2013-08-28 2015-04-09 オルガノ株式会社 Method for inhibiting slime in separation membrane, slime inhibition agent composition for separation membrane, and method for producing slime inhibition agent composition for separation membrane
JP2015188787A (en) * 2014-03-27 2015-11-02 東洋紡株式会社 Forward osmosis treatment method and forward osmosis treatment device
WO2016104356A1 (en) * 2014-12-25 2016-06-30 オルガノ株式会社 Method for controlling slime on separation membrane
JP2016188823A (en) * 2015-03-30 2016-11-04 栗田工業株式会社 Method and device for processing contaminated water
JP2016205242A (en) * 2015-04-23 2016-12-08 株式会社ササクラ Electric power generation/seawater desalination method and system
JP2018015684A (en) * 2016-07-25 2018-02-01 水ing株式会社 Wastewater treatment apparatus and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100032375A1 (en) * 2008-08-05 2010-02-11 Venkataraman Jagannathan Reverse osmosis enhanced recovery hybrid process
WO2013153587A1 (en) * 2012-04-11 2013-10-17 Jfeエンジニアリング株式会社 Method and device for treating accompanying water from well
JP2015062889A (en) * 2013-08-28 2015-04-09 オルガノ株式会社 Method for inhibiting slime in separation membrane, slime inhibition agent composition for separation membrane, and method for producing slime inhibition agent composition for separation membrane
JP2015188787A (en) * 2014-03-27 2015-11-02 東洋紡株式会社 Forward osmosis treatment method and forward osmosis treatment device
WO2016104356A1 (en) * 2014-12-25 2016-06-30 オルガノ株式会社 Method for controlling slime on separation membrane
JP2016188823A (en) * 2015-03-30 2016-11-04 栗田工業株式会社 Method and device for processing contaminated water
JP2016205242A (en) * 2015-04-23 2016-12-08 株式会社ササクラ Electric power generation/seawater desalination method and system
JP2018015684A (en) * 2016-07-25 2018-02-01 水ing株式会社 Wastewater treatment apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008394A1 (en) * 2021-07-26 2023-02-02 住友重機械工業株式会社 Carbonate production apparatus and carbonate production method

Also Published As

Publication number Publication date
JP7228492B2 (en) 2023-02-24

Similar Documents

Publication Publication Date Title
AU2010219284B2 (en) Desalination system
JP5873771B2 (en) Organic wastewater treatment method and treatment apparatus
US6113797A (en) High water recovery membrane purification process
CN112805247B (en) Water treatment device, water treatment method, forward osmosis membrane treatment system, and water treatment system
JP3909793B2 (en) Method and apparatus for treating organic wastewater containing high-concentration salts
US7097769B2 (en) Method of boron removal in presence of magnesium ions
JP5567468B2 (en) Method and apparatus for treating organic wastewater
US20150315055A1 (en) Water Treatment Process
TWI727046B (en) Water treatment method and apparatus, and method of regenerating ion exchange resin
JPH10503414A (en) Reverse osmosis for water treatment enhanced by microfiltration
WO2009131635A2 (en) Sulfate removal from water sources
WO2014089796A1 (en) Method for treating high concentration wastewater such as ro brine
AU2008202302A1 (en) High Water Recovery Membrane Purification Process
JP2008223115A (en) Method for treating salt water
CN111032580A (en) Treatment device and treatment method for water containing hardness component
JP3800450B2 (en) Method and apparatus for treating organic wastewater containing high concentrations of salts
JP2012196614A (en) Method and system for wastewater treatment
JP7212490B2 (en) Water treatment device and water treatment method
JP7228492B2 (en) Water treatment device and water treatment method
CN213295051U (en) Contain salt waste water resourceful treatment device
CN111051253A (en) Apparatus and method for treating silica-containing water
JP7168324B2 (en) Silica-containing water treatment apparatus and treatment method
JP7137393B2 (en) Method and apparatus for treating water containing silica/hardness components
CN111115922A (en) Seawater resource desalination device and method
JPH11169852A (en) Pure water producing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7228492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150