JP2018015684A - Wastewater treatment apparatus and method - Google Patents

Wastewater treatment apparatus and method Download PDF

Info

Publication number
JP2018015684A
JP2018015684A JP2016145826A JP2016145826A JP2018015684A JP 2018015684 A JP2018015684 A JP 2018015684A JP 2016145826 A JP2016145826 A JP 2016145826A JP 2016145826 A JP2016145826 A JP 2016145826A JP 2018015684 A JP2018015684 A JP 2018015684A
Authority
JP
Japan
Prior art keywords
liquid
separation
concentrated water
solid
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016145826A
Other languages
Japanese (ja)
Other versions
JP6727056B2 (en
JP2018015684A5 (en
Inventor
島村 和彰
Kazuaki Shimamura
和彰 島村
英斉 安井
Hidenari Yasui
英斉 安井
光春 寺嶋
Mitsuharu Terajima
光春 寺嶋
大熊 那夫紀
Naoki Okuma
那夫紀 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WATER REUSE PROMOTION CENTER
Swing Corp
Original Assignee
WATER REUSE PROMOTION CENTER
Swing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WATER REUSE PROMOTION CENTER, Swing Corp filed Critical WATER REUSE PROMOTION CENTER
Priority to JP2016145826A priority Critical patent/JP6727056B2/en
Publication of JP2018015684A publication Critical patent/JP2018015684A/en
Publication of JP2018015684A5 publication Critical patent/JP2018015684A5/ja
Application granted granted Critical
Publication of JP6727056B2 publication Critical patent/JP6727056B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wastewater treatment apparatus and method capable of efficiently recovering energy from wastewater while suppressing fouling of a membrane.SOLUTION: A wastewater treatment apparatus comprises: a solid-liquid separation tank 1 for solid-liquid separating precipitating organic matter in wastewater to obtain separated sludge and a separated liquid; a forward osmotic membrane device 3 having a semipermeable membrane and bringing the separated liquid into contact with a driving liquid having a higher osmotic pressure than the separated liquid through the semipermeable membrane to obtain concentrated water and treated water; a disinfectant supply device 4 for supplying a disinfectant to the separated liquid before flowing into the forward osmosis membrane device 3; a concentrated water storage tank 5 for storing the concentrated water; and an anaerobic treatment tank 6 for decomposing the concentrated water and separated sludge to convert them into methane gas.SELECTED DRAWING: Figure 1

Description

本発明は、排水処理装置及び排水処理方法に関し、特に、下水又は産業排水などの有機性排水からエネルギー回収することが可能な排水処理装置及び排水処理方法に関する。   The present invention relates to a wastewater treatment device and a wastewater treatment method, and more particularly, to a wastewater treatment device and a wastewater treatment method capable of recovering energy from organic wastewater such as sewage or industrial wastewater.

水処理の技術分野においては、正浸透膜(FO膜:Forward Osmosis Membrane)を用いて、海水の淡水化や、下水又は工場排水の浄化を行う水処理装置が知られている。FO膜は浸透プロセスの一種であり、半透膜を挟んで、濃い溶液の側から薄い溶液の側に水を流す現象を利用することで、塩水の淡水化や、病原体や有害物質を含む水の浄化が行われる。   In the technical field of water treatment, there is known a water treatment apparatus that desalinates seawater and purifies sewage or industrial wastewater using a forward osmosis membrane (FO membrane: Forward Osmosis Membrane). FO membranes are a type of osmosis process that uses the phenomenon of flowing water from a thick solution side to a thin solution side with a semi-permeable membrane interposed between them to desalinate salt water and to contain water containing pathogens and harmful substances. Purification is performed.

非特許文献1には、最初沈殿池の流出排水を、海水を駆動液とするFO膜装置で処理し、濃縮した排水を最初沈殿池の汚泥と混合して嫌気性消化槽に投入する方法が開示されている。具体的には、FIG.1bに示すように、最初沈澱池と、FO膜装置と、嫌気性消化装置とから構成され、FO膜装置に、最初沈澱池からの流出水を取り込んで、駆動液の海水により濃縮排水を得ると共に、濃縮排水と最初沈澱池からの沈殿汚泥とを混合して嫌気性消化槽で嫌気処理を行っている。   Non-Patent Document 1 discloses a method in which the outflow wastewater from the first sedimentation basin is treated with an FO membrane device using seawater as the driving liquid, and the concentrated wastewater is mixed with the sludge from the first sedimentation basin and introduced into the anaerobic digester. It is disclosed. Specifically, FIG. As shown in 1b, it is composed of an initial sedimentation basin, an FO membrane device, and an anaerobic digester, and the effluent water from the initial sedimentation basin is taken into the FO membrane device to obtain concentrated drainage by seawater of the driving liquid. At the same time, the concentrated drainage and the sedimentation sludge from the first sedimentation basin are mixed and anaerobic treatment is performed in an anaerobic digester.

特許文献1には、前処理の凝集沈殿として、凝集剤の注入装置及び固形物分離装置と、半透膜装置としてのFO膜とを備え、海水に含まれるファウリング成分の量に応じて、半透膜のファウリングを低減するように前処理を制御して淡水化することが開示されている。   Patent Document 1 includes a flocculant injection device and a solids separation device, and a FO membrane as a semipermeable membrane device as a pretreatment coagulation sediment, and according to the amount of fouling components contained in seawater, It is disclosed to desalinate by controlling the pretreatment so as to reduce fouling of the semipermeable membrane.

特許文献2には、下水、し尿、工場排水を被処理水とし、正浸透膜装置を用いて、直接、被処理水から濃縮水を得る例が開示されており、その濃縮水を反応槽で散気処理する構成が開示されている。   Patent Document 2 discloses an example in which sewage, human waste, and factory wastewater are treated water, and the concentrated water is directly obtained from the treated water using a forward osmosis membrane device. A configuration for aeration processing is disclosed.

特開2012−223723号公報JP 2012-223723 A 特開2014−61486号公報JP 2014-61486 A

Processing municipal wastewaters by forward osmosis using CTA membrane J. Mem. Sci. 468 pp.269-275, 2014Processing municipal wastewaters by forward osmosis using CTA membrane J. Mem. Sci. 468 pp.269-275, 2014

しかしながら、非特許文献1の技術では、最初沈殿池で沈まない成分が膜表面に付着し、膜のファウリングが頻繁に発生する問題がある。膜表面の付着物は、洗浄により除去することができるが、除去作業を頻繁に行うことによって、濃縮水から本来エネルギーとして回収可能な成分も除去される。   However, the technique of Non-Patent Document 1 has a problem in that components that do not settle in the first sedimentation basin adhere to the membrane surface, and fouling of the membrane frequently occurs. The deposits on the membrane surface can be removed by washing, but the components that can be recovered as energy from the concentrated water are also removed by frequently performing the removing operation.

特許文献1に記載された技術では、膜のファウリングを抑制することはできるが、海水淡水化を目的とした技術であるため、被処理水からエネルギーを回収することについては記載も示唆もされていない。   Although the technique described in Patent Document 1 can suppress fouling of the membrane, since it is a technique aimed at seawater desalination, there is a description and suggestion about recovering energy from treated water. Not.

特許文献2に記載された技術では、被処理水を直接、FO膜に導入して被処理水を濃縮しているため、被処理水に含まれる有機固形物や溶解性有機物により、早期にFO膜表面にバイオファウリングが発生する。また、特許文献2に記載された発明にも、被処理水からエネルギーを回収することについては記載も示唆もされていない。   In the technique described in Patent Document 2, since the water to be treated is directly introduced into the FO membrane to concentrate the water to be treated, the organic solids and the soluble organic matter contained in the water to be treated cause FO early. Biofouling occurs on the membrane surface. Further, the invention described in Patent Document 2 neither describes nor suggests recovering energy from the water to be treated.

本発明は、上記課題に鑑みてなされたものであり、膜のファウリングを抑制しつつ、排水から効率良くエネルギーを回収することが可能な排水処理装置及び排水処理方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a wastewater treatment apparatus and a wastewater treatment method capable of efficiently recovering energy from wastewater while suppressing fouling of the membrane. To do.

上記目的を達成するために、本発明者らが鋭意検討したところ、膜分離装置に流入させる流入水の性状を膜のファウリングが起こりにくい形態に予め調整するとともに、各工程で得られた汚泥及び処理水を引き抜いてメタン発酵することで、効率良くエネルギーが回収可能であることを見いだした。   In order to achieve the above-mentioned object, the present inventors diligently studied, and in advance adjusted the properties of the inflow water flowing into the membrane separation device into a form in which membrane fouling hardly occurs, and the sludge obtained in each step And it was found that energy can be recovered efficiently by extracting the treated water and performing methane fermentation.

以上の知見を基礎として完成した本発明は一側面において、排水中の沈殿性有機物を固液分離し、分離汚泥と分離液とを得る固液分離槽と、半透膜を備え、半透膜を介して分離液を分離液よりも高浸透圧の駆動液と接触させることにより濃縮水と処理水とを得る正浸透膜装置と、正浸透膜装置へ流入する前の分離液に殺菌剤を供給する殺菌剤供給装置と、濃縮水を貯蔵する濃縮水貯蔵槽と、濃縮水と分離汚泥とを分解してメタンガスに変換する嫌気性処理槽とを備える排水処理装置が提供される。   The present invention completed on the basis of the above knowledge is, in one aspect, a solid-liquid separation tank for separating solid-liquid precipitates in waste water to obtain separated sludge and a separated liquid, a semipermeable membrane, and a semipermeable membrane A osmotic membrane device for obtaining concentrated water and treated water by bringing the separated liquid into contact with a driving liquid having a higher osmotic pressure than the separated liquid, and a bactericide in the separated liquid before flowing into the forward osmotic membrane apparatus. There is provided a wastewater treatment apparatus including a disinfectant supply apparatus to be supplied, a concentrated water storage tank for storing concentrated water, and an anaerobic treatment tank for decomposing the concentrated water and separated sludge and converting them into methane gas.

本発明に係る排水処理装置は一実施態様において、濃縮水貯蔵槽に排水又は分離汚泥に含まれる有機物を供給可能な有機物供給ラインを更に備える。   In one embodiment, the wastewater treatment apparatus according to the present invention further includes an organic substance supply line capable of supplying organic substances contained in the drainage or separated sludge to the concentrated water storage tank.

本発明は別の一側面において、排水中の沈殿性有機物を固液分離し、分離汚泥と分離液とを得る第1の固液分離装置と、半透膜を備え、半透膜を介して分離液を分離液よりも高浸透圧の駆動液と接触させることにより濃縮水と処理水とを得る正浸透膜装置と、正浸透膜装置へ流入する前の分離液に凝集剤を加えて固液分離する第2の固液分離装置と、濃縮水と分離汚泥とを分解してメタンガスに変換する嫌気性処理槽とを備える排水処理装置が提供される。   In another aspect, the present invention includes a first solid-liquid separation device that separates solid-liquid precipitates in wastewater to obtain separated sludge and a separated liquid, and a semipermeable membrane, with the semipermeable membrane interposed therebetween. A normal osmosis membrane device that obtains concentrated water and treated water by bringing the separation liquid into contact with a driving liquid having a higher osmotic pressure than the separation liquid, and a coagulant added to the separation liquid before flowing into the forward osmosis membrane apparatus to solidify it. There is provided a wastewater treatment apparatus comprising a second solid-liquid separation apparatus for liquid separation, and an anaerobic treatment tank for decomposing concentrated water and separated sludge to convert them into methane gas.

本発明に係る排水処理装置は別の一実施態様において、嫌気性処理槽が、分離汚泥をメタン発酵する嫌気性消化槽と、濃縮水をメタン発酵する嫌気性排水処理槽とを備える。   In another embodiment of the wastewater treatment apparatus according to the present invention, the anaerobic treatment tank includes an anaerobic digestion tank for methane fermentation of separated sludge and an anaerobic wastewater treatment tank for methane fermentation of concentrated water.

本発明に係る排水処理装置は更に別の一実施態様において、駆動液が、鉄、コバルト、ニッケル、亜鉛、タングステン、マンガン、モリブデン、セレン、ホウ素のいずれかを含む海水、海水淡水化処理施設の濃縮水、又は浸出水処理施設から排出される高塩濃度排水のいずれかを含む。   In yet another embodiment of the wastewater treatment apparatus according to the present invention, the driving liquid is seawater containing any of iron, cobalt, nickel, zinc, tungsten, manganese, molybdenum, selenium, and boron, and a seawater desalination treatment facility. Includes either concentrated water or high-salt drainage discharged from leachate treatment facilities.

本発明は更に別の一側面において、排水中の沈殿性有機物を固液分離し、分離汚泥と分離液とを得ることと、半透膜を備える正浸透膜装置に分離液を供給し、半透膜を介して分離液を分離液よりも高浸透圧の駆動液と接触させることにより、濃縮水と処理水とを得ることと、正浸透膜装置へ流入する前の分離液に殺菌剤を供給することと、濃縮水を貯蔵することと、濃縮水と分離汚泥とを分解してメタンガスに変換することを含む排水処理方法が提供される。   In another aspect of the present invention, solid organic liquid in the waste water is separated into solid and liquid to obtain a separated sludge and a separated liquid, and the separated liquid is supplied to a forward osmosis membrane apparatus including a semipermeable membrane. By contacting the separation liquid with a driving liquid having a higher osmotic pressure than the separation liquid through the permeable membrane, concentrated water and treated water are obtained, and a bactericide is added to the separation liquid before flowing into the forward osmosis membrane apparatus. There is provided a wastewater treatment method including supplying, storing concentrated water, and decomposing and converting the concentrated water and separated sludge into methane gas.

本発明は更に別の一側面において、排水中の沈殿性有機物を固液分離し、分離汚泥と分離液とを得ることと、半透膜を備える正浸透膜装置に分離液を供給し、半透膜を介して分離液を分離液よりも高浸透圧の駆動液と接触させることにより濃縮水と処理水とを得ることと、正浸透膜装置へ流入する前の分離液に凝集剤を加えて固液分離することと、濃縮水と分離汚泥とを分解してメタンガスに変換することを含む排水処理方法が提供される。   In another aspect of the present invention, solid organic liquid in the waste water is separated into solid and liquid to obtain a separated sludge and a separated liquid, and the separated liquid is supplied to a forward osmosis membrane apparatus including a semipermeable membrane. Concentrated water and treated water are obtained by contacting the separation liquid with a driving liquid having a higher osmotic pressure than the separation liquid through the permeable membrane, and a flocculant is added to the separation liquid before flowing into the forward osmosis membrane device. Thus, there is provided a waste water treatment method including solid-liquid separation and decomposition of concentrated water and separated sludge to convert them into methane gas.

本発明に係る排水処理方法は一実施態様において、駆動液が、鉄、コバルト、ニッケル、亜鉛、タングステン、マンガン、モリブデン、セレン、ホウ素のいずれかを含む海水、海水淡水化処理施設の濃縮水、又は浸出水処理施設から排出される高塩濃度排水を含む。   In one embodiment, the wastewater treatment method according to the present invention is a seawater containing one of iron, cobalt, nickel, zinc, tungsten, manganese, molybdenum, selenium, and boron, concentrated water of a seawater desalination facility, Or high salt concentration wastewater discharged from leachate treatment facilities.

本発明によれば、膜のファウリングを抑制しつつ、排水から効率良くエネルギーを回収することが可能な排水処理装置及び排水処理方法が提供できる。   According to the present invention, it is possible to provide a wastewater treatment apparatus and a wastewater treatment method capable of efficiently recovering energy from wastewater while suppressing fouling of the membrane.

本発明の第1の実施の形態に係る排水処理装置の一例を示す概略図である。It is the schematic which shows an example of the waste water treatment equipment which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る排水処理装置の一例を示す概略図である。It is the schematic which shows an example of the waste water treatment equipment which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る排水処理装置の一例を示す概略図である。It is the schematic which shows an example of the waste water treatment equipment which concerns on the 3rd Embodiment of this invention.

以下、図面を参照しながら本発明の実施の形態を説明する。以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであってこの発明の技術的思想は構成部品の構造、配置等を下記のものに特定するものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiments exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention specifies the structure, arrangement, etc. of components as follows. Not what you want.

(第1の実施の形態)
本発明の第1の実施の形態に係る排水処理装置は、図1に示すように、排水中の沈殿性有機物を固液分離し、分離汚泥と分離液とを得る固液分離槽1(第1の固液分離装置)と、半透膜を備え、半透膜を介して分離液を分離液よりも高浸透圧の駆動液と接触させることにより濃縮水と処理水とを得る正浸透膜装置3と、正浸透膜装置3へ流入する前の分離液に殺菌剤を供給する殺菌剤供給装置4と、濃縮水を貯蔵する濃縮水貯蔵槽5と、濃縮水と分離汚泥とを分解してメタンガスに変換する嫌気性処理槽6とを備える。
(First embodiment)
As shown in FIG. 1, the waste water treatment apparatus according to the first embodiment of the present invention is a solid-liquid separation tank 1 (first) that separates solid-liquid precipitates in waste water to obtain separated sludge and separated liquid. 1 and a semi-permeable membrane, and through the semi-permeable membrane, the separated liquid is brought into contact with a driving liquid having a higher osmotic pressure than the separated liquid to obtain concentrated water and treated water. The apparatus 3, the bactericide supply apparatus 4 for supplying the bactericide to the separation liquid before flowing into the forward osmosis membrane apparatus 3, the concentrated water storage tank 5 for storing the concentrated water, the concentrated water and the separated sludge are decomposed. And an anaerobic treatment tank 6 for converting to methane gas.

供給対象とする排水の種類は特に限定されないが、少なくとも溶解性有機物や濁質などの汚染物を含む有機性排水が好適に用いられる。具体的には、下水、下水の一次処理水、下水の二次処理水、し尿、畜産排水、各種製造排水などが、本実施形態に係る排水として利用可能である。   The type of wastewater to be supplied is not particularly limited, but organic wastewater containing at least contaminants such as soluble organic matter and turbidity is preferably used. Specifically, sewage, primary treated water of sewage, secondary treated water of sewage, human waste, livestock wastewater, various production wastewater, and the like can be used as wastewater according to the present embodiment.

排水の水質は以下に限定されるものではないが、例えば、生物化学的酸素要求量(BOD)が10〜1000mg/L、化学的酸素要求量(CODcr)が20〜3000mg/L、浮遊物質(SS)が20〜3000mg/L程度の有機性排水が供給できる。   The water quality of the wastewater is not limited to the following, but for example, the biochemical oxygen demand (BOD) is 10 to 1000 mg / L, the chemical oxygen demand (CODcr) is 20 to 3000 mg / L, suspended matter ( SS) can supply organic wastewater having a concentration of about 20 to 3000 mg / L.

固液分離槽1としては、例えば最初沈殿池などが好適に利用される。なお、固液分離の具体的手段は特に限定されるものではなく、重力沈降分離、遠心分離、浮上分離、凝集分離、膜分離の任意の手段が利用可能である。固液分離槽1で得られる分離液は、正浸透膜装置(FO膜装置)へ送られる。固液分離槽1で分離される分離汚泥は、配管SL2を介して嫌気性処理槽6へ送られる。   As the solid-liquid separation tank 1, for example, an initial sedimentation tank is preferably used. In addition, the specific means of solid-liquid separation is not specifically limited, Arbitrary means of gravity sedimentation separation, centrifugation, levitation separation, aggregation separation, and membrane separation can be utilized. The separation liquid obtained in the solid-liquid separation tank 1 is sent to a forward osmosis membrane device (FO membrane device). The separated sludge separated in the solid-liquid separation tank 1 is sent to the anaerobic treatment tank 6 through the pipe SL2.

正浸透膜装置3は半透膜(FO膜)を備えており、半透膜の一次側には固液分離槽1から分離された分離液が供給される。半透膜の二次側には分離液よりも高浸透圧の駆動液(ドロー溶液)が供給される。正浸透膜装置3を用いることにより、逆浸透膜(RO)装置などに比べて、装置内の加圧のための大型ポンプを使用する必要がなくなるため、動力を削減できる。   The forward osmosis membrane device 3 includes a semipermeable membrane (FO membrane), and the separated liquid separated from the solid-liquid separation tank 1 is supplied to the primary side of the semipermeable membrane. A driving liquid (draw solution) having a higher osmotic pressure than the separation liquid is supplied to the secondary side of the semipermeable membrane. By using the forward osmosis membrane device 3, it is not necessary to use a large pump for pressurization in the device as compared with a reverse osmosis membrane (RO) device or the like, so that power can be reduced.

正浸透膜装置3へ流入する分離液が半透膜を介して駆動液と接触することで、濃縮水と処理水とが得られる。処理水は正浸透膜装置3の外部へ放出可能である。濃縮水は配管CLを介して濃縮水貯蔵槽5へ送られる。正浸透膜装置3内へ供給される駆動液としては、海水、海水淡水化処理施設の濃縮水(ブライン)、浸出水処理施設から排出される高塩濃度排水などが好ましい。   The separated liquid flowing into the forward osmosis membrane device 3 comes into contact with the driving liquid through the semipermeable membrane, whereby concentrated water and treated water are obtained. The treated water can be discharged to the outside of the forward osmosis membrane device 3. The concentrated water is sent to the concentrated water storage tank 5 through the pipe CL. The driving liquid supplied into the forward osmosis membrane device 3 is preferably seawater, concentrated water (brine) of a seawater desalination treatment facility, high salt concentration drainage discharged from a leachate treatment facility, or the like.

図1の嫌気性処理槽6で行われる嫌気性消化処理などを司る微生物の活性には、鉄、コバルト、ニッケル、亜鉛、タングステン、マンガン、モリブデン、セレン、ホウ素などの微量の物質の存在が重要であるが、これら微量の物質を含む海水、海水淡水化処理施設の濃縮水(ブライン)、浸出水処理施設から排出される高塩濃度排水などの駆動液中の成分を半透膜の一次側へ流入させることで、嫌気性消化処理を行うに当たっての栄養源となり、嫌気性消化反応をより安定的に行うことができる。   The presence of trace amounts of substances such as iron, cobalt, nickel, zinc, tungsten, manganese, molybdenum, selenium, and boron is important for the activity of microorganisms that manage the anaerobic digestion process performed in the anaerobic treatment tank 6 of FIG. However, components in the driving fluid such as seawater containing these trace amounts of substances, concentrated water (brine) of seawater desalination facilities, and high-salt concentration wastewater discharged from leachate treatment facilities are used for the primary side of the semipermeable membrane. By flowing in, it becomes a nutrient source for performing the anaerobic digestion treatment, and the anaerobic digestion reaction can be performed more stably.

具体的には、嫌気性処理槽6においてより効率良く濃縮水をエネルギー化(メタンガス化)するために、下記で定義されるFO膜の溶質リーク率が0.0001〜0.1になるように、FO膜の種類及び運転条件を設定することが好ましい。
溶質リーク率=(濃縮水塩分濃度÷濃縮率−原排水中塩分濃度)÷駆動液塩分濃度
濃縮率=原排水流量÷濃縮水流量
Specifically, in order to more efficiently energize concentrated water (methane gasification) in the anaerobic treatment tank 6, the solute leakage rate of the FO film defined below is 0.0001 to 0.1. It is preferable to set the type and operating conditions of the FO film.
Solute Leak Rate = (Concentrated Salinity Concentration ÷ Concentration Rate-Salinity Concentration in Raw Wastewater) ÷ Drive Liquid Salinity Concentration Rate = Raw Wastewater Flow Rate / Concentrated Water Flow Rate

FO膜としては、特に限定されず、種々の半透膜を使用できるが、駆動液の塩が二次側から一次側へ一部流入する膜を使用することが好ましい。例えば、酢酸セルロース、ポリアミド、ポリスルホン、ポリフッ化ビニリデン、ポリエチレン、塩化ビニルなどの様々な材料を使用することができる。FO膜の形状も特に限定されず、平膜、スパイラル膜、中空紙膜など任意の形状の膜を利用できる。   The FO film is not particularly limited, and various semi-permeable films can be used, but it is preferable to use a film in which the salt of the driving liquid partially flows from the secondary side to the primary side. For example, various materials such as cellulose acetate, polyamide, polysulfone, polyvinylidene fluoride, polyethylene, and vinyl chloride can be used. The shape of the FO film is not particularly limited, and a film having an arbitrary shape such as a flat film, a spiral film, or a hollow paper film can be used.

正浸透膜装置3へ流入する分離液に対し、殺菌剤供給装置4から供給される殺菌剤としては、スライムコントロール剤が好適に用いられる。スライムコントロール剤としては、次亜塩素酸ナトリウムなどの塩素性スライムコントロール剤、過酸化水素などの酸化性スライムコントロール剤、或いは5−クロロ−メチル−イソチアゾリン3−オン(MIT)、ハロシアノアセトアミド化合物などの有機性スライムコントロール剤を使用することができる。   As the disinfectant supplied from the disinfectant supply device 4 to the separation liquid flowing into the forward osmosis membrane device 3, a slime control agent is preferably used. Examples of slime control agents include chlorinated slime control agents such as sodium hypochlorite, oxidizing slime control agents such as hydrogen peroxide, 5-chloro-methyl-isothiazolin-3-one (MIT), and halocyanoacetamide compounds. Organic slime control agents can be used.

次亜塩素酸ナトリウムなどの塩素系スライムコントロール剤は、有利残留塩素のその強い酸化力によって、FO膜材質を劣化させる場合があるが、アンモニアが存在する排水中ではこれと反応してクロラミンを生成する。このクロラミンは、有利残留塩素に比べて穏やかな酸化力を持つため、膜材質の酸化劣化を抑制しつつ、ファウリングを防ぐことができる。   Chlorine slime control agents such as sodium hypochlorite may deteriorate the FO film material due to its strong oxidizing power of residual chlorine, but react with this in wastewater containing ammonia to produce chloramine. To do. Since this chloramine has a milder oxidizing power than the advantageous residual chlorine, fouling can be prevented while suppressing oxidative deterioration of the film material.

酸化剤の添加量は、多すぎると、後段の嫌気性処理槽6における濃縮水のメタン発酵処理に悪影響を及ぼす場合があり、少なすぎるとFO膜のファウリング抑制効果が有利に得られない。正浸透膜装置3へ供給される分離液中の殺菌剤の濃度が、例えば0.1〜100mg/Lとなるように殺菌剤を添加することが好ましく、より好ましくは0.5〜50mg/L程度である。   If the amount of the oxidizing agent added is too large, it may adversely affect the methane fermentation treatment of the concentrated water in the subsequent anaerobic treatment tank 6, and if it is too small, the effect of suppressing fouling of the FO membrane cannot be obtained advantageously. It is preferable to add the bactericide so that the concentration of the bactericide in the separation liquid supplied to the forward osmosis membrane device 3 is, for example, 0.1 to 100 mg / L, and more preferably 0.5 to 50 mg / L. Degree.

なお、殺菌剤の添加量(濃度)は、正浸透膜装置3へ供給される液の成分変動などに応じて制御することが好ましい。例えば、正浸透膜の膜間差圧を計測する差圧計(図示せず)を正浸透膜装置3内へ配置し、膜間差圧の値、或いは差圧計の検出結果から計算される膜の透過流速の値が所定の値以下となった場合に、殺菌剤の添加量を増やすような信号を殺菌剤供給装置4へ送出するような制御装置(図示省略)を用いて、殺菌剤の添加量を連続的又は間欠的に制御することができる。これにより、排水の水質変動が生じた場合であっても、膜のファウリングをより長期間抑制することが可能になる。また、正浸透膜モジュールの入口圧と濃縮水圧力を測定し、その差圧(圧力損失)に応じて、殺菌剤の添加量を増やすような信号を殺菌剤供給装置4に送出するような制御機構を用いてもよい。   In addition, it is preferable to control the addition amount (concentration) of a disinfectant according to the component fluctuation | variation etc. of the liquid supplied to the forward osmosis membrane apparatus 3. FIG. For example, a differential pressure gauge (not shown) for measuring the transmembrane pressure difference of the forward osmosis membrane is disposed in the forward osmosis membrane device 3, and the membrane pressure calculated from the value of the transmembrane differential pressure or the detection result of the differential pressure gauge. Addition of bactericidal agent using a control device (not shown) that sends a signal that increases the addition amount of the bactericidal agent to the bactericidal agent supply device 4 when the value of the permeation flow rate becomes a predetermined value or less. The amount can be controlled continuously or intermittently. This makes it possible to suppress membrane fouling for a long period of time even when the water quality of the wastewater fluctuates. Further, the control is performed such that the inlet pressure and the concentrated water pressure of the forward osmosis membrane module are measured and a signal for increasing the amount of the sterilizing agent added is sent to the sterilizing agent supply device 4 according to the differential pressure (pressure loss). A mechanism may be used.

殺菌剤供給装置4から供給される殺菌剤は、正浸透膜装置3内から濃縮水が排出される出口までは殺菌効果を保持し、正浸透膜装置3から排出された後はその殺菌効果が保持されていないことが、濃縮水から効率良くエネルギー回収する上では最も好ましい。一方で、正浸透膜のファウリング抑制の観点からは、正浸透膜装置3へ供給される液(分離液)に対しては殺菌剤を十分に添加させることが好ましいため、正浸透膜装置3から得られる濃縮水中には殺菌剤の成分が残存する。   The disinfectant supplied from the disinfectant supply device 4 retains the disinfecting effect from the inside of the forward osmosis membrane device 3 to the outlet from which the concentrated water is discharged, and the disinfecting effect after being discharged from the forward osmosis membrane device 3. It is most preferable not to be retained in order to efficiently recover energy from the concentrated water. On the other hand, from the viewpoint of suppressing fouling of the forward osmosis membrane, it is preferable to add a sufficient bactericidal agent to the liquid (separated liquid) supplied to the forward osmosis membrane device 3, and thus the forward osmosis membrane device 3 The fungicide component remains in the concentrated water obtained from

本実施形態に係る排水処理装置では、濃縮水貯蔵槽5において、殺菌剤の効果を失活させる程度に、正浸透膜装置3で得られる濃縮水を一定期間貯蔵することができる。例えば、濃縮水貯蔵槽5に貯蔵された濃縮水を大気中で静置するか、或いは濃縮水貯蔵槽5内に散気手段(図示せず)を設け、散気して濃縮水を撹拌することによって、殺菌剤を分解させ、その殺菌効果を失わせることが可能である。濃縮水中の殺菌剤の濃度にもよるが、例えば、濃縮水を0.2時間以上、より好ましくは1.0時間以上大気中で貯蔵することが好ましい。   In the wastewater treatment apparatus according to the present embodiment, the concentrated water obtained by the forward osmosis membrane device 3 can be stored for a certain period in the concentrated water storage tank 5 to such an extent that the effect of the bactericide is deactivated. For example, the concentrated water stored in the concentrated water storage tank 5 is allowed to stand in the atmosphere, or an air diffuser (not shown) is provided in the concentrated water storage tank 5 to diffuse and stir the concentrated water. By this, it is possible to decompose the bactericidal agent and lose its bactericidal effect. Depending on the concentration of the bactericide in the concentrated water, for example, the concentrated water is preferably stored in the atmosphere for 0.2 hours or more, more preferably 1.0 hours or more.

濃縮水貯蔵槽5には、排水(流入原水)又は固液分離槽1で分離された分離汚泥に含まれる有機物を供給可能な有機物供給ラインOL1、OL2が接続されていることが好ましい。図1に示すように、有機物供給ラインOL2は、固液分離槽1で分離された分離汚泥を供給する供給ラインSL2に接続されており、供給ラインSL2から分離汚泥の一部を抜き取って濃縮水貯蔵槽5へ供給することが可能である。有機物供給ラインOL1は、流入原水である排水の一部を抜き取って濃縮水貯蔵槽5へ供給することが可能である。排水及び濃縮汚泥に含まれる有機物を濃縮水と混合することにより、濃縮水中の殺菌剤をより早期に分解することができる。   It is preferable that the concentrated water storage tank 5 is connected to organic matter supply lines OL1 and OL2 capable of supplying organic substances contained in the separated sludge separated in the drainage (inflow raw water) or the solid-liquid separation tank 1. As shown in FIG. 1, the organic substance supply line OL2 is connected to a supply line SL2 that supplies separated sludge separated in the solid-liquid separation tank 1, and a part of the separated sludge is extracted from the supply line SL2 to obtain concentrated water. It is possible to supply to the storage tank 5. The organic substance supply line OL <b> 1 can extract a part of the waste water that is the inflow raw water and supply it to the concentrated water storage tank 5. By mixing the organic matter contained in the waste water and the concentrated sludge with the concentrated water, the disinfectant in the concentrated water can be decomposed earlier.

例えば、濃縮水に分離汚泥及び排水の少なくともいずれかを混合させる場合、濃縮水に含まれる有効殺菌量の0.1〜10倍程度が最適である。有効殺菌量は、殺菌剤量(重量)を液中に含まれる有機物量(重量)で定義される。例えば、残留塩素が0.5mg/Lであれば、0.05〜5mg/Lの有機物量が必要である。このように、排水及び濃縮汚泥に含まれる有機物を混合することで、貯留時間を短縮することができ、例えば0.05時間以上、より典型的には0.5時間以上の貯留で済むようになり、濃縮水貯留槽5の容積を小さくすることができる。   For example, when mixing at least one of separated sludge and waste water with concentrated water, about 0.1 to 10 times the effective sterilization amount contained in the concentrated water is optimal. The effective sterilization amount is defined by the amount (weight) of the organic substance contained in the liquid as the amount (weight) of the bactericide. For example, if the residual chlorine is 0.5 mg / L, an organic substance amount of 0.05 to 5 mg / L is required. Thus, by mixing organic substances contained in drainage and concentrated sludge, the storage time can be shortened, for example, 0.05 hours or more, more typically 0.5 hours or more. Thus, the volume of the concentrated water storage tank 5 can be reduced.

嫌気性処理槽6は、濃縮水と分離汚泥とを分解してメタンガスに変換する目的で設置される装置であれば特に限定されない。嫌気性処理槽6としては、例えば、分離汚泥及び濃縮水を嫌気性生物処理して、メタンガスや炭酸ガスなどの燃料ガスに分解する生物処理装置が利用可能である。   The anaerobic treatment tank 6 is not particularly limited as long as it is an apparatus installed for the purpose of decomposing concentrated water and separated sludge and converting them into methane gas. As the anaerobic treatment tank 6, for example, a biological treatment apparatus that performs anaerobic biological treatment of separated sludge and concentrated water and decomposes them into fuel gas such as methane gas or carbon dioxide gas can be used.

嫌気性処理槽6の後段には、濃縮水及び分離汚泥を嫌気性消化槽でメタン発酵処理して得られた消化汚泥を乾燥或いは炭化して燃料汚泥にメタン発酵する乾燥機又は炭化装置等が更に配置されていてもよい。   In the subsequent stage of the anaerobic treatment tank 6, there are a dryer or a carbonization device for drying or carbonizing the digested sludge obtained by subjecting the concentrated water and the separated sludge to methane fermentation in the anaerobic digestion tank to methane fermentation into fuel sludge. Further, it may be arranged.

嫌気性処理槽6として嫌気性処理槽を設置して処理する場合は、至適pHを6.5〜7.5とし、30〜35℃を至適温度として中温メタン発酵処理又は50〜55℃を至適温度とした高温メタン発酵処理を行うことができる。嫌気性菌を維持するためには、温度管理とpH管理が極めて重要である。嫌気性処理槽6による嫌気性消化で得られた流出液と処理汚泥は、固液分離槽7において固液分離され、上澄液は処理水として放流することができる。   When installing an anaerobic treatment tank as the anaerobic treatment tank 6, the optimum pH is set to 6.5 to 7.5, and the medium temperature methane fermentation treatment or 30 to 35 ° C. with 30 to 35 ° C. as the optimum temperature. It is possible to perform a high-temperature methane fermentation treatment at an optimum temperature. In order to maintain anaerobic bacteria, temperature control and pH control are extremely important. The effluent and the treated sludge obtained by anaerobic digestion in the anaerobic treatment tank 6 are solid-liquid separated in the solid-liquid separation tank 7, and the supernatant can be discharged as treated water.

第1の実施の形態に係る排水処理方法は、図1に示す排水処理装置を用いて実施することができる。まず、固液分離槽1において、原水である排水中の沈殿性有機物を固液分離し、分離汚泥と分離液とを得る。次に、固液分離槽1で得られた分離液を、半透膜を備える正浸透膜装置3に供給し、半透膜を介して分離液を分離液よりも高浸透圧の駆動液と接触させることにより、濃縮水と処理水とを得る。その際、正浸透膜装置3へ流入する前の分離液には、殺菌剤を供給する。正浸透膜装置3で得られた濃縮水は、濃縮水貯蔵槽5において一定期間貯蔵し、濃縮中に残存する殺菌剤を分解させる。その後、濃縮水貯蔵槽5に貯蔵された濃縮水を、固液分離槽1で分離された分離汚泥と共に嫌気性処理槽6へ供給し、嫌気性処理槽6において、濃縮水及び分離汚泥を分解してメタンガスに変換する。   The waste water treatment method according to the first embodiment can be carried out using the waste water treatment apparatus shown in FIG. First, in the solid-liquid separation tank 1, the sedimentary organic matter in the wastewater which is raw water is subjected to solid-liquid separation to obtain separated sludge and separated liquid. Next, the separation liquid obtained in the solid-liquid separation tank 1 is supplied to a forward osmosis membrane device 3 having a semipermeable membrane, and the separation liquid is driven through a semipermeable membrane with a driving liquid having a higher osmotic pressure than the separation liquid. By contacting, concentrated water and treated water are obtained. At that time, a bactericide is supplied to the separation liquid before flowing into the forward osmosis membrane device 3. Concentrated water obtained by the forward osmosis membrane device 3 is stored in the concentrated water storage tank 5 for a certain period of time, and the disinfectant remaining during concentration is decomposed. Thereafter, the concentrated water stored in the concentrated water storage tank 5 is supplied to the anaerobic treatment tank 6 together with the separated sludge separated in the solid-liquid separation tank 1, and the concentrated water and the separated sludge are decomposed in the anaerobic treatment tank 6. And convert it to methane gas.

第1の実施の形態に係る排水処理装置及び排水処理方法によれば、正浸透膜装置3へ流入する前の分離液に殺菌剤が供給されるため、正浸透膜装置3に設置される半透膜のファウリングを長期間抑制することができる。一方で、正浸透膜装置3の濃縮水には、生物活性を低下させる殺菌剤が添加されているため、濃縮水を直接、嫌気性処理槽6においてメタン発酵させると、メタン発酵菌がダメージを受けてメタンガスの回収量が低下する場合がある。   According to the waste water treatment device and the waste water treatment method according to the first embodiment, since the bactericide is supplied to the separation liquid before flowing into the forward osmosis membrane device 3, the half installed in the forward osmosis membrane device 3. Fouling of the permeable membrane can be suppressed for a long time. On the other hand, the concentrated water of the forward osmosis membrane device 3 is added with a bactericide that reduces biological activity. Therefore, if the concentrated water is subjected to methane fermentation directly in the anaerobic treatment tank 6, the methane fermentation bacteria are damaged. In response, the amount of methane gas recovered may decrease.

第1の実施の形態に係る排水処理方法及び装置によれば、殺菌剤が添加された濃縮水を濃縮水貯蔵槽5で一定期間貯蔵するため、濃縮水貯蔵槽5で濃縮水中の殺菌剤を分解した後に、嫌気性処理槽6に濃縮水を供給することができる。これにより、嫌気性処理槽6で使用される嫌気性細菌の死滅を抑制し、エネルギーとして回収するメタンガスの発生効率を向上させることができる。或いは、固液分離された分離汚泥又は排水の一部を、有機物供給ラインOL1、OL2を介して濃縮水貯蔵槽5へ供給して濃縮水と混合することで、濃縮水中の殺菌剤の分解効果を早めることができる。   According to the wastewater treatment method and apparatus according to the first embodiment, the concentrated water to which the sterilizing agent is added is stored in the concentrated water storage tank 5 for a certain period of time. After decomposition, concentrated water can be supplied to the anaerobic treatment tank 6. Thereby, the extinction of the anaerobic bacteria used in the anaerobic treatment tank 6 can be suppressed, and the generation efficiency of methane gas recovered as energy can be improved. Alternatively, a part of the separated sludge or waste water separated into solid and liquid is supplied to the concentrated water storage tank 5 through the organic substance supply lines OL1 and OL2 and mixed with the concentrated water, thereby decomposing the disinfectant in the concentrated water. Can be expedited.

(第2の実施の形態)
第2の実施の形態に係る排水処理装置は、図2に示すように、殺菌剤供給装置4の前段に、第2の固液分離装置2が配置される点が、図1に示す排水処理装置と異なる。なお、第2の固液分離装置は、凝集沈殿装置、凝集砂ろ過装置、凝集膜ろ過装置、凝集沈殿装置と砂ろ過或いは膜ろ過装置のいずれかを採用することができる。
(Second Embodiment)
As shown in FIG. 2, the waste water treatment apparatus according to the second embodiment is that the second solid-liquid separation device 2 is disposed upstream of the bactericide supply device 4. Different from the device. As the second solid-liquid separation device, any one of a coagulation sedimentation device, a coagulation sand filtration device, a coagulation membrane filtration device, a coagulation sedimentation device and a sand filtration or a membrane filtration device can be adopted.

即ち、第2の実施の形態に係る排水処理装置は、排水中の沈殿性有機物を固液分離し、分離汚泥と分離液とを得る第1の固液分離装置(固液分離槽)1と、半透膜を備え、半透膜を介して分離液を分離液よりも高浸透圧の駆動液と接触させることにより濃縮水と処理水とを得る正浸透膜装置3と、正浸透膜装置3へ流入する前の分離液に凝集剤を加えて固液分離する第2の固液分離装置2と、濃縮水と分離汚泥とを分解してメタンガスに変換する嫌気性処理槽6とを備える。図2に示す排水処理装置では殺菌剤供給装置4は配置してもしなくても良い。第2の固液分離装置2以外の構成は、図1に示す構成と実質的に同様であるので、説明を省略する。   That is, the wastewater treatment apparatus according to the second embodiment includes a first solid-liquid separation apparatus (solid-liquid separation tank) 1 that separates solid-liquid precipitates in wastewater to obtain separated sludge and a separated liquid. A forward osmosis membrane device 3 that includes a semipermeable membrane and obtains concentrated water and treated water by contacting the separation liquid with a driving liquid having a higher osmotic pressure than the separation liquid through the semipermeable membrane; 2 is provided with a second solid-liquid separation device 2 that adds a flocculant to the separation liquid before flowing into the solid liquid and separates the concentrated water and the separated sludge and converts them into methane gas. . In the wastewater treatment apparatus shown in FIG. 2, the disinfectant supply apparatus 4 may or may not be arranged. The configuration other than the second solid-liquid separation device 2 is substantially the same as the configuration shown in FIG.

固液分離槽1の分離液には、固液分離槽1で除去されない微細な有機性固形物及び溶解性有機物が残存しているため、第2の固液分離装置2において、分離液に凝集剤を加えて有機物を凝集沈殿させる。これにより、正浸透膜装置3へ流入する分離液中の有機物濃度を低減できるため、正浸透膜装置3において有機物を基質とする微生物の増殖を抑制し、膜のファウリングを長期間抑制することができる。   In the separation liquid of the solid-liquid separation tank 1, fine organic solids and soluble organic substances that cannot be removed in the solid-liquid separation tank 1 remain, so that the second solid-liquid separation apparatus 2 aggregates into the separation liquid. Add an agent to coagulate and precipitate organic matter. Thereby, since the organic substance density | concentration in the separation liquid which flows into the forward osmosis membrane apparatus 3 can be reduced, the proliferation of the microorganisms which use an organic substance as a substrate in the forward osmosis membrane apparatus 3 is suppressed, and the fouling of a membrane is suppressed for a long period of time. Can do.

第2の固液分離装置2は、固液分離槽1からの分離液に凝集剤を添加する第1の反応槽21と、第1の反応槽21から流出する分離液に凝集助剤を添加する第2の反応槽22と、第2の反応槽22から流出する分離液を固液分離する凝集沈殿槽23とを備えることができる。図2の例では、2つの反応槽21、22を備える例を示しているが、反応槽21、22の個数は特に限定されず、例えば単一の反応槽としてもよいことは勿論である。   The second solid-liquid separation device 2 includes a first reaction tank 21 for adding a flocculant to the separated liquid from the solid-liquid separation tank 1, and a flocculant aid for the separated liquid flowing out from the first reaction tank 21. The second reaction tank 22 and the coagulation sedimentation tank 23 for solid-liquid separation of the separation liquid flowing out from the second reaction tank 22 can be provided. In the example of FIG. 2, the example provided with the two reaction tanks 21 and 22 is shown, but the number of the reaction tanks 21 and 22 is not particularly limited, and for example, a single reaction tank may be used.

本実施形態で使用される凝集剤には、凝結剤を用いることができる。凝結剤としては、一般に使用されている有機凝結剤を使用するのが好ましい。有機凝結剤は、従来の無機凝集剤と比較して主成分が有機物であり、嫌気性消化によって分解可能である。有機凝結材としては、例えば、縮合系ポリアミン、ジシアンジアミド・ホルマリン縮合物、ポリエチレンイミン、ポリビニルイミダリン、ポリビニルピリジン、ジアリルアミン塩・二酸化硫黄共重合体、ポリジメチルジアリルアンモニウム塩、ポリジメチルジアリルアンモニウム塩・二酸化硫黄共重合体、ポリジメチルジアリルアンモニウム塩・アクリルアミド共重合体、ポリジメチルジアリルアンモニウム塩・ジアリルアミン塩酸塩誘導体共重合体、アリルアミン塩重合体などが挙げられる。   A coagulant can be used for the flocculant used in the present embodiment. As the coagulant, it is preferable to use a commonly used organic coagulant. The organic coagulant has an organic substance as a main component as compared with a conventional inorganic flocculant and can be decomposed by anaerobic digestion. Examples of organic coagulants include condensed polyamines, dicyandiamide / formalin condensates, polyethyleneimine, polyvinylimidarin, polyvinylpyridine, diallylamine salts / sulfur dioxide copolymers, polydimethyldiallylammonium salts, polydimethyldiallylammonium salts / dioxides. Examples thereof include a sulfur copolymer, a polydimethyldiallylammonium salt / acrylamide copolymer, a polydimethyldiallylammonium salt / diallylamine hydrochloride derivative copolymer, and an allylamine salt polymer.

縮合系ポリアミンの具体例としては、アルキレンジクロライドとアルキレンポリアミンとの縮合物、アニリンとホルマリンの縮合物、アルキレンジアミンとエピクロルヒドリンとの縮合物、アンモニアとエピクロルヒドリンとの縮合物などが挙げられる。エピクロルヒドリンと縮合するアルキレンジアミンとしては、ジメチルアミン、ジエチルアミン、メチルプロピルアミン、メチルブチルアミン、ジブチルアミンなどが挙げられる。凝結剤は、分子量の比較的小さな高分子で、被処理水中のコロイド粒子や、SSを小さなフロックにすることができる。これら凝結剤の注入量は、原水の水質にもよるが、1〜1000mg/Lの範囲である。   Specific examples of the condensed polyamine include a condensate of alkylene dichloride and alkylene polyamine, a condensate of aniline and formalin, a condensate of alkylene diamine and epichlorohydrin, a condensate of ammonia and epichlorohydrin, and the like. Examples of the alkylene diamine condensed with epichlorohydrin include dimethylamine, diethylamine, methylpropylamine, methylbutylamine, and dibutylamine. The coagulant is a polymer having a relatively small molecular weight, and can make colloidal particles in the water to be treated and SS have small flocs. The amount of these coagulants injected depends on the quality of the raw water, but is in the range of 1 to 1000 mg / L.

有機凝結剤の代わりに無機凝集剤を単独で使用してもよい。よりフロックを強固にして固液分離性を高めるために、有機凝結材と無機凝結材とを併用することもできる。一般に、無機凝集剤としては、既に使用されている鉄系又はアルミニウム系無機凝集剤が使用できる。具体的には、硫酸バンド、ポリ塩化アルミニウム(PAC)、塩化アルミニウム、ポリ硫酸第二鉄(ポリ鉄)、塩化第二鉄及びこれらの混合物が挙げられる。これら無機凝集剤の注入量は、原水の水質にもよるが、1〜1000mg/Lの範囲である。   An inorganic flocculant may be used alone instead of the organic coagulant. An organic coagulant and an inorganic coagulant can be used in combination in order to further strengthen the floc and improve the solid-liquid separation. Generally, as the inorganic flocculant, iron-based or aluminum-based inorganic flocculants that are already used can be used. Specific examples include sulfate bands, polyaluminum chloride (PAC), aluminum chloride, polyferric sulfate (polyiron), ferric chloride, and mixtures thereof. The injection amount of these inorganic flocculants is in the range of 1 to 1000 mg / L depending on the quality of raw water.

凝集助剤としては、高分子凝集剤として、通常、ポリ(メタ)アクリルアミド、その加水分解物、ポリ(メタ)アクリル酸、(メタ)アクリルアミドとアルキルアミノ(メタ)アクリルアミド共重合体等のノニオン性、アニオン性、カチオン性又は両性高分子凝集剤を使用することができる。高分子凝集剤の添加量は、通常、排水量に対して0.5〜5mg/L程度がよい。凝集沈殿槽23の固液分離方法としては、沈殿、加圧浮上、膜など任意の固液分離方法を利用することができる。凝集沈殿槽23で得られる凝集汚泥は、供給ラインSL3を介して嫌気性処理槽6へ送られる。   As the coagulation aid, the polymer coagulant is usually nonionic such as poly (meth) acrylamide, its hydrolyzate, poly (meth) acrylic acid, (meth) acrylamide and alkylamino (meth) acrylamide copolymer, etc. Anionic, cationic or amphoteric polymer flocculants can be used. The addition amount of the polymer flocculant is usually about 0.5 to 5 mg / L with respect to the amount of drainage. As a solid-liquid separation method of the coagulation sedimentation tank 23, any solid-liquid separation method such as precipitation, pressurized flotation, and membrane can be used. Aggregated sludge obtained in the aggregation sedimentation tank 23 is sent to the anaerobic treatment tank 6 through the supply line SL3.

最初沈殿池などの固液分離槽1において自然に沈降する固形分に比べ、分離液中に浮遊しているSSに含まれる微生物は高い生物活性を有する。この高い活性は、溶液の酸化還元電位を効果的に上げて溶液を還元的な雰囲気にするため、正浸透膜装置3に供給された場合に、早期にファウリングを発生させことがある。   Compared with the solid content that naturally settles in the solid-liquid separation tank 1 such as the first sedimentation basin, the microorganisms contained in the SS suspended in the separation liquid have a high biological activity. This high activity effectively raises the oxidation-reduction potential of the solution to bring the solution into a reducing atmosphere, so that when supplied to the forward osmosis membrane device 3, fouling may occur early.

第2の実施の形態に係る排水処理装置によれば、第2の固液分離装置2を配置することにより、固液分離槽1で分離された分離液中の有機物を更に凝集沈殿させて、正浸透膜装置3へ供給される微生物量を低減させることができる。殺菌剤供給装置4を更に併用することにより、正浸透膜装置3内の半透膜のファウリングを更に長期間抑制することができる。なお、第2の固液分離装置2に膜ろ過を用いる場合には、第2の固液分離装置2の前段或いは、第2の固液分離装置2に酸化剤を添加し、膜ファウリングを抑制するとよい。   According to the waste water treatment apparatus according to the second embodiment, by arranging the second solid-liquid separation apparatus 2, the organic matter in the separated liquid separated in the solid-liquid separation tank 1 is further coagulated and precipitated, The amount of microorganisms supplied to the forward osmosis membrane device 3 can be reduced. By further using the sterilizing agent supply device 4, fouling of the semipermeable membrane in the forward osmosis membrane device 3 can be further suppressed for a long period of time. When membrane filtration is used for the second solid-liquid separation device 2, an oxidizing agent is added to the first stage of the second solid-liquid separation device 2 or the second solid-liquid separation device 2 to perform membrane fouling. It is good to suppress.

更に、凝集沈殿槽23で得られた凝集汚泥の一部を、供給ラインSL3と濃縮水貯蔵槽5との間を接続する有機物供給ラインOL3を介して供給することにより、殺菌剤供給装置4から殺菌剤が供給された場合に、濃縮水中に残存する殺菌剤の分解を早めることができるため、殺菌剤により嫌気性処理槽6内の嫌気性細菌を死滅させることなく、安定的にエネルギー回収を行うことができる。更に、排水由来の分離汚泥及び凝集汚泥を嫌気性処理槽6でメタン発酵することにより、排水中の有機物から効率良くエネルギー回収をすることができる。   Furthermore, by supplying a part of the coagulated sludge obtained in the coagulation sedimentation tank 23 through the organic substance supply line OL3 connecting between the supply line SL3 and the concentrated water storage tank 5, the disinfectant supply device 4 When disinfectant is supplied, the disinfectant remaining in the concentrated water can be quickly decomposed, so that the disinfectant can stably recover energy without killing the anaerobic bacteria in the anaerobic treatment tank 6. It can be carried out. Furthermore, energy separation can be efficiently recovered from organic matter in the wastewater by subjecting the separated sludge and the coagulated sludge derived from the wastewater to methane fermentation in the anaerobic treatment tank 6.

なお、第2の実施の形態に係る排水処理方法は、図2に示す排水処理装置を用いて実施することができる。まず、固液分離槽1において、原水である排水中の沈殿性有機物を固液分離し、分離汚泥と分離液とを得る。次に、固液分離槽1で得られた分離液を、第2の固液分離装置2において、凝集剤を加えて固液分離する。更に、凝集剤を加えて固液分離した後の分離液に必要に応じて殺菌剤を供給し、半透膜を備える正浸透膜装置3に供給する。正浸透膜装置3では、半透膜を介して分離液を分離液よりも高浸透圧の駆動液と接触させることにより、濃縮水と処理水とを得る。その後の処理工程は第1の実施の形態に係る排水処理方法と実質的に同様とすることができるので、記載を省略する。   Note that the wastewater treatment method according to the second embodiment can be carried out using the wastewater treatment apparatus shown in FIG. First, in the solid-liquid separation tank 1, the sedimentary organic matter in the wastewater which is raw water is subjected to solid-liquid separation to obtain separated sludge and separated liquid. Next, the separation liquid obtained in the solid-liquid separation tank 1 is subjected to solid-liquid separation in the second solid-liquid separation apparatus 2 by adding a flocculant. Further, a bactericide is supplied to the separated liquid after the solid-liquid separation by adding a flocculant, if necessary, and supplied to the forward osmosis membrane device 3 having a semipermeable membrane. The forward osmosis membrane device 3 obtains concentrated water and treated water by bringing the separation liquid into contact with the driving liquid having a higher osmotic pressure than the separation liquid through the semipermeable membrane. Since the subsequent treatment process can be made substantially the same as the waste water treatment method according to the first embodiment, the description is omitted.

(第3の実施の形態)
第3の実施の形態に係る排水処理装置は、図3に示すように、嫌気性処理槽6が、嫌気性消化槽61と、嫌気性排水処理槽62を備える点が、図2に示す排水処理装置と異なる。他は、図2に示す排水処理装置と実質的に同様であるので、記載を省略する。
(Third embodiment)
As shown in FIG. 3, the wastewater treatment apparatus according to the third embodiment is that the anaerobic treatment tank 6 includes an anaerobic digestion tank 61 and an anaerobic wastewater treatment tank 62. Different from processing equipment. Since others are substantially the same as the waste water treatment apparatus shown in FIG. 2, description is abbreviate | omitted.

固液分離槽1又は第2の固液分離装置2で得られる余剰汚泥及び凝集汚泥と、正浸透膜装置3で得られる濃縮水は、水分濃度や有機物濃度がそれぞれ異なるため、嫌気性処理槽6における反応槽での最適滞留時間が異なる。そのため、図3に示すように、固液分離槽1及び第2の固液分離装置2で生じる余剰汚泥及び凝集汚泥については嫌気性消化槽61で処理し(図1及び図2の嫌気性処理槽6に該当)、濃縮水については嫌気性排水処理槽62で処理するように、それぞれ個別に処理することが効率面からは好ましい。   Since the excess sludge and coagulated sludge obtained in the solid-liquid separation tank 1 or the second solid-liquid separation apparatus 2 and the concentrated water obtained in the forward osmosis membrane apparatus 3 have different water concentrations and organic substance concentrations, an anaerobic treatment tank The optimum residence time in the reaction vessel in 6 is different. Therefore, as shown in FIG. 3, excess sludge and coagulated sludge generated in the solid-liquid separation tank 1 and the second solid-liquid separation apparatus 2 are treated in the anaerobic digestion tank 61 (anaerobic treatment in FIGS. 1 and 2). Corresponding to the tank 6), it is preferable from the viewpoint of efficiency that the concentrated water is individually treated so as to be treated in the anaerobic waste water treatment tank 62.

余剰汚泥及び凝集汚泥に対しては嫌気性消化を行うことができる。嫌気性消化槽内では、約55℃、或いは約25℃を保つように加温される。嫌気性消化槽内では、酸発酵菌、メタン発酵菌の働きにより、汚泥がメタンガス、二酸化炭素、硫化水素等のガス、水溶性の窒素、リンなどに分解される。発生したメタンガスは回収することで、エネルギー利用可能である。固液分離槽1から得られる余剰汚泥は易分解性でメタン発酵しやすいため、メタンガスの発生量を増加させることができる。汚泥の滞留時間は10〜40日程度であり、汚泥の分解性能に応じて任意の時間をとることができる。   Anaerobic digestion can be performed on excess sludge and agglomerated sludge. In an anaerobic digester, it is heated to maintain about 55 ° C or about 25 ° C. In the anaerobic digester, sludge is decomposed into gas such as methane gas, carbon dioxide, hydrogen sulfide, water-soluble nitrogen, phosphorus, etc. by the action of acid-fermenting bacteria and methane-fermenting bacteria. By recovering the generated methane gas, energy can be used. Since the excess sludge obtained from the solid-liquid separation tank 1 is easily decomposable and easily fermented with methane, the amount of methane gas generated can be increased. The sludge residence time is about 10 to 40 days, and any time can be taken according to the sludge decomposition performance.

濃縮水に対しての嫌気性排水処理槽62には、生物処理装置を用いることができる。生物処理装置としては、嫌気性固定床法、嫌気性流動床法、上向流汚泥床法(UASB法、EGSB法)などの高負荷嫌気性処理方法を採用した装置があるが、いずれの装置であってもよい。嫌気性排水処理槽62は、酸発酵とメタン発酵を一槽で行う一相式であってもよいし、酸発酵とメタン発酵を別々の反応槽で行う二相式であってもよい。嫌気性菌を維持するためには、温度管理とpH管理が極めて重要である。例えば、嫌気性排水処理槽62内やメタン発酵の原水(濃縮水及び濃縮汚泥)、処理水等の温度、pHを検出して、その値をフィードバック又はフィードフォワードして各制御を行いながら運転することが好ましい。嫌気性処理排水処理槽62へ流入する流入水の滞留時間は、有機物濃度によって異なるが、有機物濃度が高い場合には、処理水等を循環して濃度を低下させてから処理することが好ましく、一般的に処理時間は0.1〜10時間程度である。   A biological treatment apparatus can be used for the anaerobic waste water treatment tank 62 for concentrated water. Biological treatment devices include devices that employ high-load anaerobic treatment methods such as anaerobic fixed bed method, anaerobic fluidized bed method, and upward flow sludge bed method (UASB method, EGSB method). It may be. The anaerobic waste water treatment tank 62 may be a one-phase system that performs acid fermentation and methane fermentation in one tank, or may be a two-phase system that performs acid fermentation and methane fermentation in separate reaction tanks. In order to maintain anaerobic bacteria, temperature control and pH control are extremely important. For example, the temperature and pH of the anaerobic wastewater treatment tank 62, raw water (concentrated water and concentrated sludge) of methane fermentation, treated water, etc. are detected, and the values are fed back or fed forward for operation while performing each control. It is preferable. The residence time of the inflow water flowing into the anaerobic treatment wastewater treatment tank 62 varies depending on the organic matter concentration, but when the organic matter concentration is high, it is preferable to treat the circulating water after circulating the treated water or the like to reduce the concentration, Generally, the processing time is about 0.1 to 10 hours.

嫌気性消化槽61で得られた処理物は固液分離槽8で固液分離され、処理水が外部へ放流される。嫌気性排水処理槽62で得られた処理物は固液分離槽7で固液分離され、処理水が外部へ放流される。   The processed product obtained in the anaerobic digestion tank 61 is subjected to solid-liquid separation in the solid-liquid separation tank 8, and the treated water is discharged to the outside. The processed product obtained in the anaerobic waste water treatment tank 62 is separated into a solid and a liquid in the solid / liquid separation tank 7, and the treated water is discharged to the outside.

第3の実施の形態に係る排水処理装置によれば、汚泥と濃縮水に対して別々の装置を用いて嫌気性消化を行うことができるため、最適滞留時間でより効率良くメタン発酵処理を進めることができる。   According to the waste water treatment apparatus according to the third embodiment, anaerobic digestion can be performed on sludge and concentrated water using separate apparatuses, and thus the methane fermentation process can be performed more efficiently with the optimum residence time. be able to.

以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、発明が限定されることを意図するものではない。   Examples of the present invention will be described below together with comparative examples, but these examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the invention.

(実施例1)
図1に示す排水処理装置で検証試験を実施した。排水として下水を使用した。下水の性状は、BOD150mg/L、溶解性BOD80mg/L、SS100mg/Lであった。まず、下水を最初沈澱池に導入し、沈降しやすい固形物と上澄み液に分離した。上澄み液は反応槽(図示せず)に導入し、スライムコントロール剤(エバスパースMB605(水ing製))を1mg/L添加した後、FO膜装置に導入し、塩類濃度3.5%の海水とFO膜を介して10倍濃縮した。FO膜は酢酸セルロース膜を使用した。FO膜装置から得られた濃縮水は、最初沈殿池の余剰汚泥と混合し、貯蔵槽で0.5時間貯蔵した。貯蔵後の濃縮水を嫌気性排水処理装置に導入した。
Example 1
A verification test was conducted with the wastewater treatment apparatus shown in FIG. Sewage was used as drainage. The properties of sewage were BOD 150 mg / L, soluble BOD 80 mg / L, and SS 100 mg / L. First, sewage was first introduced into a settling basin and separated into a solid and a supernatant liable to settle. The supernatant liquid is introduced into a reaction tank (not shown), and after adding 1 mg / L of slime control agent (Evas Perth MB605 (manufactured by Watering)), it is introduced into the FO membrane device and seawater with a salt concentration of 3.5% Concentrated 10 times through the FO membrane. As the FO membrane, a cellulose acetate membrane was used. The concentrated water obtained from the FO membrane device was first mixed with excess sludge in the settling basin and stored in a storage tank for 0.5 hour. The concentrated water after storage was introduced into an anaerobic wastewater treatment device.

嫌気性排水処理装置では、嫌気性消化槽(嫌気性処理槽)のpHを7とし、消化槽の温度を35℃に加温し、処理日数(HRT)30日で処理したところ、汚泥及び濃縮水の分解率は50%で、10.5L/日のメタンガスを回収することができた。また、実施例1では、FO膜の洗浄頻度は1.5週間に一度程度の実施で、膜のファウリングも見られず、安定的に運転できた。   In the anaerobic wastewater treatment equipment, the pH of the anaerobic digestion tank (anaerobic treatment tank) is set to 7, the temperature of the digestion tank is heated to 35 ° C., and the treatment is performed for 30 days (HRT). The water decomposition rate was 50%, and 10.5 L / day of methane gas could be recovered. Further, in Example 1, the FO film was washed at a frequency of about once every 1.5 weeks, and no fouling of the film was observed, and the operation was stable.

(実施例2)
図2に示す排水処理装置で検証試験を実施した。排水として実施例1と同様に下水を使用した。下水の性状は、BOD150mg/L、溶解性BOD80mg/L、SS100mg/Lであった。まず、下水を最初沈澱池に導入し、沈降しやすい固形物と上澄み液に分離した。上澄み液を反応槽に導入し、有機凝結剤(エバグロースL−90)50mg/Lを添加した後、凝集助剤としてエバグロースA−151(水ing製)を2mg/Lとなるように添加した。凝集沈殿槽では、処理水と凝集汚泥に分離した。凝集沈殿槽処理水のBODは10mg/Lであった。上澄み液は反応槽(図示せず)に導入し、スライムコントロール剤(エバスパースMB605(水ing製))を1mg/L添加した後、FO膜装置に導入し、塩類濃度3.5%の海水とFO膜を介して10倍濃縮した。FO膜は酢酸セルロース膜を使用した。FO膜装置から得られた濃縮水は、最初沈殿池からの余剰汚泥と凝集沈殿槽からの凝集汚泥と混合し、貯蔵槽で0.1時間貯蔵した。貯蔵後の濃縮水を嫌気性排水処理装置に導入した。
(Example 2)
A verification test was conducted with the wastewater treatment apparatus shown in FIG. Sewage was used as drainage in the same manner as in Example 1. The properties of sewage were BOD 150 mg / L, soluble BOD 80 mg / L, and SS 100 mg / L. First, sewage was first introduced into a settling basin and separated into a solid and a supernatant liable to settle. The supernatant was introduced into the reaction vessel, 50 mg / L of an organic coagulant (Ebagulose L-90) was added, and Ebagulose A-151 (manufactured by Watering) was added as a coagulant aid so as to be 2 mg / L. In the coagulation sedimentation tank, it was separated into treated water and coagulated sludge. The BOD of the coagulation sedimentation tank treated water was 10 mg / L. The supernatant liquid is introduced into a reaction tank (not shown), and after adding 1 mg / L of slime control agent (Evas Perth MB605 (manufactured by Watering)), it is introduced into the FO membrane device and seawater with a salt concentration of 3.5% Concentrated 10 times through the FO membrane. As the FO membrane, a cellulose acetate membrane was used. The concentrated water obtained from the FO membrane device was first mixed with excess sludge from the settling tank and coagulated sludge from the coagulating sedimentation tank, and stored in a storage tank for 0.1 hour. The concentrated water after storage was introduced into an anaerobic wastewater treatment device.

嫌気性排水処理装置では、嫌気性消化槽(嫌気性処理槽)のpHを7とし、消化槽の温度を35℃に加温し、処理日数(HRT)30日で処理したところ、汚泥及び濃縮水の分解率は50%で、12L/日のメタンガスを回収することができた。また、実施例2では、FO膜の洗浄頻度は2週間に一度で十分であった。   In the anaerobic wastewater treatment equipment, the pH of the anaerobic digester (anaerobic tank) is set to 7, the temperature of the digester is heated to 35 ° C, and it is treated for 30 days (HRT). The water decomposition rate was 50%, and 12 L / day of methane gas could be recovered. In Example 2, the cleaning frequency of the FO film was sufficient once every two weeks.

(実施例3)
図3に示す排水処理装置で検証試験を実施した。排水として実施例1及び実施例2と同様に下水を使用した。下水の性状は、BOD150mg/L、溶解性BOD80mg/L、SS100mg/Lであった。まず、下水を最初沈澱池に導入し、沈降しやすい固形物と上澄み液に分離した。上澄み液を反応槽に導入し、ポリ塩化アルミニウム100mg/Lを添加した後、凝集助剤としてエバグロースA−151(水ing製)を2mg/Lとなるように添加した。凝集沈殿槽では、処理水と凝集汚泥に分離した。凝集沈殿槽処理水のBODは10mg/Lであった。上澄み液は反応槽(図示せず)に導入し、スライムコントロール剤(エバスパースMB605(水ing製))を1mg/L添加した後、FO膜装置に導入し、海水とFO膜を介して10倍濃縮した。FO膜は酢酸セルロースを使用した。FO膜装置から得られた濃縮水は、最初沈殿池からの余剰汚泥の一部と凝集沈殿槽からの凝集汚泥の一部と混合し、貯蔵槽で0.1時間貯蔵した。貯蔵後の濃縮水と、余剰汚泥及び凝集汚泥とを別々に嫌気性排水処理装置に導入した。
(Example 3)
A verification test was conducted with the wastewater treatment apparatus shown in FIG. Sewage was used as waste water in the same manner as in Example 1 and Example 2. The properties of sewage were BOD 150 mg / L, soluble BOD 80 mg / L, and SS 100 mg / L. First, sewage was first introduced into a settling basin and separated into a solid and a supernatant liable to settle. After the supernatant was introduced into the reaction vessel and 100 mg / L of polyaluminum chloride was added, Ebagulose A-151 (manufactured by Watering) was added as an agglomeration aid to 2 mg / L. In the coagulation sedimentation tank, it was separated into treated water and coagulated sludge. The BOD of the coagulation sedimentation tank treated water was 10 mg / L. The supernatant liquid is introduced into a reaction tank (not shown), and after adding 1 mg / L of slime control agent (Evas Perth MB605 (manufactured by Watering)), it is introduced into the FO membrane device and 10 times through seawater and FO membrane. Concentrated. Cellulose acetate was used for the FO membrane. The concentrated water obtained from the FO membrane apparatus was first mixed with a part of the excess sludge from the settling tank and a part of the coagulated sludge from the coagulation sedimentation tank, and stored in the storage tank for 0.1 hour. Concentrated water after storage, surplus sludge and agglomerated sludge were separately introduced into an anaerobic wastewater treatment apparatus.

嫌気性排水処理装置では、濃縮水は上向流汚泥床式のEGSBのメタン発酵装置を用い、液の滞留時間は10時間とした。余剰汚泥及び凝集汚泥は、嫌気性消化槽(嫌気性処理槽)のpHを7とし、消化槽の温度を35℃に加温し、処理日数(HRT)30日で処理した濃縮水の分解率は90%で、5L/日のメタンガスを回収することができた。汚泥の分解率は50%で、7L/日のメタンガスを回収することができた。実施例3では、FO膜の洗浄頻度は1.5週間に一度で十分あった。   In the anaerobic waste water treatment apparatus, the concentrated water was an upward flow sludge bed type EGSB methane fermentation apparatus, and the residence time of the liquid was 10 hours. Excess sludge and coagulated sludge have an anaerobic digestion tank (anaerobic treatment tank) with a pH of 7, the digestion tank temperature is heated to 35 ° C, and the decomposition rate of concentrated water treated in 30 days of treatment (HRT) Was 90%, and 5 L / day of methane gas could be recovered. The sludge decomposition rate was 50%, and 7 L / day of methane gas could be recovered. In Example 3, the cleaning frequency of the FO film was sufficient once every 1.5 weeks.

(比較例)
図1に示す排水処理装置において、殺菌剤供給装置4による分離液への殺菌剤の供給を行わない以外は、実施例1と同様の条件で検証試験を実施した。汚泥及び濃縮水の分解率は50%で、10.0L/日のメタンガスを回収することができたが、実施例1と比べると、FO膜にかかるBOD負荷が高く、洗浄回数が2日に一度となり明らかに多くなった。
(Comparative example)
In the wastewater treatment apparatus shown in FIG. 1, a verification test was performed under the same conditions as in Example 1 except that the bactericide was not supplied to the separated liquid by the bactericide supply apparatus 4. The degradation rate of sludge and concentrated water was 50%, and 10.0 L / day of methane gas could be recovered. However, compared with Example 1, the BOD load on the FO membrane was high, and the number of washings was 2 days. It became apparent once more.

1…第1の固液分離装置(固液分離槽)
2…第2の固液分離装置
3…正浸透膜装置
4…殺菌剤供給装置
5…濃縮水貯蔵槽
6…嫌気性処理槽
7…固液分離槽
8…固液分離槽
21…第1の反応槽
22…第2の反応槽
23…凝集沈殿槽
61…嫌気性消化槽
62…嫌気性排水処理槽
1 ... 1st solid-liquid separation apparatus (solid-liquid separation tank)
DESCRIPTION OF SYMBOLS 2 ... 2nd solid-liquid separation apparatus 3 ... Forward osmosis membrane apparatus 4 ... Bactericidal agent supply apparatus 5 ... Concentrated water storage tank 6 ... Anaerobic treatment tank 7 ... Solid-liquid separation tank 8 ... Solid-liquid separation tank 21 ... 1st Reaction tank 22 ... Second reaction tank 23 ... Coagulation sedimentation tank 61 ... Anaerobic digestion tank 62 ... Anaerobic wastewater treatment tank

Claims (8)

排水中の沈殿性有機物を固液分離し、分離汚泥と分離液とを得る固液分離槽と、
半透膜を備え、前記半透膜を介して前記分離液を前記分離液よりも高浸透圧の駆動液と接触させることにより濃縮水と処理水とを得る正浸透膜装置と、
前記正浸透膜装置へ流入する前の前記分離液に殺菌剤を供給する殺菌剤供給装置と、
前記濃縮水を貯蔵する濃縮水貯蔵槽と、
前記濃縮水と前記分離汚泥とを分解してメタンガスに変換する嫌気性処理槽と
を備えることを特徴とする排水処理装置。
A solid-liquid separation tank for solid-liquid separation of sedimentary organic matter in the waste water to obtain separated sludge and separated liquid;
A forward osmosis membrane device comprising a semipermeable membrane and obtaining concentrated water and treated water by contacting the separation liquid with a driving liquid having a higher osmotic pressure than the separation liquid through the semipermeable membrane;
A sterilizing agent supply device for supplying a sterilizing agent to the separation liquid before flowing into the forward osmosis membrane device;
A concentrated water storage tank for storing the concentrated water;
A wastewater treatment apparatus comprising: an anaerobic treatment tank that decomposes the concentrated water and the separated sludge to convert them into methane gas.
前記濃縮水貯蔵槽に前記排水又は前記分離汚泥に含まれる有機物を供給可能な有機物供給ラインを更に備える請求項1に記載の排水処理装置。   The wastewater treatment apparatus according to claim 1, further comprising an organic substance supply line capable of supplying organic substances contained in the wastewater or the separated sludge to the concentrated water storage tank. 排水中の沈殿性有機物を固液分離し、分離汚泥と分離液とを得る第1の固液分離装置と、
半透膜を備え、前記半透膜を介して前記分離液を前記分離液よりも高浸透圧の駆動液と接触させることにより濃縮水と処理水とを得る正浸透膜装置と、
前記正浸透膜装置へ流入する前の前記分離液に凝集剤を加えて固液分離する第2の固液分離装置と、
前記濃縮水と前記分離汚泥とを分解してメタンガスに変換する嫌気性処理槽と
を備えることを特徴とする排水処理装置。
A first solid-liquid separation device for solid-liquid separation of the sedimentary organic matter in the waste water to obtain a separated sludge and a separated liquid;
A forward osmosis membrane device comprising a semipermeable membrane and obtaining concentrated water and treated water by contacting the separation liquid with a driving liquid having a higher osmotic pressure than the separation liquid through the semipermeable membrane;
A second solid-liquid separation device for adding a flocculant to the separation liquid before flowing into the forward osmosis membrane device to perform solid-liquid separation;
A wastewater treatment apparatus comprising: an anaerobic treatment tank that decomposes the concentrated water and the separated sludge to convert them into methane gas.
前記嫌気性処理槽が、
前記分離汚泥をメタン発酵する嫌気性消化槽と、
前記濃縮水をメタン発酵する嫌気性排水処理槽と
を備える請求項1〜3のいずれか1項に記載の排水処理装置。
The anaerobic treatment tank is
An anaerobic digester for methane fermentation of the separated sludge;
The waste water treatment apparatus of any one of Claims 1-3 provided with the anaerobic waste water treatment tank which methane-ferments the said concentrated water.
前記駆動液が、鉄、コバルト、ニッケル、亜鉛、タングステン、マンガン、モリブデン、セレン、ホウ素のいずれかを含む海水、海水淡水化処理施設の濃縮水、又は浸出水処理施設から排出される高塩濃度排水のいずれかを含む請求項1〜4のいずれか1項に記載の排水処理装置。   The driving liquid is high salt concentration discharged from seawater containing any of iron, cobalt, nickel, zinc, tungsten, manganese, molybdenum, selenium, boron, concentrated water of seawater desalination treatment facility, or leachate treatment facility The wastewater treatment apparatus according to any one of claims 1 to 4, comprising any one of wastewater. 排水中の沈殿性有機物を固液分離し、分離汚泥と分離液とを得ることと、
半透膜を備える正浸透膜装置に前記分離液を供給し、前記半透膜を介して前記分離液を前記分離液よりも高浸透圧の駆動液と接触させることにより、濃縮水と処理水とを得ることと、
前記正浸透膜装置へ流入する前の前記分離液に殺菌剤を供給することと、
前記濃縮水を貯蔵することと、
前記濃縮水と前記分離汚泥とを分解してメタンガスに変換すること
を含むことを特徴とする排水処理方法。
Solid-liquid separation of the sedimentary organic matter in the waste water, obtaining separated sludge and separated liquid,
The separation liquid is supplied to a forward osmosis membrane device having a semipermeable membrane, and the concentrated liquid and the treated water are brought into contact with the driving liquid having a higher osmotic pressure than the separation liquid through the semipermeable membrane. And getting
Supplying a bactericide to the separation liquid before flowing into the forward osmosis membrane device;
Storing the concentrated water;
A wastewater treatment method comprising: decomposing the concentrated water and the separated sludge and converting them into methane gas.
排水中の沈殿性有機物を固液分離し、分離汚泥と分離液とを得ることと、
半透膜を備える正浸透膜装置に前記分離液を供給し、前記半透膜を介して前記分離液を前記分離液よりも高浸透圧の駆動液と接触させることにより濃縮水と処理水とを得ることと、
前記正浸透膜装置へ流入する前の前記分離液に凝集剤を加えて固液分離することと、
前記濃縮水と前記分離汚泥とを分解してメタンガスに変換すること
を含むことを特徴とする排水処理方法。
Solid-liquid separation of the sedimentary organic matter in the waste water, obtaining separated sludge and separated liquid,
Concentrated water and treated water are supplied by supplying the separation liquid to a forward osmosis membrane device including a semipermeable membrane, and bringing the separation liquid into contact with a driving liquid having a higher osmotic pressure than the separation liquid through the semipermeable membrane. And getting
Adding a flocculant to the separation liquid before flowing into the forward osmosis membrane device to perform solid-liquid separation;
A wastewater treatment method comprising: decomposing the concentrated water and the separated sludge and converting them into methane gas.
前記駆動液が、鉄、コバルト、ニッケル、亜鉛、タングステン、マンガン、モリブデン、セレン、ホウ素のいずれかを含む海水、海水淡水化処理施設の濃縮水、又は浸出水処理施設から排出される高塩濃度排水を含む請求項6又は7に記載の排水処理方法。   The driving liquid is high salt concentration discharged from seawater containing any of iron, cobalt, nickel, zinc, tungsten, manganese, molybdenum, selenium, boron, concentrated water of seawater desalination treatment facility, or leachate treatment facility The wastewater treatment method according to claim 6 or 7, comprising wastewater.
JP2016145826A 2016-07-25 2016-07-25 Wastewater treatment equipment and wastewater treatment method Active JP6727056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016145826A JP6727056B2 (en) 2016-07-25 2016-07-25 Wastewater treatment equipment and wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016145826A JP6727056B2 (en) 2016-07-25 2016-07-25 Wastewater treatment equipment and wastewater treatment method

Publications (3)

Publication Number Publication Date
JP2018015684A true JP2018015684A (en) 2018-02-01
JP2018015684A5 JP2018015684A5 (en) 2019-03-28
JP6727056B2 JP6727056B2 (en) 2020-07-22

Family

ID=61075521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016145826A Active JP6727056B2 (en) 2016-07-25 2016-07-25 Wastewater treatment equipment and wastewater treatment method

Country Status (1)

Country Link
JP (1) JP6727056B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109650653A (en) * 2018-12-24 2019-04-19 东莞市华清净水技术有限公司 Treating Electroplate Wastewater Containing Nickel recovery and processing system and processing method
JP2019136643A (en) * 2018-02-08 2019-08-22 オルガノ株式会社 Water treatment method, water treatment device, and water treatment agent
WO2020071177A1 (en) * 2018-10-05 2020-04-09 オルガノ株式会社 Water treatment device, water treatment method, forward osmosis membrane treatment method, forward osmosis membrane treatment system, and water treatment system
JP2020058963A (en) * 2018-10-05 2020-04-16 オルガノ株式会社 Water treatment device and water treatment method
JP2021030189A (en) * 2019-08-29 2021-03-01 オルガノ株式会社 Water treatment apparatus and water treatment method
CN113480088A (en) * 2021-06-17 2021-10-08 中国恩菲工程技术有限公司 Leachate treatment system
JP7392959B1 (en) 2022-05-20 2023-12-06 木村化工機株式会社 Ammonia recovery equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842569A (en) * 1971-10-02 1973-06-20
JP2004330182A (en) * 2003-04-16 2004-11-25 Sanyo Electric Co Ltd Treating method of water to be treated containing organic material and nitrogen compound
JP2009183825A (en) * 2008-02-05 2009-08-20 Kobelco Eco-Solutions Co Ltd Water treatment apparatus
JP2015016392A (en) * 2013-07-08 2015-01-29 株式会社神鋼環境ソリューション Water treatment method and water treatment apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842569A (en) * 1971-10-02 1973-06-20
JP2004330182A (en) * 2003-04-16 2004-11-25 Sanyo Electric Co Ltd Treating method of water to be treated containing organic material and nitrogen compound
JP2009183825A (en) * 2008-02-05 2009-08-20 Kobelco Eco-Solutions Co Ltd Water treatment apparatus
JP2015016392A (en) * 2013-07-08 2015-01-29 株式会社神鋼環境ソリューション Water treatment method and water treatment apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG,XIWANG ET AL.: "Processing municipal wastewaters by forward osmosis using CTA membrane", JOURNAL OF MEMBRANE SCIENCE, vol. 468, JPN6019045792, 2014, pages 269 - 275, ISSN: 0004160911 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019136643A (en) * 2018-02-08 2019-08-22 オルガノ株式会社 Water treatment method, water treatment device, and water treatment agent
WO2020071177A1 (en) * 2018-10-05 2020-04-09 オルガノ株式会社 Water treatment device, water treatment method, forward osmosis membrane treatment method, forward osmosis membrane treatment system, and water treatment system
JP2020058963A (en) * 2018-10-05 2020-04-16 オルガノ株式会社 Water treatment device and water treatment method
JP7212490B2 (en) 2018-10-05 2023-01-25 オルガノ株式会社 Water treatment device and water treatment method
CN109650653A (en) * 2018-12-24 2019-04-19 东莞市华清净水技术有限公司 Treating Electroplate Wastewater Containing Nickel recovery and processing system and processing method
CN109650653B (en) * 2018-12-24 2024-05-07 东莞市华清净水技术有限公司 Nickel-containing electroplating wastewater recycling treatment system and treatment method
JP2021030189A (en) * 2019-08-29 2021-03-01 オルガノ株式会社 Water treatment apparatus and water treatment method
CN113480088A (en) * 2021-06-17 2021-10-08 中国恩菲工程技术有限公司 Leachate treatment system
JP7392959B1 (en) 2022-05-20 2023-12-06 木村化工機株式会社 Ammonia recovery equipment

Also Published As

Publication number Publication date
JP6727056B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
JP6727056B2 (en) Wastewater treatment equipment and wastewater treatment method
AU2009320741B2 (en) Generation of fresh water
TWI516454B (en) Treatment for molasses spent wash and other wastewaters
KR101804555B1 (en) WasteWater High-Class Treatment System to remove High-Density Pollutant and Method thereof
KR101373881B1 (en) Apparatus and method for treatment of organic substance-containing wastewater
JP2014061487A (en) Water treatment method and water treatment system
JP4997724B2 (en) Organic wastewater treatment method
JP2014198290A (en) Treatment apparatus and treatment method of organic effluent
CN110563232A (en) Mineral recovery and zero discharge process for high-salinity high-organic-matter wastewater
JP5874672B2 (en) Organic wastewater treatment method and treatment apparatus
WO2016136957A1 (en) Method for treating water containing organic material, and device for treating water containing organic material
JP7119568B2 (en) Water treatment device and water treatment method
JP3697938B2 (en) Wastewater treatment equipment
JP2023022723A (en) Wastewater treatment apparatus and wastewater treatment method
Tompe et al. Areview on Different Methods of Dairy Wastewater Treatment
KR20200087397A (en) Treatment system of waste water using oxidation preprocess
AU2011253905B2 (en) Generation of fresh water
JP6900641B2 (en) Disinfectant water production method and disinfectant water production system
JP2004344800A (en) Method and apparatus for treating fresh water or salt water
Uman Development of an Integrated Direct Membrane Filtration (DMF) and Anaerobic Membrane Bioreactor (AnMbr) System for Dilute Municipal Wastewater Treatment
KR20160085108A (en) A comprehensive method and system of treating seawater and river water
JP2015205253A (en) Method and apparatus for biologically treating water containing organic matter and heavy metal and/or hardness component
Lei et al. Development of an electrochemical dynamic membrane filtration system for simultaneous separation and disinfection
JP2002035552A (en) Method for treating water and its apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200630

R150 Certificate of patent or registration of utility model

Ref document number: 6727056

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250