JP2014101251A - Method of manufacturing hypobromous acid stabilized composition and hypobromous acid stabilized composition - Google Patents

Method of manufacturing hypobromous acid stabilized composition and hypobromous acid stabilized composition Download PDF

Info

Publication number
JP2014101251A
JP2014101251A JP2012254118A JP2012254118A JP2014101251A JP 2014101251 A JP2014101251 A JP 2014101251A JP 2012254118 A JP2012254118 A JP 2012254118A JP 2012254118 A JP2012254118 A JP 2012254118A JP 2014101251 A JP2014101251 A JP 2014101251A
Authority
JP
Japan
Prior art keywords
hypobromite
composition
bromine
producing
composition according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012254118A
Other languages
Japanese (ja)
Other versions
JP5918109B2 (en
JP2014101251A5 (en
Inventor
Shintaro Someya
新太郎 染谷
Chiharu Omori
千晴 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2012254118A priority Critical patent/JP5918109B2/en
Publication of JP2014101251A publication Critical patent/JP2014101251A/en
Publication of JP2014101251A5 publication Critical patent/JP2014101251A5/ja
Application granted granted Critical
Publication of JP5918109B2 publication Critical patent/JP5918109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a one-liquid type method of manufacturing a hypobromous acid stabilized composition substantially not containing bromate ion, excellent in sterilization performance, having almost no corrosion behavior to metals and excellent in storage stability.SOLUTION: A method of manufacturing a hypobromous acid stabilized compound having an addition rate of bromine of 25 wt.% or less based on the total amount of the compound includes a process of adding bromine to a mixture containing water, alkali hydroxide and sulfamic acid under inert gas atmosphere and reacting.

Description

本発明は、水系の生物付着を制御するための次亜臭素酸安定化組成物の製造方法および次亜臭素酸安定化組成物に関する。   The present invention relates to a method for producing a hypobromite stabilizing composition and a hypobromite stabilizing composition for controlling aqueous biofouling.

冷却水等の工業用水システムや製紙工程等の水系での生物付着を制御するための殺菌剤としては次亜塩素酸ナトリウムが主に使用されているが、より高い殺菌性能を求める場合に次亜塩素酸ナトリウムを大量に使用すると配管が腐食したり、臭気の問題が生じることがある。そこで、このような場合には、より高い殺菌性能のある次亜臭素酸ナトリウムが使用されるが、次亜臭素酸ナトリウムは不安定であり、工業的には臭化ナトリウム等の臭素化合物と次亜塩素酸ナトリウムを使用する直前に混合して系内で次亜臭素酸ナトリウムを生成させる手法が採られている。しかし、この場合も、2液の均一混合の煩雑さや、腐食の問題等が残っており、保存安定性に優れる1液系の次亜臭素酸安定化組成物が求められている。   Sodium hypochlorite is mainly used as an antibacterial agent for controlling biofouling in water systems such as industrial water systems such as cooling water and papermaking processes. If a large amount of sodium chlorate is used, piping may be corroded or odor problems may occur. Therefore, in such a case, sodium hypobromite having higher sterilization performance is used. However, sodium hypobromite is unstable, and industrially, bromine compounds such as sodium bromide and A technique of mixing sodium chlorite immediately before using sodium chlorite to produce sodium hypobromite in the system has been adopted. However, in this case as well, the trouble of uniform mixing of the two liquids, the problem of corrosion, etc. remain, and there is a need for a one-liquid hypobromite stabilizing composition having excellent storage stability.

1液系の次亜臭素酸安定化組成物として、スルファミン酸等の臭素安定化剤、臭素、水酸化物等からなる酸化臭素調合物が種々提案されてきた。   As a one-component hypobromite stabilizing composition, various bromine oxide formulations comprising a bromine stabilizer such as sulfamic acid, bromine, hydroxide and the like have been proposed.

臭化物イオンを活性化して次亜臭素酸塩にするために、臭素安定化剤に加えて、次亜塩素酸塩等の酸化剤を添加することも提案されている。酸化剤として次亜塩素酸ナトリウムを用い、臭素化合物を反応させて生成する次亜臭素酸を利用する方法が、特許文献1および特許文献2に記載されている。特許文献1は、次亜塩素酸ナトリウムと臭素化合物とからなるプレミックス溶液にスルファミン酸を添加する方法であり、特許文献2は、次亜塩素酸ナトリウムとスルファミン酸からなるプレミックス溶液に臭素化合物を添加する方法である。いずれもスルファミン酸からの生成物が分解するとして、好ましくは約10〜約45℃、特に好ましくは約20℃で添加することが推奨されている。しかしながら、これらの方法では、次亜塩素酸ナトリウムに由来する塩素および塩化物イオンが生成物に残存し、腐食性等の問題があった。また、次亜臭素酸が不安定であり、臭素酸が副生する問題があった。   In order to activate bromide ions to hypobromite, it has also been proposed to add an oxidizing agent such as hypochlorite in addition to the bromine stabilizer. Patent Document 1 and Patent Document 2 describe methods using sodium hypochlorite as an oxidizing agent and using hypobromite produced by reacting a bromine compound. Patent Document 1 is a method of adding sulfamic acid to a premix solution consisting of sodium hypochlorite and bromine compound, and Patent Document 2 is a bromine compound added to a premix solution consisting of sodium hypochlorite and sulfamic acid. It is a method of adding. In any case, it is recommended to add at about 10 to about 45 ° C., particularly preferably about 20 ° C., as the product from sulfamic acid decomposes. However, in these methods, chlorine and chloride ions derived from sodium hypochlorite remain in the product, and there are problems such as corrosivity. Moreover, there was a problem that hypobromite is unstable and bromate is by-produced.

塩素系酸化剤に代わる酸化剤として臭素酸を反応させる方法が、特許文献3の実施例1および実施例2に記載されている。反応機構として次の2つの式が記載されており、臭素酸が反応に関与するのが肝要の困子となっている。しかし、安全性等の点から工業的に臭素酸を原料に用いることは問題であった。
2Br+BrO +3H → 3HBrO (2)
HBrO+O−SO−NHO−SO−NH−Br,O−SO−NBr,および他の安定した酸化臭素化合物 (3)
A method of reacting bromic acid as an oxidant instead of a chlorine-based oxidant is described in Example 1 and Example 2 of Patent Document 3. The following two formulas are described as reaction mechanisms, and it is essential that bromic acid is involved in the reaction. However, industrially using bromic acid as a raw material has been a problem in terms of safety and the like.
2Br + BrO 3 + 3H + → 3HBrO (2)
HBrO + - O-SO 2 -NH 2 → - O-SO 2 -NH-Br, - O-SO 2 -NBr 2, and other stable oxidizing bromine compound (3)

そこで、酸化剤を用いず、臭素のみを反応させて、酸化臭素系組成物を得る方法が、特許文献3の実施例2の別の実施例、および実施例3、特許文献4の実施例4に記載されている。しかしながら、特許文献3の実施例2の別の実施例、および特許文献4の実施例4では、腐食性が高く大きな問題があること、さらに特許文献3の実施例2の別の実施例は刺激臭が強く保存安定性が劣る問題がある。また、特許文献3の実施例3では、大量の結晶の生成が確認されており、結晶を大量に生成させるという点でも本方法は反応中に生成する臭素酸の酸化力を利用したものであり、実際に同様の方法で製造したものには臭素酸が残存する問題があった。   Therefore, a method for obtaining a brominated oxide composition by reacting only bromine without using an oxidizing agent is another example of Example 2 of Patent Document 3, and Example 4 of Patent Document 4 and Example 4 of Patent Document 4. It is described in. However, in another example of Example 2 of Patent Document 3 and Example 4 of Patent Document 4, the corrosiveness is high and there is a serious problem, and another example of Example 2 of Patent Document 3 is a stimulus. There is a problem of strong odor and poor storage stability. Further, in Example 3 of Patent Document 3, the production of a large amount of crystals has been confirmed, and this method utilizes the oxidizing power of bromic acid produced during the reaction from the viewpoint of producing a large amount of crystals. Actually, the product produced by the same method had a problem that bromic acid remained.

特表平11−501974号公報Japanese National Patent Publication No. 11-501974 特表平11−511779号公報Japanese National Patent Publication No. 11-51179 特表2002−543048号公報Japanese translation of PCT publication No. 2002-543048 特表2002−516827号公報Japanese translation of PCT publication No. 2002-516827

本発明の目的は、臭素酸イオンを実質的に含まない、かつ殺菌性能に優れ、金属に対する腐食性がほとんどなく、保存安定性に優れる1液系の次亜臭素酸安定化組成物の製造方法および次亜臭素酸安定化組成物を提供することにある。   An object of the present invention is to produce a one-component hypobromite stabilized composition that is substantially free of bromate ions, has excellent bactericidal performance, has little corrosiveness to metals, and has excellent storage stability. And providing a hypobromite stabilized composition.

本発明は、水、水酸化アルカリおよびスルファミン酸を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させる工程を含み、前記臭素の添加率が組成物全体の量に対して25重量%以下である次亜臭素酸安定化組成物の製造方法である。   The present invention includes a step of reacting a mixed solution containing water, alkali hydroxide and sulfamic acid by adding bromine under an inert gas atmosphere, and the addition ratio of bromine is 25% by weight with respect to the total amount of the composition. It is a manufacturing method of the hypobromite stabilization composition which is% or less.

また、前記次亜臭素酸安定化組成物の製造方法において、反応器内の酸素濃度を6%以下に制御した条件で前記臭素を反応させることが好ましい。   Moreover, in the manufacturing method of the said hypobromite stabilization composition, it is preferable to make the said bromine react on the conditions which controlled oxygen concentration in a reactor to 6% or less.

また、前記次亜臭素酸安定化組成物の製造方法において、前記臭素の添加の際の反応温度を0℃以上25℃以下の範囲に制御することが好ましい。   Moreover, in the manufacturing method of the said hypobromite stabilization composition, it is preferable to control the reaction temperature at the time of the addition of the said bromine in the range of 0 degreeC or more and 25 degrees C or less.

また、前記次亜臭素酸安定化組成物の製造方法において、前記臭素の当量に対する前記スルファミン酸の当量の比が、1.01〜1.1の範囲であることが好ましい。   Moreover, in the manufacturing method of the said hypobromite stabilization composition, it is preferable that the ratio of the equivalent of the said sulfamic acid with respect to the equivalent of the said bromine is the range of 1.01-1.1.

また、前記次亜臭素酸安定化組成物の製造方法において、前記臭素の添加前における前記スルファミン酸の前記水酸化アルカリに対する当量比が0.28〜0.35の範囲であることが好ましい。   Moreover, in the manufacturing method of the said hypobromite stabilization composition, it is preferable that the equivalent ratio with respect to the said alkali hydroxide of the said sulfamic acid before the addition of the said bromine is the range of 0.28-0.35.

また、前記次亜臭素酸安定化組成物の製造方法において、組成物のpHが13.5超であることが好ましい。   Moreover, in the manufacturing method of the said hypobromite stabilization composition, it is preferable that pH of a composition is more than 13.5.

また、前記次亜臭素酸安定化組成物の製造方法において、前記組成物に水酸化アルカリを追加し、pHを13.5超とすることが好ましい。   Moreover, in the manufacturing method of the said hypobromite stabilization composition, it is preferable to add alkali hydroxide to the said composition, and to make pH more than 13.5.

また、前記次亜臭素酸安定化組成物の製造方法において、前記不活性ガスが、窒素およびアルゴンのうちの少なくとも1つであることが好ましい。   Moreover, in the manufacturing method of the said hypobromite stabilization composition, it is preferable that the said inert gas is at least 1 of nitrogen and argon.

また、前記次亜臭素酸安定化組成物の製造方法において、前記水酸化アルカリが、水酸化ナトリウムおよび水酸化カリウムのうちの少なくとも1つであることが好ましい。   Moreover, in the manufacturing method of the said hypobromite stabilization composition, it is preferable that the said alkali hydroxide is at least 1 of sodium hydroxide and potassium hydroxide.

また、前記次亜臭素酸安定化組成物の製造方法において、前記水酸化アルカリが、水酸化ナトリウムおよび水酸化カリウムであることが好ましい。   Moreover, in the manufacturing method of the said hypobromite stabilization composition, it is preferable that the said alkali hydroxide is sodium hydroxide and potassium hydroxide.

また、本発明は、水、水酸化アルカリおよびスルファミン酸を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させる工程を含み、前記臭素の添加率が組成物全体の量に対して25重量%以下である方法により製造される次亜臭素酸安定化組成物である。   Further, the present invention includes a step of reacting a mixed solution containing water, alkali hydroxide and sulfamic acid by adding bromine under an inert gas atmosphere, and the bromine addition rate is based on the total amount of the composition. It is a hypobromite stabilizing composition manufactured by the method of 25 weight% or less.

また、前記次亜臭素酸安定化組成物において、臭素酸イオンの含有量が、5mg/L未満であることが好ましい。   In the hypobromite stabilizing composition, the bromate ion content is preferably less than 5 mg / L.

本発明では、水、水酸化アルカリおよびスルファミン酸を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させ、臭素の添加率を組成物全体の量に対して25重量%以下とすることにより、臭素酸イオンを実質的に含まない、かつ殺菌性能に優れ、金属に対する腐食性がほとんどなく、保存安定性に優れる1液系の次亜臭素酸安定化組成物の製造方法および次亜臭素酸安定化組成物を提供することができる。   In the present invention, bromine is added to a mixed solution containing water, alkali hydroxide and sulfamic acid in an inert gas atmosphere to cause a reaction, and the addition ratio of bromine is 25% by weight or less based on the total amount of the composition. Therefore, a method for producing a one-component hypobromite stabilizing composition and hypochlorous acid which are substantially free of bromate ions, have excellent bactericidal performance, have almost no corrosiveness to metals, and have excellent storage stability. A bromate stabilizing composition can be provided.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

本発明者らが鋭意検討した結果、水、水酸化アルカリおよびスルファミン酸の混合液に臭素を不活性ガス雰囲気下、好ましくは反応器内の酸素濃度を6%以下に制御した条件下で反応させ、臭素の添加率を組成物全体の量に対して25重量%以下とすることで、臭素酸イオンを実質的に含まない、かつ殺菌性能に優れ、金属に対する腐食性がほとんどなく、保存安定性に優れる1液系の次亜臭素酸安定化組成物が得られることを見出した。臭素を不活性ガス雰囲気下で反応させ、かつ、臭素の添加率を組成物全体の量に対して25重量%以下とすることで、反応系内の臭素酸生成を低減させ、かつ腐食性が低減する。さらに臭素酸生成量と腐食性が、スルファミン酸当量と臭素当量の比率、臭素の添加前におけるスルファミン酸の水酸化アルカリに対する当量比、組成物pH、反応温度等にも依存する傾向にあることを見出し、最終的に、臭素酸を反応系内にほとんど生成させず、かつ腐食性を抑えた、保存安定性に優れる、水系の生物付着を制御するための1液系の次亜臭素酸安定化組成物、およびその製造方法を見出すことに成功した。   As a result of intensive studies by the present inventors, bromine was reacted with a mixed solution of water, alkali hydroxide and sulfamic acid under an inert gas atmosphere, preferably under a condition where the oxygen concentration in the reactor was controlled to 6% or less. By adding the bromine addition ratio to 25% by weight or less based on the total amount of the composition, it is substantially free of bromate ions, has excellent bactericidal performance, has almost no corrosiveness to metals, and has storage stability. It was found that a one-component hypobromite stabilized composition excellent in the above can be obtained. By reacting bromine in an inert gas atmosphere and setting the bromine addition rate to 25% by weight or less based on the total amount of the composition, the production of bromic acid in the reaction system is reduced, and the corrosiveness is reduced. To reduce. Furthermore, the amount of bromic acid produced and corrosiveness tend to depend on the ratio of sulfamic acid equivalent to bromine equivalent, the equivalent ratio of sulfamic acid to alkali hydroxide before addition of bromine, composition pH, reaction temperature, etc. Heading and finally, one-component hypobromite stabilization to control the biofouling of aqueous system, which hardly generates bromic acid in the reaction system, suppresses corrosiveness, has excellent storage stability The present inventors have succeeded in finding a composition and a method for producing the composition.

本発明の実施形態に係る次亜臭素酸安定化組成物は、主としてスルファミン酸−次亜臭素酸ナトリウム塩(O−SO−NH−Br,O−SO−NBr,および他の安定化次亜臭素酸塩)を含むものである。本実施形態に係る次亜臭素酸安定化組成物は、水、水酸化アルカリおよびスルファミン酸を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させることにより得られる。 Implementation hypobromite stabilized composition according to the embodiment of the present invention mainly sulfamate - hypobromite, sodium salt (- O-SO 2 -NH- Br, - O-SO 2 -NBr 2, and the other (Stabilized hypobromite). The hypobromite stabilizing composition according to this embodiment can be obtained by adding bromine to a mixed solution containing water, alkali hydroxide and sulfamic acid in an inert gas atmosphere and reacting them.

本実施形態に係る次亜臭素酸安定化組成物の製造方法の肝要は、水、水酸化アルカリおよびスルファミン酸の混合液に臭素を不活性ガス界囲気下で反応させることである。特許文献3には、「臭素または塩化臭素を添加するステップは、臭素を空気に曝露せずに実施する」と記載があるものの、反応器内の酸素の除去方法には言及されていない。同じく特許文献3には、「元素臭素が空気に曝露されるのを防ぐため、臭素はテフロン(登録商標)管によって安定化溶液に直接加えることが好ましい」と記載があるが、反応器内の酸素の除去には言及しておらず、反応容器中の酸素を除去する手段にはなり得ない。一方、反応容器内の空気を不活性ガスで置換して反応させると分圧の効果により溶液中の酸索が追い出され、下式に示される臭素酸生成の反応が生じることがほとんどない。
Br+3/2O → BrO
The key to the method for producing a hypobromite stabilizing composition according to this embodiment is to react bromine with a mixed solution of water, alkali hydroxide and sulfamic acid under an inert gas atmosphere. Patent Document 3 describes that “the step of adding bromine or bromine chloride is performed without exposing bromine to air”, but does not mention a method for removing oxygen in the reactor. Similarly, Patent Document 3 describes that “bromine is preferably added directly to the stabilizing solution through a Teflon (registered trademark) tube in order to prevent elemental bromine from being exposed to air”. It does not mention removal of oxygen, and cannot be a means for removing oxygen in the reaction vessel. On the other hand, when the reaction is carried out by replacing the air in the reaction vessel with an inert gas, the acid cord in the solution is driven out due to the effect of the partial pressure, and the bromic acid production reaction shown in the following formula hardly occurs.
Br + 3 / 2O 2 → BrO 3

臭素の反応の際の反応器内の酸素濃度は6%以下が好ましいが、4%以下がより好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。臭素の反応の際の反応器内の酸素濃度が6%を超えると、反応系内の臭素酸の生成量が増加する場合がある。   The oxygen concentration in the reactor during the bromine reaction is preferably 6% or less, more preferably 4% or less, further preferably 2% or less, and particularly preferably 1% or less. If the oxygen concentration in the reactor during the bromine reaction exceeds 6%, the amount of bromic acid produced in the reaction system may increase.

反応に用いる不活性ガスは限定されないが、製造等の面から室素およびアルゴンのうち少なくとも1つが好ましく、特に製造コスト等の面から窒素が好ましい。   The inert gas used in the reaction is not limited, but at least one of chamber element and argon is preferable from the viewpoint of production and the like, and nitrogen is particularly preferable from the viewpoint of manufacturing cost and the like.

反応容器内の酸素を除去する上で、不活性ガスを溶液内でバブリングすることや、反応容器内を減圧することも効果的である。   In removing oxygen in the reaction vessel, bubbling an inert gas in the solution or reducing the pressure in the reaction vessel is also effective.

臭素の添加率は、組成物全体の量に対して25重量%以下であり、1重量%以上20重量%以下であることが好ましい。臭素の添加率が組成物全体の量に対して25重量%を超えると、反応系内の臭素酸の生成量が増加する。1重量%未満であると、生物付着の制御に劣る場合がある。   The addition rate of bromine is 25% by weight or less with respect to the total amount of the composition, and preferably 1% by weight or more and 20% by weight or less. When the bromine addition rate exceeds 25% by weight based on the total amount of the composition, the amount of bromic acid produced in the reaction system increases. If it is less than 1% by weight, the control of biofouling may be inferior.

臭素の当量に対するスルファミン酸の当量の比は、1.01〜1.1の範囲であることが好ましく、1.02〜1.05の範囲であることがより好ましい。臭素の当量に対するスルファミン酸の当量の比が1.01未満であると、反応系内の臭素酸の生成量が増加する場合があり、1.1を超えると、腐食性が高くなる場合がある。   The ratio of the sulfamic acid equivalent to the bromine equivalent is preferably in the range of 1.01 to 1.1, and more preferably in the range of 1.02 to 1.05. If the ratio of the sulfamic acid equivalent to the bromine equivalent is less than 1.01, the amount of bromic acid produced in the reaction system may increase, and if it exceeds 1.1, the corrosivity may increase. .

組成物のpHは13.5超であることが好ましいが、13.7超であることがより好ましい。組成物のpHが13.5以下であると、腐食性が高くなる場合がある。   The pH of the composition is preferably greater than 13.5, but more preferably greater than 13.7. When the pH of the composition is 13.5 or less, the corrosivity may be increased.

水酸化アルカリは、臭素添加前に全量加えても、あるいは組成物の最終pHの精度を上げるため、臭素添加後の組成物に一部を分けて加えて、組成物のpHを13.5超としてもよい。ただし、水、水酸化アルカリおよびスルファミン酸の混合液の時点でpH7以上であることが好ましい。   Alkaline hydroxide may be added in its entirety before bromine addition, or in order to increase the accuracy of the final pH of the composition, it may be added in portions to the composition after bromine addition so that the pH of the composition exceeds 13.5. It is good. However, the pH is preferably 7 or more at the time of the mixed solution of water, alkali hydroxide and sulfamic acid.

水酸化アルカリとして、水酸化ナトリウムの代わりに、水酸化カリウム等の他の水酸化アルカリを用いてもよく、また併用してもよい。特に、低温時の製品安定性等の点から、水酸化ナトリウムと水酸化カリウムとを併用するとよい。水酸化アルカリは固形で用いても、水溶液として用いてもよい。   As alkali hydroxide, other alkali hydroxides such as potassium hydroxide may be used instead of sodium hydroxide, or they may be used in combination. In particular, sodium hydroxide and potassium hydroxide are preferably used in combination from the viewpoint of product stability at low temperatures. Alkali hydroxide may be used in solid form or as an aqueous solution.

水酸化アルカリは臭素を添加する前後で、発熱対策等の点から分割して投入することも可能であるが、その場合、臭素添加前のスルファミン酸ナトリウム溶液としては、pH7以上であることが好ましい。   Alkaline hydroxide can be added separately before and after addition of bromine from the standpoint of exothermic countermeasures. In that case, the sodium sulfamate solution before addition of bromine is preferably pH 7 or higher. .

また臭素添加前に高アルカリであると、臭素酸イオンを生成してしまう可能性があるため、臭素の添加前におけるスルファミン酸の水酸化アルカリに対する当量比は、0.28〜0.35の範囲であることが好ましい。臭素の添加前におけるスルファミン酸の水酸化アルカリに対する当量比が0.28未満であると、臭素酸イオンを生成してしまう場合があり、0.35を超えると、腐食性が高くなる場合がある。   Moreover, since it may produce | generate a bromate ion if it is highly alkaline before bromine addition, the equivalent ratio of sulfamic acid with respect to alkali hydroxide before the addition of bromine is in the range of 0.28 to 0.35. It is preferable that If the equivalent ratio of sulfamic acid to alkali hydroxide before addition of bromine is less than 0.28, bromate ions may be generated, and if it exceeds 0.35, corrosivity may be increased. .

臭素添加の際の反応温度は、0℃以上25℃以下の範囲に制御することが好ましいが、製造コスト等の面から、0℃以上15℃以下の範囲に制御することがより好ましい。臭素添加の際の反応温度が25℃を超えると、反応系内の臭素酸の生成量が増加する場合があり、0℃未満であると、凍結する場合がある。   The reaction temperature during the addition of bromine is preferably controlled in the range of 0 ° C. to 25 ° C., but more preferably in the range of 0 ° C. to 15 ° C. from the viewpoint of production cost. When the reaction temperature at the time of bromine addition exceeds 25 degreeC, the production amount of the bromic acid in a reaction system may increase, and when it is less than 0 degreeC, it may freeze.

本実施形態に係る次亜臭素酸安定化組成物の製造方法により、主としてスルファミン酸−次亜臭素酸ナトリウム塩組成物が、臭素酸イオンを実質的に含有せず、また、組成物を金属材質と接触させてもほとんど腐食が進行しないことから、安全に取扱うことが可能である。   By the method for producing a hypobromite stabilizing composition according to the present embodiment, the sulfamic acid-hypobromite sodium salt composition is substantially free of bromate ions, and the composition is made of a metal material. Corrosion does not proceed even if it is contacted with the steel, so it can be handled safely.

本実施形態に係る次亜臭素酸安定化組成物の製造方法により得られる次亜臭素酸安定化組成物は、臭素酸イオンを実質的に含まず、臭素酸イオンの含有量が、例えば5mg/L未満である。本明細書において「臭素酸イオンを実質的に含まない」とは、利用可能な最良の技術(BAT:Best Available Technology)となり得る分析手法を用いて、検出限界未満を達成することである。特許文献3には臭素酸イオンの分析方法としてイオンクロマトグラフィ法が示されており、検出下限の50mg/L未満であるとの記載があるが、本発明者らが用いたポストカラム−イオンクロマトグラフィ法を用いれば、検出下限5mg/Lを達成し、すなわち5〜50mg/Lの臭素酸イオンを検出することができ、また実際に後述の実施例に示す通り、次亜臭素酸安定化組成物中に5〜50mg/Lの臭素酸イオンが検出されたものがある。水道法に基づいた厚生労働省監修の「水道用薬品類の評価のための試験方法ガイドライン」では、臭素酸の評価基準値は0.005mg/Lと定められており、本実施形態に係る次亜臭素酸安定化組成物が例えば10,000〜100,000倍希釈して用いられることを考えると、組成物中の5〜50mg/Lの臭素酸イオンを検出すること、そして組成物中の臭素酸イオンの含有量が5mg/L未満を達成することは非常に有意義である。   The hypobromite stabilization composition obtained by the method for producing a hypobromite stabilization composition according to the present embodiment is substantially free of bromate ions, and the bromate ion content is, for example, 5 mg / Less than L. As used herein, “substantially free of bromate ion” is to achieve below the detection limit using an analytical technique that can be the best available technology (BAT: Best Available Technology). Patent Document 3 discloses an ion chromatography method as an analysis method of bromate ions, and there is a description that the detection lower limit is less than 50 mg / L, but the post-column-ion chromatography method used by the present inventors. Can be used to achieve a detection limit of 5 mg / L, that is, 5 to 50 mg / L of bromate ions can be detected. In fact, as shown in the examples below, 5 to 50 mg / L bromate ions are detected. In the “Guidelines for Testing Methods for Water Chemicals” supervised by the Ministry of Health, Labor and Welfare based on the Water Supply Law, the evaluation standard value for bromic acid is set to 0.005 mg / L. Considering that the bromate stabilizing composition is used, for example, diluted 10,000 to 100,000 times, detecting 5 to 50 mg / L bromate ion in the composition, and bromine in the composition It is very significant to achieve an acid ion content of less than 5 mg / L.

組成物に含まれる有効臭素濃度は、組成物全体の量に対して1重量%〜20重量%の範囲であることが好ましい。有効臭素濃度が組成物全体の量に対して1重量%未満であると、生物付着の制御に劣る場合があり、25重量%を超えると、反応系内の臭素酸の生成量が増加する場合がある。   The effective bromine concentration contained in the composition is preferably in the range of 1% by weight to 20% by weight with respect to the total amount of the composition. When the effective bromine concentration is less than 1% by weight with respect to the total amount of the composition, the control of biofouling may be inferior, and when it exceeds 25% by weight, the amount of bromic acid produced in the reaction system increases. There is.

水系の生物付着を制御するための組成物を金属材質と接触させてもほとんど腐食が進行しないことが望ましい。水系の生物付着を制御するための組成物は薬品注入装置を用いて系内に注入される場合が多く、組成物を希釈せず、原液で用いることから、注入配管が腐食したり、薬注ラインから対象となる水処理系への接続配管が腐食したりするトラブルを回避することが望ましい。実際に次亜塩素酸ナトリウム溶液等における腐食トラブルは未だに根本的な解決はされておらず、例えば特許文献3においても、安定した酸化臭素化合物が「腐食性溶液」であると記載されており、実際に金属腐食性が高い結果が得られた。   It is desirable that the corrosion hardly progress even when the composition for controlling the water-based biofouling is brought into contact with a metal material. The composition for controlling the biofouling of aqueous systems is often injected into the system using a chemical injection device, and since the composition is not diluted and used in the stock solution, the injection pipe is corroded, the chemical injection is performed. It is desirable to avoid troubles such as corrosion of connection pipes from the line to the target water treatment system. Actually, the corrosion trouble in sodium hypochlorite solution or the like has not yet been fundamentally solved. For example, Patent Document 3 also describes that a stable bromine oxide compound is a “corrosive solution”. In fact, a result with high metal corrosivity was obtained.

次亜臭素酸安定化組成物を金属材質と接触させてもほとんど腐食が進行しない基準は、後述する腐食速度(MDD)で1未満が好ましい。   The criterion that the corrosion hardly proceeds even when the hypobromite stabilizing composition is brought into contact with the metal material is preferably less than 1 in terms of the corrosion rate (MDD) described later.

このように、本実施形態に係る次亜臭素酸安定化組成物の製造方法により、臭素酸イオンを実質的に含まない、かつ殺菌性能に優れ、金属に対する腐食性がほとんどなく、保存安定性に優れる1液系の次亜臭素酸安定化組成物が得られる。   Thus, by the method for producing a hypobromite stabilizing composition according to the present embodiment, bromide ions are substantially not contained, the bactericidal performance is excellent, there is almost no corrosiveness to metals, and the storage stability is improved. An excellent one-part hypobromite stabilized composition is obtained.

本実施形態に係る次亜臭素酸安定化組成物は、例えば、冷却水等の工業用水システムや製紙工程等の水系での生物付着を制御するための殺菌剤として用いることができる。   The hypobromite stabilizing composition according to the present embodiment can be used as a bactericidal agent for controlling biofouling in an aqueous system such as an industrial water system such as cooling water or a papermaking process.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail more concretely, this invention is not limited to a following example.

<実施例1>
反応容器内の酸素濃度が1%に維持されるように、窒素ガスの流量をマスフローコントローラでコントロールしながら連続注入で封入した2Lの4つロフラスコに1453gの水、361gの水酸化ナトリウムを加え混合し、次いで300gのスルファミン酸を加え混合した後、反応液の温度が0〜15℃になるように冷却を維持しながら、456gの液体臭素を加え、さらに48%水酸化カリウム溶液230gを加え、組成物全体の量に対する重量比でスルファミン酸10.7%、臭素16.3%、臭素の当量に対するスルファミン酸の当量比が1.08である、目的の次亜臭素酸安定化組成物を得た。生じた溶液のpHは、ガラス電極法にて測定したところ、14.0であった。生じた溶液の臭素含有率は、臭素をヨウ化カリウムによりヨウ素に転換後、チオ硫酸ナトリウムを用いて酸化還元滴定する方法により測定したところ16.3%であり、理論含有率(16.3%)の100.0%であった。また、臭素反応の際の反応容器内の酸素濃度は、株式会社ジコー製の「酸素モニタJKO−02 LJDII」を用いて測定した。
<Example 1>
1453 g of water and 361 g of sodium hydroxide were added to and mixed with a 2 L 4-nose flask sealed by continuous injection while controlling the flow rate of nitrogen gas with a mass flow controller so that the oxygen concentration in the reaction vessel was maintained at 1%. Next, after adding 300 g of sulfamic acid and mixing, while maintaining cooling so that the temperature of the reaction solution becomes 0 to 15 ° C., 456 g of liquid bromine is added, and further 230 g of 48% potassium hydroxide solution is added, A target hypobromite-stabilized composition having a sulfamic acid 10.7% by weight ratio relative to the total amount of the composition, 16.3% bromine, and an equivalent ratio of sulfamic acid to an equivalent of bromine of 1.08 is obtained. It was. The pH of the resulting solution was 14.0 as measured by the glass electrode method. The bromine content of the resulting solution was 16.3% as measured by a redox titration method using sodium thiosulfate after bromine was converted to iodine with potassium iodide, and the theoretical content (16.3%) ) Of 100.0%. In addition, the oxygen concentration in the reaction vessel during the bromine reaction was measured using “Oxygen Monitor JKO-02 LJDII” manufactured by Zico Corporation.

実施例1で生じた溶液原液にて、臭素酸イオン濃度を、「JWWA K 120(2008)水道用次亜塩素酸ナトリウム5.4.5 臭素酸」の分析方法に則りポストカラム−イオンクロマトグラフィ法で測定した結果、臭素酸イオン濃度は検出下限値の5mg/L未満であった。   In the solution stock solution produced in Example 1, the bromate ion concentration was determined according to the analysis method of “JWWA K 120 (2008) sodium hypochlorite 5.4.5 bromic acid for water supply”. As a result, the bromate ion concentration was less than the detection lower limit of 5 mg / L.

実施例1で生じた溶液原液に、金属片を浸漬させた腐食試験を実施した。なお、本腐食試験は、「JIS K 0100工業用水腐食性試験方法」に則り実施した。
[試験条件]
試験片:SS−400(#400)
試験片表面積:0.01dm(1mm×10mm×10mm)
試験温度:25℃
試験期間:3日間
評価項目:腐食速度(MDD)
A corrosion test was conducted in which a metal piece was immersed in the solution stock solution produced in Example 1. The corrosion test was performed in accordance with “JIS K 0100 Industrial Water Corrosion Test Method”.
[Test conditions]
Test piece: SS-400 (# 400)
Test piece surface area: 0.01 dm 2 (1 mm × 10 mm × 10 mm)
Test temperature: 25 ° C
Test period: 3 days Evaluation item: Corrosion rate (MDD)

腐食速度に関しては、試験終了後に試験片(SS−400)を、酸洗浄用腐食抑制剤(朝日化学工業社製、「イビット」)を加えた15%塩酸で洗浄し、質量減を求め、そこから下式により、試験片の表面積1dmに対する1日当たりの腐食減量のmg数、すなわちMDD(mg/dm・day)を求めたところ、0.4であった。
W=(M1−M2)/(S×T)
ここで、W:腐食速度(MDD)、M1:試験片の試験前の質量(mg)、M2:試験片の試験後の質量(mg)、S:試験片の表面積(dm)、T:試験日数である。
Regarding the corrosion rate, after completion of the test, the test piece (SS-400) was washed with 15% hydrochloric acid to which an acid cleaning corrosion inhibitor (manufactured by Asahi Chemical Industry Co., Ltd., “Ibit”) was added. From the following formula, the number of mg of corrosion weight loss per day with respect to the surface area of 1 dm 2 of the test piece, that is, MDD (mg / dm 2 · day) was determined to be 0.4.
W = (M1-M2) / (S × T)
Here, W: Corrosion rate (MDD), M1: Mass before test of test specimen (mg), M2: Mass of test specimen after test (mg), S: Surface area of test specimen (dm 2 ), T: Test days.

<実施例2>
反応容器内の酸素濃度が4%に維持されるように、窒素ガスの流量をマスフローコントローラでコントロールしながら、実施例1と同様の条件で合成した結果、溶液原液中の臭素酸イオン濃度は検出下限値の5mg/L未満であった。また腐食試験による腐食速度(MDD)は0.6であった。
<Example 2>
As a result of synthesis under the same conditions as in Example 1 while controlling the flow rate of nitrogen gas with a mass flow controller so that the oxygen concentration in the reaction vessel was maintained at 4%, the bromate ion concentration in the solution stock solution was detected. The lower limit was less than 5 mg / L. Moreover, the corrosion rate (MDD) by a corrosion test was 0.6.

<実施例3〜35、比較例1〜7>
表1に示す条件で実施例1と同様にして、サンプルを合成し、臭素酸イオン濃度および腐食性(腐食速度)を評価した。不活性ガスで置換していない場合の酸素濃度は実測していないが、大気中の酸素濃度21%前後と考えられる。結果を表1、表2に示す。
<Examples 3-35 and Comparative Examples 1-7>
Samples were synthesized in the same manner as in Example 1 under the conditions shown in Table 1, and bromate ion concentration and corrosivity (corrosion rate) were evaluated. Although the oxygen concentration in the case of not replacing with an inert gas has not been measured, it is considered that the oxygen concentration in the atmosphere is around 21%. The results are shown in Tables 1 and 2.

<実施例36>
実施例8、実施例15および実施例16で合成した水溶液を−10℃の恒温槽を用いて、10日間、低温保存試験を実施した。その結果、実施例8のみが凍結しなかった。このことから、水酸化ナトリウムと水酸化カリウムとを併用することで、より大きな凝固点降下が得られ、低温時の製品安定性に優れることがわかった。
<Example 36>
The aqueous solution synthesized in Example 8, Example 15 and Example 16 was subjected to a low temperature storage test for 10 days using a −10 ° C. constant temperature bath. As a result, only Example 8 did not freeze. From this, it was found that, when sodium hydroxide and potassium hydroxide were used in combination, a larger freezing point depression was obtained and the product stability at low temperatures was excellent.

以上のように、水、水酸化アルカリおよびスルファミン酸を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させ、臭素の添加率を組成物全体の量に対して25重量%以下とする実施例の方法により、臭素酸イオンを実質的に含まない、かつ殺菌性能に優れ、金属に対する腐食性がほとんどなく、保存安定性に優れる1液系の次亜臭素酸安定化組成物が得られた。   As described above, bromine is added to the mixed liquid containing water, alkali hydroxide and sulfamic acid in an inert gas atmosphere to cause a reaction, and the addition ratio of bromine is 25% by weight or less based on the total amount of the composition. By the method of the embodiment, a one-component hypobromite stabilized composition that is substantially free of bromate ions, has excellent bactericidal performance, has almost no corrosiveness to metals, and has excellent storage stability is obtained. It was.

Claims (12)

水、水酸化アルカリおよびスルファミン酸を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させる工程を含み、
前記臭素の添加率が組成物全体の量に対して25重量%以下であることを特徴とする次亜臭素酸安定化組成物の製造方法。
A step of adding bromine to a mixed solution containing water, alkali hydroxide and sulfamic acid under an inert gas atmosphere and reacting the mixture,
The method for producing a hypobromite-stabilized composition, wherein the bromine addition rate is 25% by weight or less based on the total amount of the composition.
請求項1に記載の次亜臭素酸安定化組成物の製造方法であって、
反応器内の酸素濃度を6%以下に制御した条件で前記臭素を反応させることを特徴とする次亜臭素酸安定化組成物の製造方法。
A method for producing a hypobromite stabilizing composition according to claim 1, comprising:
A process for producing a hypobromite-stabilized composition, wherein the bromine is reacted under a condition in which the oxygen concentration in the reactor is controlled to 6% or less.
請求項1または2に記載の次亜臭素酸安定化組成物の製造方法であって、
前記臭素の添加の際の反応温度を0℃以上25℃以下の範囲に制御することを特徴とする次亜臭素酸安定化組成物の製造方法。
A method for producing a hypobromite stabilizing composition according to claim 1 or 2,
A method for producing a hypobromite stabilizing composition, wherein a reaction temperature at the time of addition of the bromine is controlled in a range of 0 ° C to 25 ° C.
請求項1〜3のいずれか1項に記載の次亜臭素酸安定化組成物の製造方法であって、
前記臭素の当量に対する前記スルファミン酸の当量の比が、1.01〜1.1の範囲であることを特徴とする次亜臭素酸安定化組成物の製造方法。
A method for producing a hypobromite stabilizing composition according to any one of claims 1 to 3,
The method for producing a hypobromite stabilizing composition, wherein a ratio of an equivalent of the sulfamic acid to an equivalent of the bromine is in a range of 1.01 to 1.1.
請求項1〜4のいずれか1項に記載の次亜臭素酸安定化組成物の製造方法であって、
前記臭素の添加前における前記スルファミン酸の前記水酸化アルカリに対する当量比が0.28〜0.35の範囲であることを特徴とする次亜臭素酸安定化組成物の製造方法。
A method for producing a hypobromite-stabilized composition according to any one of claims 1 to 4,
The method for producing a hypobromite stabilizing composition, wherein an equivalent ratio of the sulfamic acid to the alkali hydroxide before addition of the bromine is in a range of 0.28 to 0.35.
請求項1〜5のいずれか1項に記載の次亜臭素酸安定化組成物の製造方法であって、
組成物のpHが13.5超であることを特徴とする次亜臭素酸安定化組成物の製造方法。
It is a manufacturing method of the hypobromite stabilization composition according to any one of claims 1 to 5,
A method for producing a hypobromite stabilized composition, wherein the pH of the composition is more than 13.5.
請求項6に記載の次亜臭素酸安定化組成物の製造方法であって、
前記組成物に水酸化アルカリを追加し、pHを13.5超とすることを特徴とする次亜臭素酸安定化組成物の製造方法。
A method for producing a hypobromite-stabilized composition according to claim 6,
A method for producing a hypobromite-stabilized composition, wherein alkali hydroxide is added to the composition to make the pH exceed 13.5.
請求項1〜7のいずれか1項に記載の次亜臭素酸安定化組成物の製造方法であって、
前記不活性ガスが、窒素およびアルゴンのうちの少なくとも1つであることを特徴とする次亜臭素酸安定化組成物の製造方法。
It is a manufacturing method of the hypobromite stabilization composition according to any one of claims 1 to 7,
The method for producing a hypobromite stabilizing composition, wherein the inert gas is at least one of nitrogen and argon.
請求項1〜8のいずれか1項に記載の次亜臭素酸安定化組成物の製造方法であって、
前記水酸化アルカリが、水酸化ナトリウムおよび水酸化カリウムのうちの少なくとも1つであることを特徴とする次亜臭素酸安定化組成物の製造方法。
It is a manufacturing method of the hypobromite stabilization composition according to any one of claims 1 to 8,
The method for producing a hypobromite stabilizing composition, wherein the alkali hydroxide is at least one of sodium hydroxide and potassium hydroxide.
請求項9に記載の次亜臭素酸安定化組成物の製造方法であって、
前記水酸化アルカリが、水酸化ナトリウムおよび水酸化カリウムであることを特徴とする次亜臭素酸安定化組成物の製造方法。
A method for producing a hypobromite stabilized composition according to claim 9,
The method for producing a hypobromite stabilized composition, wherein the alkali hydroxide is sodium hydroxide or potassium hydroxide.
水、水酸化アルカリおよびスルファミン酸を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させる工程を含み、前記臭素の添加率が組成物全体の量に対して25重量%以下であることを特徴とする次亜臭素酸安定化組成物。   A step of adding bromine to a mixed solution containing water, alkali hydroxide and sulfamic acid in an inert gas atmosphere and reacting the mixture, wherein the bromine addition ratio is 25% by weight or less based on the total amount of the composition Hypobromite stabilizing composition characterized by the above-mentioned. 請求項11に記載の次亜臭素酸安定化組成物であって、
臭素酸イオンの含有量が、5mg/L未満であることを特徴とする次亜臭素酸安定化組成物。
A hypobromite stabilizing composition according to claim 11, comprising:
A hypobromite stabilizing composition, wherein the bromate ion content is less than 5 mg / L.
JP2012254118A 2012-11-20 2012-11-20 Method for producing hypobromite stabilized composition and hypobromite stabilized composition Active JP5918109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012254118A JP5918109B2 (en) 2012-11-20 2012-11-20 Method for producing hypobromite stabilized composition and hypobromite stabilized composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012254118A JP5918109B2 (en) 2012-11-20 2012-11-20 Method for producing hypobromite stabilized composition and hypobromite stabilized composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016076937A Division JP6113322B2 (en) 2016-04-07 2016-04-07 Disinfectant and method for controlling biofouling

Publications (3)

Publication Number Publication Date
JP2014101251A true JP2014101251A (en) 2014-06-05
JP2014101251A5 JP2014101251A5 (en) 2015-08-20
JP5918109B2 JP5918109B2 (en) 2016-05-18

Family

ID=51024117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012254118A Active JP5918109B2 (en) 2012-11-20 2012-11-20 Method for producing hypobromite stabilized composition and hypobromite stabilized composition

Country Status (1)

Country Link
JP (1) JP5918109B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016084375A (en) * 2014-10-23 2016-05-19 オルガノ株式会社 Detergent composition
JP2016120466A (en) * 2014-12-25 2016-07-07 オルガノ株式会社 Filtration treatment system and filtration treatment method
JP2016120467A (en) * 2014-12-25 2016-07-07 オルガノ株式会社 Water treatment equipment and water treatment method
JP2016120457A (en) * 2014-12-25 2016-07-07 オルガノ株式会社 Filtration treatment system and filtration treatment method
JP2016155067A (en) * 2015-02-24 2016-09-01 オルガノ株式会社 Modification method for reverse osmosis membrane, reverse osmosis membrane, and processing method for water containing boron
JP2016155074A (en) * 2015-02-24 2016-09-01 オルガノ株式会社 Operational method for separation membrane, modification method for separation membrane, and separation membrane
JP2016155071A (en) * 2015-02-24 2016-09-01 オルガノ株式会社 Sterilization method for separation membrane
WO2016135916A1 (en) * 2015-02-26 2016-09-01 オルガノ株式会社 Water treatment agent composition, method for producing water treatment agent composition, and water treatment method
WO2016136304A1 (en) * 2015-02-24 2016-09-01 オルガノ株式会社 Method for modifying reverse osmosis membrane, reverse osmosis membrane, treatment method for boron-containing water, and method for operating separation membrane
JP2017025046A (en) * 2015-07-27 2017-02-02 伯東株式会社 One-component water treatment agent composition having improved storage stability
JPWO2015170495A1 (en) * 2014-05-08 2017-04-20 オルガノ株式会社 Filtration treatment system and filtration treatment method
KR20170084257A (en) * 2014-12-25 2017-07-19 오르가노 코포레이션 Method for controlling slime on separation membrane
WO2018100794A1 (en) * 2016-12-01 2018-06-07 オルガノ株式会社 Water treatment agent composition, water treatment method, and method of storing or using water treatment agent composition
US10420344B2 (en) 2013-08-28 2019-09-24 Organo Corporation Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002516827A (en) * 1998-06-01 2002-06-11 アルベマール・コーポレーシヨン Aqueous bromine solution and its production
JP2002543048A (en) * 1999-04-21 2002-12-17 ナルコ ケミカル カンパニー Stable oxidized bromine formulations, methods for their preparation and use for biofouling control
US20060051284A1 (en) * 2002-05-06 2006-03-09 Fishler Theodor M Process for the preparation of concentrated solutions of stabilized hypobromites
JP2010515759A (en) * 2007-01-12 2010-05-13 アルベマール・コーポレーシヨン Microbicidal treatment of edible fruits and vegetables

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002516827A (en) * 1998-06-01 2002-06-11 アルベマール・コーポレーシヨン Aqueous bromine solution and its production
JP2002543048A (en) * 1999-04-21 2002-12-17 ナルコ ケミカル カンパニー Stable oxidized bromine formulations, methods for their preparation and use for biofouling control
US20060051284A1 (en) * 2002-05-06 2006-03-09 Fishler Theodor M Process for the preparation of concentrated solutions of stabilized hypobromites
JP2010515759A (en) * 2007-01-12 2010-05-13 アルベマール・コーポレーシヨン Microbicidal treatment of edible fruits and vegetables

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10420344B2 (en) 2013-08-28 2019-09-24 Organo Corporation Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane
JPWO2015170495A1 (en) * 2014-05-08 2017-04-20 オルガノ株式会社 Filtration treatment system and filtration treatment method
US10351444B2 (en) 2014-05-08 2019-07-16 Organo Corporation Filtration treatment system and filtration treatment method
JP2016084375A (en) * 2014-10-23 2016-05-19 オルガノ株式会社 Detergent composition
JP2016120466A (en) * 2014-12-25 2016-07-07 オルガノ株式会社 Filtration treatment system and filtration treatment method
JP2016120467A (en) * 2014-12-25 2016-07-07 オルガノ株式会社 Water treatment equipment and water treatment method
JP2016120457A (en) * 2014-12-25 2016-07-07 オルガノ株式会社 Filtration treatment system and filtration treatment method
KR101966569B1 (en) * 2014-12-25 2019-04-05 오르가노 코포레이션 Method for controlling slime on separation membrane
KR20170084257A (en) * 2014-12-25 2017-07-19 오르가노 코포레이션 Method for controlling slime on separation membrane
KR20170102351A (en) * 2015-02-24 2017-09-08 오르가노 코포레이션 A method of reforming a reverse osmosis membrane, a reverse osmosis membrane, a method of treating boron-containing water, and a method of operating a separation membrane
KR101990231B1 (en) * 2015-02-24 2019-06-17 오르가노 코포레이션 A method of reforming a reverse osmosis membrane, a reverse osmosis membrane, a method of treating boron-containing water, and a method of operating a separation membrane
WO2016136304A1 (en) * 2015-02-24 2016-09-01 オルガノ株式会社 Method for modifying reverse osmosis membrane, reverse osmosis membrane, treatment method for boron-containing water, and method for operating separation membrane
CN107635652B (en) * 2015-02-24 2021-08-24 奥加诺株式会社 Method for modifying reverse osmosis membrane, method for treating boron-containing water, and method for operating separation membrane
TWI702081B (en) * 2015-02-24 2020-08-21 日商奧璐佳瑙股份有限公司 Method of modifying reverse osmosis membrane, reverse osmosis membrane, method of processing boron-containing water, and method of operating separation membrane
CN107635652A (en) * 2015-02-24 2018-01-26 奥加诺株式会社 The method of modifying of reverse osmosis membrane, reverse osmosis membrane, the operation method of the processing method of boron water and seperation film
JP2016155067A (en) * 2015-02-24 2016-09-01 オルガノ株式会社 Modification method for reverse osmosis membrane, reverse osmosis membrane, and processing method for water containing boron
JP2016155074A (en) * 2015-02-24 2016-09-01 オルガノ株式会社 Operational method for separation membrane, modification method for separation membrane, and separation membrane
JP2016155071A (en) * 2015-02-24 2016-09-01 オルガノ株式会社 Sterilization method for separation membrane
KR102031472B1 (en) 2015-02-26 2019-10-11 오르가노 코포레이션 Water treatment composition, preparation method and water treatment method of water treatment composition
KR20170118174A (en) * 2015-02-26 2017-10-24 오르가노 코포레이션 Water treatment composition, method of manufacturing water treatment composition and water treatment method
WO2016135916A1 (en) * 2015-02-26 2016-09-01 オルガノ株式会社 Water treatment agent composition, method for producing water treatment agent composition, and water treatment method
JP2017025046A (en) * 2015-07-27 2017-02-02 伯東株式会社 One-component water treatment agent composition having improved storage stability
CN109982567A (en) * 2016-12-01 2019-07-05 奥加诺株式会社 The keeping or application method of water treatment agent composition, method for treating water and water treatment agent composition
KR20190084297A (en) * 2016-12-01 2019-07-16 오르가노 코포레이션 Water treatment composition, water treatment method and method of storing or using water treatment composition
JP2018090513A (en) * 2016-12-01 2018-06-14 オルガノ株式会社 Water treatment agent composition, water treatment method, and method for storing or using water treatment agent composition
WO2018100794A1 (en) * 2016-12-01 2018-06-07 オルガノ株式会社 Water treatment agent composition, water treatment method, and method of storing or using water treatment agent composition
KR102238510B1 (en) * 2016-12-01 2021-04-09 오르가노 코포레이션 Water treatment composition, water treatment method, and storage or use method of water treatment composition

Also Published As

Publication number Publication date
JP5918109B2 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
JP5918109B2 (en) Method for producing hypobromite stabilized composition and hypobromite stabilized composition
US11666055B2 (en) Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane
AU784846B2 (en) Process for generating stabilized bromine compounds
FI126250B (en) Method for the production of chlorine dioxide
JP6145360B2 (en) Water treatment agent composition, method for producing water treatment agent composition, and water treatment method
JP2015507089A (en) In situ production of biocidal bromine species by electrolysis
JPWO2016175006A1 (en) Ammonia nitrogen-containing wastewater treatment method and ammonia nitrogen decomposing agent
JP6649697B2 (en) Water sterilization method
JP6200243B2 (en) Method for producing water treatment composition and water treatment method
JP6113322B2 (en) Disinfectant and method for controlling biofouling
JP2016155067A (en) Modification method for reverse osmosis membrane, reverse osmosis membrane, and processing method for water containing boron
JP6548870B2 (en) Method for controlling slime in papermaking process water
CN107249332B (en) Water treatment agent composition, method for producing water treatment agent composition, and water treatment method
JP6331364B2 (en) Corrosion reducing method and corrosion reducing agent
JP6630563B2 (en) Water sterilization method
TWI664151B (en) Treatment method for ammonia-containing drainage
WO2023243149A1 (en) Water treatment method and water treatment device
JP2009161357A (en) Method for producing sodium hypochlorite aqueous solution by liquid chlorine purification and sodium hypochlorite aqueous solution obtained by the method
JP5557423B2 (en) Method for producing aqueous sodium hypochlorite solution and aqueous sodium hypochlorite solution obtained by the production method
JP2023183541A (en) Sterilization method of ion exchanger
JP2020131134A (en) Slime inhibition agent for separation membrane, manufacturing method of slime inhibition agent for separation membrane, and slime inhibition method of separation membrane
KR20190084297A (en) Water treatment composition, water treatment method and method of storing or using water treatment composition
JPS5910436B2 (en) Treatment method for returned salt water

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160407

R150 Certificate of patent or registration of utility model

Ref document number: 5918109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250