JP6649697B2 - Water sterilization method - Google Patents

Water sterilization method Download PDF

Info

Publication number
JP6649697B2
JP6649697B2 JP2015097058A JP2015097058A JP6649697B2 JP 6649697 B2 JP6649697 B2 JP 6649697B2 JP 2015097058 A JP2015097058 A JP 2015097058A JP 2015097058 A JP2015097058 A JP 2015097058A JP 6649697 B2 JP6649697 B2 JP 6649697B2
Authority
JP
Japan
Prior art keywords
chlorine
water
oxidizing agent
composition
bromine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015097058A
Other languages
Japanese (ja)
Other versions
JP2016209837A (en
Inventor
千晴 大森
千晴 大森
雅人 都司
雅人 都司
染谷 新太郎
新太郎 染谷
江口 正浩
正浩 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2015097058A priority Critical patent/JP6649697B2/en
Publication of JP2016209837A publication Critical patent/JP2016209837A/en
Application granted granted Critical
Publication of JP6649697B2 publication Critical patent/JP6649697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、例えばアンモニア性窒素や有機物を多く含有する排水等の水の殺菌方法に関し、特に下水等の殺菌方法に関する。   The present invention relates to a method for disinfecting water such as wastewater containing a large amount of ammonia nitrogen and organic substances, and particularly to a method for disinfecting sewage and the like.

工場排水を含む事業場排水や下水処理水等を公共用水域に放流する場合、これら放流水は、水質汚濁防止法により排水基準の適用を受ける。また、東京湾、伊勢湾、瀬戸内海の3海域については、COD、窒素、りんによる総量規制の対象となる。   When discharging industrial wastewater and sewage treatment water, including industrial wastewater, into public water bodies, these discharged waters are subject to drainage standards according to the Water Pollution Control Law. In addition, Tokyo Bay, Ise Bay, and the Seto Inland Sea are subject to COD, nitrogen, and phosphorus.

排水のうち、例えば下水等については、排水基準と総量規制に対応するため、放流前に大腸菌群数が3000個/mL以下になるように殺菌する必要があるほか、アンモニア性窒素や有機物(COD成分)等の排水規制の対象となる成分の含有量をできるだけ低減させるのが望ましい。   Of the wastewater, for example, sewage, it is necessary to sterilize the bacterium so that the number of coliform bacteria is 3,000 / mL or less before release, in addition to ammonia nitrogen and organic matter (COD) in order to comply with the wastewater standard and the total amount regulation. It is desirable to reduce the content of components subject to drainage regulations such as component) as much as possible.

また、下水処理においては、特に雨天時に、下水の一部が未処理で公共用水域に放流され、放流先の環境を悪化させる恐れがある。したがって、短時間で、大腸菌群数の低減効果が得られる水の殺菌方法が求められる。   Further, in the sewage treatment, particularly in rainy weather, part of the sewage is discharged into a public water area without treatment, and there is a possibility that the environment of the discharge destination may be deteriorated. Therefore, there is a need for a method of disinfecting water that can reduce the number of coliform bacteria in a short time.

殺菌剤として用いられている次亜塩素酸ナトリウム、次亜塩素酸カルシウム、液化塩素、塩素化イソシアヌル酸等の塩素系酸化剤は、家庭用殺菌剤、工業排水を含む事業場排水等の殺菌剤等、様々な殺菌用途で用いられている。一方、アンモニア性窒素が多く含まれる下水等の殺菌においては、特に雨天時に、下水の一部が未処理で公共用水域に放流される場合、例えば5分程度の短時間での殺菌が求められる。しかしながら、前記塩素系酸化剤は下水に含まれるアンモニア性窒素と反応しクロラミンを形成して殺菌性能が著しく低下するため、殺菌時間が例えば15分以上要する場合がある。また、クロラミンは、環境中の残留性が高い。このようにクロラミンは大腸菌群の殺菌性能が低いにもかかわらず、公共用水域に結合残留塩素として長時間残留して環境に悪影響を与える可能性があるため、下水処理、特に雨天時の殺菌処理として塩素系酸化剤に代わる殺菌剤が求められている。   Chlorine oxidants such as sodium hypochlorite, calcium hypochlorite, liquefied chlorine, and chlorinated isocyanuric acid used as disinfectants are disinfectants for household disinfectants and industrial wastewater including industrial wastewater. It is used in various sterilization applications. On the other hand, in the sterilization of sewage or the like containing a large amount of ammonia nitrogen, particularly when it is rainy, when a part of the sewage is discharged into a public water area without treatment, sterilization in a short time of about 5 minutes is required. . However, the chlorine-based oxidizing agent reacts with ammonia nitrogen contained in the sewage to form chloramine, and the sterilization performance is significantly reduced. Chloramine has a high persistence in the environment. Although chloramine has low sterilizing performance of coliform bacteria, it may remain in public waters as residual chlorine for a long time and adversely affect the environment, so sewage treatment, especially sterilization treatment in rainy weather There is a demand for a disinfectant to replace the chlorine-based oxidant.

また、次亜塩素酸塩と臭化物、例えば次亜塩素酸ナトリウムと臭化ナトリウムを等モルずつ混合して生成した次亜臭素酸ナトリウムをアンモニア性窒素が多く含まれる排水、特に下水の殺菌用途として用いることができる。次亜臭素酸塩は次亜塩素酸塩のようにクロラミン等の結合残留塩素を生成しないため、放流先の水棲生物に対する影響を小さくすることができ、環境問題もほとんど発生しない。しかしながら、次亜臭素酸塩は次亜塩素酸塩より保存安定性が著しく悪いため、添加のときに例えば次亜塩素酸ナトリウムと臭化ナトリウムを直前に混合して添加する必要がある。   In addition, hypochlorite and bromide, for example, sodium hypobromite produced by mixing sodium hypochlorite and sodium bromide in equimolar amounts, wastewater containing a large amount of ammonia nitrogen, especially as a sterilization application for sewage Can be used. Unlike hypochlorite, hypobromite does not generate bound residual chlorine such as chloramine, so that the influence on aquatic organisms to be discharged can be reduced, and environmental problems hardly occur. However, storage stability of hypobromite is significantly lower than that of hypochlorite. Therefore, it is necessary to add, for example, sodium hypochlorite and sodium bromide immediately before mixing.

特開2003−012425号公報JP-A-2003-012425

本発明の目的は、短時間で大腸菌群数の低減効果が得られる水の殺菌方法を提供することにある。   An object of the present invention is to provide a method for disinfecting water, which can reduce the number of coliform bacteria in a short time.

本発明は、アンモニア性窒素を20mg/L以上含む水に、塩素系酸化剤と、安定化次亜臭素酸組成物とをそれぞれ添加する水の殺菌方法であって、前記安定化次亜臭素酸組成物が、臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、を含み、前記塩素系酸化剤が、次亜塩素酸またはその塩であり、前記塩素系酸化剤の全塩素換算の添加濃度(a)に対する前記安定化次亜臭素酸組成物の全塩素換算の添加濃度(b)の比(b/a)が、0.11〜9.00の範囲である、水の殺菌方法である。 The present invention is a method for disinfecting water, in which a chlorine-based oxidizing agent and a stabilized hypobromous acid composition are added to water containing at least 20 mg / L of ammoniacal nitrogen, wherein the stabilized hypobromite is added. acid composition is a reaction product of bromine-based oxidizing agent, or a bromine compound and a chlorine-based oxidizing agent, wherein the sulfamic acid compound, wherein the chlorine-based oxidizing agent, Ri hypochlorous acid or a salt thereof der, The ratio (b / a) of the total chlorine equivalent addition concentration (b) of the stabilized hypobromous acid composition to the total chlorine equivalent addition concentration (a) of the chlorine-based oxidizing agent is 0.11 to 9%. 00 area by der, and is a method of sterilizing water.

本発明は、アンモニア性窒素を20mg/L以上含む水に、塩素系酸化剤と、安定化次亜臭素酸組成物とをそれぞれ添加する水の殺菌方法であって、前記安定化次亜臭素酸組成物が、臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、の反応生成物を含み、前記塩素系酸化剤が、次亜塩素酸またはその塩であり、前記塩素系酸化剤の全塩素換算の添加濃度(a)に対する前記安定化次亜臭素酸組成物の全塩素換算の添加濃度(b)の比(b/a)が、0.11〜9.00の範囲である、水の殺菌方法である。 The present invention is a method for disinfecting water, in which a chlorine-based oxidizing agent and a stabilized hypobromous acid composition are added to water containing at least 20 mg / L of ammoniacal nitrogen, wherein the stabilized hypobromite is added. The acid composition contains a reaction product of a bromine-based oxidizing agent, or a reaction product of a bromine compound and a chlorine-based oxidizing agent, and a sulfamic acid compound, wherein the chlorine-based oxidizing agent is hypochlorous acid or a salt thereof. der is, the ratio of the added concentration of total chlorine conversion of the stabilizing hypobromite composition for addition concentration of total chlorine conversion (a) of the chlorine-based oxidizing agent (b) (b / a) is 0. area by der of 11 to 9.00, which is a method of sterilizing water.

本発明は、アンモニア性窒素を20mg/L以上含む水に、塩素系酸化剤と、安定化次亜臭素酸組成物とをそれぞれ添加する水の殺菌方法であって、前記安定化次亜臭素酸組成物が、臭素とスルファミン酸化合物との反応生成物を含み、前記塩素系酸化剤が、次亜塩素酸またはその塩である、水の殺菌方法であり、前記塩素系酸化剤の全塩素換算の添加濃度(a)に対する前記安定化次亜臭素酸組成物の全塩素換算の添加濃度(b)の比(b/a)が、0.11〜9.00の範囲である。 The present invention is a method for disinfecting water, in which a chlorine-based oxidizing agent and a stabilized hypobromous acid composition are added to water containing at least 20 mg / L of ammoniacal nitrogen, wherein the stabilized hypobromite is added. acid composition comprises the reaction product of a brominated and sulfamic acid compound, the chlorine-based oxidizing agent is hypochlorous acid or a salt thereof, sterilizing method der water is, the chlorine-based oxidizing agent all the ratio of the concentration of the added total chlorine conversion of the stabilizing hypobromous acid composition to the addition concentration of chlorine conversion (a) (b) (b / a) is, area by der of 0.11 to 9.00.

前記水の殺菌方法において、前記塩素系酸化剤の全塩素換算の添加濃度(a)(mg/L as Cl)に対する前記安定化次亜臭素酸組成物の全塩素換算の添加濃度(b)(mg/L as Cl)の比(b/a)が、0.11〜0.67の範囲であることがより好ましい。 In the sterilization method of the water, the addition concentration of total chlorine conversion of the chlorine-based oxidizing agent (a) concentration of the added total chlorine conversion of the stabilizing hypobromite composition for (mg / L as Cl 2) (b) (mg / L as Cl 2) the ratio of (b / a) is more preferably in the range of 0.11 to 0.67.

前記水の殺菌方法において、前記水に、前記安定化次亜臭素酸組成物を添加した後に、前記塩素系酸化剤を添加することが好ましい。   In the method for sterilizing water, it is preferable that the chlorine-based oxidizing agent is added to the water after the stabilized hypobromite composition is added.

本発明では、短時間で大腸菌群数の低減効果が得られる水の殺菌方法を提供することができる。   According to the present invention, it is possible to provide a method for disinfecting water in which an effect of reducing the number of coliform bacteria is obtained in a short time.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   An embodiment of the present invention will be described below. The present embodiment is an example for implementing the present invention, and the present invention is not limited to the present embodiment.

<水の殺菌方法>
本発明の実施形態に係る水の殺菌方法は、水に、「塩素系酸化剤」と、「臭素系酸化剤」と「スルファミン酸化合物」の混合物とをそれぞれ添加する方法、または、「塩素系酸化剤」と、「臭素化合物と塩素系酸化剤との反応物」と「スルファミン酸化合物」の混合物とをそれぞれ添加する方法である。「臭素系酸化剤」と「スルファミン酸化合物」の混合物、または「臭素化合物と塩素系酸化剤との反応物」と「スルファミン酸化合物」の混合物により、安定化次亜臭素酸組成物が生成すると考えられる。
<Water sterilization method>
The method of disinfecting water according to the embodiment of the present invention is a method of adding, to water, a “chlorine-based oxidant”, a mixture of a “bromine-based oxidant” and a “sulfamic acid compound”, or This is a method of adding an "oxidizing agent", a "reaction product of a bromine compound and a chlorine-based oxidizing agent", and a mixture of "sulfamic acid compound", respectively. When a stabilized hypobromite composition is formed by a mixture of "brominated oxidizing agent" and "sulfamic acid compound" or a mixture of "reacted product of bromine compound and chlorine oxidizing agent" and "sulfamic acid compound" Conceivable.

本発明の実施形態に係る水の殺菌方法は、水に、「塩素系酸化剤」と、「臭素系酸化剤とスルファミン酸化合物との反応生成物」である安定化次亜臭素酸組成物とをそれぞれ添加する方法、または、「塩素系酸化剤」と、「臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、の反応生成物」である安定化次亜臭素酸組成物とをそれぞれ添加する方法である。   The method of disinfecting water according to the embodiment of the present invention comprises, in water, a `` chlorine oxidizing agent '' and a stabilized hypobromous acid composition that is a `` reaction product of a brominated oxidizing agent and a sulfamic acid compound ''. Or a stabilized hypobromous acid composition which is a "chlorine oxidant" and a "reaction product of a bromine compound and a chlorine oxidant, and a sulfamic acid compound." Is a method of adding each.

本実施形態に係る水の殺菌方法は、水に、「塩素系酸化剤」と、例えば、「臭素とスルファミン酸化合物との反応生成物」、「塩化臭素とスルファミン酸化合物との反応生成物」、または「臭化ナトリウムと次亜塩素酸との反応物と、スルファミン酸化合物と、の反応生成物」である安定化次亜臭素酸組成物とをそれぞれ添加する方法である。   The method for disinfecting water according to the present embodiment includes the steps of: adding "chlorine oxidizing agent" to water; for example, "a reaction product of bromine and a sulfamic acid compound"; and "a reaction product of bromine chloride and a sulfamic acid compound". Or a stabilized hypobromous acid composition which is a "reaction product of sodium bromide and hypochlorous acid with a sulfamic acid compound".

これらの方法により、短時間で大腸菌群数の低減効果が得られる。例えば、5分以内に大腸菌群数を3000(個/mL)以下に殺菌することができる。   By these methods, the effect of reducing the number of coliform bacteria can be obtained in a short time. For example, the number of coliforms can be sterilized to 3000 (pieces / mL) or less within 5 minutes.

本実施形態に係る水の殺菌方法では、例えば、水に、「塩素系酸化剤」と、「臭素系酸化剤とスルファミン酸化合物との反応生成物」、または「臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、の反応生成物」とを薬注ポンプ等によりそれぞれ注入してもよい。   In the water disinfection method according to the present embodiment, for example, in water, "chlorine oxidizer", "reaction product of bromine oxidizer and sulfamic acid compound", or "bromine compound and chlorine oxidizer And a reaction product of the sulfamic acid compound ”may be respectively injected by a chemical injection pump or the like.

塩素系酸化剤と、安定化次亜臭素酸組成物とを同時に水に添加してもよいし、安定化次亜臭素酸組成物を水に添加した後に、塩素系酸化剤を添加してもよいし、塩素系酸化剤を水に添加した後に、安定化次亜臭素酸組成物を添加してもよい。大腸菌群数の低減効果が高いことから、安定化次亜臭素酸組成物を水に添加した後に、塩素系酸化剤を添加することが好ましい。例えば、安定化次亜臭素酸組成物を水に添加した後に、所定の時間経過後、例えば5秒〜15分経過後に塩素系酸化剤を添加すればよい。また、処理対象の水系の上流で安定化次亜臭素酸組成物を添加し、下流で塩素系酸化剤を添加してもよい。安定化次亜臭素酸組成物が先に添加されることにより、塩素系酸化剤が水に含まれるアンモニア性窒素と反応してクロラミンを形成する前に、安定化次亜臭素酸組成物と反応して相乗効果を示すと推測される。   The chlorine-based oxidizing agent and the stabilized hypobromite composition may be simultaneously added to water, or the chlorine-based oxidizing agent may be added after the stabilized hypobromite composition is added to water. Alternatively, the stabilized hypobromite composition may be added after the chlorine-based oxidizing agent is added to water. Since the effect of reducing the number of coliform bacteria is high, it is preferable to add the chlorine-based oxidizing agent after adding the stabilized hypobromous acid composition to water. For example, after the stabilized hypobromite composition is added to water, a chlorine-based oxidizing agent may be added after a lapse of a predetermined time, for example, after 5 seconds to 15 minutes. Further, the stabilized hypobromite composition may be added upstream of the aqueous system to be treated, and the chlorine-based oxidizing agent may be added downstream. By adding the stabilized hypobromite composition first, the chlorine-based oxidizing agent reacts with the stabilized hypobromite composition before reacting with the ammoniacal nitrogen contained in the water to form chloramine. It is presumed to show a synergistic effect.

「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」の当量に対する「スルファミン酸化合物」の当量の比は、1以上であることが好ましく、1以上2以下の範囲であることがより好ましい。「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」の当量に対する「スルファミン酸化合物」の当量の比が1未満であると、水質基準項目に指定されている臭素酸(基準値0.01mg/L以下)が発生する場合がある。   The ratio of the equivalent of “sulfamic acid compound” to the equivalent of “bromine oxidant” or “reactant of bromine compound and chlorine oxidant” is preferably 1 or more, and more preferably 1 or more and 2 or less. Is more preferable. If the ratio of the equivalent of the “sulfamic acid compound” to the equivalent of the “bromine oxidant” or the “reactant of the bromine compound and the chlorine oxidant” is less than 1, bromate ( (Reference value 0.01 mg / L or less) may occur.

「塩素系酸化剤」の全塩素換算の添加濃度(a)(mg/L as Cl)に対する「安定化次亜臭素酸組成物」の全塩素換算の添加濃度(b)(mg/L as Cl)の比(b/a)が、0.11〜9.00の範囲であることが好ましく、0.11〜0.67の範囲であることがより好ましい。この比(b/a)が0.11未満であると、大腸菌群の殺菌効果が低くなる場合があり、9.00を超えると大腸菌群の殺菌効果が低くなる場合がある。 Addition concentration (b) (mg / L as) of “stabilized hypobromite composition” with respect to addition concentration (a) (mg / L as Cl 2 ) of total amount of “chlorine oxidizing agent” in terms of total chlorine. The ratio (b / a) of Cl 2 ) is preferably in the range of 0.11 to 9.00, and more preferably in the range of 0.11 to 0.67. If the ratio (b / a) is less than 0.11, the bactericidal effect of the coliform group may be reduced, and if it exceeds 9.00, the bactericidal effect of the coliform group may be reduced.

「塩素系酸化剤」および「安定化次亜臭素酸組成物」の「全塩素換算の濃度」とは、試料を適宜希釈し、HACH社の多項目水質分析計DR/4000を用いて、HACH PROGRAM 1450の全塩素測定法(DPD(ジエチル−p−フェニレンジアミン)法)により測定した値(mg/L as Cl)である。なお、「安定化次亜臭素酸組成物」の濃度については、臭素濃度(mg/L as Br)で表すこともできるが、ここでは「塩素系酸化剤」の濃度と単位を揃えて比較するため、前述の全塩素測定法により測定した値である「全塩素換算の濃度」(mg/L as Cl)を用いる。 The “concentration in terms of total chlorine” of the “chlorine-based oxidizing agent” and the “stabilized hypobromite composition” means that the sample was appropriately diluted, and HACH was used for the HACH multi-item water quality analyzer DR / 4000. a total chlorine measuring method PROGRAM 1450 (DPD (diethyl -p- phenylenediamine) method) value measured by (mg / L as Cl 2) . The concentration of the “stabilized hypobromite composition” can be represented by bromine concentration (mg / L as Br 2 ), but here, the concentration and the unit of the “chlorine-based oxidizing agent” are compared. Therefore, the “concentration in terms of total chlorine” (mg / L as Cl 2 ), which is a value measured by the above-described total chlorine measurement method, is used.

「塩素系酸化剤」および「安定化次亜臭素酸組成物」の添加濃度は全塩素濃度換算で、1〜10(mg/L as Cl)であることが好ましい。「塩素系酸化剤」および「安定化次亜臭素酸組成物」の添加濃度が1(mg/L as Cl)未満であると、十分な殺菌効果が得られない場合があり、10(mg/L as Cl)より多いと、公共用水域に薬剤が残留して環境に悪影響を与える可能性がある。 The concentration of the “chlorine oxidizing agent” and “stabilized hypobromite composition” is preferably 1 to 10 (mg / L as Cl 2 ) in terms of total chlorine concentration. When the concentration of the “chlorine-based oxidizing agent” and the “stabilized hypobromite composition” is less than 1 (mg / L as Cl 2 ), a sufficient bactericidal effect may not be obtained, and 10 (mg) / L as Cl 2 ), the chemical may remain in public water bodies and adversely affect the environment.

臭素系酸化剤としては、臭素(液体臭素)、塩化臭素、臭素酸、臭素酸塩、次亜臭素酸等が挙げられる。   Examples of the bromine-based oxidizing agent include bromine (liquid bromine), bromine chloride, bromate, bromate, hypobromite and the like.

これらのうち、臭素を用いた「臭素とスルファミン酸化合物」または「臭素とスルファミン酸化合物との反応生成物」の製剤は、「次亜塩素酸と臭素化合物とスルファミン酸」の製剤および「塩化臭素とスルファミン酸」の製剤等に比べて、臭素酸の副生が少なく、配管等の金属材料の腐食を引き起こす可能性が低いため、より好ましい。   Among these, the preparations of "bromine and sulfamic acid compound" or "reaction products of bromine and sulfamic acid compound" using bromine are the preparations of "hypochlorous acid, bromine compound and sulfamic acid" and "bromine chloride". And sulfamic acid ”are more preferable because they have less by-product of bromic acid and a lower possibility of causing corrosion of metal materials such as pipes.

すなわち、本実施形態に係る水の殺菌方法は、水に、「塩素系酸化剤」と、「臭素とスルファミン酸化合物との反応生成物」とをそれぞれ添加することが好ましい。   That is, in the method for disinfecting water according to the present embodiment, it is preferable to add a “chlorine oxidizing agent” and a “reaction product of bromine and a sulfamic acid compound” to water, respectively.

臭素化合物としては、臭化ナトリウム、臭化カリウム、臭化リチウム、臭化アンモニウム及び臭化水素酸等が挙げられる。これらのうち、製剤コスト等の点から、臭化ナトリウムが好ましい。   Examples of the bromine compound include sodium bromide, potassium bromide, lithium bromide, ammonium bromide, and hydrobromic acid. Of these, sodium bromide is preferred from the viewpoint of formulation cost and the like.

塩素系酸化剤としては、例えば、塩素ガス、二酸化塩素、次亜塩素酸またはその塩、亜塩素酸またはその塩、塩素酸またはその塩、過塩素酸またはその塩、塩素化イソシアヌル酸またはその塩等が挙げられる。これらのうち、塩としては、例えば、次亜塩素酸ナトリウム、次亜塩素酸カリウム等の次亜塩素酸アルカリ金属塩、次亜塩素酸カルシウム、次亜塩素酸バリウム等の次亜塩素酸アルカリ土類金属塩、亜塩素酸ナトリウム、亜塩素酸カリウム等の亜塩素酸アルカリ金属塩、亜塩素酸バリウム等の亜塩素酸アルカリ土類金属塩、亜塩素酸ニッケル等の他の亜塩素酸金属塩、塩素酸アンモニウム、塩素酸ナトリウム、塩素酸カリウム等の塩素酸アルカリ金属塩、塩素酸カルシウム、塩素酸バリウム等の塩素酸アルカリ土類金属塩等が挙げられる。これらの塩素系酸化剤は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。塩素系酸化剤としては、取り扱い性等の点から、次亜塩素酸ナトリウムを用いるのが好ましい。   Examples of the chlorine-based oxidizing agent include chlorine gas, chlorine dioxide, hypochlorous acid or a salt thereof, chlorite or a salt thereof, chloric acid or a salt thereof, perchloric acid or a salt thereof, chlorinated isocyanuric acid or a salt thereof. And the like. Among these, examples of the salt include alkali metal hypochlorites such as sodium hypochlorite and potassium hypochlorite, and alkaline earth hypochlorite such as calcium hypochlorite and barium hypochlorite. Metal salts, alkali metal chlorites such as sodium chlorite and potassium chlorite, alkaline earth metal chlorites such as barium chlorite, and other metal chlorites such as nickel chlorite And alkali metal chlorates such as ammonium chlorate, sodium chlorate and potassium chlorate, and alkaline earth metal chlorates such as calcium chlorate and barium chlorate. One of these chlorine-based oxidizing agents may be used alone, or two or more thereof may be used in combination. As the chlorine-based oxidizing agent, sodium hypochlorite is preferably used from the viewpoint of handleability and the like.

スルファミン酸化合物は、以下の一般式(1)で示される化合物である。
NSOH (1)
(式中、Rは独立して水素原子または炭素数1〜8のアルキル基である。)
The sulfamic acid compound is a compound represented by the following general formula (1).
R 2 NSO 3 H (1)
(In the formula, R is independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.)

スルファミン酸化合物としては、例えば、2個のR基の両方が水素原子であるスルファミン酸(アミド硫酸)の他に、N−メチルスルファミン酸、N−エチルスルファミン酸、N−プロピルスルファミン酸、N−イソプロピルスルファミン酸、N−ブチルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数1〜8のアルキル基であるスルファミン酸化合物、N,N−ジメチルスルファミン酸、N,N−ジエチルスルファミン酸、N,N−ジプロピルスルファミン酸、N,N−ジブチルスルファミン酸、N−メチル−N−エチルスルファミン酸、N−メチル−N−プロピルスルファミン酸等の2個のR基の両方が炭素数1〜8のアルキル基であるスルファミン酸化合物、N−フェニルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数6〜10のアリール基であるスルファミン酸化合物、またはこれらの塩等が挙げられる。スルファミン酸塩としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩、マンガン塩、銅塩、亜鉛塩、鉄塩、コバルト塩、ニッケル塩等の他の金属塩、アンモニウム塩およびグアニジン塩等が挙げられる。スルファミン酸化合物およびこれらの塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。スルファミン酸化合物としては、環境負荷等の点から、スルファミン酸(アミド硫酸)を用いるのが好ましい。   As the sulfamic acid compound, for example, in addition to sulfamic acid (amidosulfate) in which both R groups are both hydrogen atoms, N-methylsulfamic acid, N-ethylsulfamic acid, N-propylsulfamic acid, N- One of two R groups such as isopropylsulfamic acid and N-butylsulfamic acid is a hydrogen atom, and the other is an alkyl group having 1 to 8 carbon atoms; a sulfamic acid compound; N, N-dimethylsulfamic acid; Two R groups such as N-diethylsulfamic acid, N, N-dipropylsulfamic acid, N, N-dibutylsulfamic acid, N-methyl-N-ethylsulfamic acid and N-methyl-N-propylsulfamic acid; One of two R groups such as a sulfamic acid compound in which both are alkyl groups having 1 to 8 carbon atoms, N-phenylsulfamic acid, etc. An atom, the other is sulfamic acid compound or a salt thereof, such as an aryl group having 6 to 10 carbon atoms. Examples of the sulfamate include, for example, alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt, strontium salt and barium salt, manganese salt, copper salt, zinc salt, iron salt, cobalt salt, and the like. Other metal salts such as nickel salts, ammonium salts, guanidine salts and the like. The sulfamic acid compounds and salts thereof may be used alone or in combination of two or more. As the sulfamic acid compound, it is preferable to use sulfamic acid (amidosulfuric acid) from the viewpoint of environmental load and the like.

本実施形態に係る水の殺菌方法において、さらにアルカリを存在させてもよい。アルカリとしては、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ等が挙げられる。低温時の製品安定性等の点から、水酸化ナトリウムと水酸化カリウムとを併用してもよい。また、アルカリは、固形でなく、水溶液として用いてもよい。   In the method for sterilizing water according to the present embodiment, an alkali may be further present. Examples of the alkali include alkali hydroxides such as sodium hydroxide and potassium hydroxide. Sodium hydroxide and potassium hydroxide may be used in combination from the viewpoint of product stability at low temperatures. The alkali may be used as an aqueous solution instead of a solid.

本実施形態に係る水の殺菌方法において、処理対象の水のpHが3〜11の範囲であることが好ましく、4〜9の範囲であることがより好ましい。処理対象の水のpHが3未満であると、次亜臭素酸が臭素ガスとして揮発しやすくなり大腸菌群数の殺菌効果が低下する場合があり、11を超えると、アルカリ変性により大腸菌が減少し、本発明による処理の有効性が低下してしまう場合がある。   In the water disinfection method according to this embodiment, the pH of the water to be treated is preferably in the range of 3 to 11, and more preferably in the range of 4 to 9. If the pH of the water to be treated is less than 3, hypobromite is likely to be volatilized as bromine gas, and the bactericidal effect of the number of coliforms may be reduced. In some cases, the effectiveness of the process according to the present invention is reduced.

本実施形態に係る水の殺菌方法の処理対象とする水は、例えば、アンモニア性窒素や有機物が多く含有する排水等の水であり、特にアンモニア性窒素を5mg/L以上含む水、例えば、下水処理場から放流される未処理水、および簡易処理が行われた雨水を含む下水等である。   The water to be treated in the water sterilization method according to the present embodiment is, for example, water such as wastewater containing a large amount of ammonia nitrogen or organic substances, and particularly water containing ammonia nitrogen in an amount of 5 mg / L or more, such as sewage. Untreated water discharged from a treatment plant, sewage including rainwater subjected to simple treatment, and the like.

<安定化次亜臭素酸組成物>
本実施形態に係る水の殺菌方法に用いられる安定化次亜臭素酸組成物は、「臭素系酸化剤」または「臭素化合物と塩素系酸化剤との反応物」と、「スルファミン酸化合物」とを含有するものであり、さらにアルカリを含有してもよい。
<Stabilized hypobromite composition>
The stabilized hypobromite composition used in the water disinfection method according to the present embodiment includes a `` bromine-based oxidizing agent '' or a `` reactant of a bromine compound and a chlorine-based oxidizing agent '' and a `` sulfamic acid compound '' And may further contain an alkali.

また、本実施形態に係る水の殺菌方法に用いられる安定化次亜臭素酸組成物は、「臭素系酸化剤とスルファミン酸化合物との反応生成物」、または「臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、の反応生成物」を含有するものであり、さらにアルカリを含有してもよい。   Further, the stabilized hypobromite composition used in the method for disinfecting water according to the present embodiment is a `` reaction product of a brominated oxidizing agent and a sulfamic acid compound '', or `` a brominated compound and a chlorine oxidizing agent. And a sulfamic acid compound, and may further contain an alkali.

臭素系酸化剤、臭素化合物、塩素系酸化剤およびスルファミン酸化合物については、上述した通りである。   The bromine-based oxidant, bromine compound, chlorine-based oxidant, and sulfamic acid compound are as described above.

本実施形態に係る水の殺菌方法に用いられる安定化次亜臭素酸組成物としては、配管等の金属材料に対する腐食性が低く、臭素酸の副生が少ない等の点から、臭素と、スルファミン酸化合物とを含有するもの、または、臭素とスルファミン酸化合物との反応生成物を含有するものが好ましい。   As the stabilized hypobromite composition used in the water disinfection method according to the present embodiment, bromine and sulfamine are preferred in terms of low corrosiveness to metal materials such as pipes and little by-product of bromate. Those containing an acid compound or those containing a reaction product of bromine and a sulfamic acid compound are preferred.

安定化次亜臭素酸組成物のpHは、例えば、13.0超であり、13.2超であることがより好ましい。安定化次亜臭素酸組成物のpHが13.0以下であると安定化次亜臭素酸組成物が不安定になる場合がある。   The pH of the stabilized hypobromite composition is, for example, more than 13.0, and more preferably more than 13.2. If the pH of the stabilized hypobromite composition is 13.0 or less, the stabilized hypobromite composition may become unstable.

安定化次亜臭素酸組成物中の臭素酸濃度は、5mg/kg未満であることが好ましい。安定化次亜臭素酸組成物中の臭素酸濃度が5mg/kg以上であると、処理水の臭素酸イオンの濃度が高くなる場合がある。   The bromic acid concentration in the stabilized hypobromite composition is preferably less than 5 mg / kg. When the concentration of bromate in the stabilized hypobromite composition is 5 mg / kg or more, the concentration of bromate ion in the treated water may increase.

<安定化次亜臭素酸組成物の製造方法>
本実施形態に係る水の殺菌方法に用いられる安定化次亜臭素酸組成物は、臭素系酸化剤とスルファミン酸化合物とを混合する、または臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物とを混合することにより得られ、さらにアルカリを混合してもよい。
<Method for producing stabilized hypobromite composition>
The stabilized hypobromite composition used in the water sterilization method according to the present embodiment is a mixture of a brominated oxidizing agent and a sulfamic acid compound, or a reaction product of a brominated compound and a chlorine oxidizing agent, and sulfamine. It is obtained by mixing with an acid compound, and may further be mixed with an alkali.

臭素と、スルファミン酸化合物とを含有する安定化次亜臭素酸組成物、または、臭素とスルファミン酸化合物との反応生成物を含有する安定化次亜臭素酸組成物の製造方法としては、水、アルカリおよびスルファミン酸化合物を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させる工程を含むことが好ましい。不活性ガス雰囲気下で添加して反応させることにより、組成物中の臭素酸イオン濃度が低くなる。   Bromine and a stabilized hypobromite composition containing a sulfamic acid compound, or a method for producing a stabilized hypobromite composition containing a reaction product of bromine and a sulfamic acid compound include water, It is preferable to include a step of adding bromine to a mixed solution containing an alkali and a sulfamic acid compound under an inert gas atmosphere to cause a reaction. By adding and reacting in an inert gas atmosphere, the bromate ion concentration in the composition is reduced.

用いる不活性ガスとしては限定されないが、製造等の面から素およびアルゴンのうち少なくとも1つが好ましく、特に製造コスト等の面から窒素が好ましい。 Used but are not limited to inert gas, at least one and preferably one in terms of nitrogen and argon, such as production, nitrogen is particularly preferred from the viewpoint of production cost and the like.

臭素の添加の際の反応器内の酸素濃度は6%以下が好ましいが、4%以下がより好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。臭素の反応の際の反応器内の酸素濃度が6%を超えると、反応系内の臭素酸の生成量が増加する場合がある。   The oxygen concentration in the reactor at the time of adding bromine is preferably 6% or less, more preferably 4% or less, further preferably 2% or less, and particularly preferably 1% or less. If the oxygen concentration in the reactor during the reaction of bromine exceeds 6%, the amount of bromic acid generated in the reaction system may increase.

臭素の添加率は、組成物全体の量に対して25重量%以下であることが好ましく、1重量%以上20重量%以下であることがより好ましい。臭素の添加率が組成物全体の量に対して25重量%を超えると、反応系内の臭素酸の生成量が増加する場合がある。1重量%未満であると、殺菌効果が劣る場合がある。   The addition ratio of bromine is preferably 25% by weight or less, more preferably 1% by weight or more and 20% by weight or less based on the total amount of the composition. If the bromine addition rate exceeds 25% by weight based on the total amount of the composition, the amount of bromic acid generated in the reaction system may increase. If it is less than 1% by weight, the bactericidal effect may be poor.

臭素添加の際の反応温度は、0℃以上25℃以下の範囲に制御することが好ましいが、製造コスト等の面から、0℃以上15℃以下の範囲に制御することがより好ましい。臭素添加の際の反応温度が25℃を超えると、反応系内の臭素酸の生成量が増加する場合があり、0℃未満であると、凍結する場合がある。   The reaction temperature at the time of adding bromine is preferably controlled in the range of 0 ° C. or more and 25 ° C. or less, but is more preferably controlled in the range of 0 ° C. or more and 15 ° C. or less from the viewpoint of production cost and the like. If the reaction temperature at the time of adding bromine exceeds 25 ° C., the amount of bromic acid generated in the reaction system may increase, and if it is lower than 0 ° C., it may freeze.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.

以後の実施例、比較例において、「塩素系酸化剤」および「安定化次亜臭素酸組成物」の「全塩素換算の濃度」とは、試料を適宜希釈し、HACH社の多項目水質分析計DR/4000を用いて、HACH PROGRAM 1450の全塩素測定法(DPD(ジエチル−p−フェニレンジアミン)法)により測定した値(mg/L as Cl)である。なお、「安定化次亜臭素酸組成物」の濃度については、臭素濃度(mg/L as Br)で表すこともできるが、ここでは「塩素系酸化剤」の濃度と単位を揃えて比較するため、前述の全塩素測定法により測定した値である「全塩素換算の濃度」(mg/L as Cl)を用いた。 In the following Examples and Comparative Examples, the “chlorine-based oxidizing agent” and the “concentration in terms of total chlorine” of the “stabilized hypobromite composition” refer to the HACH company's multi-item water quality analysis by appropriately diluting the sample. with a total of DR / 4000, the total chlorine assay of HACH PROGRAM 1450 (DPD (diethyl -p- phenylenediamine) method) value measured by (mg / L as Cl 2) . The concentration of the “stabilized hypobromite composition” can be represented by bromine concentration (mg / L as Br 2 ), but here, the concentration and the unit of the “chlorine-based oxidizing agent” are compared. Therefore, the “concentration in terms of total chlorine” (mg / L as Cl 2 ), which is a value measured by the above-described total chlorine measurement method, was used.

<安定化次亜臭素酸組成物の調製>
実施例で用いた安定化次亜臭素酸組成物A,B,Cは下記のとおりである。
<Preparation of stabilized hypobromite composition>
The stabilized hypobromite compositions A, B, and C used in the examples are as follows.

[安定化次亜臭素酸組成物Aの調製]
窒素雰囲気下で、液体臭素:16.9重量%(wt%)、スルファミン酸:10.7重量%、水酸化ナトリウム:12.9重量%、水酸化カリウム:3.94重量%、水:残分を混合して、組成物を調製した。組成物のpHは14、臭素含有率(濃度)は16.9重量%(as Br)であった。なお、臭素の全塩素換算の濃度は7.5重量%(as Cl)であった。安定化次亜臭素酸組成物Aの詳細な調製方法は以下の通りである。
[Preparation of stabilized hypobromite composition A]
Under a nitrogen atmosphere, liquid bromine: 16.9% by weight (wt%), sulfamic acid: 10.7% by weight, sodium hydroxide: 12.9% by weight, potassium hydroxide: 3.94% by weight, water: residual The composition was prepared by mixing the minutes. The composition had a pH of 14 and a bromine content (concentration) of 16.9% by weight (as Br 2 ). The concentration of bromine in terms of total chlorine was 7.5% by weight (as Cl 2 ). The detailed preparation method of the stabilized hypobromite composition A is as follows.

反応容器内の酸素濃度が1%に維持されるように、窒素ガスの流量をマスフローコントローラでコントロールしながら連続注入で封入した2Lの4つ口フラスコに1436gの水、361gの水酸化ナトリウムを加え混合し、次いで300gのスルファミン酸を加え混合した後、反応液の温度が0〜15℃になるように冷却を維持しながら、473gの液体臭素を加え、さらに48%水酸化カリウム溶液230gを加え、組成物全体の量に対する重量比でスルファミン酸10.7%、臭素16.9%、臭素の当量に対するスルファミン酸の当量比が1.04である、目的の安定化次亜臭素酸組成物Aを得た。生じた溶液のpHは、ガラス電極法にて測定したところ、14であった。生じた溶液の臭素含有率は、臭素をヨウ化カリウムによりヨウ素に転換後、チオ硫酸ナトリウムを用いて酸化還元滴定する方法により測定したところ16.9%であり、理論臭素含有率(16.9%)の100.0%であった。また、臭素反応の際の反応容器内の酸素濃度は、株式会社ジコー製の「酸素モニタJKO−02 LJDII」を用いて測定した。なお、臭素酸濃度は5mg/kg未満であった。   1436 g of water and 361 g of sodium hydroxide were added to a 2 L four-necked flask sealed by continuous injection while controlling the flow rate of nitrogen gas with a mass flow controller so that the oxygen concentration in the reaction vessel was maintained at 1%. After mixing and then adding 300 g of sulfamic acid and mixing, 473 g of liquid bromine was added while maintaining the temperature of the reaction solution at 0 to 15 ° C., and 230 g of a 48% potassium hydroxide solution was further added. The intended stabilized hypobromite composition A, wherein the weight ratio of sulfamic acid to the total amount of the composition is 10.7%, the bromine content is 16.9%, and the equivalent ratio of sulfamic acid to the equivalent of bromine is 1.04. I got The pH of the resulting solution was 14, as measured by the glass electrode method. The bromine content of the resulting solution was measured by a method of converting bromine into iodine with potassium iodide and then performing redox titration with sodium thiosulfate, and found to be 16.9%. The theoretical bromine content (16.9) %). The oxygen concentration in the reaction vessel during the bromine reaction was measured using "Oxygen Monitor JKO-02 LJDII" manufactured by Jiko Co., Ltd. The bromate concentration was less than 5 mg / kg.

なお、pHの測定は、以下の条件で行った。
電極タイプ:ガラス電極式
pH測定計:東亜ディーケーケー社製、IOL−30型
電極の校正:関東化学社製中性リン酸塩pH(6.86)標準液(第2種)、同社製ホウ酸塩pH(9.18)標準液(第2種)の2点校正で行った
測定温度:25℃
測定値:測定液に電極を浸漬し、安定後の値を測定値とし、3回測定の平均値
The pH was measured under the following conditions.
Electrode type: Glass electrode type pH meter: Toa DKK, IOL-30 type Calibration of electrode: Neutral phosphate pH (6.86) standard solution (2nd class), Kanto Chemical Co., boric acid Performed by two-point calibration of salt pH (9.18) standard solution (second type) Measurement temperature: 25 ° C
Measured value: The electrode was immersed in the test solution, and the value after stabilization was taken as the measured value, the average of three measurements

[安定化次亜臭素酸組成物Bの調製]
臭化ナトリウム:11重量%、12%次亜塩素酸ナトリウム水溶液:50重量%、スルファミン酸ナトリウム:14重量%、水酸化ナトリウム:8重量%、水:残分を混合して、組成物を調製した。組成物のpHは14、臭素含有率(濃度)は13.5重量%(as Br)であった。なお、臭素の全塩素換算の濃度は6重量%(as Cl)であった。安定化次亜臭素酸組成物Bの詳細な調製方法は以下の通りである。
[Preparation of stabilized hypobromite composition B]
Sodium bromide: 11% by weight, 12% aqueous solution of sodium hypochlorite: 50% by weight, sodium sulfamate: 14% by weight, sodium hydroxide: 8% by weight, water: The residue is mixed to prepare a composition. did. The composition had a pH of 14 and a bromine content (concentration) of 13.5% by weight (as Br 2 ). The concentration of bromine in terms of total chlorine was 6% by weight (as Cl 2 ). The detailed preparation method of the stabilized hypobromite composition B is as follows.

反応容器に17gの水を入れ、11gの臭化ナトリウムを加え撹拌して溶解させた後、50gの12%次亜塩素酸ナトリウム水溶液を加え混合し、次いで14gのスルファミン酸ナトリウムを加え撹拌して溶解させた後、8gの水酸化ナトリウムを加え撹拌し溶解させて目的の安定化次亜臭素酸組成物Bを得た。   17 g of water was put in a reaction vessel, 11 g of sodium bromide was added and stirred to dissolve, 50 g of a 12% aqueous sodium hypochlorite solution was added and mixed, and then 14 g of sodium sulfamate was added and stirred. After dissolution, 8 g of sodium hydroxide was added, and the mixture was stirred and dissolved to obtain the intended stabilized hypobromite composition B.

[安定化次亜臭素酸組成物Cの調製]
国際特許出願公開第03/093171号の記載内容に基づき安定化次亜臭素酸組成物Cを調製した。安定化次亜臭素酸組成物Cは、液体臭素、スルファミン酸塩、水酸化ナトリウムを含有する組成物である。安定化次亜臭素酸組成物CのpHは14、臭素含有率(濃度)は16.1重量%(as Br)であった。なお、臭素の全塩素換算の濃度は7.1重量%(as Cl)であった。臭素の当量に対するスルファミン酸の当量比は1.45であった。
[Preparation of stabilized hypobromite composition C]
A stabilized hypobromite composition C was prepared based on the description in International Patent Application Publication No. 03/093171. The stabilized hypobromite composition C is a composition containing liquid bromine, sulfamate, and sodium hydroxide. The stabilized hypobromite composition C had a pH of 14 and a bromine content (concentration) of 16.1% by weight (as Br 2 ). The concentration of bromine in terms of total chlorine was 7.1% by weight (as Cl 2 ). The equivalent ratio of sulfamic acid to bromine equivalent was 1.45.

<実施例1−1〜1−6および比較例1−1〜1−4>
表1に記載されている水質の下水を用いて殺菌試験を実施した。300mLビーカに下水300mLを入れ、そこに表2に示すように全塩素換算の添加濃度が合計5mg/L as Clになるよう薬剤(安定化次亜臭素酸組成物Aと次亜塩素酸ナトリウム)を添加し、デジタルスターラにより250rpmで撹拌した。このとき、薬剤の添加方法として、被処理水に安定化次亜臭素酸組成物Aと次亜塩素酸ナトリウムを同時に直接添加する方法(実施例1−1〜1−6)、および安定化次亜臭素酸組成物Aと次亜塩素酸ナトリウムを事前に混合してから添加する方法(比較例1−4)の2種類の方法で添加した。また、薬剤無添加(比較例1−1)、次亜塩素酸ナトリウムの単剤添加(比較例1−2)、安定化次亜臭素酸組成物Aの単剤添加(比較例1−3)についても試験を実施した。全ての薬剤を添加してから5分後に、処理した水を所定量採取するとともに、有効塩素を失活させるためチオ硫酸ナトリウムを添加後、スリーエム株式会社製ペトリフィルム(商標)培地大腸菌群数測定用CCプレートにより大腸菌群数の測定を行った。結果を表2に示す。
<Examples 1-1 to 1-6 and Comparative Examples 1-1 to 1-4>
A germicidal test was performed using the sewage having the water quality described in Table 1. 300 mL of sewage is placed in a 300 mL beaker, and a chemical (stabilized hypobromite composition A and sodium hypochlorite) is added thereto so that the total concentration in terms of total chlorine becomes 5 mg / L as Cl 2 as shown in Table 2. ) Was added and the mixture was stirred with a digital stirrer at 250 rpm. At this time, as a method of adding the chemical, a method of simultaneously adding the stabilized hypobromite composition A and sodium hypochlorite directly to the water to be treated (Examples 1-1 to 1-6); The bromite composition A and sodium hypochlorite were previously mixed and added by two methods (Comparative Examples 1-4). In addition, no drug was added (Comparative Example 1-1), a single agent was added with sodium hypochlorite (Comparative Example 1-2), and a single agent was added with stabilized hypobromite composition A (Comparative Example 1-3). Was also tested. Five minutes after all the chemicals were added, a predetermined amount of treated water was collected, and sodium thiosulfate was added to inactivate available chlorine. Then, the number of coliform bacteria in Petrifilm (trademark) medium manufactured by 3M Corporation was measured. The number of coliforms was measured by using a CC plate. Table 2 shows the results.

Figure 0006649697
Figure 0006649697

Figure 0006649697
Figure 0006649697

安定化次亜臭素酸組成物Aと次亜塩素酸ナトリウムとを併用して下水に直接添加する(実施例1−1〜1−6)ことにより、安定化次亜臭素酸組成物Aまたは次亜塩素酸ナトリウムを単剤で添加した場合(比較例1−3、比較例1−2)、安定化次亜臭素酸組成物Aと次亜塩素酸ナトリウムとを事前に混合してから添加した場合(比較例1−4)よりも高い殺菌性能を示した。   By adding the stabilized hypobromite composition A and sodium hypochlorite together and directly to the sewage (Examples 1-1 to 1-6), the stabilized hypobromite composition A or When sodium chlorite is added as a single agent (Comparative Example 1-3, Comparative Example 1-2), the stabilized hypobromite composition A and sodium hypochlorite are mixed in advance and then added. It showed higher sterilization performance than the case (Comparative Example 1-4).

<実施例1−7,1−8>
実施例1−5と同様の試験方法で、薬剤として安定化次亜臭素酸組成物A(1.0mg/L as Cl)と次亜塩素酸ナトリウム(4.0mg/L as Cl)とを用い、次亜塩素酸ナトリウムを添加して、その15秒後に安定化次亜臭素酸組成物Aを添加する方法(実施例1−7)、安定化次亜臭素酸組成物Aを添加して、その15秒後に次亜塩素酸ナトリウムを添加する方法(実施例1−8)で添加した。被処理水に、前記薬剤を同時に直接添加する方法(実施例1−5)と比較した。なお、時間は先に薬剤を加えた時間を0分とし、その5分後の大腸菌群数を測定した。結果を表3に示す。
<Examples 1-7 and 1-8>
In the same test method as in Example 1-5, the agent as a stabilizing hypobromite composition A and (1.0mg / L as Cl 2) and sodium hypochlorite (4.0mg / L as Cl 2) A method of adding sodium hypochlorite and adding the stabilized hypobromite composition A 15 seconds later (Example 1-7), adding the stabilized hypobromite composition A 15 seconds later, sodium hypochlorite was added (Example 1-8). It compared with the method (Example 1-5) of simultaneously adding the said chemical | medical agent to to-be-processed water. The time was defined as 0 minutes from the time when the drug was added first, and the number of coliform bacteria was measured 5 minutes after that. Table 3 shows the results.

Figure 0006649697
Figure 0006649697

安定化次亜臭素酸組成物Aを添加した後に次亜塩素酸ナトリウムを添加する(実施例1−8)と、安定化次亜臭素酸組成物Aと次亜塩素酸ナトリウムを同時に直接添加した場合(実施例1−5)、次亜塩素酸ナトリウムを添加した後に安定化次亜臭素酸組成物Aを添加した場合(実施例1−7)に比べて、大腸菌群数の低減効果が高かった。   When sodium hypochlorite was added after adding the stabilized hypobromite composition A (Example 1-8), the stabilized hypobromite composition A and sodium hypochlorite were simultaneously added directly. In the case (Example 1-5), the effect of reducing the number of coliform bacteria was higher than that in the case where the stabilized hypobromite composition A was added after the addition of sodium hypochlorite (Example 1-7). Was.

<実施例2および比較例2−1,2−2>
実施例1−1〜1−8と同様の試験方法で、薬剤として安定化次亜臭素酸組成物Aの代わりに安定化次亜臭素酸組成物Bを用いた。このとき、薬剤の添加方法として、被処理水に安定化次亜臭素酸組成物B(1.0mg/L as Cl)と次亜塩素酸ナトリウム(4.0mg/L as Cl)を同時に直接添加する方法(実施例2)、および安定化次亜臭素酸組成物Bと次亜塩素酸ナトリウムを事前に混合してから添加する方法(比較例2−1)の2種類の方法で添加した。また、安定化次亜臭素酸組成物Bの単剤添加(比較例2−2)についても試験を実施し、薬剤無添加(比較例1−1)、次亜塩素酸ナトリウムの単剤添加(比較例1−2)と比較した。結果を表4に示す。
<Example 2 and Comparative Examples 2-1 and 2-2>
In the same test method as in Examples 1-1 to 1-8, stabilized hypobromite composition B was used instead of stabilized hypobromite composition A as a drug. At this time, as a method of adding the chemical, stabilized hypobromite composition B (1.0 mg / L as Cl 2 ) and sodium hypochlorite (4.0 mg / L as Cl 2 ) are simultaneously added to the water to be treated. Two methods, a direct addition method (Example 2) and a method in which stabilized hypobromite composition B and sodium hypochlorite are mixed in advance and then added (Comparative Example 2-1) did. In addition, a test was also performed on the addition of a single agent of the stabilized hypobromite composition B (Comparative Example 2-2), and no agent was added (Comparative Example 1-1), and a single agent of sodium hypochlorite was added (Comparative Example 1-1). This was compared with Comparative Example 1-2). Table 4 shows the results.

Figure 0006649697
Figure 0006649697

安定化次亜臭素酸組成物Bと次亜塩素酸ナトリウムとを併用して下水に直接添加する(実施例2)ことにより、安定化次亜臭素酸組成物Bまたは次亜塩素酸ナトリウムを単剤で添加した場合(比較例2−2、比較例1−2)、安定化次亜臭素酸組成物Bと次亜塩素酸ナトリウムとを事前に混合してから添加した場合(比較例2−1)よりも高い殺菌性能を示した。   The stabilized hypobromite composition B or sodium hypochlorite was used in combination with sodium hypochlorite and directly added to the sewage (Example 2) to thereby stabilize the stabilized hypobromite composition B or sodium hypochlorite. (Comparative Example 2-2, Comparative Example 1-2), when the stabilized hypobromite composition B and sodium hypochlorite are mixed in advance and then added (Comparative Example 2- It showed higher sterilization performance than 1).

<実施例3および比較例3−1,3−2>
実施例1−1〜1−8と同様の試験方法で、薬剤として安定化次亜臭素酸組成物Aの代わりに安定化次亜臭素酸組成物Cを用いた。このとき、薬剤の添加方法として、被処理水に安定化次亜臭素酸組成物C(1.0mg/L as Cl)と次亜塩素酸ナトリウム(4.0mg/L as Cl)を同時に直接添加する方法(実施例3)、および安定化次亜臭素酸組成物Cと次亜塩素酸ナトリウムを事前に混合してから添加する方法(比較例3−1)の2種類の方法で添加した。また、安定化次亜臭素酸組成物Cの単剤添加(比較例3−2)についても試験を実施し、薬剤無添加(比較例1−1)、次亜塩素酸ナトリウムの単剤添加(比較例1−2)と比較した。結果を表5に示す。
<Example 3 and Comparative Examples 3-1 and 3-2>
In the same test method as in Examples 1-1 to 1-8, stabilized hypobromite composition C was used instead of stabilized hypobromite composition A as a drug. At this time, as a method of adding the chemical, stabilized hypobromite composition C (1.0 mg / L as Cl 2 ) and sodium hypochlorite (4.0 mg / L as Cl 2 ) were simultaneously added to the water to be treated. Two methods, a direct addition method (Example 3) and a method in which stabilized hypobromite composition C and sodium hypochlorite are mixed in advance and then added (Comparative Example 3-1) did. In addition, a test was also performed on the addition of a single agent of the stabilized hypobromite composition C (Comparative Example 3-2), and no agent was added (Comparative Example 1-1), and a single agent of sodium hypochlorite was added (Comparative Example 1-1) This was compared with Comparative Example 1-2). Table 5 shows the results.

Figure 0006649697
Figure 0006649697

安定化次亜臭素酸組成物Cと次亜塩素酸ナトリウムとを併用して下水に直接添加する(実施例3)ことにより、安定化次亜臭素酸組成物Cまたは次亜塩素酸ナトリウムを単剤で添加した場合(比較例3−2、比較例1−2)、安定化次亜臭素酸組成物Cと次亜塩素酸ナトリウムとを事前に混合してから添加した場合(比較例3−1)よりも高い殺菌性能を示した。   The stabilized hypobromite composition C and sodium hypochlorite were used in combination and directly added to the sewage (Example 3), whereby the stabilized hypobromite composition C or sodium hypochlorite was simply added. (Comparative Example 3-2, Comparative Example 1-2), when the stabilized hypobromite composition C and sodium hypochlorite are mixed in advance and then added (Comparative Example 3- It showed higher sterilization performance than 1).

このように、塩素系酸化剤と、安定化次亜臭素酸組成物A、安定化次亜臭素酸組成物B、または安定化次亜臭素酸組成物Cとを排水にそれぞれ添加することにより、5分後で大腸菌群数3000個/mL以下となるという、短時間で大腸菌群数の低減効果が得られた。   Thus, by adding the chlorine-based oxidizing agent and the stabilized hypobromite composition A, the stabilized hypobromite composition B, or the stabilized hypobromite composition C to the wastewater, respectively, After 5 minutes, the number of coliforms became 3000 / mL or less, and the effect of reducing the number of coliforms was obtained in a short time.

Claims (5)

アンモニア性窒素を20mg/L以上含む水に、塩素系酸化剤と、安定化次亜臭素酸組成物とをそれぞれ添加する水の殺菌方法であって、
前記安定化次亜臭素酸組成物が、
臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、
スルファミン酸化合物と、
を含み、
前記塩素系酸化剤が、次亜塩素酸またはその塩であり、
前記塩素系酸化剤の全塩素換算の添加濃度(a)に対する前記安定化次亜臭素酸組成物の全塩素換算の添加濃度(b)の比(b/a)が、0.11〜9.00の範囲であることを特徴とする水の殺菌方法。
A method for disinfecting water, comprising adding a chlorine-based oxidizing agent and a stabilized hypobromite composition to water containing at least 20 mg / L of ammoniacal nitrogen,
The stabilized hypobromite composition,
A bromine-based oxidant or a reaction product of a bromine compound and a chlorine-based oxidant;
A sulfamic acid compound;
Including
The chlorine-based oxidizing agent, Ri hypochlorous acid or a salt thereof der,
The ratio (b / a) of the total chlorine equivalent addition concentration (b) of the stabilized hypobromous acid composition to the total chlorine equivalent addition concentration (a) of the chlorine-based oxidizing agent is 0.11 to 9%. sterilization method of water which is characterized the range der Rukoto of 00.
アンモニア性窒素を20mg/L以上含む水に、塩素系酸化剤と、安定化次亜臭素酸組成物とをそれぞれ添加する水の殺菌方法であって、
前記安定化次亜臭素酸組成物が、
臭素系酸化剤、または臭素化合物と塩素系酸化剤との反応物と、
スルファミン酸化合物と、
の反応生成物を含み、
前記塩素系酸化剤が、次亜塩素酸またはその塩であり、
前記塩素系酸化剤の全塩素換算の添加濃度(a)に対する前記安定化次亜臭素酸組成物の全塩素換算の添加濃度(b)の比(b/a)が、0.11〜9.00の範囲であることを特徴とする水の殺菌方法。
A method for disinfecting water, comprising adding a chlorine-based oxidizing agent and a stabilized hypobromite composition to water containing at least 20 mg / L of ammoniacal nitrogen,
The stabilized hypobromite composition,
A bromine-based oxidant or a reaction product of a bromine compound and a chlorine-based oxidant;
A sulfamic acid compound;
Containing the reaction product of
The chlorine-based oxidizing agent, Ri hypochlorous acid or a salt thereof der,
The ratio (b / a) of the total chlorine equivalent addition concentration (b) of the stabilized hypobromous acid composition to the total chlorine equivalent addition concentration (a) of the chlorine-based oxidizing agent is 0.11 to 9%. sterilization method of water which is characterized the range der Rukoto of 00.
アンモニア性窒素を20mg/L以上含む水に、塩素系酸化剤と、安定化次亜臭素酸組成物とをそれぞれ添加する水の殺菌方法であって、
前記安定化次亜臭素酸組成物が、臭素とスルファミン酸化合物との反応生成物を含み、
前記塩素系酸化剤が、次亜塩素酸またはその塩であり、
前記塩素系酸化剤の全塩素換算の添加濃度(a)に対する前記安定化次亜臭素酸組成物の全塩素換算の添加濃度(b)の比(b/a)が、0.11〜9.00の範囲であることを特徴とする水の殺菌方法。
A method for disinfecting water, comprising adding a chlorine-based oxidizing agent and a stabilized hypobromite composition to water containing at least 20 mg / L of ammoniacal nitrogen,
The stabilized hypobromite composition comprises a reaction product of bromine and a sulfamic acid compound,
The chlorine-based oxidizing agent, Ri hypochlorous acid or a salt thereof der,
The ratio (b / a) of the total chlorine equivalent addition concentration (b) of the stabilized hypobromous acid composition to the total chlorine equivalent addition concentration (a) of the chlorine-based oxidizing agent is 0.11 to 9%. sterilization method of water which is characterized the range der Rukoto of 00.
請求項1〜3のいずれか1項に記載の水の殺菌方法であって、
前記塩素系酸化剤の全塩素換算の添加濃度(a)に対する前記安定化次亜臭素酸組成物の全塩素換算の添加濃度(b)の比(b/a)が、0.11〜0.67の範囲であることを特徴とする水の殺菌方法。
A method for sterilizing water according to any one of claims 1 to 3,
The ratio (b / a) of the total chlorine equivalent addition concentration (b) of the stabilized hypobromous acid composition to the total chlorine equivalent addition concentration (a) of the chlorine-based oxidizing agent is 0.11 to 0.1. 67. A method for disinfecting water, wherein the range is 67.
請求項1〜のいずれか1項に記載の水の殺菌方法であって、
前記水に、前記安定化次亜臭素酸組成物を添加した後に、前記塩素系酸化剤を添加することを特徴とする水の殺菌方法。
A method for sterilizing water according to any one of claims 1 to 4 ,
A method for disinfecting water, comprising adding the stabilized hypobromite composition to the water and then adding the chlorine-based oxidizing agent.
JP2015097058A 2015-05-12 2015-05-12 Water sterilization method Active JP6649697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015097058A JP6649697B2 (en) 2015-05-12 2015-05-12 Water sterilization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015097058A JP6649697B2 (en) 2015-05-12 2015-05-12 Water sterilization method

Publications (2)

Publication Number Publication Date
JP2016209837A JP2016209837A (en) 2016-12-15
JP6649697B2 true JP6649697B2 (en) 2020-02-19

Family

ID=57550924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015097058A Active JP6649697B2 (en) 2015-05-12 2015-05-12 Water sterilization method

Country Status (1)

Country Link
JP (1) JP6649697B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018149253A (en) * 2017-03-13 2018-09-27 計芳 鈴木 Drainage purification system for dental treatment
JP6513151B2 (en) * 2017-08-10 2019-05-15 水ing株式会社 Method and disinfectant for disinfecting ammonia nitrogen containing wastewater
JP6490761B2 (en) * 2017-08-10 2019-03-27 水ing株式会社 Disinfection method of wastewater containing ammonia nitrogen
JP6970698B2 (en) * 2017-08-10 2021-11-24 水ing株式会社 Disinfection method for ammonia-containing nitrogen-containing wastewater
JP7250612B2 (en) * 2018-12-27 2023-04-03 オルガノ株式会社 Water-based sterilization method and water-based nitrosamine compound removal method
KR20210107627A (en) 2019-01-18 2021-09-01 쿠리타 고교 가부시키가이샤 water treatment agent

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6669904B1 (en) * 1999-03-31 2003-12-30 Ondeo Nalco Company Stabilized bromine solutions, method of making and uses thereof for biofouling control
JP2009160505A (en) * 2007-12-28 2009-07-23 Aquas Corp Method for controlling slime in water of water system
JP2012115720A (en) * 2010-11-29 2012-06-21 Hakuto Co Ltd Biocidal method of circulating water system in open type water cooling tower
JP2013198869A (en) * 2012-03-26 2013-10-03 Kurita Water Ind Ltd Method for inhibiting waterborne bacteria
JP5958076B2 (en) * 2012-05-22 2016-07-27 栗田工業株式会社 Microbial control method in water system containing reducing substances
JP6401491B2 (en) * 2013-08-28 2018-10-10 オルガノ株式会社 Method for inhibiting slime of separation membrane, slime inhibitor composition for reverse osmosis membrane or nanofiltration membrane, and method for producing slime inhibitor composition for separation membrane
JP5770891B2 (en) * 2014-06-17 2015-08-26 アクアス株式会社 Treatment method for open circulating cooling water system

Also Published As

Publication number Publication date
JP2016209837A (en) 2016-12-15

Similar Documents

Publication Publication Date Title
US11666055B2 (en) Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane
JP6649697B2 (en) Water sterilization method
JP6412639B2 (en) Ammonia nitrogen-containing wastewater treatment method and ammonia nitrogen decomposing agent
WO2016104356A1 (en) Method for controlling slime on separation membrane
JP6534524B2 (en) Filtration treatment system and filtration treatment method
JP6200243B2 (en) Method for producing water treatment composition and water treatment method
JP6145360B2 (en) Water treatment agent composition, method for producing water treatment agent composition, and water treatment method
JP6837301B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP6513424B2 (en) Method of sterilizing separation membrane
JP3685800B1 (en) Hypobromite formation in aqueous systems
JP2017214406A (en) Water treatment agent composition, method for producing water treatment agent composition and water treatment method
JP2016120486A (en) Method for inhibiting slime in separation membrane
CN107249332B (en) Water treatment agent composition, method for producing water treatment agent composition, and water treatment method
JP6548870B2 (en) Method for controlling slime in papermaking process water
JP6630563B2 (en) Water sterilization method
JPWO2017187725A1 (en) Water treatment composition and water treatment method
JP2018030061A (en) Water treatment methods using reverse osmosis membranes
JP2020131134A (en) Slime inhibition agent for separation membrane, manufacturing method of slime inhibition agent for separation membrane, and slime inhibition method of separation membrane
JP6934295B2 (en) Water treatment agent composition, water treatment method, and storage or use method of water treatment agent composition
JP2023183541A (en) Sterilization method of ion exchanger
JP2020142211A (en) Water treatment method and apparatus using reverse osmosis membrane
JP2021181074A (en) Water treatment method and wastewater treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191025

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200117

R150 Certificate of patent or registration of utility model

Ref document number: 6649697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250