JP5557423B2 - Method for producing aqueous sodium hypochlorite solution and aqueous sodium hypochlorite solution obtained by the production method - Google Patents

Method for producing aqueous sodium hypochlorite solution and aqueous sodium hypochlorite solution obtained by the production method Download PDF

Info

Publication number
JP5557423B2
JP5557423B2 JP2007339025A JP2007339025A JP5557423B2 JP 5557423 B2 JP5557423 B2 JP 5557423B2 JP 2007339025 A JP2007339025 A JP 2007339025A JP 2007339025 A JP2007339025 A JP 2007339025A JP 5557423 B2 JP5557423 B2 JP 5557423B2
Authority
JP
Japan
Prior art keywords
chlorine
wppm
sodium hypochlorite
concentration
bromine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007339025A
Other languages
Japanese (ja)
Other versions
JP2008179535A (en
Inventor
亨 赤津
正幸 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP2007339025A priority Critical patent/JP5557423B2/en
Publication of JP2008179535A publication Critical patent/JP2008179535A/en
Application granted granted Critical
Publication of JP5557423B2 publication Critical patent/JP5557423B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、次亜塩素酸ナトリウム水溶液の製造方法および該製造方法によって得られる次亜塩素酸ナトリウム水溶液に関し、詳しくは、BrO3 -の濃度を効率よく低減できる新規な次亜塩素酸ナトリウム水溶液の製造方法および該製造方法によって得られる次亜塩素酸ナトリウム水溶液に関する。 The present invention relates to a method for producing a sodium hypochlorite aqueous solution and a sodium hypochlorite aqueous solution obtained by the production method, and more specifically, a novel sodium hypochlorite aqueous solution capable of efficiently reducing the concentration of BrO 3 . The present invention relates to a production method and a sodium hypochlorite aqueous solution obtained by the production method.

次亜塩素酸ナトリウム水溶液は、漂白剤、殺菌剤、消毒水、各種酸化剤等として、浄水処理や廃水処理、病院、家庭の台所や洗濯等の幅広い分野に使用されている。飲料水等に用いられる水道水を供給する浄水場において、消毒、殺菌用として投入される次亜塩素酸ナトリウムに関し、毒性や臭気を原因とする環境調和性や化学安定性等の問題が重視されてきており、近年特にBrO3 -を低減した次亜塩素酸ナトリウム水溶液が望まれている。 Sodium hypochlorite aqueous solution is used as a bleaching agent, disinfectant, disinfecting water, various oxidizing agents, and the like in a wide range of fields such as water purification treatment, wastewater treatment, hospitals, home kitchens and laundry. In water purification plants that supply tap water used for drinking water, etc., problems such as environmental harmony and chemical stability due to toxicity and odor are emphasized with regard to sodium hypochlorite used for disinfection and sterilization. In recent years, sodium hypochlorite aqueous solutions in which BrO 3 is particularly reduced have been desired.

通常、次亜塩素酸ナトリウム水溶液は、水酸化ナトリウム水溶液と、気体塩素とを反応させることにより製造されるが、該気体塩素には気体臭素が含まれており、これが次亜塩素酸ナトリウム水溶液中に含有されるBrO3 -の主な原因となっている。 Usually, an aqueous sodium hypochlorite solution is produced by reacting an aqueous sodium hydroxide solution with gaseous chlorine. The gaseous chlorine contains gaseous bromine, which is contained in the aqueous sodium hypochlorite solution. This is the main cause of BrO 3 contained in.

前記気体塩素は通常、工業塩を電気分解することにより製造される。工業塩には塩化ナトリウム以外の種々の不純物(例えば含臭素無機化合物)が含まれているため、工業塩を電気分解して得られる気体塩素には、様々な不純物(例えば気体臭素)が含まれている。この気体塩素を、通常の精製法により精製したのちに次亜塩素酸ナトリウム水溶液の製造に用いたとしても、通常の精製法では臭素と塩素とは物理的性質が類似しているため、気体塩素から気体臭素を除去することは困難であり、得られる次亜塩素酸ナトリウム水溶液中にはBrO3 -が含有されていた。 The gaseous chlorine is usually produced by electrolyzing industrial salt. Since industrial salts contain various impurities (for example, bromine-containing inorganic compounds) other than sodium chloride, gaseous chlorine obtained by electrolyzing industrial salts contains various impurities (for example, gaseous bromine). ing. Even if this gaseous chlorine is used for the production of an aqueous sodium hypochlorite solution after being purified by the usual purification method, the physical properties of bromine and chlorine are similar in the usual purification method. It was difficult to remove gaseous bromine from the solution, and the resulting sodium hypochlorite aqueous solution contained BrO 3 .

次亜塩素酸ナトリウム水溶液中に含有されるBrO3 -の濃度を低減する方法としては、原料として用いる気体塩素の一部を液化し、残存した気体塩素と水酸化ナトリウム水溶液とを反応させる方法が検討されている(例えば、特許文献1、2参照)。前記方法は、塩素と臭素とを比較すると、臭素の方がより液体になりやすいことを利用したものである。 BrO 3 contained in an aqueous solution of sodium hypochlorite - as a method of reducing the concentration of, liquefied portion of gaseous chlorine used as a raw material, a method of reacting with the remaining gaseous chlorine and an aqueous solution of sodium hydroxide (For example, refer patent documents 1 and 2). The method utilizes the fact that bromine tends to be more liquid when chlorine and bromine are compared.

上記方法は、BrO3 -の濃度を低減することは可能であるが、該方法で得られた次亜塩素酸ナトリウム水溶液には炭酸ナトリウム(Na2CO3)が比較的多く含まれていた。次亜塩素酸ナトリウム水溶液に炭酸ナトリウムが含まれていると厳寒期には炭酸ナトリウムの水和物が析出するといった問題を生じるため、上記方法には未だ改善の余地があった。 Although the above method can reduce the concentration of BrO 3 −, the sodium hypochlorite aqueous solution obtained by the method contained a relatively large amount of sodium carbonate (Na 2 CO 3 ). If sodium carbonate is contained in the sodium hypochlorite aqueous solution, there arises a problem that sodium carbonate hydrate precipitates in the severe cold season, so there is still room for improvement in the above method.

また、上記方法は気体塩素を原料として用いるため、長期間連続的に次亜塩素酸ナトリウム水溶液を製造する際には、気体塩素の原料である工業塩の品質、工業塩の電気分解条件および液化条件を一定に保たなければ原料の気体塩素中に含有される気体臭素の含有量が変動する。原料の気体塩素に含有される気体臭素の含有量が変動すると、得られる次亜塩素酸ナトリウム水溶液中に含有されるBrO3 -の濃度が変動することで、BrO3 -の濃度の高い次亜塩素酸ナトリウム水溶液が得られるといった問題点があった。このことは、原料の気体塩素中に含まれる気体臭素の含有量を常に測定し、その含有量に応じ、製造条件を変動させることにより、解決することは可能だが、このようにすると手間とコストが上昇するという問題が生じる。 In addition, since the above method uses gaseous chlorine as a raw material, the quality of the industrial salt that is the raw material of gaseous chlorine, the electrolysis conditions and liquefaction of the industrial salt when producing a sodium hypochlorite aqueous solution continuously for a long period of time. Unless the conditions are kept constant, the content of gaseous bromine contained in the gaseous chlorine of the raw material varies. When the content of gaseous bromine contained in the gaseous chlorine of the material varies, BrO 3 contained in the sodium hypochlorite solution obtained - that the concentration of fluctuates, BrO 3 - high concentration of hypochlorite in There was a problem that a sodium chlorate aqueous solution was obtained. This can be solved by constantly measuring the content of gaseous bromine contained in the gaseous chlorine of the raw material, and changing the production conditions according to the content, but doing this will reduce labor and cost. The problem of rising.

一方、ダイオキシンを除去する目的で気体塩素の液化、それに続く少なくとも一部の気
化を行う次亜塩素酸ナトリウム水溶液の製造方法が開示されている(例えば、特許文献3参照)。しかし、ダイオキシンは融点が100〜300℃以上、常温で蒸気圧2.5×10-10Pa〜1×10-2Paの有機物であり、融点が−7.2℃で常圧における沸点が58.8℃、常温で蒸気圧3.0×104Paの無機物である臭素と比べ物理化学的性質は大きく異なることから、ダイオキシンを除去するための製造条件と、気体臭素を除去するための条件とでは当然異なる。また、特許文献3には塩素中の臭素の除去に関しては記載も示唆もない。
特開2005−314132号公報 特開2006−131478号公報 特開2004−51431号公報
On the other hand, a method for producing a sodium hypochlorite aqueous solution in which gaseous chlorine is liquefied for the purpose of removing dioxin and at least part of it is subsequently vaporized is disclosed (for example, see Patent Document 3). However, dioxin is an organic substance having a melting point of 100 to 300 ° C. or higher and a vapor pressure of 2.5 × 10 −10 Pa to 1 × 10 −2 Pa at room temperature, a melting point of −7.2 ° C. and a boiling point of 58 at normal pressure. Compared with bromine, which is an inorganic substance having a vapor pressure of 3.0 × 10 4 Pa at room temperature of 8 ° C., the physicochemical properties are significantly different. Therefore, the production conditions for removing dioxin and the conditions for removing gaseous bromine Of course it is different. Patent Document 3 neither describes nor suggests removal of bromine in chlorine.
JP-A-2005-314132 JP 2006-131478 A JP 2004-51431 A

本発明は、簡便な方法でBrO3 -の濃度が均一かつ低い次亜塩素酸ナトリウム水溶液を得ることが可能な、次亜塩素酸ナトリウム水溶液の製造方法および該製造方法によって得られた次亜塩素酸ナトリウム水溶液を提供することを目的とする。 The present invention relates to a method for producing an aqueous sodium hypochlorite solution capable of obtaining an aqueous sodium hypochlorite solution having a uniform and low BrO 3 concentration by a simple method, and hypochlorous acid obtained by the production method. An object is to provide an aqueous sodium acid solution.

本発明者らは上記課題を達成するために鋭意研究を重ね、本発明を完成させた。
すなわち本発明の次亜塩素酸ナトリウム水溶液の製造方法は、臭素を含む液体塩素(A)を、下記式(1)を満たす蒸発率で蒸発させ気体塩素を得る第1工程と、第1工程において得た気体塩素と蒸発せずに残存する液体塩素(B)とを分離する第2工程と、第2工程において分離された気体塩素と水酸化ナトリウム水溶液とを反応させ次亜塩素酸ナトリウム水溶液を得る第3工程とを有し、得られた次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度が20wppm未満であることを特徴とする。
In order to achieve the above-mentioned problems, the present inventors have made extensive studies and completed the present invention.
That is, in the method for producing a sodium hypochlorite aqueous solution of the present invention, the first step of obtaining gaseous chlorine by evaporating bromine-containing liquid chlorine (A) at an evaporation rate satisfying the following formula (1), and the first step: A second step of separating the obtained gaseous chlorine from the liquid chlorine (B) remaining without evaporation, and reacting the gaseous chlorine separated in the second step with an aqueous sodium hydroxide solution to produce an aqueous sodium hypochlorite solution. And a concentration of BrO 3 − in the obtained sodium hypochlorite aqueous solution is less than 20 wppm.

また、本発明の次亜塩素酸ナトリウム水溶液の製造方法は、臭素を含む液体塩素(A)を、下記式(1)を満たす蒸発率で蒸発させ気体塩素を得る第1工程と、第1工程において得た気体塩素と蒸発せずに残存する液体塩素(B)とを分離する第2工程と、第2工程において分離された気体塩素と水酸化ナトリウム水溶液とを反応させ次亜塩素酸ナトリウム水溶液を得る第3工程とを有し、得られた次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度が、有効塩素濃度13.0%換算で20wppm未満であることを特徴とするものであってもよい。 Moreover, the manufacturing method of the sodium hypochlorite aqueous solution of this invention is the 1st process which obtains gaseous chlorine by evaporating the liquid chlorine (A) containing a bromine with the evaporation rate which satisfy | fills following formula (1), and 1st process The second step of separating the gaseous chlorine obtained in step 1 and the liquid chlorine (B) remaining without evaporation, and reacting the gaseous chlorine separated in the second step with the aqueous sodium hydroxide solution, the aqueous sodium hypochlorite solution And the concentration of BrO 3 − in the obtained sodium hypochlorite aqueous solution is less than 20 wppm in terms of effective chlorine concentration of 13.0%, Also good.

式(1): Y<−0.03970X+99.95
(上記式(1)中、Xは液体塩素(A)に含まれる臭素の含有量(wppm)であり、Yは液体塩素(A)の蒸発率(%)である。)
前記液体塩素(A)中の臭素の含有量が80〜600wppmであることが好ましい。
Formula (1): Y <−0.03970X + 99.95
(In the above formula (1), X is the bromine content (wppm) contained in liquid chlorine (A), and Y is the evaporation rate (%) of liquid chlorine (A).)
The bromine content in the liquid chlorine (A) is preferably 80 to 600 wppm.

前記第1工程において、液体塩素(A)を圧力が100〜550kPa(ゲージ圧)、温度が−15〜30℃の条件で蒸発させることが好ましい。
前記気体塩素中の気体臭素の含有量が90wppm以下であることが好ましい。
In the first step, the liquid chlorine (A) is preferably evaporated under the conditions of a pressure of 100 to 550 kPa (gauge pressure) and a temperature of -15 to 30 ° C.
It is preferable that the content of gaseous bromine in the gaseous chlorine is 90 wppm or less.

得られた次亜塩素酸ナトリウム水溶液中のNa2CO3の濃度が0.1重量%未満であることが好ましい。
本発明には上記記載の次亜塩素酸ナトリウム水溶液の製造方法によって得られることを特徴とする次亜塩素酸ナトリウム水溶液を含む。
The concentration of Na 2 CO 3 in the obtained aqueous sodium hypochlorite solution is preferably less than 0.1% by weight.
The present invention includes an aqueous sodium hypochlorite solution obtained by the method for producing an aqueous sodium hypochlorite solution described above.

本発明の方法によれば、BrO3 -の濃度が低い次亜塩素酸ナトリウム水溶液を得ることができる。
また、本発明の方法は、原料として、液体塩素を用いることにより、従来の塩水を電気分解して得られる気体塩素を直接原料として用いる方法と比べ、電気分解の運転条件および液化条件の違いに影響されることがないため、BrO3 -の濃度を安定して低減することができる。
According to the method of the present invention, an aqueous sodium hypochlorite solution having a low BrO 3 concentration can be obtained.
In addition, the method of the present invention uses liquid chlorine as a raw material, which is different from the conventional method in which gaseous chlorine obtained by electrolyzing salt water is directly used as a raw material. Since it is not affected, the concentration of BrO 3 can be stably reduced.

本発明の方法によって得られる次亜塩素酸ナトリウム水溶液はBrO3 -の濃度が低減されているため、従来の各種用途に好適に用いることができ、飲料水等を供給する浄水場においても好ましく用いることができる。 Since the sodium hypochlorite aqueous solution obtained by the method of the present invention has a reduced BrO 3 concentration, it can be suitably used in various conventional applications, and is also preferably used in water purification plants supplying drinking water and the like. be able to.

次に本発明について具体的に説明する。
本発明の次亜塩素酸ナトリウム水溶液の製造方法は、臭素を含む液体塩素(A)を、下記式(1)を満たす蒸発率で蒸発させ気体塩素を得る第1工程と、第1工程において得た気体塩素と蒸発せずに残存する液体塩素(B)とを分離する第2工程と、第2工程において分離された気体塩素と水酸化ナトリウム水溶液とを反応させ次亜塩素酸ナトリウム水溶液を得る第3工程とを有し、得られた次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度が20wppm未満であることを特徴とする。
Next, the present invention will be specifically described.
The method for producing a sodium hypochlorite aqueous solution of the present invention is obtained in the first step and the first step of obtaining gaseous chlorine by evaporating bromine-containing liquid chlorine (A) at an evaporation rate satisfying the following formula (1). The second step of separating the gaseous chlorine and the liquid chlorine (B) remaining without evaporating is reacted with the gaseous chlorine separated in the second step and the aqueous sodium hydroxide solution to obtain a sodium hypochlorite aqueous solution. And a concentration of BrO 3 − in the obtained sodium hypochlorite aqueous solution is less than 20 wppm.

また、本発明の次亜塩素酸ナトリウム水溶液の製造方法は、臭素を含む液体塩素(A)を、下記式(1)を満たす蒸発率で蒸発させ気体塩素を得る第1工程と、第1工程において得た気体塩素と蒸発せずに残存する液体塩素(B)とを分離する第2工程と、第2工程において分離された気体塩素と水酸化ナトリウム水溶液とを反応させ次亜塩素酸ナトリウム水溶液を得る第3工程とを有し、得られた次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度が、有効塩素濃度13.0%換算で20wppm未満であることを特徴とするものを含む。 Moreover, the manufacturing method of the sodium hypochlorite aqueous solution of this invention is the 1st process which obtains gaseous chlorine by evaporating the liquid chlorine (A) containing a bromine with the evaporation rate which satisfy | fills following formula (1), and 1st process The second step of separating the gaseous chlorine obtained in step 1 and the liquid chlorine (B) remaining without evaporation, and reacting the gaseous chlorine separated in the second step with the aqueous sodium hydroxide solution, the aqueous sodium hypochlorite solution And a third step of obtaining a concentration of BrO 3 − in the obtained sodium hypochlorite aqueous solution is less than 20 wppm in terms of an effective chlorine concentration of 13.0%.

式(1): Y<−0.03970X+99.95
(上記式(1)中、Xは液体塩素(A)に含まれる臭素の含有量(wppm)であり、Yは液体塩素(A)の蒸発率(%)である。)
なお、本発明において次亜塩素酸ナトリウム水溶液をNaClOaqとも記す。また、本発明において圧力を記す際に、特に断りのない場合、該圧力はゲージ圧を示す。
Formula (1): Y <−0.03970X + 99.95
(In the above formula (1), X is the bromine content (wppm) contained in liquid chlorine (A), and Y is the evaporation rate (%) of liquid chlorine (A).)
In the present invention, the sodium hypochlorite aqueous solution is also referred to as NaClOaq. In the present invention, when a pressure is indicated, unless otherwise specified, the pressure indicates a gauge pressure.

図1に本発明の次亜塩素酸ナトリウム水溶液の製造方法の一例を概略図で示す。
本発明の製造方法においては、液体塩素(A)が気化装置1に供給され、気化装置1内で液体塩素(A)の一部が気化され、気体塩素と、液体塩素(B)とになる(第1工程)。この気体塩素は供給管を通して、反応槽2に供給され、液体塩素(B)は貯蔵槽3へ貯蔵される(第2工程)。反応槽2には水酸化ナトリウム水溶液が供給され、反応槽2内で気体塩素と水酸化ナトリウムとが反応し、BrO3 -の濃度が20wppm未満である次亜塩素酸ナトリウム水溶液を製造することができる(第3工程)。
FIG. 1 schematically shows an example of the method for producing an aqueous sodium hypochlorite solution of the present invention.
In the production method of the present invention, liquid chlorine (A) is supplied to the vaporizer 1 and a part of the liquid chlorine (A) is vaporized in the vaporizer 1 to become gaseous chlorine and liquid chlorine (B). (First step). This gaseous chlorine is supplied to the reaction tank 2 through the supply pipe, and the liquid chlorine (B) is stored in the storage tank 3 (second step). A sodium hydroxide aqueous solution is supplied to the reaction tank 2, and gaseous chlorine and sodium hydroxide react in the reaction tank 2 to produce a sodium hypochlorite aqueous solution having a BrO 3 concentration of less than 20 wppm. Yes (third step).

以下、各工程について詳述する。
〔第1工程〕
本発明に係る第1工程とは、臭素を含む液体塩素(A)を、上記式(1)を満たす蒸発率で蒸発させ気体塩素を得る工程である。
Hereinafter, each process is explained in full detail.
[First step]
The first step according to the present invention is a step of obtaining gaseous chlorine by evaporating liquid chlorine (A) containing bromine at an evaporation rate satisfying the above formula (1).

なお、第1工程において気化せずに残存する液体塩素を、液体塩素(B)と記す。
本発明に用いる液体塩素(A)は、臭素を含有している液体塩素であり、市販品の液体塩素を用いても、工業塩を電気分解して得られる気体塩素(以下、生気体塩素とも記す。)を液化したものを用いても良いが、通常は生気体塩素を液化したものを用いる。本発明に用いる液体塩素(A)としては、生気体塩素を圧力が0.3〜0.4MPa(ゲージ圧)、温度が3〜10℃の条件で液化し、数日〜数週間分の製造に用いる液体塩素を貯蔵することが可能な貯蔵槽に貯めたものを用いることが、工業的な大量生産の観点から好ましい。貯蔵槽に生気体塩素を液化し、貯蔵することにより、電気分解の条件および液化条件の変化に起因する気体塩素中の気体臭素の含有量の変化に左右されずに次亜塩素酸ナトリウム水溶液を製造することができる。
Liquid chlorine remaining without being vaporized in the first step is referred to as liquid chlorine (B).
The liquid chlorine (A) used in the present invention is a liquid chlorine containing bromine. Even if commercially available liquid chlorine is used, gaseous chlorine obtained by electrolyzing industrial salt (hereinafter also referred to as raw gaseous chlorine). However, a liquefied raw gas chlorine is usually used. As liquid chlorine (A) used in the present invention, raw gas chlorine is liquefied under conditions of a pressure of 0.3 to 0.4 MPa (gauge pressure) and a temperature of 3 to 10 ° C. to produce several days to several weeks. From the viewpoint of industrial mass production, it is preferable to use one stored in a storage tank capable of storing liquid chlorine used in the production. By liquefying and storing raw gaseous chlorine in the storage tank, the sodium hypochlorite aqueous solution can be stored regardless of changes in the content of gaseous bromine in gaseous chlorine due to changes in electrolysis conditions and liquefaction conditions. Can be manufactured.

すなわち、従来の電気分解によって得られた生気体塩素をそのまま次亜塩素酸ナトリウム水溶液の製造に用いる方法では、工業塩の品質、電気分解の条件および液化条件の変化によって、気体塩素中の気体臭素の含有量が変化し、得られる次亜塩素酸ナトリウム水溶液中の臭素の含有量が一定にならないという欠点があった。仮に気体塩素中の気体臭素の含有量を常に測定し、その濃度に併せて製造条件をコントロールすれば、次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度を一定にすることは可能となるが、手間やコストが増えるという欠点が存在した。 That is, in the method of using raw gaseous chlorine obtained by conventional electrolysis as it is for the production of an aqueous sodium hypochlorite solution, gaseous bromine in gaseous chlorine is changed depending on the quality of industrial salt, electrolysis conditions and liquefaction conditions. However, the content of bromine in the obtained sodium hypochlorite aqueous solution was not constant. If the content of gaseous bromine in gaseous chlorine is constantly measured and the production conditions are controlled in accordance with the concentration, it is possible to keep the concentration of BrO 3 − in the aqueous sodium hypochlorite solution constant. , There was a drawback of increased labor and cost.

一方、本発明の製造方法を用いれば、貯蔵槽に予め数日〜数週間分の製造に用いる液体塩素(A)を貯めておくことにより、液体塩素(A)中の臭素の含有量がほぼ一定となり、得られる次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度をほぼ一定にすることができる。 On the other hand, if the production method of the present invention is used, liquid chlorine (A) used for production for several days to several weeks is stored in advance in a storage tank, so that the content of bromine in liquid chlorine (A) is almost the same. It becomes constant and the concentration of BrO 3 − in the obtained sodium hypochlorite aqueous solution can be made almost constant.

本発明に用いる液体塩素(A)は臭素を通常は、80〜600wppm含んでおり、好ましくは100〜400wppmm含んでいる。本発明に用いる液体塩素(A)に含有される臭素の含有量は、次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度を低減するためには少ないほど好ましい。しかし、液体塩素(A)として、通常は生気体塩素を液化して用いるため、工業塩に含有される臭素化合物に由来する臭素を含んでおり、通常の精製では低減することが難しい。そのため上記範囲を下回る濃度の臭素を含んでいる液体塩素(A)を得ようとすると、生気体塩素から液体塩素(A)を得る際に、液化工程以外の別の工程が必要になる場合があり、生産性に劣る傾向がある。一方、液体塩素(A)中の臭素が上記範囲内であれば、得られる次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度を低減することができ、かつ生産性にすぐれる。 The liquid chlorine (A) used in the present invention usually contains 80 to 600 wppm, preferably 100 to 400 wppm, of bromine. The content of bromine contained in the liquid chlorine (A) used in the present invention is preferably as small as possible to reduce the concentration of BrO 3 in the sodium hypochlorite aqueous solution. However, since liquid gaseous chlorine is usually liquefied and used as liquid chlorine (A), it contains bromine derived from a bromine compound contained in industrial salt and is difficult to reduce by ordinary purification. Therefore, when obtaining liquid chlorine (A) containing bromine at a concentration lower than the above range, another step other than the liquefaction step may be required when obtaining liquid chlorine (A) from raw gaseous chlorine. There is a tendency to be inferior in productivity. On the other hand, if the bromine in the liquid chlorine (A) is within the above range, the concentration of BrO 3 − in the obtained sodium hypochlorite aqueous solution can be reduced and the productivity is excellent.

また、本発明の製造方法によると、生気体塩素を液化することなく次亜塩素酸ナトリウム水溶液を製造した場合と比べて、Na2CO3濃度が低い次亜塩素酸ナトリウム水溶液を得ることができる。この理由は、生気体塩素中には通常CO2が含まれているが、生気体
塩素を、例えば上記条件により液化することにより、CO2濃度(wppm)の低い液体
塩素(A)を得ることができるためである。つまり、生気体塩素を上記条件で液化しても、CO2はほぼ気体のままであるため、液体塩素(A)のCO2濃度(wppm)は、生気体塩素中のCO2濃度(wppm)と比べて低くすることが可能となる。
In addition, according to the production method of the present invention, an aqueous sodium hypochlorite solution having a lower Na 2 CO 3 concentration can be obtained as compared with the case of producing an aqueous sodium hypochlorite solution without liquefying the gaseous chlorine. . The reason is that the raw gaseous chlorine contains usually CO 2, the raw gaseous chlorine, for example, by liquefying the above conditions, to obtain a CO 2 concentration (wppm) low liquid chlorine (A) It is because it can do. That is, the raw gaseous chlorine and liquefying the above conditions, since CO 2 remains substantially gaseous, CO 2 concentration of the liquid chlorine (A) (wppm) is, CO 2 concentration in the raw gas in chlorine (wppm) It becomes possible to make low.

本発明の製造方法における第1工程では前述した液体塩素(A)を蒸発率が上記式(1)を満たす蒸発率で蒸発させ、気体塩素を得ることを特徴としている。
本発明者らは、臭素の含有量の異なる種々の液体塩素(A)を用いて、様々な蒸発率で次亜塩素酸ナトリウム水溶液の製造を行った結果、液体塩素(A)に含まれる臭素の含有量(wppm)と、液体塩素(A)の蒸発率(%)とが、上記式(1)の関係を満たす条件で、次亜塩素酸ナトリウム水溶液を製造することにより、次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度が20wppm未満となることを見いだした。
The first step in the production method of the present invention is characterized in that gaseous chlorine is obtained by evaporating the above-mentioned liquid chlorine (A) at an evaporation rate that satisfies the above formula (1).
As a result of producing sodium hypochlorite aqueous solutions at various evaporation rates using various liquid chlorines (A) having different bromine contents, the present inventors have found that bromine contained in liquid chlorine (A). Hypochlorous acid by producing a sodium hypochlorite aqueous solution under the condition that the content (wppm) of the liquid and the evaporation rate (%) of the liquid chlorine (A) satisfy the relationship of the above formula (1). It has been found that the concentration of BrO 3 − in the aqueous sodium solution is less than 20 wppm.

上記式(1)を満たす蒸発率で次亜塩素酸ナトリウム水溶液の製造を行うことにより、本発明の製造方法によって得られる次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度を低減することができる。本発明の製造方法においては、液体塩素(A)中に含有される臭素の含有量(wppm)が多いほど、同一の蒸発率で蒸発させた際に、得られる次亜塩素酸ナトリウム水溶液中に含有されるBrO3 -の濃度が高くなってしまうが、蒸発率の上限を上記式(1)に基づいて決定することにより、BrO3 -の濃度が低い次亜塩素酸ナトリウム水溶液を製造することができる。 By producing a sodium hypochlorite aqueous solution at an evaporation rate that satisfies the above formula (1), the concentration of BrO 3 − in the sodium hypochlorite aqueous solution obtained by the production method of the present invention can be reduced. . In the production method of the present invention, the greater the bromine content (wppm) contained in the liquid chlorine (A), the more the sodium hypochlorite aqueous solution obtained when evaporated at the same evaporation rate. Although the concentration of contained BrO 3 is increased, an aqueous sodium hypochlorite solution having a low BrO 3 concentration is produced by determining the upper limit of the evaporation rate based on the above formula (1). Can do.

ここで蒸発率とは、(気体塩素の質量/液体塩素(A)の質量)×100[%]で表される。
蒸発率は上記式(1)を満たすのであれば特に限定はないが、生産設備の運用面や原料塩素中の臭素の含有量によって最適値が異なり、通常50〜90%であり、好ましくは70〜85%である。本発明において蒸発率が高いほど次亜塩素酸ナトリウム水溶液の生産性がよく、蒸発率が低いほど得られる次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度を低減することができる。蒸発率が上記範囲内であれば、得られる次亜塩素酸ナトリウム水溶液の生産性と、次亜塩素酸ナトリウム水溶液中に含有されるBrO3 -の濃度とのバランスに優れている。
Here, the evaporation rate is represented by (mass of gaseous chlorine / mass of liquid chlorine (A)) × 100 [%].
The evaporation rate is not particularly limited as long as the above formula (1) is satisfied, but the optimum value varies depending on the operational aspect of the production facility and the bromine content in the raw material chlorine, and is usually 50 to 90%, preferably 70. ~ 85%. In the present invention, the higher the evaporation rate, the better the productivity of the aqueous sodium hypochlorite solution, and the lower the evaporation rate, the lower the concentration of BrO 3 − in the obtained aqueous sodium hypochlorite solution. When the evaporation rate is within the above range, the balance between the productivity of the obtained sodium hypochlorite aqueous solution and the concentration of BrO 3 contained in the sodium hypochlorite aqueous solution is excellent.

例えば、液体塩素(A)中の臭素濃度が80〜95wppmである場合には蒸発率96%以下、好ましくは50〜96%、液体塩素(A)中の臭素濃度が95wppmを超えて105wppm以下である場合には、蒸発率95%以下、好ましくは50〜95%、液体塩素(A)中の臭素濃度が105wppmを超えて203wppm以下である場合には、蒸発率91%以下、好ましくは50〜91%、液体塩素(A)中の臭素濃度が203wppmを超えて395wppm以下である場合には、蒸発率84%以下、好ましくは50〜84%、液体塩素(A)中の臭素濃度が395wppmを超えて600wppm以下である場合には、蒸発率76%以下、好ましくは50〜76%であることが好ましい。   For example, when the bromine concentration in the liquid chlorine (A) is 80 to 95 wppm, the evaporation rate is 96% or less, preferably 50 to 96%, and the bromine concentration in the liquid chlorine (A) exceeds 95 wppm and is 105 wppm or less. In some cases, the evaporation rate is 95% or less, preferably 50 to 95%. When the bromine concentration in the liquid chlorine (A) is more than 105 wppm and 203 wppm or less, the evaporation rate is 91% or less, preferably 50 to 95%. When the bromine concentration in 91% and liquid chlorine (A) exceeds 203 wppm and is 395 wppm or less, the evaporation rate is 84% or less, preferably 50 to 84%, and the bromine concentration in liquid chlorine (A) is 395 wppm. When it exceeds 600 wppm, the evaporation rate is 76% or less, preferably 50 to 76%.

なお、本発明において、液体塩素(A)中の臭素の含有量(wppm)は、液体状態で測定することが困難であるため、例えば気化を行い、水酸化ナトリウム水溶液中に吸収させて次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度として測定することが好ましい。 In the present invention, the bromine content (wppm) in the liquid chlorine (A) is difficult to measure in the liquid state. For example, the bromine is vaporized and absorbed in an aqueous sodium hydroxide solution. It is preferably measured as the concentration of BrO 3 − in the aqueous sodium chlorate solution.

本発明においては、蒸発率の下限値としては、特に限定が無く、蒸発率が低いほど、得られる次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度を低減することができる。一方、蒸発率が低いほど、同量の気体塩素を得るためには、多量の液体塩素(A)を供給することが必要になる。よって、蒸発率の下限については、適正な設備効率の観点と、得られる次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度とを考慮し、決定することが好ましい。 In the present invention, the lower limit of the evaporation rate is not particularly limited, and the lower the evaporation rate, the lower the concentration of BrO 3 − in the obtained sodium hypochlorite aqueous solution. On the other hand, the lower the evaporation rate, the more liquid chlorine (A) needs to be supplied in order to obtain the same amount of gaseous chlorine. Therefore, the lower limit of the evaporation rate is preferably determined in consideration of appropriate equipment efficiency and the concentration of BrO 3 − in the obtained sodium hypochlorite aqueous solution.

即ち液体塩素供給量が一定の場合、蒸発率が低くなるほど生産性が低下し、生産性の低下を避けるためには、液体塩素供給量を増やし、反応に供する気体塩素量を確保する必要がある。これでは次亜塩素酸ナトリウム水溶液の製造設備が過大となるため、蒸発率の下限値を設備規模に合わせて決定することが好ましい。   That is, when the supply amount of liquid chlorine is constant, the lower the evaporation rate, the lower the productivity, and in order to avoid the decrease in productivity, it is necessary to increase the supply amount of liquid chlorine and secure the amount of gaseous chlorine to be used for the reaction. . In this case, the production facility for the sodium hypochlorite aqueous solution becomes excessive, and therefore it is preferable to determine the lower limit value of the evaporation rate according to the facility scale.

液体塩素(A)中の臭素の含有量が100〜600wppmの範囲において、式(1)で得られた次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度が20wppm未満である蒸発率75%時の液体塩素供給量を基準とした場合、当該蒸発率において反応に供する気体塩素量が同一になるための液体塩素供給量と蒸発率75%時の液体塩素供給量との比が概ね20倍以下、好ましくは15倍以下となることを設備上の指標とすることができる。 When the bromine content in the liquid chlorine (A) is in the range of 100 to 600 wppm, the concentration of BrO 3 in the sodium hypochlorite aqueous solution obtained by the formula (1) is less than 20 wppm at an evaporation rate of 75%. When the amount of liquid chlorine supplied is used as a reference, the ratio of the amount of liquid chlorine supplied for the same amount of gaseous chlorine for reaction at the evaporation rate and the amount of liquid chlorine supplied when the evaporation rate is 75% is approximately 20 times or less. In addition, it can be used as an indicator on equipment that it is preferably 15 times or less.

なお、液体塩素(A)を上記式(1)を満たす蒸発率で蒸発させる際の条件は通常、圧力が100〜550kPa、温度が−15〜30℃であり、冷媒設備を設けることが可能ならば圧力が100〜230kPa、温度が−15〜−2℃でも運用可能である。   The conditions for evaporating the liquid chlorine (A) at an evaporation rate satisfying the above formula (1) are usually a pressure of 100 to 550 kPa, a temperature of -15 to 30 ° C., and a refrigerant facility can be provided. If the pressure is 100 to 230 kPa and the temperature is -15 to -2 ° C, the operation is possible.

本発明の次亜塩素酸ナトリウム水溶液の製造方法においては、第1工程により得られる気体塩素は液体塩素(A)と比べて、高沸点成分(wppm)の含有量を低減することができる。   In the method for producing an aqueous sodium hypochlorite solution of the present invention, the gaseous chlorine obtained in the first step can reduce the content of high boiling point components (wppm) as compared with liquid chlorine (A).

すなわち上記蒸発させる際の条件では、液体の塩素の一部は気化するが、高沸点成分は必ずしも気化しないため、気体塩素に含まれる高沸点成分は、液体塩素(A)に含まれる高沸点成分と比べて低減することができる。なお、高沸点成分としては、含塩素無機化合物、含塩素有機化合物等が挙げられる。   That is, in the above evaporation conditions, a part of liquid chlorine is vaporized, but a high boiling point component is not necessarily vaporized. Therefore, a high boiling point component contained in gaseous chlorine is a high boiling point component contained in liquid chlorine (A). Can be reduced. Examples of the high boiling point component include chlorine-containing inorganic compounds and chlorine-containing organic compounds.

第1工程により、高沸点成分の含有量の少ない気体塩素を得ることができるため、本発明の製造方法により得られる次亜塩素酸ナトリウム水溶液中に含まれる高沸点成分量を、従来の製造方法で得られた次亜塩素酸ナトリウム水溶液と比べて低減することができる。   In the first step, gaseous chlorine with a low content of high-boiling components can be obtained, so the amount of high-boiling components contained in the aqueous sodium hypochlorite solution obtained by the production method of the present invention is changed to the conventional production method. It can reduce compared with the sodium hypochlorite aqueous solution obtained by this.

〔第2工程〕
本発明に係る第2工程とは、第1工程において得られた気体塩素と蒸発せずに残存する液体塩素(B)とを分離する工程である。
[Second step]
The second step according to the present invention is a step of separating gaseous chlorine obtained in the first step from liquid chlorine (B) remaining without being evaporated.

気体塩素と液体塩素(B)との分離は通常、気体塩素を配管を通して、反応槽に導入し、液体塩素(B)を液体塩素貯蔵槽等へ移動させることにより行われる。第1工程において液体塩素(A)に含まれていた臭素の大半は液体塩素(B)に残存するため、気体塩素中の気体臭素の含有量を低減することができる。上記第1工程によって得た気体塩素中の気体臭素の含有量は通常、90wppm以下であり、好ましくは50wppm以下、より好ましくは25wppm以下である。本発明において、気体塩素中に含有される気体臭素は少ないほど、得られる次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度が低くなるため好ましく、気体塩素中に含有される気体臭素の下限としては特に限定はない。 Separation of gaseous chlorine and liquid chlorine (B) is usually performed by introducing gaseous chlorine into a reaction tank through a pipe and moving liquid chlorine (B) to a liquid chlorine storage tank or the like. Since most of bromine contained in liquid chlorine (A) in the first step remains in liquid chlorine (B), the content of gaseous bromine in gaseous chlorine can be reduced. The content of gaseous bromine in the gaseous chlorine obtained by the first step is usually 90 wppm or less, preferably 50 wppm or less, more preferably 25 wppm or less. In the present invention, the smaller the amount of gaseous bromine contained in gaseous chlorine, the lower the concentration of BrO 3 − in the resulting sodium hypochlorite aqueous solution, which is preferable, and as the lower limit of gaseous bromine contained in gaseous chlorine. There is no particular limitation.

なお、気体塩素中に含有される気体臭素の含有量は、気体塩素をサンプリングし、気体臭素の含有量を測定してもよいが、本発明の製造方法により製造される次亜塩素酸ナトリウム水溶液中に含まれる臭素酸の含有量と、有効塩素濃度とから換算値として求めることもできる。前記換算値は、下記式(2)を用いて算出することができる。   The content of gaseous bromine contained in gaseous chlorine may be measured by sampling gaseous chlorine and measuring the gaseous bromine content, but the sodium hypochlorite aqueous solution produced by the production method of the present invention It can also be determined as a converted value from the content of bromic acid contained therein and the effective chlorine concentration. The converted value can be calculated using the following formula (2).

Figure 0005557423
Figure 0005557423

なおBr2の分子量は159.818、BrO3 -の分子量は127.910として算出
した。
〔第3工程〕
本発明に係る第3工程とは、分離した気体塩素と水酸化ナトリウム水溶液とを反応させ次亜塩素酸ナトリウム水溶液を得る工程である。
The molecular weight of Br 2 was calculated as 159.818, and the molecular weight of BrO 3 was calculated as 127.910.
[Third step]
The third step according to the present invention is a step of obtaining a sodium hypochlorite aqueous solution by reacting the separated gaseous chlorine with a sodium hydroxide aqueous solution.

本発明に用いる水酸化ナトリウム水溶液としては、通常は、電気分解で得られた濃度15〜50質量%のものを使用し、適宜水で希釈して濃度調整をしたものを使用することもできる。   As the sodium hydroxide aqueous solution used in the present invention, one having a concentration of 15 to 50% by mass obtained by electrolysis is usually used, and one having a concentration adjusted by appropriately diluting with water can also be used.

気体塩素と水酸化ナトリウム水溶液とを反応させるには、通常は大気圧下で、温度25〜30℃に保持した水酸化ナトリウム水溶液中へ気体塩素を導入する方法が挙げられる。
本発明の次亜塩素酸ナトリウム水溶液の製造方法によって得られた次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度が20wppm未満であり、好ましくは10wppm以下であり、特に好ましくは5wppm以下である。BrO3 -の濃度の下限としては特に限定はない。
In order to react gaseous chlorine with an aqueous sodium hydroxide solution, a method of introducing gaseous chlorine into an aqueous sodium hydroxide solution maintained at a temperature of 25 to 30 ° C. under atmospheric pressure is usually mentioned.
The concentration of BrO 3 − in the aqueous sodium hypochlorite solution obtained by the method for producing an aqueous sodium hypochlorite solution of the present invention is less than 20 wppm, preferably 10 wppm or less, particularly preferably 5 wppm or less. There is no particular limitation on the lower limit of the BrO 3 concentration.

なお、本発明において上記次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度は日本水道協会規格JWWA Z 109:2005に準拠してイオンクロマトグラフィー分析装置により測定される。詳しくは、濃度既知の臭素酸カリウム水溶液を複数調整し、該水溶液のBrO3 -の含有量をイオンクロマトグラフィー分析装置で測定し、検量線を作成する方法が挙げられる。 In the present invention, the concentration of BrO 3 in the sodium hypochlorite aqueous solution is measured by an ion chromatography analyzer in accordance with Japan Water Works Association Standard JWWA Z 109: 2005. Specifically, a method of preparing a calibration curve by preparing a plurality of potassium bromate aqueous solutions having known concentrations, measuring the BrO 3 content of the aqueous solution with an ion chromatography analyzer, and the like.

なお上記方法により行った、後述の実施例におけるBrO3 -の濃度分析の検出限界が5wppmであるため、それより低いBrO3 -の濃度は測定できていないが、後述の実施例においては、その液体塩素中の臭素の含有量や液化率等の条件を調節することで、次亜塩素酸ナトリウム水溶液中に含有されるBrO3 -の含有量が5wppm未満となることを確認している。 In addition, since the detection limit of the BrO 3 concentration analysis in the examples described later performed by the above method is 5 wppm, a lower BrO 3 concentration cannot be measured, but in the examples described later, It has been confirmed that the content of BrO 3 contained in the sodium hypochlorite aqueous solution is less than 5 wppm by adjusting conditions such as bromine content and liquefaction rate in liquid chlorine.

本発明の次亜塩素酸ナトリウム水溶液の製造方法によって得られた次亜塩素酸ナトリウム水溶液中の有効塩素濃度は通常10〜14%であり、上述のように次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度が20wppm未満である。 The effective chlorine concentration in the aqueous sodium hypochlorite solution obtained by the method for producing an aqueous sodium hypochlorite solution of the present invention is usually 10 to 14%, and as described above, the BrO 3 in the aqueous sodium hypochlorite solution. - concentration of less than 20wppm.

しかし、上述の水酸化ナトリウム水溶液として、上記範囲よりも高濃度の水酸化ナトリウム水溶液を用いた場合等には、有効塩素濃度が上記範囲を上回る次亜塩素酸ナトリウム水溶液が得られる場合がある。この場合には、次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度が20wppm以上となることがある。このような場合であっても、次亜塩素酸ナトリウム水溶液の有効塩素濃度を13.0%と換算した際のBrO3 -の濃度が20wppm未満であれば、BrO3 -の濃度が低減された次亜塩素酸ナトリウム水溶液として用いることができる。 However, when a sodium hydroxide aqueous solution having a concentration higher than the above range is used as the above-described sodium hydroxide aqueous solution, a sodium hypochlorite aqueous solution having an effective chlorine concentration exceeding the above range may be obtained. In this case, the concentration of BrO 3 − in the aqueous sodium hypochlorite solution may be 20 wppm or more. Even in such a case, the concentration of BrO 3 was reduced if the concentration of BrO 3 when the effective chlorine concentration of the sodium hypochlorite aqueous solution was converted to 13.0% was less than 20 wppm. It can be used as a sodium hypochlorite aqueous solution.

次亜塩素酸ナトリウム水溶液の有効塩素濃度を13.0%と換算した際のBrO3 -濃度は、次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度を上述の日本水道協会規格JWWAZ 109:2005に準拠して測定したのちに、下記式(3)に従って算出することにより求められる。 At the time of the effective chlorine concentration of aqueous solution of sodium hypochlorite in terms with 13.0% BrO 3 - concentration, BrO in sodium hypochlorite solution 3 - concentration of the above-mentioned Japanese Water Works Association Standards JWWAZ 109: 2005 After measuring according to the above, it is obtained by calculating according to the following formula (3).

Figure 0005557423
Figure 0005557423

なお、本発明において、次亜塩素酸ナトリウム水溶液の有効塩素濃度は、日本水道協会規格JWWA K 120:2005に基づいて測定することができる。
また、本発明の製造方法によって得られる次亜塩素酸ナトリウム水溶液中の炭酸ナトリウム(Na2CO3)の濃度は、通常0.1重量%未満である。Na2CO3の濃度が1重量%を超えると、厳寒期に炭酸ナトリウムの水和物が析出するといった問題が生じるためNa2CO3の濃度は1重量%未満であることが望まれる。本発明の製造方法によって得られる次亜塩素酸ナトリウム水溶液は、Na2CO3の濃度が通常0.1重量%未満であるため、炭酸ナトリウムの水和物が析出する恐れがないため好ましい。
In the present invention, the effective chlorine concentration of the sodium hypochlorite aqueous solution can be measured based on Japan Water Works Association Standard JWWA K 120: 2005.
Further, the concentration of sodium carbonate (Na 2 CO 3 ) in the sodium hypochlorite aqueous solution obtained by the production method of the present invention is usually less than 0.1% by weight. When the concentration of Na 2 CO 3 exceeds 1% by weight, there arises a problem that sodium carbonate hydrate precipitates in the severe cold season. Therefore, the concentration of Na 2 CO 3 is preferably less than 1% by weight. The sodium hypochlorite aqueous solution obtained by the production method of the present invention is preferable because the concentration of Na 2 CO 3 is usually less than 0.1% by weight, and there is no fear of precipitation of sodium carbonate hydrate.

また次亜塩素酸ナトリウム水溶液に含まれるNa2CO3の濃度を低くすることにより、原料として用いる水酸化ナトリウムの使用量を低減することができるため、生産性の観点からもNa2CO3の濃度は低い程好ましく、0.1重量%未満であることが特に好ましい。 In addition, since the amount of sodium hydroxide used as a raw material can be reduced by lowering the concentration of Na 2 CO 3 contained in the sodium hypochlorite aqueous solution, Na 2 CO 3 The concentration is preferably as low as possible, and particularly preferably less than 0.1% by weight.

本発明の製造方法によって得られる次亜塩素酸ナトリウム水溶液中のNa2CO3の濃度が、従来の製造方法によって得られる次亜塩素酸ナトリウム水溶液中のNa2CO3の濃度と比べ低い理由としては、上述のように、原料として液体塩素(A)を用いるためである。 The concentration of Na 2 CO 3 of hypochlorite in aqueous sodium produced by the process of the present invention, as low why compared to the concentration of Na 2 CO 3 in aqueous sodium hypochlorite solution obtained by a conventional manufacturing method This is because liquid chlorine (A) is used as a raw material as described above.

なお、後述のNa2CO3の濃度の分析における検出限界が0.1重量%であるため、それよりも低いNa2CO3の濃度の測定はできていないが、本発明においては、0.1重量%未満であれば、生産性に優れると判断できる。 In addition, since the detection limit in the analysis of the concentration of Na 2 CO 3 described later is 0.1% by weight, the concentration of Na 2 CO 3 lower than that cannot be measured. If it is less than 1 weight%, it can be judged that it is excellent in productivity.

なお、Na2CO3の濃度は次亜塩素酸ナトリウム水溶液に過酸化水素水を加えて有効塩素分を分解後、フェノールフタレイン溶液を指示薬として塩酸溶液で中和滴定した液に、メチルオレンジ溶液を指示薬として塩酸で滴定し、メチルオレンジ溶液を指示薬として滴定に要した塩酸溶液量を用いて炭酸ナトリウム濃度を算出する方法が挙げられる。 The concentration of Na 2 CO 3 is determined by adding hydrogen peroxide to sodium hypochlorite aqueous solution to decompose effective chlorine, and then neutralizing and titrating with hydrochloric acid solution using phenolphthalein solution as an indicator. Can be titrated with hydrochloric acid as an indicator, and a sodium carbonate concentration can be calculated using the amount of hydrochloric acid solution required for titration with a methyl orange solution as an indicator.

上記製造方法で得られた次亜塩素酸ナトリウム水溶液は、BrO3 -の濃度が低く、またNa2CO3の濃度も低くすることが可能であるため、浄水場における、消毒、殺菌用等の様々な分野に用いることができる。 Since the sodium hypochlorite aqueous solution obtained by the above production method has a low BrO 3 concentration and a low Na 2 CO 3 concentration, it can be used for disinfection and sterilization in water purification plants. It can be used in various fields.

〔実施例〕
次の本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
〔Example〕
The following present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

〔分析方法〕
(I)イオンクロマトグラフィー分析装置によるBrO3 -の測定
BrO3 -の含有量は日本水道協会規格JWWA Z 109:2005に準拠してイオンクロマトグラフィー分析装置による測定を行った。
[Analysis method]
(I) Measurement of BrO 3 by ion chromatography analyzer The content of BrO 3 was measured by an ion chromatography analyzer in accordance with Japan Water Works Association Standard JWWA Z 109: 2005.

(II)酸化還元滴定による有効塩素濃度の測定
次亜塩素酸ナトリウム水溶液の有効塩素濃度は、日本水道協会規格JWWA K 120:2005に基づいて測定した。
(II) Measurement of effective chlorine concentration by oxidation-reduction titration The effective chlorine concentration of the sodium hypochlorite aqueous solution was measured based on Japan Water Works Association Standard JWWA K 120: 2005.

すなわち、次亜塩素酸ナトリウム水溶液によう化カリウムを加えて酢酸酸性にて、よう素を遊離させ、でんぷん溶液を指示薬としてチオ硫酸ナトリウム溶液で滴定し、滴定に要したチオ硫酸ナトリウム溶液量を用いて有効塩素濃度を算出した。   That is, potassium iodide was added to an aqueous sodium hypochlorite solution to release iodine by acetic acid acidity, titrated with sodium thiosulfate solution using starch solution as an indicator, and the amount of sodium thiosulfate solution required for titration was used. The effective chlorine concentration was calculated.

(III)中和滴定による炭酸ナトリウム濃度の測定
次亜塩素酸ナトリウム水溶液に過酸化水素水を加えて有効塩素分を分解後、フェノールフタレイン溶液を指示薬として塩酸溶液で中和滴定した液に、メチルオレンジ溶液を指示
薬として塩酸で滴定した。メチルオレンジ溶液を指示薬として滴定に要した塩酸溶液量を用いて炭酸ナトリウム濃度を算出した
(III) Measurement of sodium carbonate concentration by neutralization titration After adding hydrogen peroxide to sodium hypochlorite aqueous solution and decomposing effective chlorine, the solution was neutralized and titrated with hydrochloric acid solution using phenolphthalein solution as an indicator. The methyl orange solution was titrated with hydrochloric acid as an indicator. The sodium carbonate concentration was calculated using the amount of hydrochloric acid solution required for titration using methyl orange solution as an indicator .

[参考例1]
臭素を105wppm含む液体塩素1000kgを温度が25℃、圧力が400kPa、蒸発率が8%の条件で気化させ、装置の上部の供給管から分岐した配管により気体塩素を採集した。
[Reference Example 1]
1000 kg of liquid chlorine containing 105 wppm bromine was vaporized under conditions of a temperature of 25 ° C., a pressure of 400 kPa, and an evaporation rate of 8%, and gaseous chlorine was collected by a pipe branched from a supply pipe at the top of the apparatus.

水酸化ナトリウム20%水溶液1,225gを反応容器に満たし、反応熱で温度が上昇しないように水溶液温度を27℃に保ちつつ前記気体塩素を温度24℃、流量1.59L/分で35分間反応容器へ導入し、水酸化ナトリウム水溶液と反応させて次亜塩素酸ナトリウム水溶液を得た。   Filling the reaction vessel with 1,225 g of 20% aqueous solution of sodium hydroxide and reacting the gaseous chlorine for 35 minutes at a temperature of 24 ° C. and a flow rate of 1.59 L / min while keeping the temperature of the aqueous solution at 27 ° C. It was introduced into a container and reacted with an aqueous sodium hydroxide solution to obtain an aqueous sodium hypochlorite solution.

得られた次亜塩素酸ナトリウム水溶液1,387gは酸化還元滴定法による分析で有効塩素濃度11.7%、イオンクロマトグラフ法による分析でBrO3 -の濃度は5wppm未満(検出限界以下)、中和滴定による分析で炭酸ナトリウム濃度は0.1%未満(検出限界以下)であった。 1,387 g of the obtained sodium hypochlorite aqueous solution has an effective chlorine concentration of 11.7% as analyzed by the oxidation-reduction titration method, and a concentration of BrO 3 of less than 5 wppm (below the detection limit) as determined by the ion chromatography method. The sodium carbonate concentration was less than 0.1% (below the detection limit) by analysis by Japanese titration.

液体塩素(A)中に含まれる臭素の量、蒸発率、次亜塩素酸ナトリウム水溶液中に含有されるBrO3 -の濃度、有効塩素濃度、有効塩素濃度13.0%換算のBrO3 -の濃度、BrO3 -の濃度から換算した気体塩素中の気体臭素の量、Na2CO3の濃度、有効塩素濃度を表1に示す The amount of bromine contained in liquid chlorine (A), the evaporation rate, the concentration of BrO 3 contained in the sodium hypochlorite aqueous solution, the effective chlorine concentration, the BrO 3 in terms of the effective chlorine concentration of 13.0% Table 1 shows the concentration, the amount of gaseous bromine in gaseous chlorine converted from the concentration of BrO 3 −, the concentration of Na 2 CO 3 , and the effective chlorine concentration .

[実施例2]
参考例1と同様の液体塩素を用い、蒸発率を51%とした以外は参考例1と同様に行った。
結果を表1に示す
[Example 2]
Using the same liquid chlorine in Reference Example 1, was carried out in the same manner as in Reference Example 1 except that the evaporation rate and 51%.
The results are shown in Table 1 .

[実施例3]
冷媒設備を設け、蒸発は温度が−5℃、圧力が200kPa、蒸発率を80%とした以外は参考例1と同様に行った。結果を表1に示す
[Example 3]
A refrigerant facility was provided, and evaporation was performed in the same manner as in Reference Example 1 except that the temperature was −5 ° C., the pressure was 200 kPa, and the evaporation rate was 80%. The results are shown in Table 1 .

[実施例4]
参考例1と同様の液体塩素を用い、蒸発率を90%とした以外は参考例1と同様に行った。
結果を表1に示す
[Example 4]
Using the same liquid chlorine in Reference Example 1, the evaporation rate except for using 90% was carried out in the same manner as in Reference Example 1.
The results are shown in Table 1 .

[実施例5]
臭素を83wppm含む液体塩素1000kgを用い、蒸発率を96%とした以外は参考例1と同様に行った。結果を表1に示す
[Example 5]
The same procedure as in Reference Example 1 was performed except that 1000 kg of liquid chlorine containing 83 wppm of bromine was used and the evaporation rate was 96%. The results are shown in Table 1 .

[実施例6]
臭素を203wppm含む液体塩素1000kgを用い、蒸発率を85%とした以外は参考例1と同様に行った。結果を表1に示す
[Example 6]
The same procedure as in Reference Example 1 was performed except that 1000 kg of liquid chlorine containing 203 wppm of bromine was used and the evaporation rate was 85%. The results are shown in Table 1 .

[実施例7]
臭素を395wppm含む液体塩素1000kgを用い、蒸発率を75%とした以外は参考例1と同様に行った。結果を表1に示す
[Example 7]
The same procedure as in Reference Example 1 was conducted except that 1000 kg of liquid chlorine containing 395 wppm bromine was used and the evaporation rate was 75%. The results are shown in Table 1 .

[参考例8]
臭素を395wppm含む液体塩素1000kgを用い、蒸発率を85%とした以外は参考例1と同様に行った。結果を表1に示す
[Reference Example 8]
The same procedure as in Reference Example 1 was conducted except that 1000 kg of liquid chlorine containing 395 wppm bromine was used and the evaporation rate was 85%. The results are shown in Table 1 .

[実施例9]
臭素を590wppm含む液体塩素1000kgを用い、冷媒設備を設け、蒸発は温度が−5℃、圧力が200kPa、蒸発率を51%とした以外は参考例1と同様に行った。結果を表1に示す
[Example 9]
1000 kg of liquid chlorine containing 590 wppm of bromine was used, a refrigerant facility was provided, and evaporation was performed in the same manner as in Reference Example 1 except that the temperature was −5 ° C., the pressure was 200 kPa, and the evaporation rate was 51%. The results are shown in Table 1 .

[実施例10]
臭素を590wppm含む液体塩素1000kgを用い、蒸発率を75%とした以外は参考例1と同様に行った。結果を表1に示す
[Example 10]
The same procedure as in Reference Example 1 was performed except that 1000 kg of liquid chlorine containing 590 wppm of bromine was used and the evaporation rate was 75%. The results are shown in Table 1 .

参考例11]
臭素を83wppm含む液体塩素1000kgを用い、蒸発率を3%とした以外は参考例1と同様に行った。結果を表1に示す。
〔比較例1〕
参考例1と同様の液体塩素を用い、蒸発率を96%とした以外は参考例1と同様に行った。
[ Reference Example 11]
The same procedure as in Reference Example 1 was performed except that 1000 kg of liquid chlorine containing 83 wppm of bromine was used and the evaporation rate was 3%. The results are shown in Table 1.
[Comparative Example 1]
Using the same liquid chlorine in Reference Example 1, the evaporation rate except for using 96% was carried out in the same manner as in Reference Example 1.

結果を表1に示す。
〔比較例2〕
臭素を395wppm含む液体塩素1000kgを用い、蒸発率を90%とした以外は参考例1と同様に行った。結果を表1に示す。
The results are shown in Table 1.
[Comparative Example 2]
The same procedure as in Reference Example 1 was conducted except that 1000 kg of liquid chlorine containing 395 wppm bromine was used and the evaporation rate was 90%. The results are shown in Table 1.

〔比較例3〕
臭素を590wppm含む液体塩素1000kgを用い、蒸発率を85%とした以外は参考例1と同様に行った。結果を表1に示す。
[比較例4]
液体塩素(A)に変えて、臭素を83wppm含む生気体塩素を用い、該生気体塩素を温度が3℃、圧力が300kPa、液化率が99.4%の条件で連続的に液化させ、残存した気体塩素を水酸化ナトリウム水溶液と反応させた以外は参考例1と同様に行った。結果を表1に示す。
なお、液化率が99.4%とは、生気体塩素100重量%あたり、99.4重量%を液化し、0.6重量%が気体塩素として残存することを意味する。
[Comparative Example 3]
The same procedure as in Reference Example 1 was performed except that 1000 kg of liquid chlorine containing 590 wppm of bromine was used and the evaporation rate was 85%. The results are shown in Table 1.
[Comparative Example 4]
Instead of liquid chlorine (A), raw gaseous chlorine containing 83 wppm bromine is used, and the raw gaseous chlorine is continuously liquefied under conditions of a temperature of 3 ° C., a pressure of 300 kPa, and a liquefaction rate of 99.4%. The same procedure as in Reference Example 1 was conducted except that the gaseous chlorine was reacted with an aqueous sodium hydroxide solution. The results are shown in Table 1.
The liquefaction rate of 99.4% means that 99.4% by weight is liquefied and 100% by weight remains as gaseous chlorine per 100% by weight of raw gaseous chlorine.

Figure 0005557423
Figure 0005557423

本発明の次亜塩素酸ナトリウム水溶液の製造方法の実施態様を示す概念図である。It is a conceptual diagram which shows the embodiment of the manufacturing method of the sodium hypochlorite aqueous solution of this invention.

1・・・気化装置
2・・・反応槽
3・・・液体塩素貯蔵槽
(A) Cl2[L]・・・液体塩素(A)
Cl2[G]・・・気体塩素
(B) Cl2[L]・・・液体塩素(B)
NaOHaq・・・水酸化ナトリウム水溶液
NaClOaq・・・次亜塩素酸ナトリウム水溶液
1 ... vaporizer 2 ... reaction vessel 3 ... liquid chlorine storage tank (A) Cl 2 [L] ... Liquid chlorine (A)
Cl 2 [G] ... gaseous chlorine (B) Cl 2 [L] ... liquid chlorine (B)
NaOHaq ... Sodium hydroxide aqueous solution NaClOaq ... Sodium hypochlorite aqueous solution

Claims (6)

臭素の含有量が80〜600wppmである、臭素を含む液体塩素(A)を、下記蒸発率で蒸発させ気体塩素を得る第1工程と、
第1工程において得た気体塩素と蒸発せずに残存する液体塩素(B)とを分離する第2工程と、
第2工程において分離された気体塩素と水酸化ナトリウム水溶液とを反応させ次亜塩素酸ナトリウム水溶液を得る第3工程とを有し、
得られた次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度が20wppm未満であることを特徴とする次亜塩素酸ナトリウム水溶液の製造方法。
蒸発率(気体塩素の質量/液体塩素(A)の質量)×100[%]):
液体塩素(A)中の臭素濃度が80〜95wppmである場合には、50〜96%、
液体塩素(A)中の臭素濃度が95wppmを超えて105wppm以下である場合には、50〜95%
液体塩素(A)中の臭素濃度が105wppmを超えて203wppm以下である場合には、50〜91%
液体塩素(A)中の臭素濃度が203wppmを超えて395wppm以下である場合には、50〜84%
液体塩素(A)中の臭素濃度が395wppmを超えて600wppm以下である場合には、50〜76%
Bromine content is 80~600Wppm, the liquid chlorine (A) containing bromine, a first step of obtaining a gaseous chlorine is evaporated under Ki蒸 Hatsuritsu,
A second step of separating the gaseous chlorine obtained in the first step and the liquid chlorine (B) remaining without evaporation;
A third step of reacting the gaseous chlorine separated in the second step with a sodium hydroxide aqueous solution to obtain a sodium hypochlorite aqueous solution,
A method for producing an aqueous sodium hypochlorite solution, wherein the concentration of BrO 3 − in the obtained aqueous sodium hypochlorite solution is less than 20 wppm.
Evaporation rate (mass of gaseous chlorine / mass of liquid chlorine (A)) × 100 [%]):
When the bromine concentration in the liquid chlorine (A) is 80 to 95 wppm, 50 to 96%,
When the bromine concentration in liquid chlorine (A) is more than 95 wppm and not more than 105 wppm, 50 to 95%
When the bromine concentration in the liquid chlorine (A) exceeds 105 wppm and is 203 wppm or less, 50 to 91%
When the bromine concentration in liquid chlorine (A) is more than 203 wppm and not more than 395 wppm, 50 to 84%
When the bromine concentration in the liquid chlorine (A) is more than 395 wppm and 600 wppm or less, 50 to 76%
臭素の含有量が80〜600wppmである、臭素を含む液体塩素(A)を、下記蒸発率で蒸発させ気体塩素を得る第1工程と、
第1工程において得た気体塩素と蒸発せずに残存する液体塩素(B)とを分離する第2工程と、
第2工程において分離された気体塩素と水酸化ナトリウム水溶液とを反応させ次亜塩素酸ナトリウム水溶液を得る第3工程とを有し、
得られた次亜塩素酸ナトリウム水溶液中のBrO3 -の濃度が、有効塩素濃度13.0%換算で20wppm未満であることを特徴とする次亜塩素酸ナトリウム水溶液の製造方法。
蒸発率(気体塩素の質量/液体塩素(A)の質量)×100[%]):
液体塩素(A)中の臭素濃度が80〜95wppmである場合には、50〜96%、
液体塩素(A)中の臭素濃度が95wppmを超えて105wppm以下である場合には、50〜95%
液体塩素(A)中の臭素濃度が105wppmを超えて203wppm以下である場合には、50〜91%
液体塩素(A)中の臭素濃度が203wppmを超えて395wppm以下である場合には、50〜84%
液体塩素(A)中の臭素濃度が395wppmを超えて600wppm以下である場合には、50〜76%
Bromine content is 80~600Wppm, the liquid chlorine (A) containing bromine, a first step of obtaining a gaseous chlorine is evaporated under Ki蒸 Hatsuritsu,
A second step of separating the gaseous chlorine obtained in the first step and the liquid chlorine (B) remaining without evaporation;
A third step of reacting the gaseous chlorine separated in the second step with a sodium hydroxide aqueous solution to obtain a sodium hypochlorite aqueous solution,
A method for producing an aqueous sodium hypochlorite solution, wherein the concentration of BrO 3 − in the obtained aqueous sodium hypochlorite solution is less than 20 wppm in terms of an effective chlorine concentration of 13.0%.
Evaporation rate (mass of gaseous chlorine / mass of liquid chlorine (A)) × 100 [%]):
When the bromine concentration in the liquid chlorine (A) is 80 to 95 wppm, 50 to 96%,
When the bromine concentration in liquid chlorine (A) is more than 95 wppm and not more than 105 wppm, 50 to 95%
When the bromine concentration in the liquid chlorine (A) exceeds 105 wppm and is 203 wppm or less, 50 to 91%
When the bromine concentration in liquid chlorine (A) is more than 203 wppm and not more than 395 wppm, 50 to 84%
When the bromine concentration in the liquid chlorine (A) is more than 395 wppm and 600 wppm or less, 50 to 76%
前記液体塩素(A)が、工業塩を電気分解して得られる気体塩素を液化したものであることを特徴とする請求項1または2に記載の次亜塩素酸ナトリウム水溶液の製造方法。The method for producing an aqueous sodium hypochlorite solution according to claim 1 or 2, wherein the liquid chlorine (A) is a liquefied gaseous chlorine obtained by electrolyzing an industrial salt. 得られた次亜塩素酸ナトリウム水溶液中のNa2CO3の濃度が0.1重量%未満であることを特徴とする請求項1〜のいずれか1項に記載の次亜塩素酸ナトリウム水溶液の製造方法。 Sodium hypochlorite aqueous solution according to any one of claims 1 to 3, the concentration of Na 2 CO 3 of the so obtained aqueous sodium hypochlorite solution is equal to or less than 0.1 wt% Manufacturing method. 前記気体塩素中の気体臭素の含有量が90wppm以下であることを特徴とする請求項1〜4のいずれか1項に記載の次亜塩素酸ナトリウム水溶液の製造方法。 Method for producing sodium hypochlorite aqueous solution according to claim 1 in which the content of gaseous bromine of the gaseous chlorine is equal to or less than 90Wppm. 前記第1工程において、液体塩素(A)を圧力が100〜550kPa(ゲージ圧)、温度が−15〜30℃の条件で蒸発させることを特徴とする請求項1〜のいずれか1項に記載の次亜塩素酸ナトリウム水溶液の製造方法。 In the first step, liquid chlorine (A) a pressure 100~550KPa (gauge pressure), to any one of claims 1 to 5, the temperature is equal to or evaporating under conditions of -15~30 ° C. The manufacturing method of sodium hypochlorite aqueous solution of description.
JP2007339025A 2006-12-28 2007-12-28 Method for producing aqueous sodium hypochlorite solution and aqueous sodium hypochlorite solution obtained by the production method Expired - Fee Related JP5557423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007339025A JP5557423B2 (en) 2006-12-28 2007-12-28 Method for producing aqueous sodium hypochlorite solution and aqueous sodium hypochlorite solution obtained by the production method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006355299 2006-12-28
JP2006355299 2006-12-28
JP2007339025A JP5557423B2 (en) 2006-12-28 2007-12-28 Method for producing aqueous sodium hypochlorite solution and aqueous sodium hypochlorite solution obtained by the production method

Publications (2)

Publication Number Publication Date
JP2008179535A JP2008179535A (en) 2008-08-07
JP5557423B2 true JP5557423B2 (en) 2014-07-23

Family

ID=39723731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007339025A Expired - Fee Related JP5557423B2 (en) 2006-12-28 2007-12-28 Method for producing aqueous sodium hypochlorite solution and aqueous sodium hypochlorite solution obtained by the production method

Country Status (1)

Country Link
JP (1) JP5557423B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051431A (en) * 2002-07-19 2004-02-19 Asahi Glass Co Ltd Method of preparing sodium hypochlorite aqueous solution
JP2005314132A (en) * 2004-04-27 2005-11-10 Asahi Glass Co Ltd Method for producing sodium hypochlorite aqueous solution
JP4308810B2 (en) * 2004-10-18 2009-08-05 株式会社カネカ Method for producing chlorine gas, sodium hypochlorite aqueous solution and liquid chlorine
JP4713128B2 (en) * 2004-11-09 2011-06-29 株式会社トクヤマ Method for producing sodium hypochlorite aqueous solution
CA2625719A1 (en) * 2005-10-14 2007-04-19 Kaneka Corporation Method of producing chlorine gas, aqueous sodium hypochlorite solution and liquid chlorine

Also Published As

Publication number Publication date
JP2008179535A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
US11666055B2 (en) Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane
JP5918109B2 (en) Method for producing hypobromite stabilized composition and hypobromite stabilized composition
JP6469161B2 (en) Sodium hypochlorite pentahydrate crystal and method for producing the same
FI126250B (en) Method for the production of chlorine dioxide
KR101966569B1 (en) Method for controlling slime on separation membrane
JP7291958B2 (en) Manufacturing method for obtaining novel chlorine oxide composition from degraded hypochlorite
JP6145360B2 (en) Water treatment agent composition, method for producing water treatment agent composition, and water treatment method
JP5546102B2 (en) Method for producing aqueous sodium hypochlorite solution by liquid chlorine purification and aqueous sodium hypochlorite solution obtained by the production method
JP5557423B2 (en) Method for producing aqueous sodium hypochlorite solution and aqueous sodium hypochlorite solution obtained by the production method
JP6630562B2 (en) Slime suppression method for separation membrane
JP2005314132A (en) Method for producing sodium hypochlorite aqueous solution
JP4713128B2 (en) Method for producing sodium hypochlorite aqueous solution
JP2020131134A (en) Slime inhibition agent for separation membrane, manufacturing method of slime inhibition agent for separation membrane, and slime inhibition method of separation membrane
WO2016135916A1 (en) Water treatment agent composition, method for producing water treatment agent composition, and water treatment method
JP6113322B2 (en) Disinfectant and method for controlling biofouling
WO2023243149A1 (en) Water treatment method and water treatment device
JP6706702B1 (en) Water treatment method and water treatment apparatus using reverse osmosis membrane
CN109562963A (en) The processing method and processing system of water containing low molecule organic matter
JP2016120487A (en) Method for sterilizing water
WO2018100794A1 (en) Water treatment agent composition, water treatment method, and method of storing or using water treatment agent composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101006

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140106

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20140106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140603

R150 Certificate of patent or registration of utility model

Ref document number: 5557423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees