JP2017121605A - Preprocessing method of inverse infiltration apparatus, and water processing equipment - Google Patents

Preprocessing method of inverse infiltration apparatus, and water processing equipment Download PDF

Info

Publication number
JP2017121605A
JP2017121605A JP2016001127A JP2016001127A JP2017121605A JP 2017121605 A JP2017121605 A JP 2017121605A JP 2016001127 A JP2016001127 A JP 2016001127A JP 2016001127 A JP2016001127 A JP 2016001127A JP 2017121605 A JP2017121605 A JP 2017121605A
Authority
JP
Japan
Prior art keywords
reducing agent
water
salt
added
nitrous acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016001127A
Other languages
Japanese (ja)
Inventor
由彦 遠藤
Yoshihiko Endo
由彦 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2016001127A priority Critical patent/JP2017121605A/en
Publication of JP2017121605A publication Critical patent/JP2017121605A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent the film deterioration of an RO film due to a catalytic reaction between a reducer and a heavy metal ion when a reducer is added to supply water containing heavy metal ions to cause a catalytic reaction in a conventional reducer thereby to deteriorate the RO film.SOLUTION: A nitrous acid and/or its salt are used as a reducer. The nitrous acid and/or its salt reduce the residual oxidize such as chlorine. In the used concentration practical even if the residual is left, no catalyst reaction with a heavy metal ion occurs so that the film deterioration with an RO film by a catalytic reaction between the reducer and the heavy metal oil raises no problem.SELECTED DRAWING: Figure 1

Description

本発明は逆浸透膜(RO膜)装置の前処理方法に係り、詳しくは、RO膜の被処理水(以下「RO給水」と称す場合がある。)に還元剤を添加してRO膜処理するに当たり、RO給水中の重金属イオンと還元剤との反応によるRO膜の膜劣化を防止するRO膜装置の前処理方法に関する。
本発明はまた、この前処理方法を適用した水処理装置に関する。
The present invention relates to a pretreatment method for a reverse osmosis membrane (RO membrane) device, and more specifically, RO membrane treatment by adding a reducing agent to water to be treated on the RO membrane (hereinafter sometimes referred to as “RO water supply”). In doing so, the present invention relates to a pretreatment method for an RO membrane device that prevents membrane degradation of the RO membrane due to the reaction between heavy metal ions in the RO water supply and the reducing agent.
The present invention also relates to a water treatment apparatus to which this pretreatment method is applied.

工業用水、市水、井水、河川水、湖沼水、工場廃水などを水処理して純水等を製造する手段として、RO膜装置が広く利用されている。この場合、これらの被処理水に含まれる微生物によるバイオファウリングを抑制するために、塩素、次亜塩素酸ナトリウム、亜塩素酸ナトリウム等の塩素系酸化剤や、過酸化水素、オゾン等の酸化剤が被処理水に添加される。また、電極を使用して塩素を生成させることも行われている。
酸化剤はまた、RO膜処理の前処理として、被処理水中の鉄やマンガンを酸化して濾過装置で除去するために添加される場合もある。
経済性等の観点から、酸化剤の中で最も多く使用されているのは塩素である。
RO membrane devices are widely used as means for producing pure water by treating industrial water, city water, well water, river water, lake water, factory waste water, and the like. In this case, in order to suppress biofouling by microorganisms contained in these treated water, chlorine-based oxidizing agents such as chlorine, sodium hypochlorite and sodium chlorite, and oxidation such as hydrogen peroxide and ozone An agent is added to the water to be treated. In addition, chlorine is generated using an electrode.
Oxidizing agents may also be added as a pretreatment for RO membrane treatment to oxidize iron and manganese in the water to be treated and remove them with a filtration device.
From the viewpoint of economy and the like, chlorine is most frequently used among oxidizing agents.

塩素等の酸化剤を添加した水をRO膜処理すると、残留酸化剤によりRO膜が酸化劣化を受ける。このため、従来、RO膜装置の前段に活性炭塔を設置して塩素等の残留酸化剤を除去するか(特許文献1)、RO膜装置の前段で亜硫酸水素ナトリウムや亜硫酸ナトリウムなどの還元剤を添加して塩素を分解除去する(特許文献2)等の処理がなされている。   When the RO membrane is treated with water to which an oxidizing agent such as chlorine is added, the RO membrane undergoes oxidative degradation due to the residual oxidizing agent. For this reason, conventionally, an activated carbon tower is installed in front of the RO membrane device to remove residual oxidizers such as chlorine (Patent Document 1), or a reducing agent such as sodium bisulfite or sodium sulfite is used in the front of the RO membrane device. Processing such as adding and decomposing and removing chlorine (Patent Document 2) is performed.

ただし、活性炭塔を設置した場合、塔内でバイオファウリングが発生して後段装置を汚染することがある、イニシャルコストがかかる、などの欠点があり、一般的には還元剤の添加による残留酸化剤の分解除去が行われている。   However, when an activated carbon tower is installed, there are disadvantages such as biofouling occurring in the tower and contamination of the subsequent equipment, and it costs initial cost. Generally, residual oxidation is caused by the addition of a reducing agent. The agent is decomposed and removed.

還元剤の添加により残留酸化剤を分解除去する場合、RO給水の水質の変動に応じて残留酸化剤の濃度も異なるものとなることから、残留酸化剤を完全に除去してRO膜劣化を確実に防止するために、通常、還元剤は残留酸化剤の反応当量よりも多く添加される。このように、還元剤を残留酸化剤の反応当量よりも多く添加すると、RO給水に銅イオンなどの重金属イオンが含まれている場合には、この重金属イオンの還元剤に対する触媒作用で酸化還元電位が上昇し、RO膜が酸化劣化する。このように還元剤と触媒反応を起こす重金属イオンとしては、銅イオン、コバルトイオン、スズイオン、クロムイオン、ニッケルイオンなどが知られている。   When the residual oxidant is decomposed and removed by adding a reducing agent, the concentration of the residual oxidant varies depending on the fluctuation of the quality of the RO water supply. Therefore, the residual oxidant is completely removed to ensure the RO membrane deterioration. Usually, the reducing agent is added more than the reaction equivalent of the residual oxidizing agent. As described above, when the reducing agent is added more than the reaction equivalent of the residual oxidizing agent, if the heavy metal ions such as copper ions are contained in the RO water supply, the redox potential is generated by the catalytic action of the heavy metal ions on the reducing agent. Rises and the RO membrane is oxidized and deteriorated. As such heavy metal ions that cause a catalytic reaction with a reducing agent, copper ions, cobalt ions, tin ions, chromium ions, nickel ions, and the like are known.

従来、還元剤と重金属イオンとの反応によるRO膜の酸化劣化を防ぐ手段としては、
(1) RO給水のpHを4以下に調整する又は銅イオン封鎖剤を添加する方法(特許文献3)、
(2) RO給水のpHを6.5以下としかつ温度を30℃以下に調整する方法(特許文献4)、
などがあるが、銅イオン封鎖剤を添加する方法は薬品コストが非常に高いという課題がある。また、pH調整する方法では、緩衝力の高い水に関してはpH調整のコストが高くつくという課題がある。また、水温調整では、温度の高い水に対しては冷却コストが高いという課題がある。
Conventionally, as a means for preventing oxidative degradation of the RO membrane due to the reaction between the reducing agent and heavy metal ions,
(1) A method of adjusting the pH of RO water supply to 4 or less or adding a copper ion sequestering agent (Patent Document 3),
(2) A method of adjusting the pH of RO water supply to 6.5 or lower and the temperature to 30 ° C. or lower (Patent Document 4),
However, the method of adding a copper ion sequestering agent has a problem that the chemical cost is very high. Moreover, in the method of adjusting pH, there exists a subject that the cost of pH adjustment is expensive about water with high buffering power. Moreover, in water temperature adjustment, there exists a subject that cooling cost is high with respect to high temperature water.

特開平10−337563号公報Japanese Patent Laid-Open No. 10-337563 特開平7−308671号公報JP-A-7-308671 特許第3399636号公報Japanese Patent No. 3399636 特許第3547018号公報Japanese Patent No. 3547018

本発明は上述した事情に鑑み、RO給水中の重金属イオンと還元剤との触媒反応によるRO膜の膜劣化を防止するRO膜装置の前処理方法と水処理装置を提供することを課題とする。   In view of the circumstances described above, an object of the present invention is to provide an RO membrane device pretreatment method and a water treatment device that prevent membrane degradation of the RO membrane due to a catalytic reaction between heavy metal ions in the RO water supply and a reducing agent. .

本発明者は、上記課題を解決すべく、重金属イオンと触媒反応を起こすことのない新規の還元剤を提供するべく鋭意検討を行った結果、亜硝酸及び/又はその塩が最適であることを見出した。即ち、亜硝酸及び/又はその塩は、塩素等の残留酸化剤を還元除去すると共に、余剰分が残留しても、実用的な使用濃度では、重金属イオンと触媒反応を生じることはなく、RO膜の膜劣化を引き起こすことはない。
本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。
In order to solve the above problems, the present inventor has conducted intensive studies to provide a novel reducing agent that does not cause a catalytic reaction with heavy metal ions, and as a result, has found that nitrous acid and / or a salt thereof is optimal. I found it. That is, nitrous acid and / or its salt reduces and removes residual oxidizers such as chlorine, and even if the surplus remains, at a practical use concentration, it does not cause a catalytic reaction with heavy metal ions. It does not cause film deterioration of the film.
The present invention has been achieved based on such findings, and the gist thereof is as follows.

[1] 重金属イオンを含む供給水を逆浸透膜装置で逆浸透膜処理する際の前処理方法であって、該供給水に、亜硝酸及び/又はその塩を添加することを特徴とする逆浸透膜装置の前処理方法。 [1] A pretreatment method for treating a feed water containing heavy metal ions with a reverse osmosis membrane device using a reverse osmosis membrane device, wherein nitrous acid and / or a salt thereof is added to the feed water. Pretreatment method for osmotic membrane device.

[2] [1]において、前記重金属イオンが、銅イオン、コバルトイオン、スズイオン、クロムイオンおよびニッケルイオンからなる群から選ばれる少なくとも1種であり、前記供給水中の重金属イオン濃度が1ppb以上であることを特徴とする逆浸透膜装置の前処理方法。 [2] In [1], the heavy metal ion is at least one selected from the group consisting of copper ion, cobalt ion, tin ion, chromium ion, and nickel ion, and the heavy metal ion concentration in the supply water is 1 ppb or more. A pretreatment method for a reverse osmosis membrane device.

[3] [1]又は[2]において、前記供給水が酸化剤を含有することを特徴とする逆浸透膜装置の前処理方法。 [3] The pretreatment method for a reverse osmosis membrane device according to [1] or [2], wherein the supplied water contains an oxidizing agent.

[4] [1]ないし[3]のいずれかにおいて、前記供給水の酸化還元電位が300mV以上であることを特徴とする逆浸透膜装置の前処理方法。 [4] The pretreatment method for a reverse osmosis membrane device according to any one of [1] to [3], wherein the redox potential of the supplied water is 300 mV or more.

[5] [1]ないし[4]のいずれかにおいて、前記供給水に、第一還元剤として前記亜硝酸及び/又はその塩を添加した後、亜硝酸及び/又はその塩とは異なる還元剤を第二還元剤として添加することを特徴とする逆浸透膜装置の前処理方法。 [5] In any one of [1] to [4], after adding the nitrous acid and / or salt thereof as the first reducing agent to the feed water, the reducing agent is different from the nitrous acid and / or salt thereof. Is added as a second reducing agent. A pretreatment method for a reverse osmosis membrane device.

[6] 重金属イオンを含む供給水に還元剤を添加して逆浸透膜処理する水処理装置において、該供給水に還元剤として亜硝酸及び/又はその塩を添加する還元剤添加手段と、該還元剤が添加された水を逆浸透膜処理する逆浸透膜装置とを備えてなることを特徴とする水処理装置。 [6] In a water treatment apparatus for performing a reverse osmosis membrane treatment by adding a reducing agent to supply water containing heavy metal ions, reducing agent addition means for adding nitrous acid and / or a salt thereof as a reducing agent to the supply water; A water treatment device comprising: a reverse osmosis membrane device for treating water added with a reducing agent with a reverse osmosis membrane.

本発明によれば、RO給水に還元剤を添加してRO膜処理するに当たり、添加した還元剤とRO給水中の重金属イオンとの触媒反応によるRO膜の膜劣化を防止して、安定かつ効率的なRO膜処理を行うことができる。   According to the present invention, when the RO membrane is treated by adding a reducing agent to the RO water supply, the membrane deterioration of the RO membrane due to the catalytic reaction between the added reducing agent and heavy metal ions in the RO water supply is prevented, and the RO membrane is stable and efficient. RO membrane treatment can be performed.

本発明の水処理装置の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the water treatment apparatus of this invention.

以下に本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明においては、通常の還元剤では触媒反応を起こす重金属イオンを含むRO給水に還元剤を添加してRO膜処理するに当たり、還元剤として、亜硫酸水素ナトリウムや亜硫酸ナトリウムなどの従来の還元剤に代えて、亜硝酸及び/又はその塩(以下「亜硝酸(塩)」と称す場合がある。)を添加する。   In the present invention, when a reducing agent is added to an RO feedwater containing heavy metal ions that cause a catalytic reaction with a normal reducing agent to treat the RO membrane, the reducing agent is replaced with a conventional reducing agent such as sodium bisulfite or sodium sulfite. Instead, nitrous acid and / or a salt thereof (hereinafter sometimes referred to as “nitrous acid (salt)”) is added.

本発明において、RO膜は、NF膜(Nanofiltration Membran)を含む広義のRO膜であり、その素材は限定されず、酢酸セルロース系ポリマー、ポリアミド、ポリエステル、ポリイミド、ビニルポリマーなどの高分子素材が一般的に使用される。RO膜モジュールの形式等にも特に制限はない。   In the present invention, the RO membrane is an RO membrane in a broad sense including an NF membrane (Nanofiltration Membran), and the material thereof is not limited, and polymer materials such as cellulose acetate polymer, polyamide, polyester, polyimide, and vinyl polymer are generally used. Used. There are no particular restrictions on the type of RO membrane module.

通常の還元剤では触媒反応を起こす重金属イオンとしては、銅イオン、コバルトイオン、スズイオン、クロムイオン、ニッケルイオンなどが挙げられるが、これらに限定されるものではない。RO給水中には、これらの重金属イオンの1種のみが含まれていてもよく、2種以上が含まれていてもよい。   Examples of heavy metal ions that cause a catalytic reaction with ordinary reducing agents include, but are not limited to, copper ions, cobalt ions, tin ions, chromium ions, nickel ions, and the like. In RO water supply, only 1 type of these heavy metal ions may be contained, and 2 or more types may be contained.

RO膜の給水には排水を使用したりRO給水系に銅系の機器を使用することがあり、その場合、RO給水に重金属が流入することがある。海水は通常約1ppbの銅イオンを含有するが、海水に排水を混合する場合など、この銅イオン濃度が5ppb以上になる場合がある。RO給水が、海水系でかつ重金属イオン濃度が5ppb以上のときに還元剤の共存下で酸化還元電位が上昇すると言われている。
酸化還元電位が上昇するのは重金属と還元剤の触媒反応により、この時、RO膜が劣化する可能性がある。
なお、RO給水の重金属イオン濃度が高いとファウリングして、RO膜の洗浄回数が増えるため、0.1mg/L以下が一般的である。
In some cases, drainage is used for the RO membrane water supply or copper-based equipment is used for the RO water supply system. In this case, heavy metals may flow into the RO water supply. Seawater usually contains about 1 ppb of copper ions, but this concentration of copper ions may be 5 ppb or more, such as when wastewater is mixed with seawater. It is said that when the RO water supply is a seawater system and the heavy metal ion concentration is 5 ppb or more, the redox potential increases in the presence of a reducing agent.
The oxidation-reduction potential rises due to the catalytic reaction between the heavy metal and the reducing agent. At this time, the RO membrane may be deteriorated.
Note that when the concentration of heavy metal ions in the RO water supply is high, fouling occurs and the number of times of cleaning the RO membrane increases, so 0.1 mg / L or less is common.

本発明でRO膜処理するRO給水は、酸化剤が添加されたものであって、亜硝酸(塩)は、残留酸化剤を分解除去するための還元剤としてRO給水に添加されることが好ましい。この場合、酸化剤の種類や使用形態には特に制限はない。酸化剤としては塩素が代表的であるが、過酸化水素、二酸化塩素、亜塩素酸及び/又はその塩、次亜塩素酸及び/又はその塩、オゾン、電極を使用して生成した塩素なども用いることができる。これら酸化剤は、1種のみを用いてもよく、2種以上を併用してもよい。   The RO water supply for RO membrane treatment in the present invention is one in which an oxidizing agent is added, and nitrous acid (salt) is preferably added to the RO water supply as a reducing agent for decomposing and removing the residual oxidizing agent. . In this case, there is no restriction | limiting in particular in the kind and usage form of an oxidizing agent. Chlorine is a typical oxidant, but hydrogen peroxide, chlorine dioxide, chlorous acid and / or its salt, hypochlorous acid and / or its salt, ozone, chlorine generated using electrodes, etc. Can be used. These oxidizing agents may be used alone or in combination of two or more.

RO給水中の酸化剤はRO膜を膜劣化させることは知られており、RO給水の酸化還元電位(ORP)が高いことは、RO給水に何らかの酸化剤が存在することを意味する(前掲の特許文献3、膜の劣化とファウリング対策(出版社NTS)P.84)。
以下、本明細書中のORPは(株)堀場製作所製「ポータブルpHメーターD−54」で測定された数値であり、t℃でEN,H,E=ORP+206−0.7(t−25)が換算式である(EN,H,Eは標準水素電極基準の電位)。
本発明において、亜硝酸(塩)が添加される酸化剤を含むRO給水は、好ましくは酸化還元電位(ORP)が300mV以上、例えば350〜800mVの水である。本発明では、RO給水の酸化還元電位(ORP)が上記下限以上となるように残留酸化剤を含む水に対して、還元剤として亜硝酸(塩)を添加して、この残留酸化剤を分解除去する。この酸化還元電位(ORP)が300mV未満の場合、多くの場合、残留酸化剤が少なく、還元剤として亜硝酸(塩)を添加する必要がない。
It is known that the oxidant in the RO water supply deteriorates the RO membrane, and the high redox potential (ORP) of the RO water supply means that some oxidant is present in the RO water supply (see above). Patent Document 3, film deterioration and fouling countermeasures (publishing company NTS) P.84).
Hereinafter, ORP in this specification is a numerical value measured by “Portable pH Meter D-54” manufactured by Horiba, Ltd., and at t ° C., EN , H, E = ORP + 206−0.7 (t−25) ) Is a conversion formula (EN , H, E are potentials based on a standard hydrogen electrode).
In the present invention, the RO water supply containing an oxidizing agent to which nitrous acid (salt) is added is preferably water having an oxidation-reduction potential (ORP) of 300 mV or more, for example, 350 to 800 mV. In the present invention, nitrous acid (salt) is added as a reducing agent to the water containing the residual oxidizing agent so that the oxidation / reduction potential (ORP) of the RO feedwater is equal to or higher than the lower limit, and the residual oxidizing agent is decomposed. Remove. When this oxidation-reduction potential (ORP) is less than 300 mV, in many cases, there is little residual oxidizing agent, and it is not necessary to add nitrous acid (salt) as a reducing agent.

RO膜装置に流入する水の酸化還元電位(ORP)は、亜硝酸(塩)、或いは亜硝酸(塩)と後述の第二還元剤の添加で、その酸化還元電位(ORP)が300mV以下、例えば100〜300mVとなっていれば、RO膜の膜劣化を防止することができる。   The oxidation-reduction potential (ORP) of water flowing into the RO membrane device is nitrite (salt) or nitrite (salt) and the addition of a second reducing agent described later, and the oxidation-reduction potential (ORP) is 300 mV or less, For example, when it is 100 to 300 mV, film deterioration of the RO film can be prevented.

本発明で用いる亜硝酸塩としては、亜硝酸ナトリウムが代表的であるが、亜硝酸カリウム、亜硝酸カルシウム、亜硝酸マグネシウム、亜硝酸アルミニウムなども用いることもできる。亜硝酸(塩)は、1種のみを用いてもよく、2種以上を併用してもよい。   The nitrite used in the present invention is typically sodium nitrite, but potassium nitrite, calcium nitrite, magnesium nitrite, aluminum nitrite, and the like can also be used. Nitrous acid (salt) may be used alone or in combination of two or more.

亜硝酸(塩)の使用形態としては、水溶液が一般的であるが、その他の溶媒又は分散媒体、水処理用高分子化合物、スケール防止剤、スライムコントロール剤など、他の成分を配合して製剤化して用いてもよい。取り扱い性の面から、亜硝酸(塩)の使用形態は水溶液等の液状とすることが好ましい。   Nitrous acid (salt) is generally used in the form of an aqueous solution, but it contains other ingredients such as other solvents or dispersion media, polymer compounds for water treatment, scale inhibitors, slime control agents. You may use it. From the viewpoint of handleability, the usage form of nitrous acid (salt) is preferably a liquid such as an aqueous solution.

亜硝酸(塩)を製剤化して用いる場合、亜硝酸(塩)含有製剤の亜硝酸(塩)の含有割合は特に限定されないが、亜硝酸イオンとして5〜40質量%が好ましく、10〜30質量%がさらに好ましい。かかる範囲で亜硝酸(塩)を配合すれば、亜硝酸(塩)製剤の容積を小さくし、かつ安定性が良いという点で好適である。   When nitrite (salt) is formulated and used, the content ratio of nitrous acid (salt) in the nitrite (salt) -containing preparation is not particularly limited, but is preferably 5 to 40% by mass as nitrite ion, and 10 to 30% by mass. % Is more preferable. Addition of nitrous acid (salt) in such a range is preferable in that the volume of the nitrous acid (salt) preparation is reduced and the stability is good.

亜硝酸(塩)の添加工程又は添加場所は限定されない。   The addition process or location of nitrous acid (salt) is not limited.

本発明によれば、残留酸化剤を含むRO給水に、亜硝酸(塩)を添加することで塩素等の酸化剤を還元し、かつ亜硝酸(塩)の剰余があっても、RO給水中の重金属イオンとの触媒反応は起こらず、RO膜を膜劣化させることはないという効果を発現する。   According to the present invention, nitrous acid (salt) is added to RO feedwater containing residual oxidant to reduce oxidant such as chlorine, and even if there is a surplus of nitrous acid (salt), RO feedwater The catalytic reaction with heavy metal ions does not occur and the RO membrane is not deteriorated.

残留酸化剤を含むRO給水に亜硝酸(塩)を添加する場合、亜硝酸(塩)の添加量は、RO給水中の残留酸化剤量の反応当量以上であるが、反応当量の2〜3倍、特には酸化剤の残留を確実に防止するために3〜5倍とすることが好ましい。   When adding nitrous acid (salt) to RO feedwater containing residual oxidant, the amount of nitrous acid (salt) added is equal to or greater than the reaction equivalent of the amount of residual oxidant in the RO feedwater, but the reaction equivalent is 2-3. In order to prevent the remaining of the oxidizing agent, particularly 3 to 5 times is preferable.

亜硝酸(塩)を添加するRO給水のpHは、特に限定されないが、pHが高いと酸化剤との反応性が低下し、低いと反応性が上昇する傾向にある。通常、RO給水のpHは4〜9程度である。   The pH of the RO feed water to which nitrous acid (salt) is added is not particularly limited, but if the pH is high, the reactivity with the oxidant decreases, and if it is low, the reactivity tends to increase. Usually, the pH of RO water supply is about 4-9.

亜硝酸(塩)を添加してRO給水中の残留酸化剤と反応させる場合、条件によっては、当量以上の添加でも酸化剤が微量に残留することがある。この場合には、RO膜装置の前工程で、亜硫酸水素ナトリウムなどの反応性のよい従来の還元剤を第二還元剤として、酸化剤残留量に対して反応当量以上、好ましくは反応当量の2〜3倍、特には酸化剤の残留を確実に防止するために3〜5倍添加してもよい。   When nitrous acid (salt) is added to react with the residual oxidant in the RO water supply, depending on the conditions, a slight amount of oxidant may remain even when the equivalent amount or more is added. In this case, in the previous step of the RO membrane device, a conventional reducing agent having good reactivity such as sodium bisulfite is used as the second reducing agent, and the reaction equivalent is more than the reaction equivalent, preferably 2 It may be added 3 to 5 times, particularly 3 to 5 times in order to reliably prevent the oxidant from remaining.

前述の通り、第二還元剤として添加する亜硫酸水素ナトリウム等の従来の還元剤は、RO給水中の重金属イオンとの触媒反応でRO膜を膜劣化させるものであるが、第一還元剤として亜硝酸(塩)を添加した後の酸化剤の残留量は微量であるため、その後に追加で添加する亜硫酸水素ナトリウムなどの第二還元剤添加率も少量となる。このため、第二還元剤が残留した場合でも、還元される酸化性薬品の量は微量であり、重金属イオンとの触媒反応も殆ど生じない。   As described above, conventional reducing agents such as sodium bisulfite added as the second reducing agent deteriorate the RO membrane by catalytic reaction with heavy metal ions in the RO water supply. Since the residual amount of the oxidizing agent after adding nitric acid (salt) is very small, the addition rate of the second reducing agent such as sodium bisulfite added after that is also small. For this reason, even when the second reducing agent remains, the amount of the oxidizing chemical to be reduced is very small, and the catalytic reaction with heavy metal ions hardly occurs.

第二還元剤としては、亜硫酸水素ナトリウム等の亜硫酸水素塩、亜硫酸ナトリウム等の亜硫酸塩、チオ硫酸ナトリウム等のチオ硫酸塩などの1種又は2種以上を用いることができる。   As a 2nd reducing agent, 1 type (s) or 2 or more types, such as bisulfites, such as sodium bisulfite, sulfites, such as sodium sulfite, thiosulfates, such as sodium thiosulfate, can be used.

亜硝酸(塩)の添加量、或いは第一還元剤としての亜硝酸(塩)と第二還元剤の添加量は、具体的には以下の通りである。
RO給水中の酸化剤濃度は、JIS K 0400−33−10: 1999 N,N−ジエチル−1,4−フェニレンジアミンを用いるDPD法により塩素質量濃度として表記される。
亜硝酸(塩)として亜硝酸ナトリウムを用いる場合、遊離塩素1gに当量反応する亜硝酸ナトリウムは1.0g(亜硝酸イオンとして0.67g)であるが、実使用時は安全を見て、この2倍程度を添加することが好ましい。酸化剤が塩素以外の場合も、上記DPD法による全塩素1gに対して亜硝酸ナトリウムとしては1.0g(亜硝酸イオンとして0.67g)が反応当量となる。
RO給水のpH条件によっては、この時遊離塩素が微量残留することがあるので、反応性の良い第二還元剤を添加する。この場合、第二還元剤の反応当量は、遊離塩素1gに対し、亜硫酸水素ナトリウムは1.5g、亜硫酸ナトリウムは1.8g、チオ硫酸ナトリウムは約2gである。
The addition amount of nitrous acid (salt), or the addition amount of nitrous acid (salt) as the first reducing agent and the second reducing agent is specifically as follows.
The oxidizing agent concentration in the RO water supply is expressed as a chlorine mass concentration by the DPD method using JIS K 0400-33-10: 1999 N, N-diethyl-1,4-phenylenediamine.
When sodium nitrite is used as nitrite (salt), the amount of sodium nitrite that reacts equivalently to 1 g of free chlorine is 1.0 g (0.67 g as nitrite ion). It is preferable to add about 2 times. Even when the oxidizing agent is other than chlorine, 1.0 g of sodium nitrite (0.67 g as nitrite ions) is equivalent to 1 g of all chlorine by the DPD method.
Depending on the pH condition of the RO feed water, a small amount of free chlorine may remain at this time, so a highly reactive second reducing agent is added. In this case, the reaction equivalent of the second reducing agent is 1.5 g of sodium bisulfite, 1.8 g of sodium sulfite, and about 2 g of sodium thiosulfate with respect to 1 g of free chlorine.

本発明で用いる亜硝酸(塩)は、酸化性化合物との反応性が低く、酸化性化合物を殆ど消失させることがないことから、本発明は特に、還元剤添加後にRO膜のファウリング防止のための酸化性薬品を添加するRO膜処理に好適である。前述の通り、酸化剤とは、次亜塩素酸ナトリウム等の、対象物質を酸化するために使用する薬品であるのに対して、酸化性薬品は、上記ケーソンWT等のように酸化力を持つが使用目的が酸化に限られない薬品であり、両者は区別される。より具体的には、pH7.0,20℃において、亜硝酸イオンに当量添加したときに酸化還元反応する物質(強酸化剤)を「酸化剤」と定義し、同条件で酸化還元反応しない物質(弱酸化剤)を「酸化性薬品」と定義する。   Since nitrous acid (salt) used in the present invention has low reactivity with an oxidizing compound and hardly loses the oxidizing compound, the present invention particularly prevents fouling of the RO membrane after adding a reducing agent. Therefore, it is suitable for RO membrane treatment in which an oxidizing chemical is added. As described above, an oxidizing agent is a chemical used to oxidize a target substance such as sodium hypochlorite, whereas an oxidizing chemical has an oxidizing power such as the caisson WT. Is a chemical whose purpose of use is not limited to oxidation. More specifically, at pH 7.0 and 20 ° C., a substance (strong oxidizing agent) that undergoes a redox reaction when an equivalent amount is added to nitrite ions is defined as an “oxidizing agent”, and a substance that does not undergo a redox reaction under the same conditions. (Weak oxidizing agent) is defined as “oxidizing chemical”.

酸化性薬品としては、RO膜のファウリングを防止するための酸化性薬品として一般的に用いられている2,2−ジブロモ−3−ニトリロプロピオンアミド(DBNPA)、5−クロロ−2−メチル−4−イソチアゾリン−3−オン(Cl−MIT)、5−クロロ−2−メチル−4−イソチアゾリン−3−オン(Cl−MIT)と2−メチル−4−イソチアゾリン−3−オン(MIT)の混合物(ダウ・ケミカル社製 商品名「ケーソンWT」)、アンモニアクロラミン、クロロスルファミン酸及び/又はその塩などが挙げられる。これらは、1種のみを用いてもよく、2種以上を併用してもよい。   Examples of the oxidizing chemical include 2,2-dibromo-3-nitrilopropionamide (DBNPA), 5-chloro-2-methyl-, which are generally used as an oxidizing chemical for preventing fouling of the RO membrane. 4-isothiazolin-3-one (Cl-MIT), a mixture of 5-chloro-2-methyl-4-isothiazolin-3-one (Cl-MIT) and 2-methyl-4-isothiazolin-3-one (MIT) (Trade name “Caisson WT” manufactured by Dow Chemical Company), ammonia chloramine, chlorosulfamic acid and / or a salt thereof. These may use only 1 type and may use 2 or more types together.

RO給水に酸化性薬品を添加する場合、その添加量は、用いる酸化性薬品の種類、RO給水の水質やRO膜処理条件によっても異なるが、通常全塩素換算の添加量で0.01〜50mg/L程度である。より具体的には、クロロスルファミン酸ナトリウムであれば、全塩素換算の添加量で通常0.1〜10mg/L、好ましくは0.5〜3mg/L程度である。また、全塩素として検出されないCl−MITの添加量は通常0.01〜0.5mg/L、好ましくは0.03〜0.15mg/L程度である。DBNPAの添加量は全塩素換算で通常0.1〜10mg/L、好ましくは0.2〜6mg/L程度である。   When adding an oxidizing chemical to RO water supply, the amount of addition varies depending on the type of oxidizing chemical used, the quality of the RO water supply and the RO membrane treatment conditions, but usually 0.01 to 50 mg in terms of total chlorine equivalent / L or so. More specifically, in the case of sodium chlorosulfamate, the amount added in terms of total chlorine is usually 0.1 to 10 mg / L, preferably about 0.5 to 3 mg / L. The amount of Cl-MIT not detected as total chlorine is usually 0.01 to 0.5 mg / L, preferably about 0.03 to 0.15 mg / L. The amount of DBNPA added is usually about 0.1 to 10 mg / L, preferably about 0.2 to 6 mg / L in terms of total chlorine.

本発明によれば、残留酸化剤の還元除去のために添加される亜硝酸(塩)が、これらの酸化性薬品との反応性が殆どないために、添加した酸化性薬品の効果を最大限に発揮させることができる。従って、酸化性薬品の添加量を抑えて薬品コストを低減することができる。   According to the present invention, since the nitrous acid (salt) added for the reduction and removal of the residual oxidizing agent has little reactivity with these oxidizing chemicals, the effect of the added oxidizing chemicals is maximized. Can be demonstrated. Therefore, the chemical cost can be reduced by suppressing the amount of the oxidizing chemical added.

RO給水に酸化剤を添加した後、亜硝酸(塩)、或いは第一還元剤としての亜硝酸(塩)と第二還元剤を添加してRO膜処理する本発明の水処理装置の実施形態の一例を図1に具体的に示す。   Embodiment of the water treatment apparatus of the present invention in which nitrous acid (salt) or nitrous acid (salt) as a first reducing agent and a second reducing agent are added to the RO water supply and then the RO membrane treatment is performed. An example of this is specifically shown in FIG.

図1(a),(b)では、原水槽1内の原水は、濾過装置2で濾過され、濾過処理水は濾過処理水槽3、保安フィルター4を経てRO膜装置5でRO膜処理され、処理水が取り出される。   In FIG. 1 (a), (b), the raw | natural water in the raw | natural water tank 1 is filtered by the filtration apparatus 2, and the RO membrane process is carried out by the RO membrane apparatus 5 through the filtration treatment water tank 3 and the safety filter 4, Treated water is removed.

図1(a)の実施形態では、原水槽1から濾過装置2に原水が送給される配管に酸化剤が添加され、保安フィルター5の後段のRO膜装置6の入口で、亜硝酸(塩)が添加される。
また、図1(b)の実施形態では、保安フィルター5の後段のRO膜装置6の入口で、亜硝酸(塩)が第一還元剤として添加され、次いで亜硫酸水素ナトリウム等の第二還元剤が添加される。
ただし、各薬品の添加順序が上記の通りであれば、その添加場所には特に制限はなく、例えば、濾過装置2の入口側や出口側で添加してもよい。各薬品は異なる場所に添加されてもよい。
In the embodiment of FIG. 1A, an oxidant is added to a pipe through which raw water is fed from the raw water tank 1 to the filtration device 2, and nitrous acid (salt) is introduced at the inlet of the RO membrane device 6 at the rear stage of the safety filter 5. ) Is added.
In the embodiment of FIG. 1B, nitrous acid (salt) is added as a first reducing agent at the inlet of the RO membrane device 6 at the rear stage of the safety filter 5, and then a second reducing agent such as sodium bisulfite. Is added.
However, if the addition order of each chemical | medical agent is as above-mentioned, there will be no restriction | limiting in particular in the addition place, For example, you may add at the inlet side and outlet side of the filtration apparatus 2. FIG. Each drug may be added to a different location.

図1(a),(b)は、本発明の水処理装置の実施形態の一例であって、本発明は何ら図示の装置に限定されるものではない。
既に前工程で酸化剤が添加されて酸化剤を含有するものであれば、酸化剤添加工程或いは酸化剤添加手段を省略できる。また、還元剤添加後に酸化性薬品を添加する場合は、図1(a)における亜硝酸(塩)添加後の水に酸化性薬品を添加した後RO膜装置6に供給すればよい。或いは、図1(b)における第二還元剤添加後の水に酸化性薬品を添加した後、RO膜装置6に供給すればよい。
1A and 1B are examples of the embodiment of the water treatment apparatus of the present invention, and the present invention is not limited to the illustrated apparatus.
If the oxidizing agent is already added in the previous step and contains an oxidizing agent, the oxidizing agent adding step or the oxidizing agent adding means can be omitted. When the oxidizing chemical is added after the reducing agent is added, the oxidizing chemical is added to the water after the addition of nitrous acid (salt) in FIG. Alternatively, an oxidizing chemical may be added to the water after the addition of the second reducing agent in FIG. 1 (b) and then supplied to the RO membrane device 6.

本発明のRO膜装置の前処理方法を、処理対象となるRO給水の水質を管理するための装置(例えば、パーソナルコンピュータ等)におけるCPU等を含む制御部によって実施することも可能である。また、本発明のRO膜装置の前処理方法を、記録媒体(不揮発性メモリ(USBメモリ等)、HDD、CD等)等を備えるハードウェア資源にプログラムとして格納し、前記制御部によって実施することも可能である。当該制御部によって、RO給水に還元剤として亜硝酸(塩)、或いは第一還元剤としての亜硝酸(塩)及び第二還元剤を添加制御する水処理システムを構築することも可能である。   The pretreatment method of the RO membrane device of the present invention can also be implemented by a control unit including a CPU or the like in a device (for example, a personal computer) for managing the quality of RO water supply to be treated. The RO membrane device pre-processing method of the present invention is stored as a program in a hardware resource including a recording medium (nonvolatile memory (USB memory, etc.), HDD, CD, etc.) and the like, and is executed by the control unit. Is also possible. It is also possible to construct a water treatment system that controls addition of nitrous acid (salt) as a reducing agent or nitrous acid (salt) as a first reducing agent and a second reducing agent to the RO water supply by the control unit.

以下に、実施例に代わる実験例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to experimental examples instead of the examples.

以下の実験例及び比較実験例において、RO給水としては、栃木県下都賀郡野木町の水道水を活性炭で脱塩素処理したもの(以下、「脱塩素町水」と記載する。)を用い、実験はいずれもpH7.0、温度20℃で行った。
また、添加試薬としては以下のものを用い、pHとORPは、(株)堀場製作所製ORP測定機器「ポータブルpHメーターD−54」(比較電極3.3mol/L KCl−Ag/AgCl)を用いて測定した。
In the following experimental examples and comparative experimental examples, the RO water supply was tested by dechlorinating tap water from Nogi-cho, Shimotsuga-gun, Tochigi Prefecture with activated carbon (hereinafter referred to as “dechlorinated town water”). All were conducted at pH 7.0 and at a temperature of 20 ° C.
In addition, the following reagents are used, and the pH and ORP are ORP measuring equipment “Portable pH Meter D-54” (comparative electrode 3.3 mol / L KCl—Ag / AgCl) manufactured by Horiba, Ltd. Measured.

次亜塩素酸ナトリウム水溶液(有効塩素12%、旭硝子(株)製)
亜硝酸ナトリウム(キシダ化学(株)製)
亜硫酸水素ナトリウム(キシダ化学(株)製)
亜硫酸ナトリウム(キシダ化学(株)製)
塩化ナトリウム(キシダ化学(株)製)
硫酸銅(硫酸銅(II)5水塩)(キシダ化学(株)製)
塩化銅(塩化銅(II)2水塩)(キシダ化学(株)製)
重炭酸ナトリウム(キシダ化学(株)製)
塩化マンガン(塩化マンガン(II)4水塩)(キシダ化学(株)製)
Sodium hypochlorite aqueous solution (effective chlorine 12%, manufactured by Asahi Glass Co., Ltd.)
Sodium nitrite (Kishida Chemical Co., Ltd.)
Sodium bisulfite (manufactured by Kishida Chemical Co., Ltd.)
Sodium sulfite (Kishida Chemical Co., Ltd.)
Sodium chloride (Kishida Chemical Co., Ltd.)
Copper sulfate (copper sulfate (II) pentahydrate) (manufactured by Kishida Chemical Co., Ltd.)
Copper chloride (copper chloride (II) dihydrate) (manufactured by Kishida Chemical Co., Ltd.)
Sodium bicarbonate (Kishida Chemical Co., Ltd.)
Manganese chloride (manganese chloride (II) tetrahydrate) (manufactured by Kishida Chemical Co., Ltd.)

また、前述の通り、RO給水の酸化還元電位(ORP)が高いことはすなわちRO給水に何らかの酸化剤が存在し、RO膜の膜劣化を引き起こすことを意味するため、以下の実験例及び比較実験例では、従来の還元剤がORPを上昇させるのに対し、本発明で用いる亜硝酸(塩)がORPが上昇させないことを示すことで本発明の効果を立証した。   In addition, as described above, a high oxidation-reduction potential (ORP) of the RO water supply means that some oxidant is present in the RO water supply and causes the membrane deterioration of the RO membrane. In the examples, the effect of the present invention was proved by showing that the conventional reducing agent increases the ORP, whereas the nitrous acid (salt) used in the present invention does not increase the ORP.

実験に先立ち、脱塩素町水に塩素1mg/L(as Cl)を添加する前後でのpHとORPを測定したところ、表1の結果が得られた。 Prior to the experiment, pH and ORP were measured before and after adding 1 mg / L (as Cl 2 ) of chlorine to dechlorinated town water, and the results shown in Table 1 were obtained.

Figure 2017121605
Figure 2017121605

表1より、酸化剤である塩素の添加でORPが高くなることが分かる。   From Table 1, it can be seen that ORP increases with the addition of chlorine as an oxidizing agent.

[実験例1,2、比較実験例1,2,3]
塩化ナトリウム、純水、硫酸銅水溶液、重炭酸ナトリウム水溶液を添加、撹拌して、各々還元剤添加前試験水を調製した。
この還元剤添加前試験水についてpHとORPを測定した。
次に、各試験水に表2に示す還元剤の水溶液を、表2に示す還元剤濃度となるように添加混合して20分静置した後、pHとORPを測定した。
各試験水の薬剤濃度は還元剤添加後で、銅イオン濃度0.4mg/L、塩化ナトリウム濃度35,000mg/L、重炭酸ナトリウム濃度146mg/Lで、還元剤濃度は表2に示す通りである。
[Experimental Examples 1, 2 and Comparative Experimental Examples 1, 2, 3]
Sodium chloride, pure water, an aqueous copper sulfate solution, and an aqueous sodium bicarbonate solution were added and stirred to prepare test water before adding a reducing agent.
The pH and ORP of the test water before addition of the reducing agent were measured.
Next, an aqueous solution of a reducing agent shown in Table 2 was added to each test water so as to have a reducing agent concentration shown in Table 2 and allowed to stand for 20 minutes, and then pH and ORP were measured.
The chemical concentration of each test water was 0.4 mg / L copper ion concentration, 35,000 mg / L sodium chloride concentration, 146 mg / L sodium bicarbonate concentration after addition of the reducing agent, and the reducing agent concentration was as shown in Table 2. is there.

Figure 2017121605
Figure 2017121605

[実験例3、比較実験例4]
塩化ナトリウム水溶液、純水、硫酸銅水溶液、塩化マンガン水溶液、重炭酸ナトリウム水溶液を添加、撹拌して、各々還元剤添加前試験水を調製した。
この還元剤添加前試験水についてpHとORPを測定した。
次に、各試験水に表3に示す還元剤の水溶液を、表3に示す還元剤濃度となるように添加して30分撹拌した後、pHとORPを測定した。
各試験水の薬剤濃度は還元剤添加後で、銅イオン濃度0.4mg/L、塩化ナトリウム濃度660mg/L、マンガンイオン濃度2.1mg/Lで、重炭酸ナトリウム濃度80mg/Lで、還元剤濃度は表3に示す通りである。
[Experimental Example 3, Comparative Experimental Example 4]
Sodium chloride aqueous solution, pure water, copper sulfate aqueous solution, manganese chloride aqueous solution, and sodium bicarbonate aqueous solution were added and stirred to prepare test water before reducing agent addition.
The pH and ORP of the test water before addition of the reducing agent were measured.
Next, after adding the reducing agent aqueous solution shown in Table 3 to each test water so that it might become the reducing agent density | concentration shown in Table 3, and stirring for 30 minutes, pH and ORP were measured.
The chemical concentration of each test water was, after adding the reducing agent, copper ion concentration 0.4 mg / L, sodium chloride concentration 660 mg / L, manganese ion concentration 2.1 mg / L, sodium bicarbonate concentration 80 mg / L, reducing agent The concentrations are as shown in Table 3.

Figure 2017121605
Figure 2017121605

[実験例4、比較実験例5]
塩化ナトリウム水溶液、純水、硫酸銅水溶液、塩化マンガン水溶液、重炭酸ナトリウム水溶液、次亜塩素酸ナトリウム水溶液を添加、撹拌して、各々還元剤添加前試験水を調製した。この試験水の各薬剤濃度は、塩化ナトリウム濃度660mg/L、銅イオン濃度0.4mg/L、マンガンイオン濃度2.1mg/L、重炭酸ナトリウム濃度80mg/L、次亜塩素酸ナトリウム濃度1mg/L(as 遊離塩素)である。
[Experimental Example 4, Comparative Experimental Example 5]
Sodium chloride aqueous solution, pure water, copper sulfate aqueous solution, manganese chloride aqueous solution, sodium bicarbonate aqueous solution and sodium hypochlorite aqueous solution were added and stirred to prepare test water before adding a reducing agent. Each drug concentration in the test water is as follows: sodium chloride concentration 660 mg / L, copper ion concentration 0.4 mg / L, manganese ion concentration 2.1 mg / L, sodium bicarbonate concentration 80 mg / L, sodium hypochlorite concentration 1 mg / L L (as free chlorine).

次に、還元剤添加前試験水に、表4に示す第一還元剤の水溶液を表4に示す還元剤濃度となるように添加して撹拌し、次いで、表4に示す第二還元剤の水溶液を表4に示す還元剤濃度となるように添加して撹拌した。ただし、比較実験例5では、第一還元剤を用いず、第二還元剤のみの添加とした。
第二還元剤添加1分後、及び1時間後の試験水のpHとORPを測定し、結果を表4に示した。
Next, the aqueous solution of the first reducing agent shown in Table 4 was added to the test water before adding the reducing agent so as to have the reducing agent concentration shown in Table 4, and then stirred, and then the second reducing agent shown in Table 4 was added. The aqueous solution was added to a reducing agent concentration shown in Table 4 and stirred. However, in Comparative Experimental Example 5, the first reducing agent was not used and only the second reducing agent was added.
The pH and ORP of the test water 1 minute and 1 hour after the addition of the second reducing agent were measured, and the results are shown in Table 4.

Figure 2017121605
Figure 2017121605

[実験例5、比較実験例6〜8]
塩化ナトリウム水溶液、純水、塩化銅水溶液、塩化マンガン水溶液、重炭酸ナトリウム水溶液、次亜塩素酸ナトリウム水溶液を添加、撹拌して、各々還元剤添加前試験水を調製した。この試験水の各薬剤濃度は、塩化ナトリウム濃度660mg/L、銅イオン濃度0.4mg/L、マンガンイオン濃度2.1mg/L、重炭酸ナトリウム濃度80mg/L、次亜塩素酸ナトリウム濃度0.07mg/L(as 遊離塩素)である。この還元剤添加前試験水のpHは8.3で、ORPは384mVであった。
[Experimental Example 5, Comparative Experimental Examples 6-8]
Sodium chloride aqueous solution, pure water, copper chloride aqueous solution, manganese chloride aqueous solution, sodium bicarbonate aqueous solution and sodium hypochlorite aqueous solution were added and stirred to prepare test water before adding a reducing agent. The concentration of each drug in the test water is as follows: sodium chloride concentration 660 mg / L, copper ion concentration 0.4 mg / L, manganese ion concentration 2.1 mg / L, sodium bicarbonate concentration 80 mg / L, sodium hypochlorite concentration 0. 07 mg / L (as free chlorine). The pH of the test water before addition of the reducing agent was 8.3, and the ORP was 384 mV.

次に、還元剤添加前試験水に、表5に示す還元剤の水溶液を表4に示す還元剤濃度となるように添加して撹拌した。ただし、比較実験例7,8では、塩化銅水溶液及び塩化マンガン水溶液を用いずに還元剤添加前試験水を調製した。
還元剤添加直後、10分後、及び30分後の試験水のpHとORPを測定し、結果を表5に示した。
Next, an aqueous solution of the reducing agent shown in Table 5 was added to the test water before addition of the reducing agent so as to have a reducing agent concentration shown in Table 4, and stirred. However, in Comparative Experimental Examples 7 and 8, test water before adding a reducing agent was prepared without using an aqueous copper chloride solution and an aqueous manganese chloride solution.
Immediately after addition of the reducing agent, 10 minutes and 30 minutes later, the pH and ORP of the test water were measured, and the results are shown in Table 5.

Figure 2017121605
Figure 2017121605

表2〜5より、従来の還元剤では、ORPの上昇が大きく、RO膜の膜劣化が予測されるが、亜硝酸(塩)であれば、ORPの上昇が少なく、RO膜の膜劣化の問題を引き起こすことがないことが分かる。
また、亜硝酸(塩)を第一還元剤として添加し、従来の還元剤を第二還元剤として添加した場合でも、ORPの上昇を抑制してRO膜の膜劣化を防止することができることが分かる。
表5より、亜硝酸(塩)によるORP上昇の制御効果は、RO給水に金属イオンが含まれている場合に有効であり、金属イオンが含まれていない場合には、特に効果はないことが分かる。
From Tables 2 to 5, with conventional reducing agents, the increase in ORP is large and the membrane deterioration of the RO membrane is predicted, but with nitrous acid (salt), the increase in ORP is small and the membrane degradation of the RO membrane is reduced. It turns out that it does not cause a problem.
Further, even when nitrous acid (salt) is added as a first reducing agent and a conventional reducing agent is added as a second reducing agent, the increase in ORP can be suppressed and membrane deterioration of the RO membrane can be prevented. I understand.
From Table 5, the effect of controlling ORP increase by nitrous acid (salt) is effective when metal ions are included in the RO water supply, and there is no particular effect when metal ions are not included. I understand.

1 原水槽
2 濾過装置
3 濾過処理水槽
4 保安フィルター
5 RO膜装置
DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Filtration apparatus 3 Filtration processing water tank 4 Security filter 5 RO membrane apparatus

Claims (6)

重金属イオンを含む供給水を逆浸透膜装置で逆浸透膜処理する際の前処理方法であって、
該供給水に、亜硝酸及び/又はその塩を添加することを特徴とする逆浸透膜装置の前処理方法。
A pretreatment method for treating a feed water containing heavy metal ions with a reverse osmosis membrane device using a reverse osmosis membrane device,
A pretreatment method for a reverse osmosis membrane device, comprising adding nitrous acid and / or a salt thereof to the feed water.
請求項1において、前記重金属イオンが、銅イオン、コバルトイオン、スズイオン、クロムイオンおよびニッケルイオンからなる群から選ばれる少なくとも1種であり、前記供給水中の重金属イオン濃度が1ppb以上であることを特徴とする逆浸透膜装置の前処理方法。   2. The heavy metal ion according to claim 1, wherein the heavy metal ion is at least one selected from the group consisting of copper ion, cobalt ion, tin ion, chromium ion, and nickel ion, and the heavy metal ion concentration in the supply water is 1 ppb or more. A pretreatment method for a reverse osmosis membrane device. 請求項1又は2において、前記供給水が酸化剤を含有することを特徴とする逆浸透膜装置の前処理方法。   The pretreatment method for a reverse osmosis membrane device according to claim 1, wherein the supplied water contains an oxidizing agent. 請求項1ないし3のいずれか1項において、前記供給水の酸化還元電位が300mV以上であることを特徴とする逆浸透膜装置の前処理方法。   The pretreatment method for a reverse osmosis membrane device according to any one of claims 1 to 3, wherein an oxidation-reduction potential of the supplied water is 300 mV or more. 請求項1ないし4のいずれか1項において、前記供給水に、第一還元剤として前記亜硝酸及び/又はその塩を添加した後、亜硝酸及び/又はその塩とは異なる還元剤を第二還元剤として添加することを特徴とする逆浸透膜装置の前処理方法。   5. The reductant different from nitrous acid and / or a salt thereof is added to the feed water after adding the nitrous acid and / or a salt thereof as a first reducing agent to the feed water. A pretreatment method for a reverse osmosis membrane device, which is added as a reducing agent. 重金属イオンを含む供給水に還元剤を添加して逆浸透膜処理する水処理装置において、該供給水に還元剤として亜硝酸及び/又はその塩を添加する還元剤添加手段と、該還元剤が添加された水を逆浸透膜処理する逆浸透膜装置とを備えてなることを特徴とする水処理装置。   In a water treatment apparatus for performing reverse osmosis membrane treatment by adding a reducing agent to supply water containing heavy metal ions, a reducing agent addition means for adding nitrous acid and / or a salt thereof as a reducing agent to the supply water, and the reducing agent A water treatment device comprising a reverse osmosis membrane device for treating the added water with a reverse osmosis membrane.
JP2016001127A 2016-01-06 2016-01-06 Preprocessing method of inverse infiltration apparatus, and water processing equipment Pending JP2017121605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016001127A JP2017121605A (en) 2016-01-06 2016-01-06 Preprocessing method of inverse infiltration apparatus, and water processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016001127A JP2017121605A (en) 2016-01-06 2016-01-06 Preprocessing method of inverse infiltration apparatus, and water processing equipment

Publications (1)

Publication Number Publication Date
JP2017121605A true JP2017121605A (en) 2017-07-13

Family

ID=59306344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016001127A Pending JP2017121605A (en) 2016-01-06 2016-01-06 Preprocessing method of inverse infiltration apparatus, and water processing equipment

Country Status (1)

Country Link
JP (1) JP2017121605A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019015676A1 (en) * 2017-07-21 2019-01-24 艾欧史密斯(中国)环境电器有限公司 Water purification system
US20210170341A1 (en) * 2018-08-23 2021-06-10 Kurita Water Industries Ltd. Method for controlling slime in reverse osmosis membrane apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019015676A1 (en) * 2017-07-21 2019-01-24 艾欧史密斯(中国)环境电器有限公司 Water purification system
US20210170341A1 (en) * 2018-08-23 2021-06-10 Kurita Water Industries Ltd. Method for controlling slime in reverse osmosis membrane apparatus

Similar Documents

Publication Publication Date Title
JP6107985B2 (en) Reverse osmosis membrane device pretreatment method and water treatment device
WO2011108610A1 (en) Water treatment method and ultrapure water production method
JPWO2019031430A1 (en) Reverse osmosis membrane treatment method and water treatment apparatus
JP2016120457A (en) Filtration treatment system and filtration treatment method
KR102494388B1 (en) Reverse osmosis membrane treatment method, water-based biofouling inhibition method and apparatus therefor
JP6379571B2 (en) Fresh water generation method and fresh water generation apparatus
JP2017121605A (en) Preprocessing method of inverse infiltration apparatus, and water processing equipment
JP7212478B2 (en) MEMBRANE FILTRATION SYSTEM AND MEMBRANE FILTRATION METHOD
WO2022186013A1 (en) Water treatment method and water treatment agent composition
WO2016194443A1 (en) Method for pretreating reverse osmosis membrane device, and device for treating water
JP6565966B2 (en) Water treatment method
Ruffino et al. The role of boundary conditions in the bromide-enhanced ozonation process for ammonia nitrogen removal and nitrate minimization
Sun et al. Ultraviolet (UV)-based advanced oxidation processes for micropollutant abatement in water treatment: gains and problems
JP2003247967A (en) Biosensor type water quality monitoring system and device
JP6457807B2 (en) Water treatment apparatus and water treatment method
JP2018153749A (en) Water treatment method and water treatment system using reverse osmosis membrane
WO2024048154A1 (en) Method for producing slime-suppressing auxiliary agent for reverse osmosis membrane, slime-suppressing auxiliary agent for reverse osmosis membrane, and water treatment method
JP2015186773A (en) Fresh water generation method and fresh water generator
JP7211444B2 (en) Aqueous biofouling suppression method and water treatment device
Ruffino et al. Bicarbonate and ammonia depletion in ozonized systems with bromide ion
JP7050414B2 (en) Water treatment method using reverse osmosis membrane
JPH0957067A (en) Separation with reverse osmotic membrane and apparatus therefor
JP6339985B2 (en) Method for reducing chlorine dioxide concentration in water and water treatment agent for reducing chlorine dioxide concentration in water
JP5789922B2 (en) Water treatment method and ultrapure water production method
JP7052461B2 (en) Operation control method of electric regeneration type deionization device and water treatment device