JP6565966B2 - Water treatment method - Google Patents

Water treatment method Download PDF

Info

Publication number
JP6565966B2
JP6565966B2 JP2017082942A JP2017082942A JP6565966B2 JP 6565966 B2 JP6565966 B2 JP 6565966B2 JP 2017082942 A JP2017082942 A JP 2017082942A JP 2017082942 A JP2017082942 A JP 2017082942A JP 6565966 B2 JP6565966 B2 JP 6565966B2
Authority
JP
Japan
Prior art keywords
chlorine
water
water treatment
treatment method
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017082942A
Other languages
Japanese (ja)
Other versions
JP2018176116A (en
Inventor
勝郎 依田
勝郎 依田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2017082942A priority Critical patent/JP6565966B2/en
Priority to PCT/JP2018/015019 priority patent/WO2018193907A1/en
Publication of JP2018176116A publication Critical patent/JP2018176116A/en
Application granted granted Critical
Publication of JP6565966B2 publication Critical patent/JP6565966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Hydrology & Water Resources (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は水処理方法に係り、詳しくは、海水淡水化用逆浸透膜(RO膜)装置等の水処理装置におけるバイオファウリングを抑制する水処理方法に関する。   The present invention relates to a water treatment method, and more particularly to a water treatment method for suppressing biofouling in a water treatment device such as a reverse osmosis membrane (RO membrane) device for seawater desalination.

工業用水、市水、井水、海水、河川水、湖沼水、工場廃水などを水処理して純水等を製造する手段として、RO膜装置が広く利用されている。この場合、これらの被処理水に含まれる微生物によるバイオファウリングを抑制するために、塩素、次亜塩素酸ナトリウム、亜塩素酸ナトリウム等の塩素系酸化剤が被処理水(供給水)に添加される。また、電気分解により塩素を生成させることも行われている。   RO membrane devices are widely used as means for producing pure water by treating industrial water, city water, well water, seawater, river water, lake water, factory wastewater, and the like. In this case, chlorine-based oxidizing agents such as chlorine, sodium hypochlorite, and sodium chlorite are added to the treated water (feed water) in order to suppress biofouling by microorganisms contained in these treated water. Is done. In addition, chlorine is also generated by electrolysis.

塩素系酸化剤の添加や電気分解により遊離塩素を存在させた水をRO膜処理すると、RO膜が酸化劣化を受ける。特にポリアミド系のRO膜では酸化劣化し易い。このため、従来、RO膜装置の前段に活性炭塔を設置して塩素等の残留酸化剤を除去するか(特許文献1)、RO膜装置の前段で亜硫酸水素ナトリウム(SBS)や亜硫酸ナトリウムなどの還元剤を添加して塩素を分解除去する(特許文献2)等の処理がなされている。   When RO membrane treatment is performed on water in which free chlorine is present by addition of a chlorine-based oxidant or electrolysis, the RO membrane undergoes oxidative degradation. In particular, polyamide-based RO membranes are susceptible to oxidative degradation. For this reason, conventionally, an activated carbon tower is installed in the front stage of the RO membrane apparatus to remove residual oxidizers such as chlorine (Patent Document 1), or sodium bisulfite (SBS), sodium sulfite, etc. are used in the front stage of the RO membrane apparatus. Treatments such as adding a reducing agent to decompose and remove chlorine (Patent Document 2) have been performed.

ただし、活性炭塔を設置した場合、塔内でバイオファウリングが発生して後段装置を汚染することがある、イニシャルコストがかかる、などの欠点があり、一般的には還元剤の添加による残留酸化剤の分解除去が行われている。   However, when an activated carbon tower is installed, there are disadvantages such as biofouling occurring in the tower and contamination of the subsequent equipment, and it costs initial cost. Generally, residual oxidation is caused by the addition of a reducing agent. The agent is decomposed and removed.

図2は、従来の海水淡水化設備の一例を示す系統図であり、塩素系酸化剤の添加による図2(a)では、海水が送水ポンプにより原水槽1に送給される過程で次亜塩素酸ナトリウム(NaClO)等の塩素系酸化剤が添加され、その後、原水槽1から反応槽2に送給される過程で塩化第二鉄(FeCl)等の無機凝集剤が添加されて反応槽2で凝集処理され、次いで二層濾過器3で濾過された後、給水槽4、保安フィルター5を経てRO膜装置6でRO膜処理され、RO膜透過水が処理水として取り出されるが、保安フィルター5の入口側では、残留酸化剤を分解除去するために、亜硫酸水素ナトリウム(SBS)等の還元剤が添加される。電気分解による図2(b)では、海水が電解装置7で電気分解され、電気分解で生成した塩素を含む海水が原水槽1を経て、図2(a)におけると同様に凝集、濾過された後、SBS等の還元剤が添加されてRO膜装置6で処理される。
なお、この還元剤の添加により、供給水中に遊離塩素が存在しなくなる結果、RO膜装置にバイオファウリングが起こることを防止するために、還元剤の添加後、RO膜に対する劣化影響の少ない結合塩素系スライムコントロール剤(例えば栗田工業(株)製「クリバーターIK−110」)が添加される場合もある。
FIG. 2 is a system diagram showing an example of a conventional seawater desalination facility. In FIG. 2 (a) with the addition of a chlorinated oxidant, seawater is fed into the raw water tank 1 by a water pump. Chlorine oxidant such as sodium chlorate (NaClO) is added, and then inorganic flocculant such as ferric chloride (FeCl 3 ) is added and reacted in the process of being fed from raw water tank 1 to reaction tank 2 After being agglomerated in the tank 2 and then filtered through the two-layer filter 3, the RO membrane device 6 is subjected to RO membrane treatment through the water supply tank 4 and the safety filter 5, and the RO membrane permeated water is taken out as treated water. On the inlet side of the safety filter 5, a reducing agent such as sodium bisulfite (SBS) is added to decompose and remove the residual oxidant. In FIG. 2 (b) by electrolysis, seawater was electrolyzed by the electrolyzer 7, and seawater containing chlorine produced by electrolysis was aggregated and filtered through the raw water tank 1 as in FIG. 2 (a). Thereafter, a reducing agent such as SBS is added and processed by the RO membrane device 6.
In order to prevent biofouling from occurring in the RO membrane device as a result of the elimination of free chlorine in the supply water by the addition of this reducing agent, the binding with less degradation effect on the RO membrane after the addition of the reducing agent. A chlorine-based slime control agent (for example, “Kuriverter IK-110” manufactured by Kurita Kogyo Co., Ltd.) may be added.

特開平10−337563号公報Japanese Patent Laid-Open No. 10-337563 特開平7−308671号公報JP-A-7-308671

上記従来の海水淡水化RO膜処理では、次のような問題があった。
(1) 次亜塩素酸ナトリウム等の塩素系酸化剤の添加や海水の電気分解で生成した遊離塩素は、海水中の有機物や、臭素、ヨウ素により分解され易いため、分解分を補ってバイオファウリング抑制効果を十分に得るための薬品添加量や消費電力量が多い。
(2) 海水に塩素系酸化剤を添加すると、有害なトリハロメタン等の有機塩素化合物が生成するため、特に飲料水用途では問題となる。
(3) RO膜の酸化劣化の防止のために、RO膜の入口側で還元剤の添加や活性炭塔設置による処理が必要となり、処理が複雑である。
(4) RO膜装置の前段で還元剤の添加や活性炭処理で遊離塩素を除去してしまうため、RO膜装置におけるバイオファウリングの抑制が不十分である。
(5) RO膜装置の入口で結合塩素系スライムコントロール剤を添加することにより、上記(4)の問題を解決することができるが、この場合には、更に添加する薬剤が増えることになる。
The conventional seawater desalination RO membrane treatment has the following problems.
(1) Free chlorine produced by the addition of chlorinated oxidants such as sodium hypochlorite and electrolysis of seawater is easily decomposed by organic matter, bromine and iodine in seawater. There are many chemical additions and power consumption to obtain a sufficient ring suppression effect.
(2) Addition of a chlorinated oxidant to seawater produces harmful organic chlorinated compounds such as trihalomethane, which is particularly problematic for drinking water applications.
(3) In order to prevent oxidative degradation of the RO membrane, it is necessary to add a reducing agent or install an activated carbon tower on the RO membrane inlet side, and the treatment is complicated.
(4) Since free chlorine is removed by addition of a reducing agent or activated carbon treatment at the front stage of the RO membrane device, suppression of biofouling in the RO membrane device is insufficient.
(5) The problem of the above (4) can be solved by adding the combined chlorine-based slime control agent at the entrance of the RO membrane device. In this case, however, the amount of the agent to be added further increases.

本発明は上記した従来法の課題を解決する水処理方法を提供することを目的とする。   An object of this invention is to provide the water treatment method which solves the subject of the above-mentioned conventional method.

本発明者は、上記課題を解決すべく、鋭意検討した結果、塩素系酸化剤の添加或いは電気分解による塩素の発生に先立ち、供給水に塩素安定化剤として窒素化合物を添加し、供給水中の塩素を安定化させることにより、塩素の分解やトリハロメタン等の生成を防止することができると共に、遊離塩素濃度の低減でRO膜の酸化劣化を防止することができ、RO膜入口側での還元剤の添加や活性炭塔の設置を不要とした上で、RO膜のバイオファウリングを効果的に抑制することが可能となることを見出した。   As a result of intensive studies to solve the above problems, the present inventor added a nitrogen compound as a chlorine stabilizer to the feed water before adding chlorine-based oxidant or generating chlorine by electrolysis, By stabilizing the chlorine, it is possible to prevent the decomposition of chlorine and the generation of trihalomethane, etc., and it is possible to prevent the oxidative deterioration of the RO membrane by reducing the free chlorine concentration, and the reducing agent on the RO membrane inlet side The present inventors have found that it is possible to effectively suppress biofouling of RO membranes without the need for addition of carbon and installation of an activated carbon tower.

即ち、本発明は以下を要旨とする。   That is, the gist of the present invention is as follows.

[1] 水処理装置への供給水に、塩素系酸化剤を添加するか或いは電気分解で塩素を発生させることにより遊離塩素を存在させた後該水処理装置に供給する水処理方法において、該供給水に遊離塩素を存在させるに先立ち、該供給水に塩素安定化剤として窒素化合物を添加することを特徴とする水処理方法。 [1] In a water treatment method of supplying free water to a water treatment apparatus after adding free chlorine by adding a chlorine-based oxidant to the water supplied to the water treatment apparatus or generating chlorine by electrolysis, A water treatment method characterized by adding a nitrogen compound as a chlorine stabilizer to the feed water prior to the presence of free chlorine in the feed water.

[2] [1]において、前記水処理装置が逆浸透膜装置であることを特徴とする水処理方法。 [2] The water treatment method according to [1], wherein the water treatment device is a reverse osmosis membrane device.

[3] [1]又は[2]において、前記供給水が海水であることを特徴とする水処理方法。 [3] The water treatment method according to [1] or [2], wherein the supplied water is seawater.

[4] [1]ないし[3]のいずれかにおいて、前記窒素化合物がスルファミン酸化合物及び/又は有機窒素化合物であることを特徴とする水処理方法。 [4] The water treatment method according to any one of [1] to [3], wherein the nitrogen compound is a sulfamic acid compound and / or an organic nitrogen compound.

[5] [1]ないし[4]のいずれかにおいて、前記塩素系酸化剤として次亜塩素酸塩及び/又はジクロロイソシアヌル酸を前記供給水に添加することを特徴とする水処理方法。 [5] The water treatment method according to any one of [1] to [4], wherein hypochlorite and / or dichloroisocyanuric acid is added to the feed water as the chlorinated oxidant.

[6] [1]ないし[5]のいずれかにおいて、前記窒素化合物を前記供給水に0.3〜50mg/L添加することを特徴とする水処理方法。 [6] The water treatment method according to any one of [1] to [5], wherein the nitrogen compound is added to the feed water in an amount of 0.3 to 50 mg / L.

[7] [1]ないし[6]のいずれかにおいて、前記遊離塩素を存在させた後の前記供給水の残留塩素濃度を0.1〜10mg−Cl/Lに維持することを特徴とする水処理方法。 [7] In any one of [1] to [6], the residual chlorine concentration of the feed water after the presence of the free chlorine is maintained at 0.1 to 10 mg-Cl 2 / L. Water treatment method.

本発明によれば、塩素系酸化剤の添加或いは電気分解による塩素の発生に先立ち、供給水に塩素安定化剤として窒素化合物を添加し、その後、供給水中に添加又は生成させた遊離塩素を安定化させることにより、塩素の分解やトリハロメタン等の有害物質の生成を防止することができる。また、塩素を安定化塩素として供給水中に存在させ、遊離塩素濃度を低減することにより、供給水のRO膜酸化劣化性が低減されるため、RO膜入口側での還元剤の添加や活性炭塔の設置を不要とすることができ、処理を簡素化することができると共に、安定化塩素によりRO膜装置におけるバイオファウリングを効果的に抑制することが可能となる。   According to the present invention, prior to the addition of a chlorine-based oxidant or generation of chlorine by electrolysis, a nitrogen compound is added to the feed water as a chlorine stabilizer, and then the free chlorine added or generated in the feed water is stabilized. By making them, decomposition of chlorine and generation of harmful substances such as trihalomethane can be prevented. In addition, the presence of chlorine as stabilized chlorine in the feed water and the reduction of free chlorine concentration reduces the RO membrane oxidation degradation of the feed water, so the addition of a reducing agent on the RO membrane inlet side and the activated carbon tower Installation can be made unnecessary, the processing can be simplified, and biofouling in the RO membrane device can be effectively suppressed by the stabilized chlorine.

本発明の水処理方法の実施の形態の一例を示す海水淡水化設備の系統図である。It is a systematic diagram of the seawater desalination equipment which shows an example of embodiment of the water treatment method of this invention. 従来の海水淡水化設備の系統図である。It is a systematic diagram of the conventional seawater desalination equipment. 実験例1の結果を示すグラフである。6 is a graph showing the results of Experimental Example 1. 実験例2の結果を示すグラフである。10 is a graph showing the results of Experimental Example 2. 実験例3の結果を示すグラフである。10 is a graph showing the results of Experimental Example 3. 実験例4の結果を示すグラフである。10 is a graph showing the results of Experimental Example 4. 実験例5の結果を示すグラフである。10 is a graph showing the results of Experimental Example 5. 実験例6の結果を示すグラフである。10 is a graph showing the results of Experimental Example 6. 比較実験例1の結果を示すグラフである。6 is a graph showing the results of Comparative Experimental Example 1.

以下に図面を参照して本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1(a),(b)は、本発明の水処理方法を適用した海水の淡水化設備の一例を示す系統図であり、それぞれ、図2(a),(b)に示す海水の淡水化設備と同一機能を奏する部材に同一符号を付してある。
図1(a),(b)に示すように、本発明の水処理方法は、次亜塩素酸ナトリウム(NaClO)等の塩素系酸化剤の添加又は電気分解による塩素の発生に先立ち、塩素安定化剤として窒素化合物を供給水に添加して供給水中の塩素を安定化させることを特徴とする。
1 (a) and 1 (b) are system diagrams showing an example of seawater desalination equipment to which the water treatment method of the present invention is applied. Seawater fresh water shown in FIGS. 2 (a) and 2 (b), respectively. The members having the same functions as those of the control equipment are denoted by the same reference numerals.
As shown in FIGS. 1 (a) and 1 (b), the water treatment method of the present invention provides chlorine stabilization prior to generation of chlorine by addition of a chlorine-based oxidizing agent such as sodium hypochlorite (NaClO) or by electrolysis. A nitrogen compound is added to the feed water as an agent to stabilize chlorine in the feed water.

塩素の安定化のために添加する窒素化合物としては、供給水中の塩素を安定化結合塩素又は活性化結合塩素として安定化することができるものであればよく、特に制限はないが、例えばスルファミン酸、スルファミン酸のナトリウム塩、カリウム塩、カルシウム塩、アンモニウム塩等のスルファミン酸化合物、グリシン、タウリン、トレオニン、オルニチン(Lオルニチン)、アラニン、フェニルアラニン(Lフェニルアラニン)等の有機窒素化合物が挙げられる。これらの窒素化合物は1種のみを用いてもよく、2種以上を併用してもよい。   The nitrogen compound added to stabilize the chlorine is not particularly limited as long as it can stabilize the chlorine in the feed water as stabilized bonded chlorine or activated bonded chlorine. For example, sulfamic acid Sulfamic acid compounds such as sodium salt, potassium salt, calcium salt and ammonium salt of sulfamic acid, and organic nitrogen compounds such as glycine, taurine, threonine, ornithine (L-ornithine), alanine and phenylalanine (L-phenylalanine). These nitrogen compounds may use only 1 type and may use 2 or more types together.

供給水へのこれらの窒素化合物の添加量は、用いる窒素化合物の種類、その後段で添加する塩素系酸化剤の添加量、電気分解により発生させる塩素量、それにより供給水中に維持すべき塩素濃度等によっても異なるが、0.3〜50mg/L、特に0.3〜20mg/L程度とすることが好ましい。窒素化合物の添加量が少な過ぎると、供給水中の塩素を十分に安定化することができず、多過ぎても処理コストが高くなったり、ファウリングの原因となり不適切である。   The amount of these nitrogen compounds added to the feed water depends on the type of nitrogen compound used, the amount of chlorinated oxidant added in the subsequent stage, the amount of chlorine generated by electrolysis, and the chlorine concentration to be maintained in the feed water. Although it varies depending on the like, it is preferably 0.3 to 50 mg / L, particularly about 0.3 to 20 mg / L. If the amount of the nitrogen compound added is too small, the chlorine in the feed water cannot be sufficiently stabilized, and if it is too large, the treatment cost becomes high or fouling is inappropriate.

本発明においては、塩素安定化剤としての窒素化合物を上記の好適な添加量で添加して、供給水中で窒素化合物が十分に均一に拡散された後に塩素系酸化剤を添加するか電気分解により塩素を発生させることが好ましく、例えば、塩素系酸化剤を添加する場合には、図1(a)に示すように、塩素安定化剤としての窒素化合物を送水ポンプの吐出側で添加し、原水槽1で滞留する間に均一化させた後、原水槽1の出口側でNaClO等の塩素系酸化剤をFeCl等の無機凝集剤と共に添加することが好ましい。また、電気分解による場合は、図1(b)に示すように、送水ポンプの吐出側で塩素安定化剤を添加し、電解装置7における電気分解中に均一化させると共に塩素を発生させるようにすることが好ましい。 In the present invention, a nitrogen compound as a chlorine stabilizer is added at the above-mentioned preferable addition amount, and after the nitrogen compound is sufficiently uniformly diffused in the feed water, a chlorine-based oxidant is added or electrolysis is performed. It is preferable to generate chlorine. For example, when adding a chlorine-based oxidizer, a nitrogen compound as a chlorine stabilizer is added on the discharge side of the water pump as shown in FIG. It is preferable to add a chlorine-based oxidizing agent such as NaClO together with an inorganic flocculant such as FeCl 3 on the outlet side of the raw water tank 1 after homogenization while staying in the water tank 1. In the case of electrolysis, as shown in FIG. 1 (b), a chlorine stabilizer is added on the discharge side of the water pump so that it is made uniform during electrolysis in the electrolyzer 7 and chlorine is generated. It is preferable to do.

図1(a)に示すように、塩素安定化剤添加後に塩素系酸化剤を添加する場合、塩素系酸化剤としては、従来公知のものをいずれも用いることができるが、製品安全性の観点から、次亜塩素酸ナトリウム等の次亜塩素酸塩、或いはジクロロイソシアヌル酸、ジクロロイソシアヌル酸ナトリウム等のジクロロイソシアヌル酸塩等が好ましく、特に、次亜塩素酸ナトリウム或いはジクロロイソシアヌル酸を用いることが好ましい。これらの塩素系酸化剤は1種のみを用いてもよく、2種以上を併用してもよい。   As shown in FIG. 1 (a), when adding a chlorine-based oxidizing agent after adding a chlorine stabilizer, any conventionally known one can be used as the chlorine-based oxidizing agent, but from the viewpoint of product safety. From these, hypochlorites such as sodium hypochlorite, or dichloroisocyanurates such as dichloroisocyanuric acid and sodium dichloroisocyanurate are preferred, and it is particularly preferable to use sodium hypochlorite or dichloroisocyanuric acid. . These chlorine-based oxidizing agents may be used alone or in combination of two or more.

塩素系酸化剤の添加量は、処理対象水系のバイオファウリングの発生傾向によっても異なるが、通常0.1〜1.0mg/L、特に0.3〜0.7mg/L程度とすることが好ましく、塩素安定化剤の窒素化合物添加後に塩素系酸化剤を上記範囲で添加することにより、RO膜装置の入口での残留塩素濃度が0.3〜1.0mg−Cl/L、特に0.5〜0.7mg−Cl/L程度となるように制御することが好ましい。RO膜装置入口での残留塩素濃度が上記下限よりも少ないと十分なバイオファウリング抑制効果を得ることができず、上記上限を超えると残留塩素中の遊離塩素の割合にもよるが、RO膜劣化のおそれがある。 The amount of the chlorine-based oxidant added is usually 0.1 to 1.0 mg / L, particularly about 0.3 to 0.7 mg / L, although it varies depending on the tendency of biofouling to occur in the water to be treated. Preferably, by adding a chlorine-based oxidizing agent in the above range after adding the nitrogen compound of the chlorine stabilizer, the residual chlorine concentration at the entrance of the RO membrane device is 0.3 to 1.0 mg-Cl 2 / L, particularly 0. It is preferable to control so as to be about 5 to 0.7 mg-Cl 2 / L. If the residual chlorine concentration at the RO membrane device inlet is less than the lower limit, a sufficient biofouling suppression effect cannot be obtained, and if the upper limit is exceeded, the RO membrane depends on the ratio of free chlorine in the residual chlorine. There is a risk of deterioration.

また、電気分解による場合においても、塩素安定化剤の窒素化合物添加後の電気分解による塩素の発生で、RO膜装置の入口での残留塩素濃度が上記範囲となるように電気分解条件を制御することが好ましい。   Even in the case of electrolysis, the electrolysis conditions are controlled so that the residual chlorine concentration at the entrance of the RO membrane device is within the above range due to the generation of chlorine by electrolysis after addition of the nitrogen compound of the chlorine stabilizer. It is preferable.

特に本発明では、塩素系酸化剤による塩素又は電気分解により生成した塩素を窒素化合物により安定化することで、RO膜装置入口での残留塩素濃度が上記範囲であって、遊離塩素濃度は0.1mg−Cl/L以下、特に0.05mg−Cl/L以下となるように制御することで、遊離塩素によるRO膜の酸化劣化を防止した上でバイオファウリング抑制効果を十分に得ることができ、RO膜装置前段での還元剤の添加や活性炭塔の設置を不要とすることができる。
とりわけ、RO膜装置入口での残留塩素に占める結合塩素(活性化結合塩素と安定化結合塩素との合計)の割合は90%以上であることが好ましく、更に、安定化結合塩素が80%以上であることが好ましい。そして、このような割合となるように、塩素安定化剤としての窒素化合物の種類や添加量を制御することにより、RO膜の劣化を防止した上で良好なバイオファウリング抑制効果を得ることができる。
In particular, in the present invention, the residual chlorine concentration at the RO membrane apparatus inlet is in the above range by stabilizing chlorine by a chlorine-based oxidizing agent or chlorine generated by electrolysis with a nitrogen compound, and the free chlorine concentration is 0.1. By controlling to be 1 mg-Cl 2 / L or less, particularly 0.05 mg-Cl 2 / L or less, it is possible to obtain a sufficient biofouling suppression effect while preventing oxidative degradation of the RO membrane due to free chlorine. It is possible to eliminate the need for addition of a reducing agent and installation of an activated carbon tower in the previous stage of the RO membrane device.
In particular, the proportion of bonded chlorine (total of activated bonded chlorine and stabilized bonded chlorine) in the residual chlorine at the entrance of the RO membrane device is preferably 90% or more, and more preferably 80% or more of stabilized bonded chlorine. It is preferable that And by controlling the kind and addition amount of the nitrogen compound as the chlorine stabilizer so as to be such a ratio, it is possible to obtain a good biofouling suppression effect while preventing the deterioration of the RO membrane. it can.

なお、ここで、遊離塩素、活性化結合塩素、安定化結合塩素とは、後述の実施例の項に記載の方法で測定される塩素に該当し、残留塩素とは、これら遊離塩素、活性化結合塩素及び安定化結合塩素の合計である。   Here, free chlorine, activated bound chlorine, and stabilized bound chlorine correspond to chlorine measured by the method described in the Examples section below, and residual chlorine refers to these free chlorine, activated chlorine. The sum of bound chlorine and stabilized bound chlorine.

本発明では、上記の通り、残留塩素濃度を制御することにより、RO膜装置の入口での還元剤の添加や活性炭塔の設置を不要とすることができるが、何らこれらの操作や装置を排除するものではなく、必要に応じて少量の還元剤を添加してもよい。   In the present invention, as described above, by controlling the residual chlorine concentration, it is not necessary to add a reducing agent at the entrance of the RO membrane device or install an activated carbon tower, but these operations and devices are excluded. A small amount of a reducing agent may be added as necessary.

図1では、本発明を海水の淡水化設備に適用した場合を例示したが、本発明において、水処理装置はRO膜装置に限らず、バイオファウリング抑制のために塩素系酸化剤の添加又は電気分解を行うが、装置の劣化防止のために、その入口側で遊離塩素を除去する必要があるイオン交換装置等の水処理装置による水処理にも適用することができる。また、供給水は海水に限らず、河川水や井水、湖沼水、各種排水等を供給水とする場合にも適用することができる。ただし、塩素の分解、トリハロメタン等の有機塩素化合物の生成、RO膜劣化といった課題の解決の面から、海水のRO膜装置による淡水化設備に適用した場合、特に本発明の効果が有効に発揮される。   In FIG. 1, although the case where this invention was applied to the desalination equipment of seawater was illustrated, in this invention, a water treatment apparatus is not restricted to RO membrane apparatus, addition of a chlorine-type oxidizing agent for biofouling suppression, or Although electrolysis is performed, it can also be applied to water treatment by a water treatment device such as an ion exchange device in which free chlorine needs to be removed on the inlet side in order to prevent deterioration of the device. Further, the supply water is not limited to seawater, but can also be applied to the case where river water, well water, lake water, various waste waters, or the like is used as supply water. However, the effect of the present invention is particularly effective when applied to a desalination facility using an RO membrane device for seawater from the viewpoint of solving problems such as decomposition of chlorine, generation of organic chlorine compounds such as trihalomethane, and RO membrane deterioration. The

以下に実施例に代わる実験例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to experimental examples instead of the examples.

以下の実験例において、塩素濃度(mg−Cl/L)の測定には、東亜DKK社製ポケット塩素測定器「HACH2470」を用い、以下の測定方法ないし算出方法で各塩素濃度を求めた。 In the following experimental examples, the chlorine concentration (mg-Cl 2 / L) was measured using a pocket chlorine measuring device “HACH2470” manufactured by Toa DKK, and each chlorine concentration was determined by the following measurement method or calculation method.

遊離塩素濃度:遊離塩素測定用試薬であるDPD(Free)試薬による5〜30秒後
の塩素濃度測定結果(mg−Cl/L)
活性化結合塩素濃度:遊離塩素測定用試薬であるDPD(Free)試薬による300
秒後の塩素濃度測定結果(mg−Cl/L)から、上記遊離塩素濃度
(mg−Cl/L)の測定結果を差し引いた値
安定化結合塩素濃度:全塩素測定用試薬であるDPD(Total)試薬による180
秒後の塩素濃度測定結果(mg−Cl/L)から、遊離塩素測定用試
薬であるDPD(Free)試薬による300秒後の塩素濃度測定結果
(mg−Cl/L)を差し引いた値
残留塩素濃度:上記遊離塩素濃度と活性化結合塩素濃度と安定化結合塩素濃度の合計
(mg−Cl/L)
Free chlorine concentration: 5 to 30 seconds after DPD (Free) reagent, which is a reagent for measuring free chlorine
The chlorine concentration measurements (mg-Cl 2 / L)
Activated bound chlorine concentration: 300 by DPD (Free) reagent which is a reagent for measuring free chlorine
From the chlorine concentration measurement result (mg-Cl 2 / L) after 2 seconds, the free chlorine concentration
Value obtained by subtracting the measurement result of (mg-Cl 2 / L) Stabilized bound chlorine concentration: 180 by DPD (Total) reagent which is a reagent for measuring total chlorine
From the chlorine concentration measurement result (mg-Cl 2 / L) after 2 seconds, the test for free chlorine measurement
Chlorine concentration measurement results after 300 seconds with the drug DPD (Free) reagent
Value obtained by subtracting (mg-Cl 2 / L) Residual chlorine concentration: Sum of the above free chlorine concentration, activated bound chlorine concentration and stabilized bound chlorine concentration
(Mg-Cl 2 / L)

海水としては大洗海水を用い、ビーカー試験を実施した。   Oarai seawater was used as seawater, and a beaker test was conducted.

[実験例1]
海水に塩素安定化剤としてスルファミン酸を添加したときの効果を調べる実験を行った。
スルファミン酸30mg/Lを海水に添加して1分間均一に撹拌混合した後、次亜塩素酸ナトリウムを1.5mg−Cl/L添加し、5分後と60分後の各塩素濃度を調べた。
別に、海水に次亜塩素酸ナトリウムを1.5mg−Cl/L添加した後、1分経過後にスルファミン酸30mg/Lを添加し、5分後と60分後の各塩素濃度を調べた。
これらの結果を図3に示す。
図3中、「(後)スルファミン酸」は次亜塩素酸ナトリウム添加後にスルファミン酸を添加した場合を示し、「(先)スルファミン酸」は次亜塩素酸ナトリウム添加前にスルファミン酸を添加した場合を示す。以下の実験例2〜6においても同様である。
[Experimental Example 1]
An experiment was conducted to investigate the effect of adding sulfamic acid as a chlorine stabilizer to seawater.
After the sulfamic acid 30 mg / L were uniformly stirred and mixed for 1 minute is added to seawater, the sodium hypochlorite was added 1.5mg-Cl 2 / L, examine each chlorine concentration after five minutes and 60 minutes It was.
Separately, 1.5 mg-Cl 2 / L of sodium hypochlorite was added to seawater, 30 mg / L of sulfamic acid was added after 1 minute, and each chlorine concentration after 5 minutes and 60 minutes was examined.
These results are shown in FIG.
In FIG. 3, “(after) sulfamic acid” indicates the case where sulfamic acid is added after the addition of sodium hypochlorite, and “(previous) sulfamic acid” indicates the case where sulfamic acid is added before the addition of sodium hypochlorite. Indicates. The same applies to Experimental Examples 2 to 6 below.

[実験例2〜6]
スルファミン酸30mg/Lの代わりにそれぞれ以下のものを7.5mg/L添加したこと以外は実験例1と同様に、各々添加効果を調べ、結果をそれぞれ図4〜8に示した。
実施例2:グリシン
実施例3:フェニルアラニン
実施例4:トレオニン
実施例5:オルニチン
実施例6:タウリン
[Experimental Examples 2 to 6]
Each of the addition effects was examined in the same manner as in Experimental Example 1 except that 7.5 mg / L of the following was added instead of sulfamic acid 30 mg / L, and the results are shown in FIGS.
Example 2: Glycine Example 3: Phenylalanine Example 4: Threonine Example 5: Ornithine Example 6: Taurine

[比較実験例1]
海水に次亜塩素酸ナトリウム(NaClO)を1.5mg−Cl/L又は2.5mg−Cl/L添加し、5分後又は60分後の各塩素濃度を測定し、結果を図9に示した。
[Comparative Experiment Example 1]
Sodium hypochlorite (NaClO) was added to seawater at 1.5 mg-Cl 2 / L or 2.5 mg-Cl 2 / L, and the chlorine concentrations after 5 or 60 minutes were measured. The results are shown in FIG. It was shown to.

図3〜9から次のことが分かる。
次亜塩素酸ナトリウムのみの添加の場合、1.5mg−Cl/Lの添加では、残留塩素濃度は60分後に残留塩素濃度0.4mg−Cl/Lにまで低下してしまい、2.5mg−Cl/Lの高濃度添加でも60分後には1.2mg−Cl/Lを下回る結果となる(図9)。
これに対して、塩素安定化剤として窒素化合物を添加した後次亜塩素酸ナトリウムを添加することにより、遊離塩素濃度は低減しても活性化結合塩素及び安定化結合塩素濃度が増え、次亜塩素酸ナトリウムのみを添加した場合に比べて残留塩素濃度を高く維持することができ、次亜塩素酸ナトリウム1.5mg−Cl/Lの添加で、60分後でも残留塩素濃度を1.2〜1.5mg−Cl/L程度に維持することができている。しかし、同じ窒素化合物であっても、次亜塩素酸ナトリウム添加後に添加した場合には、このような効果は得られない(図3〜8)。
The following can be seen from FIGS.
In the case of adding only sodium hypochlorite, when 1.5 mg-Cl 2 / L is added, the residual chlorine concentration drops to a residual chlorine concentration of 0.4 mg-Cl 2 / L after 60 minutes. resulting in less than 1.2mg-Cl 2 / L even after 60 minutes at high concentrations the addition of 5mg-Cl 2 / L (Fig. 9).
On the other hand, by adding a nitrogen compound as a chlorine stabilizer and then adding sodium hypochlorite, even if the free chlorine concentration is reduced, the activated bound chlorine and the stabilized bound chlorine concentration are increased. The residual chlorine concentration can be maintained higher than when only sodium chlorate is added, and by adding 1.5 mg-Cl 2 / L of sodium hypochlorite, the residual chlorine concentration becomes 1.2 even after 60 minutes. It can be maintained at about ˜1.5 mg-Cl 2 / L. However, even if the same nitrogen compound is added after addition of sodium hypochlorite, such an effect cannot be obtained (FIGS. 3 to 8).

これらの結果より、本発明によれば、予め塩素安定化剤として窒素化合物を添加した後、次亜塩素酸ナトリウム等の塩素系酸化剤を添加したり電気分解で遊離塩素を発生させることにより、供給水中の塩素を安定化させることができ、
1) 海水中の有機物、臭素、ヨウ素による塩素の分解や消費を抑えることができるので、バイオファウリングの抑制に必要な塩素系酸化剤添加量の削減又は電気分解装置の消費電力の低減を図ることができる。
2) 遊離塩素濃度を低減することでRO膜の劣化などの影響を低減することができる。場合によってはRO膜装置の手前で還元剤や活性炭塔での分解処理を行うことなく、RO膜のバイオファウリングを抑制することができる。
3) 塩素を安定化することにより、トリハロメタンなどの有害物の生成を抑制することができる。
といった優れた効果を得ることができることが分かる。
また、窒素化合物の後添加では、先添加におけるような効果が得られないことから、本発明の効果は、単に塩素系酸化剤を窒素化合物で安定化させて結合塩素系酸化剤として添加するものとは全く異なるものであることが分かる。
From these results, according to the present invention, by previously adding a nitrogen compound as a chlorine stabilizer, by adding a chlorine-based oxidant such as sodium hypochlorite or generating free chlorine by electrolysis, Can stabilize the chlorine in the supply water,
1) Since the decomposition and consumption of chlorine by organic matter, bromine and iodine in seawater can be suppressed, the amount of chlorinated oxidant added necessary to suppress biofouling is reduced or the power consumption of the electrolyzer is reduced. be able to.
2) By reducing the free chlorine concentration, it is possible to reduce the influence of RO membrane deterioration and the like. In some cases, biofouling of the RO membrane can be suppressed without performing decomposition treatment with a reducing agent or activated carbon tower before the RO membrane device.
3) By stabilizing chlorine, it is possible to suppress the generation of harmful substances such as trihalomethanes.
It can be seen that such excellent effects can be obtained.
In addition, the effect of the present invention can be obtained simply by stabilizing the chlorine-based oxidant with the nitrogen compound and adding it as a combined chlorine-based oxidant because the post-addition of the nitrogen compound does not provide the same effect as in the previous addition. It turns out that it is completely different.

1 原水槽
2 反応槽
3 2層式濾過器
4 給水槽
5 保安フィルター
6 RO膜装置
7 電解装置
DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Reaction tank 3 Two-layer type filter 4 Water supply tank 5 Security filter 6 RO membrane apparatus 7 Electrolyzer

Claims (6)

水処理装置への供給水に、塩素系酸化剤を添加するか或いは電気分解で塩素を発生させることにより遊離塩素を存在させた後該水処理装置に供給する水処理方法において、
該供給水に遊離塩素を存在させるに先立ち、該供給水に塩素安定化剤として、グリシン、タウリン、トレオニン、オルニチン、アラニン及びフェニルアラニンよりなる群から選ばれる1種又は2種以上の有機窒素化合物を添加することを特徴とする水処理方法。
In the water treatment method of supplying free water to the water treatment apparatus after adding free chlorine by adding a chlorine-based oxidizing agent to the water supplied to the water treatment apparatus or generating chlorine by electrolysis,
Prior to the presence of free chlorine in the feed water, the feed water contains one or more organic nitrogen compounds selected from the group consisting of glycine, taurine, threonine, ornithine, alanine and phenylalanine as a chlorine stabilizer. A water treatment method characterized by adding.
請求項1において、前記水処理装置が逆浸透膜装置であることを特徴とする水処理方法。   The water treatment method according to claim 1, wherein the water treatment device is a reverse osmosis membrane device. 請求項1又は2において、前記供給水が海水であることを特徴とする水処理方法。   The water treatment method according to claim 1, wherein the supply water is seawater. 請求項1ないし3のいずれか1項において、前記塩素系酸化剤として次亜塩素酸塩及び/又はジクロロイソシアヌル酸を前記供給水に添加することを特徴とする水処理方法。   4. The water treatment method according to claim 1, wherein hypochlorite and / or dichloroisocyanuric acid is added to the feed water as the chlorine-based oxidant. 5. 請求項1ないし4のいずれか1項において、前記窒素化合物を前記供給水に0.3〜50mg/L添加することを特徴とする水処理方法。   5. The water treatment method according to claim 1, wherein 0.3 to 50 mg / L of the nitrogen compound is added to the supply water. 請求項1ないし5のいずれか1項において、前記遊離塩素を存在させた後の前記供給水の残留塩素濃度を0.1〜10mg−Cl/Lに維持することを特徴とする水処理方法。 The water treatment method according to any one of claims 1 to 5, wherein the residual chlorine concentration of the supplied water after the presence of the free chlorine is maintained at 0.1 to 10 mg-Cl 2 / L. .
JP2017082942A 2017-04-19 2017-04-19 Water treatment method Active JP6565966B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017082942A JP6565966B2 (en) 2017-04-19 2017-04-19 Water treatment method
PCT/JP2018/015019 WO2018193907A1 (en) 2017-04-19 2018-04-10 Water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017082942A JP6565966B2 (en) 2017-04-19 2017-04-19 Water treatment method

Publications (2)

Publication Number Publication Date
JP2018176116A JP2018176116A (en) 2018-11-15
JP6565966B2 true JP6565966B2 (en) 2019-08-28

Family

ID=63855791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017082942A Active JP6565966B2 (en) 2017-04-19 2017-04-19 Water treatment method

Country Status (2)

Country Link
JP (1) JP6565966B2 (en)
WO (1) WO2018193907A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7243746B2 (en) * 2021-01-20 2023-03-22 栗田工業株式会社 Membrane separation method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07124559A (en) * 1993-11-08 1995-05-16 Toyobo Co Ltd Sterilization of water to be treated in seawater desalting process
EP1558078B1 (en) * 2002-10-07 2012-05-30 Alcide Corporation Acidified chlorite compositions containing nitrogenous stabilizers and systems and methods related thereto
US20060003023A1 (en) * 2004-07-02 2006-01-05 Williams Terry M Microbicidal composition
JP4925079B2 (en) * 2005-04-13 2012-04-25 株式会社エイエスイー Water treatment method and water treatment apparatus
US9206058B2 (en) * 2009-02-20 2015-12-08 The Water Initative, Llc Water purification and enhancement systems
JP5998929B2 (en) * 2011-03-30 2016-09-28 栗田工業株式会社 Membrane separation method
JP6340566B2 (en) * 2013-09-19 2018-06-13 三菱瓦斯化学株式会社 Marine organism adhesion prevention method
JP5892136B2 (en) * 2013-09-24 2016-03-23 栗田工業株式会社 Cooling water system algae killing method
JP6533056B2 (en) * 2014-12-25 2019-06-19 オルガノ株式会社 Filtration treatment system and filtration treatment method
JP6534524B2 (en) * 2014-12-25 2019-06-26 オルガノ株式会社 Filtration treatment system and filtration treatment method
KR102314591B1 (en) * 2015-03-31 2021-10-18 쿠리타 고교 가부시키가이샤 Reverse osmosis membrane treatment system operation method and reverse osmosis membrane treatment system

Also Published As

Publication number Publication date
WO2018193907A1 (en) 2018-10-25
JP2018176116A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
EP3279151A1 (en) Reverse osmosis membrane treatment system operation method and reverse osmosis membrane treatment system
JP6622424B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
WO2016104356A1 (en) Method for controlling slime on separation membrane
WO2011108610A1 (en) Water treatment method and ultrapure water production method
JP6107985B2 (en) Reverse osmosis membrane device pretreatment method and water treatment device
JP2016120457A (en) Filtration treatment system and filtration treatment method
TWI727106B (en) Water treatment method and water treatment device using reverse osmosis membrane
JP7013141B2 (en) Water treatment method using reverse osmosis membrane
JP2015186774A (en) Fresh water generation method and fresh water generator
JP6970516B2 (en) Water treatment method using reverse osmosis membrane
JP6565966B2 (en) Water treatment method
JP7212478B2 (en) MEMBRANE FILTRATION SYSTEM AND MEMBRANE FILTRATION METHOD
JP6146499B2 (en) Treatment of ammonia-containing wastewater
JP6787427B2 (en) Treatment method and equipment for organic matter and calcium-containing water
WO2022186013A1 (en) Water treatment method and water treatment agent composition
WO2018142904A1 (en) Method for modifying reverse osmosis membrane, reverse osmosis membrane, method for treating water containing non-charged substance, operation method for reverse osmosis membrane, and reverse osmosis membrane device
JP2017121605A (en) Preprocessing method of inverse infiltration apparatus, and water processing equipment
JP7008470B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP7050414B2 (en) Water treatment method using reverse osmosis membrane
WO2016194443A1 (en) Method for pretreating reverse osmosis membrane device, and device for treating water
JP7144922B2 (en) Reverse osmosis membrane operation method and reverse osmosis membrane device
JP5604913B2 (en) Water treatment method and ultrapure water production method
JP2015186773A (en) Fresh water generation method and fresh water generator
WO2024048154A1 (en) Method for producing slime-suppressing auxiliary agent for reverse osmosis membrane, slime-suppressing auxiliary agent for reverse osmosis membrane, and water treatment method
WO2023120350A1 (en) Microorganism contamination prevention method for water system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190514

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190715

R150 Certificate of patent or registration of utility model

Ref document number: 6565966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150