WO2018142904A1 - Method for modifying reverse osmosis membrane, reverse osmosis membrane, method for treating water containing non-charged substance, operation method for reverse osmosis membrane, and reverse osmosis membrane device - Google Patents

Method for modifying reverse osmosis membrane, reverse osmosis membrane, method for treating water containing non-charged substance, operation method for reverse osmosis membrane, and reverse osmosis membrane device Download PDF

Info

Publication number
WO2018142904A1
WO2018142904A1 PCT/JP2018/000844 JP2018000844W WO2018142904A1 WO 2018142904 A1 WO2018142904 A1 WO 2018142904A1 JP 2018000844 W JP2018000844 W JP 2018000844W WO 2018142904 A1 WO2018142904 A1 WO 2018142904A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse osmosis
osmosis membrane
bromine
water
modified
Prior art date
Application number
PCT/JP2018/000844
Other languages
French (fr)
Japanese (ja)
Inventor
明広 高田
勇規 中村
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017017643A external-priority patent/JP6933902B2/en
Priority claimed from JP2017092872A external-priority patent/JP7144922B2/en
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Publication of WO2018142904A1 publication Critical patent/WO2018142904A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present invention relates to a method for modifying a polyamide-based reverse osmosis membrane, a reverse osmosis membrane modified by the modification method, a method for treating uncharged substance-containing water using the reverse osmosis membrane, a method for operating a reverse osmosis membrane, and
  • the present invention relates to a reverse osmosis membrane device.
  • RO membrane reverse osmosis membrane
  • Patent Document 1 in a membrane separation apparatus equipped with a reverse osmosis membrane element having a polyamide skin layer, after filling the reverse osmosis membrane element into a pressure vessel in the membrane separation apparatus, bromine is added to the reverse osmosis membrane element.
  • a method for treating a reverse osmosis membrane element in which a free chlorine aqueous solution is brought into contact is described.
  • Patent Document 2 describes a method for modifying a reverse osmosis membrane in which a hypobromite stabilizing composition is brought into contact with a polyamide-based reverse osmosis membrane as a modifier.
  • Patent Documents 1 and 2 since the reforming is managed by time, the blocking rate of the reverse osmosis membrane cannot be adjusted to a predetermined value, and the blocking performance difference after the modification depends on the membrane type. There was a problem that was large. Patent Documents 1 and 2 do not discuss how much the blocking performance of uncharged substances is improved by the contact condition of the modifier.
  • Non-Patent Document 1 describes that when a halogen-based oxidant is brought into contact with a polyamide-based reverse osmosis membrane on the acidic side, the amount of permeated water decreases.
  • Non-Patent Document 1 does not describe the relationship between the amount of permeated water and the blocking performance of uncharged substances.
  • Non-Patent Document 2 describes that when the pore size of the reverse osmosis membrane is reduced, the removal rate of boron is improved.
  • Non-Patent Document 2 does not describe the relationship between the modification of the reverse osmosis membrane and the removal rate of boron, which is an uncharged substance.
  • the reverse osmosis membrane device when the reverse osmosis membrane device is operated for a long period of time, the reverse osmosis membrane is alkali-washed with an alkaline aqueous solution or the like because of biofouling or the like.
  • the reverse osmosis membrane spiral element has a problem in that slime is generated in a mesh-like spacer forming a narrow raw water flow path or concentrated water flow path having a thickness of about 1 mm, thereby blocking the flow path.
  • alkali cleaning is generally known.
  • An object of the present invention is to provide a reverse osmosis membrane modification method capable of adjusting the rejection rate of the uncharged substance of the reverse osmosis membrane to a predetermined value, a reverse osmosis membrane modified by the modification method, and the The object is to provide a method for treating uncharged substance-containing water using a reverse osmosis membrane.
  • the present invention provides a method for reforming a reverse osmosis membrane in which a halogen-based oxidant is brought into contact with a polyamide-based reverse osmosis membrane to change the rejection rate of an uncharged substance. This is a method for modifying a reverse osmosis membrane in which a modification treatment is performed based on a measured value.
  • the modification treatment is performed based on a correlation formula between a pure water equivalent flux of the reverse osmosis membrane and a blocking rate of the non-charged substance.
  • the uncharged substance is preferably a low-molecular substance having a molecular weight of 200 or less.
  • the contact is performed in a pH range of 4 to 6.5.
  • the concentration of the halogen-based oxidant in the contact is preferably in the range of 0.1 to 100 mg / L.
  • the contact is performed under a pressure in the range of 0.1 to 20 MPa.
  • the present invention is a reverse osmosis membrane modified by the method for modifying a reverse osmosis membrane.
  • the present invention is a method for treating uncharged substance-containing water, wherein the uncharged substance-containing water is treated with a reverse osmosis membrane using the reverse osmosis membrane modified by the reverse osmosis membrane modification method.
  • the present invention relates to a reverse osmosis membrane treatment step in which permeated water and concentrated water are obtained by passing water to be treated through a modified reverse osmosis membrane modified by bringing a bromine-based oxidant into contact with a polyamide-based reverse osmosis membrane. And an alkaline cleaning step of alkali cleaning the modified reverse osmosis membrane at pH 8 or higher.
  • the operation method of the reverse osmosis membrane preferably includes a re-reforming step of re-modifying the alkali-washed modified reverse osmosis membrane by bringing a bromine-based oxidant into contact therewith.
  • the contact of the bromine-based oxidant is preferably performed at a pH lower than the pH of the water to be treated.
  • the bromine-based oxidant preferably includes a stabilized hypobromite composition containing a bromine-based oxidant and a sulfamic acid compound.
  • the bromine-based oxidizing agent preferably contains a stabilized hypobromite composition containing bromine and a sulfamic acid compound.
  • the present invention also includes a modified reverse osmosis membrane that is modified by bringing a bromine-based oxidant into contact with a polyamide-based reverse osmosis membrane, and passes the water to be treated to obtain permeated water and concentrated water.
  • the apparatus further comprises a re-reformer for re-modifying the alkali-washed modified reverse osmosis membrane by bringing a brominated oxidant into contact therewith.
  • the bromine-based oxidant is contacted at a pH lower than the pH of the water to be treated.
  • the bromine-based oxidant preferably includes a stabilized hypobromite composition containing a bromine-based oxidant and a sulfamic acid compound.
  • the bromine-based oxidant preferably includes a stabilized hypobromite composition containing bromine and a sulfamic acid compound.
  • a reverse osmosis membrane modification method capable of adjusting the rejection rate of uncharged substances in a reverse osmosis membrane to a predetermined value, a reverse osmosis membrane modified by the modification method, and a reverse osmosis thereof
  • An uncharged substance-containing water treatment method using a membrane can be provided.
  • reverse osmosis membrane operation method and reverse osmosis membrane apparatus of the present invention it is possible to suppress a decrease in the ability to prevent alkali washing in a modified polyamide-based reverse osmosis membrane.
  • a method for modifying a reverse osmosis membrane according to an embodiment of the present invention is a method for modifying a reverse osmosis membrane in which a halogen-based oxidant is brought into contact with a polyamide-based reverse osmosis membrane to change the rejection rate of uncharged substances.
  • This is a method for performing the reforming treatment based on the measured value of the flux of the reverse osmosis membrane in terms of pure water. In this reforming method, it is preferable to perform the reforming process based on a correlation formula between the pure water equivalent flux of the reverse osmosis membrane and the blocking rate of the uncharged substance prepared in advance.
  • the reverse osmosis membrane according to the embodiment of the present invention is a reverse osmosis membrane modified by the method for modifying a reverse osmosis membrane.
  • “reforming” a reverse osmosis membrane refers to an improvement in the rejection rate of uncharged substances.
  • the present inventors control the flux in terms of pure water (hereinafter sometimes referred to as “pure water equivalent flux”) by bringing a halogen-based oxidant into contact with a reverse osmosis membrane whose membrane material is polyamide.
  • pure water equivalent flux a halogen-based oxidant into contact with a reverse osmosis membrane whose membrane material is polyamide.
  • the technology to improve the blocking performance (blocking rate) of any uncharged substance was established. According to the study by the present inventors, it was found that there is a correlation between the blocking rate of the non-charged substance of the reverse osmosis membrane and the pure water equivalent flux regardless of the type of the reverse osmosis membrane or the presence or absence of modification. .
  • the reforming treatment is preferably performed in advance.
  • the reforming is performed by setting the concentration and pH of a predetermined halogen-based oxidant, for example, passing water through a reverse osmosis membrane under pressure, monitoring the flow rate with a flow meter or the like, and calculating the pure water equivalent flux, What is necessary is just to adjust the rejection rate of the uncharged substance of a reverse osmosis membrane to a predetermined value.
  • a predetermined halogen-based oxidant for example, passing water through a reverse osmosis membrane under pressure, monitoring the flow rate with a flow meter or the like, and calculating the pure water equivalent flux, What is necessary is just to adjust the rejection rate of the uncharged substance of a reverse osmosis membrane to a predetermined value.
  • a predetermined halogen-based oxidant for example, pass water through a reverse osmosis membrane under pressure, monitor the flow rate with a flow meter, etc., and create in advance while calculating the pure water equivalent flux Based on the above-described correlation equation, it may be adjusted to a pure water equivalent flux that becomes a target rejection rate of uncharged substances of the reverse osmosis membrane. When a plurality of uncharged substances are targeted, the pure water equivalent flux may be adjusted to a target value based on the uncharged substance having the lowest rejection rate.
  • the rejection rate of uncharged substances in the reverse osmosis membrane can be adjusted to a predetermined value.
  • it is decided how much the reform should be done that is, what the rejection rate of uncharged substances should be, and the target rejection rate What is necessary is just to modify
  • the concentration of uncharged substances at the inlet and outlet to the reverse osmosis membrane device may be monitored and reformed so as to have a predetermined uncharged substance outlet concentration. Since it takes time to measure the concentration (for example, TOC concentration in the case of organic substances, ICP emission analysis in the case of inorganic substances such as boron), the reverse osmosis membrane is It is difficult to adjust the rejection rate of uncharged substances to a predetermined value.
  • the reforming method of the reverse osmosis membrane according to the present embodiment the reverse osmosis membrane is instantly obtained by simply monitoring the flow rate with a flow meter or the like and performing the reforming while calculating the pure water equivalent flux. It is possible to adjust the rejection rate of the uncharged substance to a predetermined value.
  • uncharged substance means non-electrolyte organic substance or boron that does not dissociate in the neutral region (pH 6-8).
  • Examples of the low-molecular non-electrolyte organic substance include organic substances having a molecular weight of 200 or less such as alcohol compounds such as methanol, ethanol and isopropyl alcohol, amine compounds such as urea, and tetraalkylammonium salts such as tetramethylammonium hydroxide. .
  • a halogen-based oxidant is present in the water supplied to the reverse osmosis membrane, the washing water, and the like. Then, it may be brought into contact with the reverse osmosis membrane.
  • the halogen-based oxidant is not particularly limited as long as it contains halogen such as chlorine and bromine and has an oxidizing action.
  • halogen such as chlorine and bromine
  • a chlorine-based oxidant, a bromine-based oxidant, and stabilized hypochlorous acid for example, a chlorine-based oxidant, a bromine-based oxidant, and stabilized hypochlorous acid.
  • An acid composition, a stabilized hypobromite composition, etc. are mentioned.
  • Examples of the chlorine-based oxidizing agent include chlorine gas, chlorine dioxide, hypochlorous acid or a salt thereof, chlorous acid or a salt thereof, chloric acid or a salt thereof, perchloric acid or a salt thereof, chlorinated isocyanuric acid or a salt thereof.
  • examples of the salt include alkali metal hypochlorites such as sodium hypochlorite and potassium hypochlorite, alkaline earth hypochlorite such as calcium hypochlorite and barium hypochlorite.
  • alkali metal chlorites such as sodium chlorite and potassium chlorite
  • alkaline earth metal chlorites such as barium chlorite
  • other metal chlorites such as nickel chlorite
  • Alkali metal chlorates such as ammonium chlorate, sodium chlorate and potassium chlorate
  • alkaline earth metal chlorates such as calcium chlorate and barium chlorate.
  • chlorine-based oxidants may be used alone or in combination of two or more.
  • sodium hypochlorite is preferably used from the viewpoint of handleability.
  • bromine-based oxidizing agents examples include bromine (liquid bromine), bromine chloride, bromic acid, bromate, and hypobromite.
  • Hypobromous acid may be produced by reacting a bromide such as sodium bromide with a chlorine-based oxidizing agent such as hypochlorous acid.
  • the stabilized hypochlorous acid composition contains a chlorine-based oxidizing agent and a sulfamic acid compound.
  • the “stabilized hypochlorous acid composition containing a chlorinated oxidant and a sulfamic acid compound” is a stabilized hypochlorous acid composition containing a mixture of a “chlorine oxidant” and a “sulfamic acid compound”. Alternatively, it may be a stabilized hypochlorous acid composition containing a “reaction product of a chlorinated oxidant and a sulfamic acid compound”.
  • the stabilized hypobromite composition contains a bromine-based oxidizing agent and a sulfamic acid compound.
  • the “stabilized hypobromite composition containing a bromine-based oxidant and a sulfamic acid compound” is a stabilized hypobromite composition containing a mixture of a “bromine-based oxidant” and a “sulfamic acid compound”. Alternatively, it may be a stabilized hypobromite composition containing a “reaction product of a bromine-based oxidant and a sulfamic acid compound”.
  • a stabilized hypochlorous acid composition or a stabilized hypobromite composition is preferable, and a stabilized hypobromite composition is more preferable.
  • Stabilized hypochlorous acid composition or stabilized hypobromite composition, especially stabilized hypobromite composition also exhibits a modification effect equivalent to or better than chlorine-based oxidizing agents such as hypochlorous acid. Regardless, the deterioration effect on the reverse osmosis membrane is lower than that of the chlorine-based oxidant, and membrane deterioration due to repeated reforming can be suppressed. Therefore, the stabilized hypochlorous acid composition or the stabilized hypobromite composition, particularly the stabilized hypobromite composition used in the method for modifying a reverse osmosis membrane according to the present embodiment is a modifier. Is suitable.
  • a stabilized hypobromite composition and a chlorine-based oxidation containing a bromine-based oxidant and a sulfamic acid compound in a polyamide-based reverse osmosis membrane preferably, a stabilized hypobromite composition and a chlorine-based oxidation containing a bromine-based oxidant and a sulfamic acid compound in a polyamide-based reverse osmosis membrane.
  • a mixture of “bromine-based oxidant” and “sulfamic acid compound” or “chlorine” A mixture of “system oxidizing agent” and “sulfamic acid compound” may be present.
  • a stabilized hypobromite composition or a stabilized hypochlorous acid composition is generated in the water supply to the reverse osmosis membrane.
  • a “reaction product of a bromine-based oxidant and a sulfamic acid compound” is used as a modifier.
  • a stabilized hypochlorous acid composition or a stabilized hypochlorous acid composition that is a “reaction product of a chlorinated oxidant and a sulfamic acid compound” may be present.
  • a reverse osmosis membrane for example, in the water supply to the reverse osmosis membrane, as a modifier, “bromine”, “bromine chloride”, “hypobromite”
  • a mixture of “reaction product of sodium bromide and hypochlorous acid” and “sulfamic acid compound” may be present.
  • a mixture of “hypochlorous acid” and “sulfamic acid compound” may be present as a modifier in the water supply to the reverse osmosis membrane.
  • reaction product of bromine and sulfamic acid compound for example, in the water supply to the reverse osmosis membrane, as a modifier, "reaction product of bromine and sulfamic acid compound", "bromine chloride and Reaction product of sulfamic acid compound "," Reaction product of hypobromous acid and sulfamic acid compound ", or” Reaction product of sodium bromide and hypochlorous acid and sulfamic acid compound "
  • the stabilized hypobromite composition which is a product, may be present.
  • a stabilized hypochlorous acid composition that is a “reaction product of hypochlorous acid and a sulfamic acid compound” may be present as a modifier in the water supply to the reverse osmosis membrane.
  • the contact of the halogen-based oxidant with the reverse osmosis membrane is preferably performed in the range of more than pH 3 and less than 8, preferably in the range of pH 4 to 6.5. More preferably. If the contact of the halogen-based oxidant with the reverse osmosis membrane is performed at a pH of 3 or less, the reverse osmosis membrane deteriorates when the contact of the halogen-based oxidant with the reverse osmosis membrane is performed over a long period of time, and the blocking rate is reduced. When it is carried out at a pH of 8 or more, the reforming effect may be insufficient.
  • the pH of the water supply to the reverse osmosis membrane may be maintained in the above range.
  • reaction product of bromine-based oxidant and sulfamic acid compound or “reaction product of chlorinated oxidant and sulfamic acid compound” is a chemical injection pump, etc. May be injected.
  • the modification with the halogen-based oxidant is, for example, continuously or intermittently supplying the halogen-based oxidant into the water supplied to the reverse osmosis membrane, the washing water, or the like during the operation of the reverse osmosis membrane device including the reverse osmosis membrane. It may be added, or when the blocking rate of the reverse osmosis membrane is lowered, a halogen-based oxidant may be added continuously or intermittently into the water supplied to the reverse osmosis membrane, washing water or the like.
  • the contact of the halogen-based oxidant with the reverse osmosis membrane may be performed under normal pressure, pressurized or reduced pressure, but the modification can be performed without stopping the reverse osmosis membrane device. From the viewpoint that the reverse osmosis membrane can be reliably modified, it is preferable to perform the treatment under pressure.
  • the contact of the halogen-based oxidant with the reverse osmosis membrane is preferably performed under a pressure condition in the range of 0.1 to 20 MPa, for example, and is performed under a pressure condition in the range of 0.1 MPa to 8.0 MPa. Is more preferable.
  • the contact of the halogen-based oxidant with the reverse osmosis membrane may be performed, for example, under a temperature condition in the range of 5 ° C to 35 ° C.
  • the ratio of the equivalent of “sulfamic acid compound” to the equivalent of “bromine-based oxidant” or “chlorine-based oxidant” is preferably 1 or more. A range of 2 or less is more preferable. If the ratio of the equivalent of the “sulfamic acid compound” to the equivalent of the “bromine-based oxidizing agent” or “chlorine-based oxidizing agent” is less than 1, the reverse osmosis membrane may be deteriorated. May increase.
  • the concentration of the halogen-based oxidant (total chlorine concentration) in contact with the reverse osmosis membrane is preferably in the range of 0.1 to 100 mg / L in terms of effective chlorine concentration. If the concentration of the halogen-based oxidant in contact with the reverse osmosis membrane (total chlorine concentration) is less than 0.1 mg / L, a sufficient modification effect may not be obtained. It may cause deterioration of the osmotic membrane and corrosion of piping.
  • bromine and sulfamic acid compound (mixture of bromine and sulfamic acid compound)” or “reaction product of bromine and sulfamic acid compound” using bromine is composed of “hypochlorous acid, bromine compound and sulfamic acid”. Compared to preparations and preparations of “bromine chloride and sulfamic acid”, etc., there is less by-product of bromic acid, and the reverse osmosis membrane is not further deteriorated.
  • the polyamide-based reverse osmosis membrane is brought into contact with a stabilized hypobromite composition containing bromine and a sulfamic acid compound.
  • the reforming process is performed based on the measured value of the pure water equivalent flux of the reverse osmosis membrane.
  • bromine and a sulfamic acid compound are present (a mixture of bromine and sulfamic acid compound is present) in the water supply to the reverse osmosis membrane.
  • a reaction product of bromine and a sulfamic acid compound is present in the water supply to the reverse osmosis membrane.
  • bromine compounds include sodium bromide, potassium bromide, lithium bromide, ammonium bromide and hydrobromic acid. Of these, sodium bromide is preferable from the viewpoint of formulation cost and the like.
  • the sulfamic acid compound is a compound represented by the following general formula (1).
  • R 2 NSO 3 H (1) (In the formula, R is independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.)
  • sulfamic acid compound examples include sulfamic acid (amidosulfuric acid) in which both two R groups are hydrogen atoms, N-methylsulfamic acid, N-ethylsulfamic acid, N-propylsulfamic acid, N- A sulfamic acid compound in which one of two R groups such as isopropylsulfamic acid and N-butylsulfamic acid is a hydrogen atom and the other is an alkyl group having 1 to 8 carbon atoms, N, N-dimethylsulfamic acid, N, Two R groups such as N-diethylsulfamic acid, N, N-dipropylsulfamic acid, N, N-dibutylsulfamic acid, N-methyl-N-ethylsulfamic acid, N-methyl-N-propylsulfamic acid, etc.
  • sulfamic acid amidosulfuric
  • One of two R groups such as a sulfamic acid compound, N-phenylsulfamic acid and the like, both of which are alkyl groups having 1 to 8 carbon atoms Is a hydrogen atom and the other sulfamic acid compound or a salt thereof, such as an aryl group having 6 to 10 carbon atoms.
  • the sulfamate include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt, strontium salt and barium salt, manganese salt, copper salt, zinc salt, iron salt, cobalt salt, Other metal salts such as nickel salts, ammonium salts, guanidine salts and the like can be mentioned.
  • the sulfamic acid compounds and salts thereof may be used alone or in combination of two or more.
  • sulfamic acid compound sulfamic acid (amidosulfuric acid) is preferably used from the viewpoint of environmental load.
  • At least one of a stabilized hypobromite composition and a stabilized hypochlorous acid composition is used as a modifier in water supply to the reverse osmosis membrane.
  • an alkali may be further present.
  • the alkali include alkali hydroxides such as sodium hydroxide and potassium hydroxide. From the viewpoint of product stability at low temperatures, sodium hydroxide and potassium hydroxide may be used in combination. Further, the alkali is not solid and may be used as an aqueous solution.
  • the method for reforming a reverse osmosis membrane according to this embodiment is applied to a polyamide-based polymer membrane that is currently mainstream.
  • Polyamide polymer membranes have a relatively low resistance to oxidizing agents, and when free chlorine or the like is continuously brought into contact with the polyamide polymer membrane, the membrane performance may be significantly reduced.
  • at least one of a stabilized hypobromite composition and a stabilized hypochlorous acid composition, particularly a stabilized hypobromite composition is used. As a result, even in a polyamide polymer film, such a remarkable decrease in film performance hardly occurs.
  • a dispersant is used in combination with a halogen-based oxidant to suppress the scale. May be.
  • the dispersant include polyacrylic acid, polymaleic acid, and phosphonic acid.
  • the amount of the dispersant added to the water supply or the like is, for example, in the range of 0.1 to 1,000 mg / L as the concentration in the RO concentrated water.
  • Examples of the use of the reverse osmosis membrane device including the polyamide-based reverse osmosis membrane modified by the reverse osmosis membrane modification method according to this embodiment include seawater desalination and wastewater recovery.
  • the rejection rate of uncharged substances is significantly improved.
  • the reverse osmosis membrane device 1 of FIG. 1 includes a reverse osmosis membrane treatment device 10 having a modified reverse osmosis membrane modified by bringing a bromine-based oxidant into contact with a polyamide-based reverse osmosis membrane.
  • a water pipe 12 to be treated is connected to the inlet of the reverse osmosis membrane treatment device 10.
  • a permeated water pipe 14 is connected to the permeated water outlet of the reverse osmosis membrane treatment apparatus 10, and a concentrated water pipe 16 is connected to the concentrated water outlet.
  • the treated water is supplied to the reverse osmosis membrane treatment device 10 through the treated water pipe 12, and the reverse osmosis membrane treatment device 10 uses the modified reverse osmosis membrane modified by contacting with the bromine-based oxidant.
  • a reverse osmosis membrane treatment of treated water is performed (reverse osmosis membrane treatment step).
  • the permeated water obtained by the reverse osmosis membrane treatment is discharged through the permeated water pipe 14, and the concentrated water is discharged through the concentrated water pipe 16.
  • the modified reverse osmosis membrane After passing the treated water through the modified reverse osmosis membrane for a predetermined time and performing the reverse osmosis membrane treatment, the modified reverse osmosis membrane is alkali washed at pH 8 or more (alkali washing step).
  • alkali washing step By modifying the polyamide-based reverse osmosis membrane by bringing it into contact with a bromine-based oxidant, it is possible to suppress a decrease in the blocking performance against alkali cleaning in the modified polyamide-based reverse osmosis membrane.
  • Alkali washing can be performed, for example, by bringing an alkaline solution such as an alkaline aqueous solution into contact with the modified reverse osmosis membrane.
  • an alkaline solution such as an alkaline aqueous solution may be passed through the modified reverse osmosis membrane for a predetermined time, or the modified reverse osmosis membrane may be immersed in an alkaline solution such as an alkaline aqueous solution for a predetermined time.
  • alkali examples include sodium hydroxide, tetrasodium ethylenediaminetetraacetate, sodium dodecyl sulfate, sodium tripolyphosphate, and the like.
  • an alkali solution such as an aqueous alkali solution may be used.
  • the pH in the alkali cleaning step is 8 or more, preferably 8 or more and 13 or less, and more preferably 10 or more and 12 or less.
  • the pH in the alkali cleaning step is less than 8, the cleaning effect is low, and when it exceeds 13, the reverse osmosis membrane may be deteriorated.
  • the temperature in the alkali cleaning step is not particularly limited, but is, for example, in the range of 5 ° C to 45 ° C, and preferably in the range of 20 ° C to 35 ° C. If the temperature in the alkali cleaning step is less than 5 ° C, the cleaning effect is low, and if it exceeds 45 ° C, the reverse osmosis membrane may deteriorate.
  • the reformed reverse osmosis membrane washed with alkali may be contacted with a bromine-based oxidant and re-reformed (re-reforming step). Even if alkali cleaning and modification are repeated, the degradation of the polyamide-based reverse osmosis membrane is suppressed, and therefore the reverse osmosis membrane device can be stably operated even for a long period of operation.
  • the reverse osmosis membrane treatment apparatus 10 includes, for example, a polyamide-type reverse osmosis membrane filled with a modified reverse osmosis membrane that has been modified by bringing a bromine-based oxidant into contact therewith, and the water to be treated is allowed to pass through to be permeated and concentrated. This is a reverse osmosis membrane module for obtaining water.
  • the polyamide-based reverse osmosis membrane used in the reverse osmosis membrane treatment apparatus 10 is a modified reverse osmosis membrane modified by bringing a bromine-based oxidant into contact therewith.
  • “reformation” of the reverse osmosis membrane in the present specification refers to improvement of permeated water quality, that is, improvement of the rejection rate.
  • brominated oxidant used for reforming there are no particular restrictions on the brominated oxidant used for reforming (and re-modification, the same shall apply hereinafter).
  • bromine-based oxidizing agents include “hypobromite”, “reaction product of chlorine-based oxidizing agent and bromide ions”, “stabilized hypobromite composition”, etc. “Stabilized hypobromite composition”.
  • the “stabilized hypobromite composition” has a particularly small adverse effect on the blocking rate of the reverse osmosis membrane, and can be stably operated for a long period of time even when continuously contacted with the reverse osmosis membrane.
  • the modified reverse osmosis membrane in the operation method of the reverse osmosis membrane according to the present embodiment includes a bromine-based oxidant, for example, “bromine-based oxidation” as a modifier in water supply to the polyamide-based reverse osmosis membrane, washing water, and the like. It is a membrane modified by a method in which a mixture of an “agent” and a “sulfamic acid compound” is present and brought into contact with a polyamide-based reverse osmosis membrane. Thereby, it is thought that the stabilized hypobromite composition produces
  • the modified reverse osmosis membrane in the reverse osmosis membrane operation method according to the present embodiment includes, for example, “bromine-based oxidant and modifier” as a modifier in feed water, washing water, and the like to the polyamide-based reverse osmosis membrane. It is a membrane modified by a method in which a stabilized hypobromite composition, which is a reaction product with a sulfamic acid compound, is present and brought into contact with a polyamide-based reverse osmosis membrane.
  • the modified reverse osmosis membrane in the operation method of the reverse osmosis membrane according to the present embodiment includes, for example, “bromine”, “bromine chloride”, “next” in the water supply to the polyamide-type reverse osmosis membrane.
  • a membrane modified by a method in which a mixture of “bromine acid” or “reaction product of sodium bromide and hypochlorous acid” and “sulfamic acid compound” is present and brought into contact with a polyamide-based reverse osmosis membrane. is there.
  • the modified reverse osmosis membrane in the reverse osmosis membrane operation method includes, for example, “reaction product of bromine and a sulfamic acid compound” in water supply to the polyamide-based reverse osmosis membrane, etc.
  • “Reaction product of bromine chloride and sulfamic acid compound” “Reaction product of hypobromite and sulfamic acid compound”, or “Reaction product of sodium bromide and hypochlorous acid, and sulfamic acid compound”
  • This is a membrane modified by a method in which a stabilized hypobromite composition, which is a reaction product of, is present and brought into contact with a polyamide-based reverse osmosis membrane.
  • the modification of the reverse osmosis membrane in the operation method of the reverse osmosis membrane according to the present embodiment is, for example, in the water supply to the reverse osmosis membrane during the operation of the reverse osmosis membrane device including the polyamide-based reverse osmosis membrane.
  • a bromine-based oxidant for example, “bromine-based oxidant” and “sulfamic acid compound” may be injected as a modifier by a chemical pump or the like.
  • the “bromine-based oxidant” and the “sulfamic acid compound” may be added separately to the water supply or the like, or may be added to the water supply after mixing the stock solutions.
  • a polyamide-based reverse osmosis membrane is immersed in water for a predetermined time in water to which a bromine-based oxidant such as “bromine-based oxidant” and “sulfamic acid compound” is added as a modifier. Also good.
  • reaction product of bromine-based oxidant and sulfamic acid compound or “reaction product of bromine-based compound and chlorine-based oxidant and sulfamine” You may inject
  • reaction product of bromine-based oxidant and sulfamic acid compound or “reaction product of bromine-based compound and chlorine-based oxidant and sulfamic acid compound” is added.
  • the polyamide-based reverse osmosis membrane may be immersed and contacted for a predetermined time.
  • the reforming with a bromine-based oxidant is performed, for example, by continuously or intermittently supplying a bromine-based oxidant into the water supply to the reverse osmosis membrane during operation of a reverse osmosis membrane device having a polyamide-based reverse osmosis membrane. It may be added, or when the blocking rate of the reverse osmosis membrane is lowered, a bromine-based oxidant is added continuously or intermittently into the water supply to the reverse osmosis membrane, or a bromine-based oxidant is contained.
  • a reverse osmosis membrane may be immersed in water.
  • reverse osmosis is possible for pipes that add bromine-based oxidants to the water supply to reverse osmosis membranes, immersion tanks for immersing reverse osmosis membranes or modified reverse osmosis membranes in water containing bromine-based oxidants, etc. It functions as a reforming means for reforming by bringing a bromine-based oxidant into contact with the membrane, or as a reforming means for reforming by bringing a bromine-based oxidant into contact with a modified reverse osmosis membrane washed with an alkali.
  • the contact of the bromine-based oxidant with the reverse osmosis membrane may be performed under normal pressure, pressurized or reduced pressure, but the modification can be performed without stopping the reverse osmosis membrane device. From the viewpoint that the reverse osmosis membrane can be reliably modified, it is preferable to perform the treatment under pressure.
  • the contact of the bromine-based oxidant with the reverse osmosis membrane is preferably performed under a pressurized condition in the range of 0.1 MPa to 8.0 MPa, for example.
  • the contact of the bromine-based oxidant with the reverse osmosis membrane may be performed, for example, under a temperature condition in the range of 5 ° C to 35 ° C.
  • the ratio of the equivalent of the “sulfamic acid compound” to the equivalent of the “bromine-based oxidant” is preferably 1 or more, and is preferably in the range of 1 or more and 2 or less. More preferred. If the ratio of the equivalent amount of the “sulfamic acid compound” to the equivalent amount of the “bromine-based oxidizing agent” is less than 1, the reverse osmosis membrane may be deteriorated, and if it exceeds 2, the production cost may increase.
  • the total chlorine concentration in contact with the reverse osmosis membrane is preferably 0.01 to 100 mg / L in terms of effective chlorine concentration. If it is less than 0.01 mg / L, a sufficient reforming effect may not be obtained. If it exceeds 100 mg / L, reverse osmosis membrane deterioration and piping corrosion may occur.
  • bromine-based oxidant used in the stabilized hypobromite composition examples include bromine (liquid bromine), bromine chloride, bromate, bromate, and hypobromite.
  • Hypobromous acid may be produced by reacting a bromide such as sodium bromide with a chlorine-based oxidizing agent such as hypochlorous acid.
  • the preparation of “bromine and sulfamic acid compound (mixture of bromine and sulfamic acid compound)” or “reaction product of bromine and sulfamic acid compound” using bromine is composed of “hypochlorous acid and bromine compound and Compared to sulfamic acid preparations and bromine chloride and sulfamic acid preparations, etc., there is less chloride ion, which does not degrade polyamide reverse osmosis membranes more and may cause corrosion of metal materials such as piping. Since it is low, it is more preferable.
  • the reverse osmosis membrane in the operation method of the reverse osmosis membrane according to the present embodiment brings bromine and a sulfamic acid compound into contact with a polyamide-based reverse osmosis membrane (contacts a mixture of bromine and a sulfamic acid compound), or A membrane modified by a method of bringing a reaction product of bromine and a sulfamic acid compound into contact with each other is preferable.
  • the bromine compound, chlorine-based oxidant, and sulfamic acid compound are as described above.
  • an alkali may be further present.
  • the alkali include alkali hydroxides such as sodium hydroxide and potassium hydroxide. From the viewpoint of product stability at low temperatures, sodium hydroxide and potassium hydroxide may be used in combination. Further, the alkali is not solid and may be used as an aqueous solution.
  • the operation method of the reverse osmosis membrane according to the present embodiment is applied to a polyamide-based polymer membrane which is currently mainstream as a reverse osmosis membrane.
  • Polyamide polymer membranes have a relatively low resistance to oxidizing agents, and when free chlorine or the like is continuously brought into contact with the polyamide polymer membrane, the membrane performance is significantly reduced.
  • a bromine-based oxidant particularly a stabilized hypobromite composition
  • the contact of the bromine-based oxidant with the polyamide-based reverse osmosis membrane is performed at a pH lower than the pH of the water to be treated.
  • the pH of the treated water is higher than the pH at the time of reforming (i.e. When the quality is lower than the pH of the water to be treated), the reforming effect is maintained and fluctuations in the permeate flow rate of the water to be treated can be suppressed.
  • the pH of the water to be treated is lower than the pH at the time of reforming (i.e. When the quality is higher than the pH of the water to be treated), the reforming effect and fluctuations in the permeate flow rate of the water to be treated may occur.
  • the contact of the bromine-based oxidant with the polyamide-based reverse osmosis membrane is performed, for example, in the range of more than pH 3 and less than 8, or in the range of pH 4 to 6.5. The lower the pH at the time of contact with the bromine-based oxidant, the higher the membrane modification effect, the higher the rejection rate, and the permeated water quality.
  • a dispersant when scale is generated at pH 5.5 or higher of water supplied to the reverse osmosis membrane, a dispersant may be used in combination with a bromine-based oxidant to suppress scale.
  • the dispersant include polyacrylic acid, polymaleic acid, and phosphonic acid.
  • the amount of the dispersant added to the feed water is, for example, in the range of 0.1 to 1,000 mg / L as the concentration in the RO concentrated water.
  • Examples of the use of the reverse osmosis membrane device include pure water production, seawater desalination, and wastewater collection.
  • the reverse osmosis membrane operation method and the reverse osmosis membrane device 1 among the deaeration treatment device, the ion exchange treatment device, and the UV sterilization treatment device that treats the water to be treated of the reverse osmosis membrane treatment device 10.
  • the reverse osmosis membrane treatment apparatus 10 reverse osmosis membrane treatment step
  • water to be treated may be subjected to at least one of degassing treatment, ion exchange treatment, and UV sterilization treatment. .
  • an ion exchange treatment device an electrical desalination treatment device, a UV sterilization treatment device, and a UV oxidation treatment device that perform treatment on the permeated water of the reverse osmosis membrane treatment device 10.
  • At least one of processing, UV sterilization processing, UV oxidation processing, particulate removal processing, and second reverse osmosis membrane processing may be performed.
  • the modifier for reverse osmosis membrane according to this embodiment contains a halogen-based oxidizing agent.
  • the reverse osmosis membrane modifier according to this embodiment is preferably a stabilized hypobromite composition containing a mixture of “bromine-based oxidant” and “sulfamic acid compound”, or “chlorine-based oxidant”. It contains a stabilized hypochlorous acid composition including a mixture with a “sulfamic acid compound”, and may further contain an alkali.
  • the reverse osmosis membrane modifier according to this embodiment is preferably a stabilized hypobromite composition containing a “reaction product of a bromine-based oxidant and a sulfamic acid compound”, or a “chlorine-based oxidant”. It contains a stabilized hypochlorous acid composition containing a reaction product of sulfamic acid compound and may further contain an alkali.
  • the bromine-based oxidizing agent, bromine compound, chlorine-based oxidizing agent, and sulfamic acid compound are as described above.
  • Examples of commercially available stabilized hypochlorous acid compositions containing a chlorine-based oxidizing agent and a sulfamic acid compound include “Kuriverter IK-110” manufactured by Kurita Kogyo Co., Ltd.
  • the reverse osmosis membrane modifier according to the present embodiment contains bromine and a sulfamic acid compound because the polyamide-based reverse osmosis membrane is not further deteriorated and the amount of effective halogen leaked into the RO permeate is smaller.
  • a mixture of bromine and sulfamic acid compound for example, a mixture of bromine, sulfamic acid compound, alkali and water, or containing a reaction product of bromine and sulfamic acid compound, for example, A mixture of a reaction product of bromine and a sulfamic acid compound, an alkali, and water is preferable.
  • a modifier containing a stabilized hypobromite composition containing a bromine-based oxidant and a sulfamic acid compound, particularly containing bromine and a sulfamic acid compound.
  • a modifier containing a stabilized hypobromite composition has higher oxidizing power than a modifier (such as chlorosulfamic acid) containing a chlorinated oxidant and a sulfamic acid compound. In spite of remarkably high inhibitory power and slime peeling power, it hardly causes significant film deterioration like hypochlorous acid having high oxidizing power.
  • the reverse osmosis membrane modifier containing the stabilized hypobromite or stabilized hypochlorous acid composition is almost permeable to the reverse osmosis membrane. Therefore, there is almost no impact on the quality of treated water. Further, since the concentration can be measured on site in the same manner as hypochlorous acid or the like, more accurate concentration management is possible.
  • the pH of the reverse osmosis membrane modifier containing the stabilized hypobromite composition is, for example, more than 13.0, and more preferably more than 13.2.
  • the pH of the modifier for reverse osmosis membrane is 13.0 or less, the effective halogen in the modifier may become unstable.
  • the concentration of bromic acid in the reverse osmosis membrane modifier containing the stabilized hypobromite composition is preferably less than 5 mg / kg. If the bromate concentration in the modifier is 5 mg / kg or more, the concentration of bromate ions in the RO permeate may increase.
  • the modifier for a reverse osmosis membrane containing the stabilized hypobromite composition or the stabilized hypochlorous acid composition is obtained by mixing a bromine-based oxidant or a chlorine-based oxidant and a sulfamic acid compound, Further, an alkali may be mixed.
  • bromine is an inert gas in a mixed solution containing water, an alkali and a sulfamic acid compound. It is preferable to include a step of adding and reacting under an atmosphere or a step of adding bromine to a mixed solution containing water, an alkali and a sulfamic acid compound under an inert gas atmosphere.
  • the inert gas to be used is not limited, at least one of nitrogen and argon is preferable from the viewpoint of manufacturing and the like, and nitrogen is particularly preferable from the viewpoint of manufacturing cost and the like.
  • the oxygen concentration in the reactor during the addition of bromine is preferably 6% or less, more preferably 4% or less, further preferably 2% or less, and particularly preferably 1% or less. If the oxygen concentration in the reactor during the bromine reaction exceeds 6%, the amount of bromic acid produced in the reaction system may increase.
  • the addition ratio of bromine is preferably 25% by weight or less, more preferably 1% by weight or more and 20% by weight or less, based on the total amount of the modifier. If the bromine addition rate exceeds 25% by weight with respect to the total amount of the reverse osmosis membrane modifier, the amount of bromic acid produced in the reaction system may increase. If it is less than 1% by weight, the reforming effect may be inferior.
  • the reaction temperature at the time of bromine addition is preferably controlled in the range of 0 ° C. to 25 ° C., but more preferably in the range of 0 ° C. to 15 ° C. from the viewpoint of production cost.
  • the reaction temperature at the time of bromine addition exceeds 25 degreeC, the production amount of the bromic acid in a reaction system may increase, and when it is less than 0 degreeC, it may freeze.
  • the pH of the resulting solution was 14 as measured by the glass electrode method.
  • the bromine content of the resulting solution was 16.9% as measured by a redox titration method using sodium thiosulfate after bromine was converted to iodine with potassium iodide, and the theoretical content (16.9% ) Of 100.0%.
  • the oxygen concentration in the reaction vessel during the bromine reaction was measured using “Oxygen Monitor JKO-02 LJDII” manufactured by Zico Corporation.
  • the bromic acid concentration was less than 5 mg / kg.
  • Electrode type Glass electrode type pH meter: IOL-30, manufactured by Toa DKK Corporation
  • Electrode calibration Neutral phosphate pH (6.86) standard solution (type 2) manufactured by Kanto Chemical Co., boric acid manufactured by the same company Salt temperature (9.18) Standard solution (type 2) was measured by two-point calibration
  • Measurement value Immerse the electrode in the measurement solution and use the value after stabilization as the measurement value.
  • IPA isopropyl alcohol
  • Example 1 Polyamide-based polymer reverse osmosis membrane using sodium hypochlorite (Example 1) and the stabilized hypobromite composition prepared above (Example 2) as a modifier (halogen-based oxidant), respectively. (Nitto Denko Corporation, SWC5) was modified. In the modification, water with 10 ppm of the above modifier added at an operating pressure of 2.0 MPa was passed through the reverse osmosis membrane apparatus including the reverse osmosis membrane at pH 4 and 25 ⁇ 1 ° C. The target IPA rejection was set to 97%, and the set pure water equivalent flux was set to 0.28 m / d / MPa based on the correlation equation (FIG. 1) prepared in advance.
  • the modification is based on the measured value of the pure water equivalent flux.
  • the rejection rate of the uncharged substance of the reverse osmosis membrane could be adjusted to a predetermined value.
  • Example 3 Using the stabilized hypobromite composition prepared above as a modifier, a polyamide polymer reverse osmosis membrane (“SWC4” manufactured by Nitto Denko Corporation) (Example 3), polyamide polymer reverse osmosis Each of the membranes (“SWC5” manufactured by Nitto Denko Corporation) was modified (Example 4).
  • the reforming was carried out on a reverse osmosis membrane device equipped with this reverse osmosis membrane at an operating pressure of 2.0 MPa, water added with 10 ppm of the above modifier at pH 4, 25 ⁇ 1 ° C. while monitoring the flow rate with a flow meter. It carried out by passing water until the water equivalent flux became 0.28 m / d / MPa.
  • the rejection rate of the non-charged substance of the reverse osmosis membrane is set to a predetermined value. The value could be adjusted.
  • the target TOC blocking performance is not achieved, and the modification effect varies depending on the type of polyamide polymer reverse osmosis membrane.
  • the difference in the rejection rate of substances has increased.
  • the rejection rate of the uncharged substance in the reverse osmosis membrane could be adjusted to a predetermined value by performing the reforming treatment based on the measured value of the pure water equivalent flux as in the example.
  • Example 5 Stabilized hypobromite composition (Example 5) prepared above, hypobromite (mixture of sodium bromide and hypochlorous acid) (Example 6), hypochlorous acid (Comparative Example 3)
  • the polyamide polymer reverse osmosis membrane (“SWC5” manufactured by Nitto Denko Corporation) was modified by using each as a modifier.
  • a polyamide polymer reverse osmosis membrane (“SWC5” manufactured by Nitto Denko Corporation) (Comparative Example 4) without modification was also prepared.
  • reverse osmosis membranes modified with bromine-based oxidants showed a significant reduction in blocking performance due to alkali cleaning.
  • Examples 7 and 8, Comparative Example 5 The membranes used in Example 5, Example 6, and Comparative Example 3 were modified again by the above-described method to give Example 7, Example 8, and Comparative Example 5, respectively.
  • the urea rejection rate of the film after re-modification was evaluated in the same manner as in Examples 5 and 6 and Comparative Example 3. The results are shown in Table 5.
  • reverse osmosis membrane device 10 reverse osmosis membrane treatment device, 12 treated water piping, 14 permeate piping, 16 concentrated water piping.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

A method for modifying a reverse osmosis membrane is provided with which it is possible to regulate the reverse osmosis membrane so as to have a given rejection of non-charged substances. The method, which is for modifying a polyamide-based reverse osmosis membrane, comprises bringing a halogen-based oxidant into contact with the reverse osmosis membrane to thereby change the rejection of non-charged substances, the modification being conducted on the basis of found flux values, in terms of pure water, of the reverse osmosis membrane. Furthermore, an operation method for a reverse osmosis membrane is provided in which a modified polyamide-based reverse osmosis membrane can be inhibited from suffering a decrease in rejection performance due to alkali cleaning. The operation method for a reverse osmosis membrane comprises: a reverse osmosis membrane treatment step in which water to be treated is passed through a polyamide-based reverse osmosis membrane that has been modified by contact with a bromine-compound oxidant, thereby obtaining penetrant water and concentrated water; and an alkali cleaning step in which the modified reverse osmosis membrane is cleaned with an alkali at a pH of 8 or higher.

Description

逆浸透膜の改質方法、逆浸透膜、および、非荷電物質含有水の処理方法、逆浸透膜の運転方法および逆浸透膜装置Reverse osmosis membrane modification method, reverse osmosis membrane, treatment method of uncharged substance-containing water, reverse osmosis membrane operation method and reverse osmosis membrane device
 本発明は、ポリアミド系の逆浸透膜の改質方法、その改質方法により改質された逆浸透膜、その逆浸透膜を用いる非荷電物質含有水の処理方法、逆浸透膜の運転方法および逆浸透膜装置に関する。 The present invention relates to a method for modifying a polyamide-based reverse osmosis membrane, a reverse osmosis membrane modified by the modification method, a method for treating uncharged substance-containing water using the reverse osmosis membrane, a method for operating a reverse osmosis membrane, and The present invention relates to a reverse osmosis membrane device.
 水資源を有効に利用するために、排水を回収し、再生処理して再利用するプロセスの導入が進んでいる。水質の高い処理水を得るためには、電解質の除去、中低分子物質の除去等を行うことができる逆浸透膜(RO膜)の使用が不可欠である。 In order to use water resources effectively, the introduction of processes that collect wastewater, recycle it, and reuse it is progressing. In order to obtain treated water with high water quality, it is indispensable to use a reverse osmosis membrane (RO membrane) capable of removing electrolytes, removing medium and low molecular weight substances, and the like.
 しかし、排水に尿素、イソプロピルアルコールや、ホウ素等の非荷電物質が含まれる場合、これらの非荷電物質の除去は逆浸透膜でも困難である。例えば、荷電物質である塩化ナトリウムの阻止率が99%以上の膜であっても、非荷電物質であるイソプロピルアルコールの阻止率は90~97%程度であり、尿素の場合は数10%程度の阻止率しか得られない場合がある。したがって、逆浸透膜の非荷電物質の阻止率の向上が求められている。 However, when the drainage contains uncharged substances such as urea, isopropyl alcohol, and boron, removal of these uncharged substances is difficult even with a reverse osmosis membrane. For example, even if the rejection rate of sodium chloride, which is a charged substance, is 99% or more, the rejection rate of isopropyl alcohol, which is an uncharged substance, is about 90 to 97%. In some cases, only a rejection rate can be obtained. Therefore, there is a demand for improvement in the rejection rate of uncharged substances in the reverse osmosis membrane.
 逆浸透膜の透過水質改善等のための改質方法は数多く存在する。その中でも、逆浸透膜に臭素を含む遊離塩素等のハロゲン系改質剤を所定の時間接触させて性能を改善する方法がある。 There are many reforming methods for improving the quality of permeated water in reverse osmosis membranes. Among them, there is a method of improving performance by bringing a halogen-based modifier such as free chlorine containing bromine into contact with a reverse osmosis membrane for a predetermined time.
 例えば、特許文献1には、ポリアミドスキン層を有する逆浸透膜エレメントを搭載した膜分離装置において、逆浸透膜エレメントを膜分離装置内の圧力容器に充填した後、前記逆浸透膜エレメントに臭素を含む遊離塩素水溶液を接触させる逆浸透膜エレメントの処理方法が記載されている。 For example, in Patent Document 1, in a membrane separation apparatus equipped with a reverse osmosis membrane element having a polyamide skin layer, after filling the reverse osmosis membrane element into a pressure vessel in the membrane separation apparatus, bromine is added to the reverse osmosis membrane element. A method for treating a reverse osmosis membrane element in which a free chlorine aqueous solution is brought into contact is described.
 特許文献2には、ポリアミド系の逆浸透膜に、改質剤として次亜臭素酸安定化組成物を接触させる逆浸透膜の改質方法が記載されている。 Patent Document 2 describes a method for modifying a reverse osmosis membrane in which a hypobromite stabilizing composition is brought into contact with a polyamide-based reverse osmosis membrane as a modifier.
 しかし、特許文献1,2の方法では、改質を時間で管理しているので、逆浸透膜の阻止率を所定の値に調整することができず、膜種によって改質後の阻止性能差が大きいという問題があった。また、特許文献1,2では、改質剤の接触条件により非荷電物質の阻止性能がどの程度向上するかについては検討されていない。 However, in the methods of Patent Documents 1 and 2, since the reforming is managed by time, the blocking rate of the reverse osmosis membrane cannot be adjusted to a predetermined value, and the blocking performance difference after the modification depends on the membrane type. There was a problem that was large. Patent Documents 1 and 2 do not discuss how much the blocking performance of uncharged substances is improved by the contact condition of the modifier.
 非特許文献1には、ポリアミド系の逆浸透膜に酸性側でハロゲン系酸化剤を接触させると、透過水量が低下することが記載されている。 Non-Patent Document 1 describes that when a halogen-based oxidant is brought into contact with a polyamide-based reverse osmosis membrane on the acidic side, the amount of permeated water decreases.
 しかし、非特許文献1では、透過水量と非荷電物質の阻止性能との関係については記載されていない。 However, Non-Patent Document 1 does not describe the relationship between the amount of permeated water and the blocking performance of uncharged substances.
 非特許文献2には、逆浸透膜の孔径が小さくなると、ホウ素の除去率が向上することが記載されている。 Non-Patent Document 2 describes that when the pore size of the reverse osmosis membrane is reduced, the removal rate of boron is improved.
 しかし、非特許文献2では、逆浸透膜の改質と非荷電物質であるホウ素の除去率との関係については記載されていない。 However, Non-Patent Document 2 does not describe the relationship between the modification of the reverse osmosis membrane and the removal rate of boron, which is an uncharged substance.
 一方、逆浸透膜装置を長期間運転する場合、バイオファウリング等の発生のため、逆浸透膜をアルカリ水溶液等によりアルカリ洗浄することが行われる。例えば、逆浸透膜スパイラル型エレメントでは、厚みが1mm程度の狭い原水流路または濃縮水流路を形成する網目状のスペーサにスライムが発生し、流路を閉塞する問題がある。この蓄積されたスライムを除去する方法として、アルカリ洗浄が一般的に知られている。 On the other hand, when the reverse osmosis membrane device is operated for a long period of time, the reverse osmosis membrane is alkali-washed with an alkaline aqueous solution or the like because of biofouling or the like. For example, the reverse osmosis membrane spiral element has a problem in that slime is generated in a mesh-like spacer forming a narrow raw water flow path or concentrated water flow path having a thickness of about 1 mm, thereby blocking the flow path. As a method for removing the accumulated slime, alkali cleaning is generally known.
 しかし、特許文献1の方法のように塩素系の酸化剤を接触させて性能を改善したポリアミド系の逆浸透膜をアルカリ洗浄すると、逆浸透膜が劣化し、阻止性能が低下してしまう。特許文献2では、実運用を想定したアルカリ洗浄に対する阻止性能改善効果の持続性について検討されていない。 However, when a polyamide-based reverse osmosis membrane whose performance has been improved by contacting with a chlorine-based oxidant as in the method of Patent Document 1 is alkali-washed, the reverse osmosis membrane is deteriorated and the blocking performance is lowered. In Patent Document 2, the sustainability of the prevention performance improvement effect for alkaline cleaning assuming actual operation is not studied.
特開2003-088730号公報JP 2003-088730 A 特開2016-155067号公報JP 2016-1555067 A
 本発明の目的は、逆浸透膜の非荷電物質の阻止率を所定の値に調整することができる逆浸透膜の改質方法、その改質方法により改質された逆浸透膜、および、その逆浸透膜を用いる非荷電物質含有水の処理方法を提供することにある。 An object of the present invention is to provide a reverse osmosis membrane modification method capable of adjusting the rejection rate of the uncharged substance of the reverse osmosis membrane to a predetermined value, a reverse osmosis membrane modified by the modification method, and the The object is to provide a method for treating uncharged substance-containing water using a reverse osmosis membrane.
 また、本発明の目的は、改質したポリアミド系の逆浸透膜における、アルカリ洗浄に対する阻止性能の低下を抑制することができる、逆浸透膜の運転方法および逆浸透膜装置を提供することにある。 It is another object of the present invention to provide a reverse osmosis membrane operating method and a reverse osmosis membrane device capable of suppressing a decrease in the blocking performance against alkali washing in a modified polyamide-based reverse osmosis membrane. .
 本発明は、ポリアミド系の逆浸透膜にハロゲン系酸化剤を接触させることにより、非荷電物質の阻止率を変更する逆浸透膜の改質方法において、前記逆浸透膜の純水換算のフラックスの測定値に基づいて、改質処理を行う、逆浸透膜の改質方法である。 The present invention provides a method for reforming a reverse osmosis membrane in which a halogen-based oxidant is brought into contact with a polyamide-based reverse osmosis membrane to change the rejection rate of an uncharged substance. This is a method for modifying a reverse osmosis membrane in which a modification treatment is performed based on a measured value.
 前記逆浸透膜の改質方法において、予め作成した、前記逆浸透膜の純水換算のフラックスと前記非荷電物質の阻止率との相関式に基づいて、前記改質処理を行うことが好ましい。 In the reverse osmosis membrane modification method, it is preferable that the modification treatment is performed based on a correlation formula between a pure water equivalent flux of the reverse osmosis membrane and a blocking rate of the non-charged substance.
 前記逆浸透膜の改質方法において、前記非荷電物質は、分子量200以下の低分子物質であることが好ましい。 In the reverse osmosis membrane modification method, the uncharged substance is preferably a low-molecular substance having a molecular weight of 200 or less.
 前記逆浸透膜の改質方法において、前記接触が、pH4~6.5の範囲で行われることが好ましい。 In the method for modifying a reverse osmosis membrane, it is preferable that the contact is performed in a pH range of 4 to 6.5.
 前記逆浸透膜の改質方法において、前記接触における前記ハロゲン系酸化剤の濃度が、0.1~100mg/Lの範囲であることが好ましい。 In the method for modifying a reverse osmosis membrane, the concentration of the halogen-based oxidant in the contact is preferably in the range of 0.1 to 100 mg / L.
 前記逆浸透膜の改質方法において、前記接触が、0.1~20MPaの範囲の加圧下で行われることが好ましい。 In the method for reforming a reverse osmosis membrane, it is preferable that the contact is performed under a pressure in the range of 0.1 to 20 MPa.
 また、本発明は、前記逆浸透膜の改質方法により改質された逆浸透膜である。 Further, the present invention is a reverse osmosis membrane modified by the method for modifying a reverse osmosis membrane.
 また、本発明は、前記逆浸透膜の改質方法により改質された逆浸透膜を用いて非荷電物質含有水を逆浸透膜処理する、非荷電物質含有水の処理方法である。 Further, the present invention is a method for treating uncharged substance-containing water, wherein the uncharged substance-containing water is treated with a reverse osmosis membrane using the reverse osmosis membrane modified by the reverse osmosis membrane modification method.
 本発明は、ポリアミド系の逆浸透膜に臭素系酸化剤を接触させて改質された改質逆浸透膜に、被処理水を通水して透過水および濃縮水を得る逆浸透膜処理工程と、pH8以上で前記改質逆浸透膜をアルカリ洗浄するアルカリ洗浄工程と、を含む、逆浸透膜の運転方法である。 The present invention relates to a reverse osmosis membrane treatment step in which permeated water and concentrated water are obtained by passing water to be treated through a modified reverse osmosis membrane modified by bringing a bromine-based oxidant into contact with a polyamide-based reverse osmosis membrane. And an alkaline cleaning step of alkali cleaning the modified reverse osmosis membrane at pH 8 or higher.
 前記逆浸透膜の運転方法において、前記アルカリ洗浄した改質逆浸透膜に臭素系酸化剤を接触させて再改質する再改質工程を含むことが好ましい。 The operation method of the reverse osmosis membrane preferably includes a re-reforming step of re-modifying the alkali-washed modified reverse osmosis membrane by bringing a bromine-based oxidant into contact therewith.
 前記逆浸透膜の運転方法において、前記臭素系酸化剤の接触が、前記被処理水のpHより低いpHで行われることが好ましい。 In the reverse osmosis membrane operation method, the contact of the bromine-based oxidant is preferably performed at a pH lower than the pH of the water to be treated.
 前記逆浸透膜の運転方法において、前記臭素系酸化剤は、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を含むことが好ましい。 In the reverse osmosis membrane operation method, the bromine-based oxidant preferably includes a stabilized hypobromite composition containing a bromine-based oxidant and a sulfamic acid compound.
 前記逆浸透膜の運転方法において、前記臭素系酸化剤は、臭素とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を含むことが好ましい。 In the reverse osmosis membrane operation method, the bromine-based oxidizing agent preferably contains a stabilized hypobromite composition containing bromine and a sulfamic acid compound.
 また、本発明は、ポリアミド系の逆浸透膜に臭素系酸化剤を接触させて改質された改質逆浸透膜を有し、被処理水を通水して透過水および濃縮水を得る逆浸透膜処理装置と、pH8以上で前記改質逆浸透膜をアルカリ洗浄するアルカリ洗浄手段と、を備え、前記アルカリ洗浄手段は、前記被処理水を前記改質逆浸透膜に所定時間通水した後、pH8以上で前記改質逆浸透膜にアルカリ溶液を接触させる、逆浸透膜装置である。 The present invention also includes a modified reverse osmosis membrane that is modified by bringing a bromine-based oxidant into contact with a polyamide-based reverse osmosis membrane, and passes the water to be treated to obtain permeated water and concentrated water. An osmosis membrane treatment device and an alkali cleaning means for alkali-washing the modified reverse osmosis membrane at pH 8 or more, wherein the alkali cleaning means passed the treated water through the modified reverse osmosis membrane for a predetermined time. Thereafter, the reverse osmosis membrane device is configured to bring an alkaline solution into contact with the modified reverse osmosis membrane at a pH of 8 or more.
 前記逆浸透膜装置において、前記アルカリ洗浄した改質逆浸透膜に臭素系酸化剤を接触させて再改質する再改質手段をさらに備えることが好ましい。 In the reverse osmosis membrane device, it is preferable that the apparatus further comprises a re-reformer for re-modifying the alkali-washed modified reverse osmosis membrane by bringing a brominated oxidant into contact therewith.
 前記逆浸透膜装置において、前記臭素系酸化剤の接触が、前記被処理水のpHより低いpHで行われることが好ましい。 In the reverse osmosis membrane device, it is preferable that the bromine-based oxidant is contacted at a pH lower than the pH of the water to be treated.
 前記逆浸透膜装置において、前記臭素系酸化剤は、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を含むことが好ましい。 In the reverse osmosis membrane device, the bromine-based oxidant preferably includes a stabilized hypobromite composition containing a bromine-based oxidant and a sulfamic acid compound.
 前記逆浸透膜装置において、前記臭素系酸化剤は、臭素とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を含むことが好ましい。 In the reverse osmosis membrane device, the bromine-based oxidant preferably includes a stabilized hypobromite composition containing bromine and a sulfamic acid compound.
 本発明により、逆浸透膜の非荷電物質の阻止率を所定の値に調整することができる逆浸透膜の改質方法、その改質方法により改質された逆浸透膜、および、その逆浸透膜を用いる非荷電物質含有水の処理方法を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a reverse osmosis membrane modification method capable of adjusting the rejection rate of uncharged substances in a reverse osmosis membrane to a predetermined value, a reverse osmosis membrane modified by the modification method, and a reverse osmosis thereof An uncharged substance-containing water treatment method using a membrane can be provided.
 また、本発明の逆浸透膜の運転方法および逆浸透膜装置では、改質したポリアミド系の逆浸透膜における、アルカリ洗浄に対する阻止性能の低下を抑制することができる。 In the reverse osmosis membrane operation method and reverse osmosis membrane apparatus of the present invention, it is possible to suppress a decrease in the ability to prevent alkali washing in a modified polyamide-based reverse osmosis membrane.
本発明の実施形態に係る逆浸透膜装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the reverse osmosis membrane apparatus which concerns on embodiment of this invention. 実施例で求めた、純水換算フラックス[m/d/MPa]とTOC阻止率[%]との関係を示す図である。It is a figure which shows the relationship between the pure water conversion flux [m / d / MPa] and TOC rejection [%] which were calculated | required in the Example.
 本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.
<逆浸透膜の改質方法および逆浸透膜>
 本発明の実施形態に係る逆浸透膜の改質方法は、ポリアミド系の逆浸透膜にハロゲン系酸化剤を接触させることにより、非荷電物質の阻止率を変更する逆浸透膜の改質方法において、逆浸透膜の純水換算のフラックスの測定値に基づいて、改質処理を行う方法である。この改質方法において、予め作成した、逆浸透膜の純水換算フラックスと非荷電物質の阻止率との相関式に基づいて、改質処理を行うことが好ましい。また、本発明の実施形態に係る逆浸透膜は、この逆浸透膜の改質方法により改質された逆浸透膜である。なお、本明細書における逆浸透膜の「改質」とは、非荷電物質の阻止率の向上を指す。
<Reverse osmosis membrane modification method and reverse osmosis membrane>
A method for modifying a reverse osmosis membrane according to an embodiment of the present invention is a method for modifying a reverse osmosis membrane in which a halogen-based oxidant is brought into contact with a polyamide-based reverse osmosis membrane to change the rejection rate of uncharged substances. This is a method for performing the reforming treatment based on the measured value of the flux of the reverse osmosis membrane in terms of pure water. In this reforming method, it is preferable to perform the reforming process based on a correlation formula between the pure water equivalent flux of the reverse osmosis membrane and the blocking rate of the uncharged substance prepared in advance. Further, the reverse osmosis membrane according to the embodiment of the present invention is a reverse osmosis membrane modified by the method for modifying a reverse osmosis membrane. In the present specification, “reforming” a reverse osmosis membrane refers to an improvement in the rejection rate of uncharged substances.
 本発明者らは、膜材質がポリアミド系である逆浸透膜にハロゲン系酸化剤を接触させて純水換算のフラックス(以下、「純水換算フラックス」と呼ぶ場合がある)を制御することで、任意の非荷電物質の阻止性能(阻止率)に改質する技術を確立した。本発明者らの検討により、逆浸透膜の種類や改質の有無等に関わらず、逆浸透膜の非荷電物質の阻止率と純水換算フラックスとの間に相関性があることがわかった。したがって、逆浸透膜の純水換算フラックスの測定値に基づいて、好ましくは、予め作成した、逆浸透膜の純水換算フラックスと非荷電物質の阻止率との相関式に基づいて、改質処理を行うことにより、逆浸透膜の非荷電物質の阻止率を所定の値に調整することができる。 The present inventors control the flux in terms of pure water (hereinafter sometimes referred to as “pure water equivalent flux”) by bringing a halogen-based oxidant into contact with a reverse osmosis membrane whose membrane material is polyamide. The technology to improve the blocking performance (blocking rate) of any uncharged substance was established. According to the study by the present inventors, it was found that there is a correlation between the blocking rate of the non-charged substance of the reverse osmosis membrane and the pure water equivalent flux regardless of the type of the reverse osmosis membrane or the presence or absence of modification. . Therefore, based on the measured value of the pure water equivalent flux of the reverse osmosis membrane, preferably, based on the correlation formula between the pure water equivalent flux of the reverse osmosis membrane and the blocking rate of the uncharged substance, the reforming treatment is preferably performed in advance. By performing the above, it is possible to adjust the rejection rate of the uncharged substance of the reverse osmosis membrane to a predetermined value.
 改質は、例えば、所定のハロゲン系酸化剤の濃度、pHを設定し、例えば加圧下で逆浸透膜に通水し、流量計等によって流量をモニタし、純水換算フラックスを計算しながら、逆浸透膜の非荷電物質の阻止率を所定の値に調整すればよい。また、例えば、所定のハロゲン系酸化剤の濃度、pHを設定し、例えば加圧下で逆浸透膜に通水し、流量計等によって流量をモニタし、純水換算フラックスを計算しながら、予め作成した上記相関式に基づいて、目標とする逆浸透膜の非荷電物質の阻止率となる純水換算フラックスに調整すればよい。複数の非荷電物質を対象とする場合は、最も阻止率が低い非荷電物質を基準に純水換算フラックスを目標とする値に調整すればよい。 For example, the reforming is performed by setting the concentration and pH of a predetermined halogen-based oxidant, for example, passing water through a reverse osmosis membrane under pressure, monitoring the flow rate with a flow meter or the like, and calculating the pure water equivalent flux, What is necessary is just to adjust the rejection rate of the uncharged substance of a reverse osmosis membrane to a predetermined value. In addition, for example, set the concentration and pH of a predetermined halogen-based oxidant, for example, pass water through a reverse osmosis membrane under pressure, monitor the flow rate with a flow meter, etc., and create in advance while calculating the pure water equivalent flux Based on the above-described correlation equation, it may be adjusted to a pure water equivalent flux that becomes a target rejection rate of uncharged substances of the reverse osmosis membrane. When a plurality of uncharged substances are targeted, the pure water equivalent flux may be adjusted to a target value based on the uncharged substance having the lowest rejection rate.
 本実施形態に係る逆浸透膜の改質方法により、逆浸透膜の非荷電物質の阻止率を所定の値に調整することができる。逆浸透膜の使用目的、処理水に求められる水質等に応じて、どこまで改質すればよいか、すなわち非荷電物質の阻止率をどの程度にすればよいかを決定し、その目標の阻止率になるような純水換算フラックスが得られる程度に改質を行えばよい。この方法により、例えば、複数の逆浸透膜を用い、膜のロット差等によって各膜の阻止率が異なる場合でも、改質により各膜の阻止率を揃えて、膜のロット差を解消することができる。 </ RTI> By the reverse osmosis membrane modification method according to this embodiment, the rejection rate of uncharged substances in the reverse osmosis membrane can be adjusted to a predetermined value. Depending on the purpose of use of the reverse osmosis membrane and the quality of the water required for the treated water, it is decided how much the reform should be done, that is, what the rejection rate of uncharged substances should be, and the target rejection rate What is necessary is just to modify | reform to such an extent that the pure water conversion flux which becomes is obtained. By this method, for example, even when multiple reverse osmosis membranes are used and the rejection rate of each membrane differs due to the difference in membrane lots, etc., the rejection rate of each membrane is made uniform by reforming to eliminate the membrane lot difference. Can do.
 例えば、逆浸透膜装置への入口および出口の非荷電物質の濃度をモニタして、所定の非荷電物質の出口濃度になるように改質を行うことも考えられるが、一般的に非荷電物質の濃度の測定(例えば、有機物質の場合にはTOC濃度の測定、ホウ素等の無機物質の場合にはICP発光分析等)には時間がかかるため、改質中に即時的に逆浸透膜の非荷電物質の阻止率を所定の値に調整するのは困難である。しかし、本実施形態に係る逆浸透膜の改質方法によれば、単に流量計等によって流量をモニタして、純水換算フラックスを計算しながら改質を行うことにより、即時的に逆浸透膜の非荷電物質の阻止率を所定の値に調整することができる。 For example, the concentration of uncharged substances at the inlet and outlet to the reverse osmosis membrane device may be monitored and reformed so as to have a predetermined uncharged substance outlet concentration. Since it takes time to measure the concentration (for example, TOC concentration in the case of organic substances, ICP emission analysis in the case of inorganic substances such as boron), the reverse osmosis membrane is It is difficult to adjust the rejection rate of uncharged substances to a predetermined value. However, according to the reforming method of the reverse osmosis membrane according to the present embodiment, the reverse osmosis membrane is instantly obtained by simply monitoring the flow rate with a flow meter or the like and performing the reforming while calculating the pure water equivalent flux. It is possible to adjust the rejection rate of the uncharged substance to a predetermined value.
 ここで、「非荷電物質」とは、非電解質有機物や、中性領域(pH6~8)で解離しないホウ素のことをいう。低分子の非電解質有機物としては、例えば、メタノール、エタノール、イソプロピルアルコール等のアルコール化合物、尿素等のアミン化合物、水酸化テトラメチルアンモニウム等のテトラアルキルアンモニウム塩等の分子量200以下の有機物質が挙げられる。 Here, “uncharged substance” means non-electrolyte organic substance or boron that does not dissociate in the neutral region (pH 6-8). Examples of the low-molecular non-electrolyte organic substance include organic substances having a molecular weight of 200 or less such as alcohol compounds such as methanol, ethanol and isopropyl alcohol, amine compounds such as urea, and tetraalkylammonium salts such as tetramethylammonium hydroxide. .
 「純水換算のフラックス(m/d/MPa)」は、透過水量を膜面積、操作圧で割ることで求められ、下記式により純水換算したものである。
  純水換算フラックス[m/d/MPa]=透過水量/膜面積/(膜面有効圧-浸透圧)
“Pure water equivalent flux (m / d / MPa)” is obtained by dividing the permeated water amount by the membrane area and the operating pressure, and is converted to pure water by the following formula.
Pure water equivalent flux [m / d / MPa] = permeate amount / membrane area / (membrane surface effective pressure−osmotic pressure)
 本実施形態に係る逆浸透膜の改質方法において、ハロゲン系酸化剤により改質された膜を得るには、逆浸透膜への給水、洗浄水等の中に、ハロゲン系酸化剤を存在させて逆浸透膜に接触させればよい。 In the reverse osmosis membrane modification method according to the present embodiment, in order to obtain a membrane modified with a halogen-based oxidant, a halogen-based oxidant is present in the water supplied to the reverse osmosis membrane, the washing water, and the like. Then, it may be brought into contact with the reverse osmosis membrane.
 ハロゲン系酸化剤としては、塩素、臭素等のハロゲンを含有し、酸化作用があるものであればよく、特に制限はないが、例えば、塩素系酸化剤、臭素系酸化剤、安定化次亜塩素酸組成物、安定化次亜臭素酸組成物等が挙げられる。 The halogen-based oxidant is not particularly limited as long as it contains halogen such as chlorine and bromine and has an oxidizing action. For example, a chlorine-based oxidant, a bromine-based oxidant, and stabilized hypochlorous acid. An acid composition, a stabilized hypobromite composition, etc. are mentioned.
 塩素系酸化剤としては、例えば、塩素ガス、二酸化塩素、次亜塩素酸またはその塩、亜塩素酸またはその塩、塩素酸またはその塩、過塩素酸またはその塩、塩素化イソシアヌル酸またはその塩等が挙げられる。これらのうち、塩としては、例えば、次亜塩素酸ナトリウム、次亜塩素酸カリウム等の次亜塩素酸アルカリ金属塩、次亜塩素酸カルシウム、次亜塩素酸バリウム等の次亜塩素酸アルカリ土類金属塩、亜塩素酸ナトリウム、亜塩素酸カリウム等の亜塩素酸アルカリ金属塩、亜塩素酸バリウム等の亜塩素酸アルカリ土類金属塩、亜塩素酸ニッケル等の他の亜塩素酸金属塩、塩素酸アンモニウム、塩素酸ナトリウム、塩素酸カリウム等の塩素酸アルカリ金属塩、塩素酸カルシウム、塩素酸バリウム等の塩素酸アルカリ土類金属塩等が挙げられる。これらの塩素系酸化剤は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。塩素系酸化剤としては、取り扱い性等の点から、次亜塩素酸ナトリウムを用いるのが好ましい。 Examples of the chlorine-based oxidizing agent include chlorine gas, chlorine dioxide, hypochlorous acid or a salt thereof, chlorous acid or a salt thereof, chloric acid or a salt thereof, perchloric acid or a salt thereof, chlorinated isocyanuric acid or a salt thereof. Etc. Among these, examples of the salt include alkali metal hypochlorites such as sodium hypochlorite and potassium hypochlorite, alkaline earth hypochlorite such as calcium hypochlorite and barium hypochlorite. Metal salts, alkali metal chlorites such as sodium chlorite and potassium chlorite, alkaline earth metal chlorites such as barium chlorite, and other metal chlorites such as nickel chlorite , Alkali metal chlorates such as ammonium chlorate, sodium chlorate and potassium chlorate, and alkaline earth metal chlorates such as calcium chlorate and barium chlorate. These chlorine-based oxidants may be used alone or in combination of two or more. As the chlorine-based oxidant, sodium hypochlorite is preferably used from the viewpoint of handleability.
 臭素系酸化剤としては、臭素(液体臭素)、塩化臭素、臭素酸、臭素酸塩、次亜臭素酸等が挙げられる。次亜臭素酸は、臭化ナトリウム等の臭化物と次亜塩素酸等の塩素系酸化剤とを反応させて生成させたものであってもよい。 Examples of bromine-based oxidizing agents include bromine (liquid bromine), bromine chloride, bromic acid, bromate, and hypobromite. Hypobromous acid may be produced by reacting a bromide such as sodium bromide with a chlorine-based oxidizing agent such as hypochlorous acid.
 安定化次亜塩素酸組成物は、塩素系酸化剤とスルファミン酸化合物とを含むものである。「塩素系酸化剤とスルファミン酸化合物とを含む安定化次亜塩素酸組成物」は、「塩素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜塩素酸組成物であってもよいし、「塩素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜塩素酸組成物であってもよい。 The stabilized hypochlorous acid composition contains a chlorine-based oxidizing agent and a sulfamic acid compound. The “stabilized hypochlorous acid composition containing a chlorinated oxidant and a sulfamic acid compound” is a stabilized hypochlorous acid composition containing a mixture of a “chlorine oxidant” and a “sulfamic acid compound”. Alternatively, it may be a stabilized hypochlorous acid composition containing a “reaction product of a chlorinated oxidant and a sulfamic acid compound”.
 安定化次亜臭素酸組成物は、臭素系酸化剤とスルファミン酸化合物とを含むものである。「臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物」は、「臭素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜臭素酸組成物であってもよいし、「臭素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜臭素酸組成物であってもよい。 The stabilized hypobromite composition contains a bromine-based oxidizing agent and a sulfamic acid compound. The “stabilized hypobromite composition containing a bromine-based oxidant and a sulfamic acid compound” is a stabilized hypobromite composition containing a mixture of a “bromine-based oxidant” and a “sulfamic acid compound”. Alternatively, it may be a stabilized hypobromite composition containing a “reaction product of a bromine-based oxidant and a sulfamic acid compound”.
 ハロゲン系酸化剤としては、これらのうち、安定化次亜塩素酸組成物または安定化次亜臭素酸組成物が好ましく、安定化次亜臭素酸組成物がより好ましい。安定化次亜塩素酸組成物または安定化次亜臭素酸組成物、特に安定化次亜臭素酸組成物は次亜塩素酸等の塩素系酸化剤と同等以上の改質効果を発揮するにも関わらず、塩素系酸化剤と比較すると、逆浸透膜への劣化影響が低く、改質を繰り返すことによる膜劣化を抑制することができる。このため、本実施形態に係る逆浸透膜の改質方法で用いられる安定化次亜塩素酸組成物または安定化次亜臭素酸組成物、特に安定化次亜臭素酸組成物は、改質剤としては好適である。 Among these, as the halogen-based oxidant, a stabilized hypochlorous acid composition or a stabilized hypobromite composition is preferable, and a stabilized hypobromite composition is more preferable. Stabilized hypochlorous acid composition or stabilized hypobromite composition, especially stabilized hypobromite composition, also exhibits a modification effect equivalent to or better than chlorine-based oxidizing agents such as hypochlorous acid. Regardless, the deterioration effect on the reverse osmosis membrane is lower than that of the chlorine-based oxidant, and membrane deterioration due to repeated reforming can be suppressed. Therefore, the stabilized hypochlorous acid composition or the stabilized hypobromite composition, particularly the stabilized hypobromite composition used in the method for modifying a reverse osmosis membrane according to the present embodiment is a modifier. Is suitable.
 すなわち、本実施形態に係る逆浸透膜の改質方法では、好ましくは、ポリアミド系の逆浸透膜に、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物および塩素系酸化剤とスルファミン酸化合物とを含む安定化次亜塩素酸組成物のうち少なくとも1つを接触させることにより、非荷電物質の阻止率を変更する際に、逆浸透膜の純水換算のフラックスの測定値に基づいて、改質処理を行う。 That is, in the reverse osmosis membrane modification method according to the present embodiment, preferably, a stabilized hypobromite composition and a chlorine-based oxidation containing a bromine-based oxidant and a sulfamic acid compound in a polyamide-based reverse osmosis membrane. Measurement of flux of reverse osmosis membrane in terms of pure water when changing the rejection rate of uncharged substances by contacting at least one of the stabilized hypochlorous acid composition containing the agent and the sulfamic acid compound Based on the value, a reforming process is performed.
 本実施形態に係る逆浸透膜の改質方法において、特に「臭素系酸化剤」が臭素である場合、塩素系酸化剤が存在しないため、逆浸透膜への劣化影響が著しく低く、逆浸透膜の改質効果を有する。 In the reverse osmosis membrane modification method according to the present embodiment, particularly when the “bromine-based oxidant” is bromine, there is no chlorine-based oxidant, so the deterioration effect on the reverse osmosis membrane is extremely low, and the reverse osmosis membrane It has the reforming effect.
 本実施形態に係る逆浸透膜の改質方法において、例えば、逆浸透膜への給水等の中に、改質剤として「臭素系酸化剤」と「スルファミン酸化合物」との混合物、または「塩素系酸化剤」と「スルファミン酸化合物」との混合物を存在させればよい。これにより、逆浸透膜への給水等の中で、安定化次亜臭素酸組成物または安定化次亜塩素酸組成物が生成すると考えられる。 In the method for reforming a reverse osmosis membrane according to the present embodiment, for example, in a water supply to the reverse osmosis membrane, a mixture of “bromine-based oxidant” and “sulfamic acid compound” or “chlorine” A mixture of “system oxidizing agent” and “sulfamic acid compound” may be present. Thereby, it is considered that a stabilized hypobromite composition or a stabilized hypochlorous acid composition is generated in the water supply to the reverse osmosis membrane.
 また、本実施形態に係る逆浸透膜の改質方法において、例えば、逆浸透膜への給水等の中に、改質剤として「臭素系酸化剤とスルファミン酸化合物との反応生成物」である安定化次亜臭素酸組成物、または「塩素系酸化剤とスルファミン酸化合物との反応生成物」である安定化次亜塩素酸組成物を存在させればよい。 Further, in the method for reforming a reverse osmosis membrane according to the present embodiment, for example, in a water supply to the reverse osmosis membrane, a “reaction product of a bromine-based oxidant and a sulfamic acid compound” is used as a modifier. A stabilized hypochlorous acid composition or a stabilized hypochlorous acid composition that is a “reaction product of a chlorinated oxidant and a sulfamic acid compound” may be present.
 具体的には本実施形態に係る逆浸透膜の改質方法において、例えば、逆浸透膜への給水等の中に、改質剤として「臭素」、「塩化臭素」、「次亜臭素酸」または「臭化ナトリウムと次亜塩素酸との反応物」と、「スルファミン酸化合物」との混合物を存在させればよい。または、逆浸透膜への給水等の中に、改質剤として「次亜塩素酸」と、「スルファミン酸化合物」との混合物を存在させればよい。 Specifically, in the method for modifying a reverse osmosis membrane according to the present embodiment, for example, in the water supply to the reverse osmosis membrane, as a modifier, “bromine”, “bromine chloride”, “hypobromite” Alternatively, a mixture of “reaction product of sodium bromide and hypochlorous acid” and “sulfamic acid compound” may be present. Alternatively, a mixture of “hypochlorous acid” and “sulfamic acid compound” may be present as a modifier in the water supply to the reverse osmosis membrane.
 また、本実施形態に係る逆浸透膜の改質方法において、例えば、逆浸透膜への給水等の中に、改質剤として「臭素とスルファミン酸化合物との反応生成物」、「塩化臭素とスルファミン酸化合物との反応生成物」、「次亜臭素酸とスルファミン酸化合物との反応生成物」、または「臭化ナトリウムと次亜塩素酸との反応物と、スルファミン酸化合物と、の反応生成物」である安定化次亜臭素酸組成物を存在させればよい。または、逆浸透膜への給水等の中に、改質剤として「次亜塩素酸とスルファミン酸化合物との反応生成物」である安定化次亜塩素酸組成物を存在させればよい。 Further, in the reverse osmosis membrane modification method according to the present embodiment, for example, in the water supply to the reverse osmosis membrane, as a modifier, "reaction product of bromine and sulfamic acid compound", "bromine chloride and Reaction product of sulfamic acid compound "," Reaction product of hypobromous acid and sulfamic acid compound ", or" Reaction product of sodium bromide and hypochlorous acid and sulfamic acid compound " The stabilized hypobromite composition, which is a product, may be present. Alternatively, a stabilized hypochlorous acid composition that is a “reaction product of hypochlorous acid and a sulfamic acid compound” may be present as a modifier in the water supply to the reverse osmosis membrane.
 本実施形態に係る逆浸透膜の改質方法において、逆浸透膜へのハロゲン系酸化剤の接触が、pH3超、8未満の範囲で行われることが好ましく、pH4~6.5の範囲で行われることがより好ましい。逆浸透膜へのハロゲン系酸化剤の接触がpH3以下で行われると、逆浸透膜へのハロゲン系酸化剤の接触が長期的に行われた場合に逆浸透膜の劣化が起こり、阻止率が低下する場合があり、pH8以上で行われると、改質効果が不十分な場合がある。特に、pH4~6.5の範囲で接触が行われると、逆浸透膜の劣化を抑制しつつ、逆浸透膜の非荷電物質の阻止率を十分に改善することができる。改質剤の接触を上記pH範囲で行うために、例えば、逆浸透膜への給水等のpHを上記範囲に維持すればよい。 In the reverse osmosis membrane modification method according to the present embodiment, the contact of the halogen-based oxidant with the reverse osmosis membrane is preferably performed in the range of more than pH 3 and less than 8, preferably in the range of pH 4 to 6.5. More preferably. If the contact of the halogen-based oxidant with the reverse osmosis membrane is performed at a pH of 3 or less, the reverse osmosis membrane deteriorates when the contact of the halogen-based oxidant with the reverse osmosis membrane is performed over a long period of time, and the blocking rate is reduced. When it is carried out at a pH of 8 or more, the reforming effect may be insufficient. In particular, when contact is made in the pH range of 4 to 6.5, it is possible to sufficiently improve the rejection rate of the uncharged substance of the reverse osmosis membrane while suppressing the deterioration of the reverse osmosis membrane. In order to perform the contact of the modifier in the above pH range, for example, the pH of the water supply to the reverse osmosis membrane may be maintained in the above range.
 本実施形態に係る逆浸透膜の改質方法では、例えば、逆浸透膜を備える逆浸透膜装置の運転の際に、逆浸透膜への給水等の中に、「塩素系酸化剤」、「臭素系酸化剤」、または「臭素系酸化剤」もしくは「塩素系酸化剤」と「スルファミン酸化合物」とを薬注ポンプ等により注入してもよい。「臭素系酸化剤」または「塩素系酸化剤」と「スルファミン酸化合物」とは別々に給水等の中に添加してもよく、または、原液同士で混合させてから逆浸透膜への給水等の中に添加してもよい。 In the reverse osmosis membrane modification method according to the present embodiment, for example, during the operation of a reverse osmosis membrane device including a reverse osmosis membrane, in the water supply to the reverse osmosis membrane, etc., "chlorine oxidant", " The “bromine-based oxidizing agent”, or “bromine-based oxidizing agent” or “chlorine-based oxidizing agent” and “sulfamic acid compound” may be injected by a chemical injection pump or the like. “Bromine-based oxidizer” or “chlorine-based oxidizer” and “sulfamic acid compound” may be added separately to the water supply, etc., or mixed with stock solutions before supplying water to the reverse osmosis membrane, etc. You may add in.
 また、例えば、逆浸透膜への給水等の中に「臭素系酸化剤とスルファミン酸化合物との反応生成物」または「塩素系酸化剤とスルファミン酸化合物との反応生成物」を薬注ポンプ等により注入してもよい。 In addition, for example, in the feed water to the reverse osmosis membrane, the “reaction product of bromine-based oxidant and sulfamic acid compound” or “reaction product of chlorinated oxidant and sulfamic acid compound” is a chemical injection pump, etc. May be injected.
 ハロゲン系酸化剤による改質は、例えば、逆浸透膜を備える逆浸透膜装置の運転の際に逆浸透膜への給水、洗浄水等の中に、ハロゲン系酸化剤を連続的または間欠的に添加してもよいし、逆浸透膜の阻止率が低下した場合に、逆浸透膜への給水、洗浄水等の中にハロゲン系酸化剤を連続的または間欠的に添加してもよい。 The modification with the halogen-based oxidant is, for example, continuously or intermittently supplying the halogen-based oxidant into the water supplied to the reverse osmosis membrane, the washing water, or the like during the operation of the reverse osmosis membrane device including the reverse osmosis membrane. It may be added, or when the blocking rate of the reverse osmosis membrane is lowered, a halogen-based oxidant may be added continuously or intermittently into the water supplied to the reverse osmosis membrane, washing water or the like.
 逆浸透膜へのハロゲン系酸化剤の接触は、常圧条件下、加圧条件下または減圧条件下で行えばよいが、逆浸透膜装置を停止しなくても改質を行うことができる、逆浸透膜の改質を確実に行うことができる等の点から、加圧条件下で行うことが好ましい。逆浸透膜へのハロゲン系酸化剤の接触は、例えば、0.1~20MPaの範囲の加圧条件下で行うことが好ましく、0.1MPa~8.0MPaの範囲の加圧条件下で行うことがより好ましい。 The contact of the halogen-based oxidant with the reverse osmosis membrane may be performed under normal pressure, pressurized or reduced pressure, but the modification can be performed without stopping the reverse osmosis membrane device. From the viewpoint that the reverse osmosis membrane can be reliably modified, it is preferable to perform the treatment under pressure. The contact of the halogen-based oxidant with the reverse osmosis membrane is preferably performed under a pressure condition in the range of 0.1 to 20 MPa, for example, and is performed under a pressure condition in the range of 0.1 MPa to 8.0 MPa. Is more preferable.
 逆浸透膜へのハロゲン系酸化剤の接触は、例えば、5℃~35℃の範囲の温度条件下で行えばよい。 The contact of the halogen-based oxidant with the reverse osmosis membrane may be performed, for example, under a temperature condition in the range of 5 ° C to 35 ° C.
 本実施形態に係る逆浸透膜の改質方法において、「臭素系酸化剤」または「塩素系酸化剤」の当量に対する「スルファミン酸化合物」の当量の比は、1以上であることが好ましく、1以上2以下の範囲であることがより好ましい。「臭素系酸化剤」または「塩素系酸化剤」の当量に対する「スルファミン酸化合物」の当量の比が1未満であると、逆浸透膜を劣化させる可能性があり、2を超えると、製造コストが増加する場合がある。 In the method for modifying a reverse osmosis membrane according to the present embodiment, the ratio of the equivalent of “sulfamic acid compound” to the equivalent of “bromine-based oxidant” or “chlorine-based oxidant” is preferably 1 or more. A range of 2 or less is more preferable. If the ratio of the equivalent of the “sulfamic acid compound” to the equivalent of the “bromine-based oxidizing agent” or “chlorine-based oxidizing agent” is less than 1, the reverse osmosis membrane may be deteriorated. May increase.
 逆浸透膜に接触するハロゲン系酸化剤の濃度(全塩素濃度)は有効塩素濃度換算で、0.1~100mg/Lの範囲であることが好ましい。逆浸透膜に接触するハロゲン系酸化剤の濃度(全塩素濃度)が0.1mg/L未満であると、十分な改質効果を得ることができない場合があり、100mg/Lより多いと、逆浸透膜の劣化、配管等の腐食を引き起こす可能性がある。 The concentration of the halogen-based oxidant (total chlorine concentration) in contact with the reverse osmosis membrane is preferably in the range of 0.1 to 100 mg / L in terms of effective chlorine concentration. If the concentration of the halogen-based oxidant in contact with the reverse osmosis membrane (total chlorine concentration) is less than 0.1 mg / L, a sufficient modification effect may not be obtained. It may cause deterioration of the osmotic membrane and corrosion of piping.
 臭素を用いた「臭素とスルファミン酸化合物(臭素とスルファミン酸化合物の混合物)」または「臭素とスルファミン酸化合物との反応生成物」の製剤は、「次亜塩素酸と臭素化合物とスルファミン酸」の製剤および「塩化臭素とスルファミン酸」の製剤等に比べて、臭素酸の副生が少なく、逆浸透膜をより劣化させないため、改質剤としてはより好ましい。 The formulation of “bromine and sulfamic acid compound (mixture of bromine and sulfamic acid compound)” or “reaction product of bromine and sulfamic acid compound” using bromine is composed of “hypochlorous acid, bromine compound and sulfamic acid”. Compared to preparations and preparations of “bromine chloride and sulfamic acid”, etc., there is less by-product of bromic acid, and the reverse osmosis membrane is not further deteriorated.
 すなわち、本実施形態に係る逆浸透膜の改質方法では、好ましくは、ポリアミド系の逆浸透膜に、臭素とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を接触させることにより、非荷電物質の阻止率を変更する際に、逆浸透膜の純水換算のフラックスの測定値に基づいて、改質処理を行う。 That is, in the method for reforming a reverse osmosis membrane according to the present embodiment, preferably, the polyamide-based reverse osmosis membrane is brought into contact with a stabilized hypobromite composition containing bromine and a sulfamic acid compound. When changing the blocking rate of the charged substance, the reforming process is performed based on the measured value of the pure water equivalent flux of the reverse osmosis membrane.
 この場合、逆浸透膜への給水等の中に、臭素と、スルファミン酸化合物とを存在させる(臭素とスルファミン酸化合物の混合物を存在させる)ことが好ましい。また、逆浸透膜への給水等の中に、臭素とスルファミン酸化合物との反応生成物を存在させることが好ましい。 In this case, it is preferable that bromine and a sulfamic acid compound are present (a mixture of bromine and sulfamic acid compound is present) in the water supply to the reverse osmosis membrane. Moreover, it is preferable that a reaction product of bromine and a sulfamic acid compound is present in the water supply to the reverse osmosis membrane.
 臭素化合物としては、臭化ナトリウム、臭化カリウム、臭化リチウム、臭化アンモニウムおよび臭化水素酸等が挙げられる。これらのうち、製剤コスト等の点から、臭化ナトリウムが好ましい。 Examples of bromine compounds include sodium bromide, potassium bromide, lithium bromide, ammonium bromide and hydrobromic acid. Of these, sodium bromide is preferable from the viewpoint of formulation cost and the like.
 スルファミン酸化合物は、以下の一般式(1)で示される化合物である。
  RNSOH   (1)
(式中、Rは独立して水素原子または炭素数1~8のアルキル基である。)
The sulfamic acid compound is a compound represented by the following general formula (1).
R 2 NSO 3 H (1)
(In the formula, R is independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.)
 スルファミン酸化合物としては、例えば、2個のR基の両方が水素原子であるスルファミン酸(アミド硫酸)の他に、N-メチルスルファミン酸、N-エチルスルファミン酸、N-プロピルスルファミン酸、N-イソプロピルスルファミン酸、N-ブチルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数1~8のアルキル基であるスルファミン酸化合物、N,N-ジメチルスルファミン酸、N,N-ジエチルスルファミン酸、N,N-ジプロピルスルファミン酸、N,N-ジブチルスルファミン酸、N-メチル-N-エチルスルファミン酸、N-メチル-N-プロピルスルファミン酸等の2個のR基の両方が炭素数1~8のアルキル基であるスルファミン酸化合物、N-フェニルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数6~10のアリール基であるスルファミン酸化合物、またはこれらの塩等が挙げられる。スルファミン酸塩としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩、マンガン塩、銅塩、亜鉛塩、鉄塩、コバルト塩、ニッケル塩等の他の金属塩、アンモニウム塩およびグアニジン塩等が挙げられる。スルファミン酸化合物およびこれらの塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。スルファミン酸化合物としては、環境負荷等の点から、スルファミン酸(アミド硫酸)を用いるのが好ましい。 Examples of the sulfamic acid compound include sulfamic acid (amidosulfuric acid) in which both two R groups are hydrogen atoms, N-methylsulfamic acid, N-ethylsulfamic acid, N-propylsulfamic acid, N- A sulfamic acid compound in which one of two R groups such as isopropylsulfamic acid and N-butylsulfamic acid is a hydrogen atom and the other is an alkyl group having 1 to 8 carbon atoms, N, N-dimethylsulfamic acid, N, Two R groups such as N-diethylsulfamic acid, N, N-dipropylsulfamic acid, N, N-dibutylsulfamic acid, N-methyl-N-ethylsulfamic acid, N-methyl-N-propylsulfamic acid, etc. One of two R groups such as a sulfamic acid compound, N-phenylsulfamic acid and the like, both of which are alkyl groups having 1 to 8 carbon atoms Is a hydrogen atom and the other sulfamic acid compound or a salt thereof, such as an aryl group having 6 to 10 carbon atoms. Examples of the sulfamate include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt, strontium salt and barium salt, manganese salt, copper salt, zinc salt, iron salt, cobalt salt, Other metal salts such as nickel salts, ammonium salts, guanidine salts and the like can be mentioned. The sulfamic acid compounds and salts thereof may be used alone or in combination of two or more. As the sulfamic acid compound, sulfamic acid (amidosulfuric acid) is preferably used from the viewpoint of environmental load.
 本実施形態に係る逆浸透膜の改質方法において、安定化次亜臭素酸組成物および安定化次亜塩素酸組成物のうち少なくとも1つを逆浸透膜への給水等の中に改質剤として存在させる場合に、さらにアルカリを存在させてもよい。アルカリとしては、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ等が挙げられる。低温時の製品安定性等の点から、水酸化ナトリウムと水酸化カリウムとを併用してもよい。また、アルカリは、固形でなく、水溶液として用いてもよい。 In the method for reforming a reverse osmosis membrane according to the present embodiment, at least one of a stabilized hypobromite composition and a stabilized hypochlorous acid composition is used as a modifier in water supply to the reverse osmosis membrane. When present as an alkali, an alkali may be further present. Examples of the alkali include alkali hydroxides such as sodium hydroxide and potassium hydroxide. From the viewpoint of product stability at low temperatures, sodium hydroxide and potassium hydroxide may be used in combination. Further, the alkali is not solid and may be used as an aqueous solution.
 本実施形態に係る逆浸透膜の改質方法は、昨今主流であるポリアミド系高分子膜に適用される。ポリアミド系高分子膜は、酸化剤に対する耐性が比較的低く、遊離塩素等をポリアミド系高分子膜に連続的に接触させると、膜性能の著しい低下が起こる場合がある。しかしながら、本実施形態に係る逆浸透膜の改質方法では、安定化次亜臭素酸組成物および安定化次亜塩素酸組成物のうち少なくとも1つ、特に安定化次亜臭素酸組成物を用いることにより、ポリアミド高分子膜においても、このような著しい膜性能の低下はほとんど起こらない。 The method for reforming a reverse osmosis membrane according to this embodiment is applied to a polyamide-based polymer membrane that is currently mainstream. Polyamide polymer membranes have a relatively low resistance to oxidizing agents, and when free chlorine or the like is continuously brought into contact with the polyamide polymer membrane, the membrane performance may be significantly reduced. However, in the method for modifying a reverse osmosis membrane according to the present embodiment, at least one of a stabilized hypobromite composition and a stabilized hypochlorous acid composition, particularly a stabilized hypobromite composition is used. As a result, even in a polyamide polymer film, such a remarkable decrease in film performance hardly occurs.
 ポリアミド系の逆浸透膜を備える逆浸透膜装置において、逆浸透膜への給水等のpH5.5以上でスケールが発生する場合には、スケール抑制のために分散剤をハロゲン系酸化剤と併用してもよい。分散剤としては、例えば、ポリアクリル酸、ポリマレイン酸、ホスホン酸等が挙げられる。分散剤の給水等への添加量は、例えば、RO濃縮水中の濃度として0.1~1,000mg/Lの範囲である。 In a reverse osmosis membrane device equipped with a polyamide-based reverse osmosis membrane, when scale is generated at pH 5.5 or higher, such as when water is supplied to the reverse osmosis membrane, a dispersant is used in combination with a halogen-based oxidant to suppress the scale. May be. Examples of the dispersant include polyacrylic acid, polymaleic acid, and phosphonic acid. The amount of the dispersant added to the water supply or the like is, for example, in the range of 0.1 to 1,000 mg / L as the concentration in the RO concentrated water.
 また、分散剤を使用せずにスケールの発生を抑制するためには、例えば、RO濃縮水中のシリカ濃度を溶解度以下に、カルシウムスケールの指標であるランゲリア指数を0以下になるように、逆浸透膜装置の回収率等の運転条件を調整することが挙げられる。 In addition, in order to suppress the occurrence of scale without using a dispersant, for example, reverse osmosis is performed so that the silica concentration in RO concentrated water is less than the solubility and the Langeria index, which is a calcium scale index, is less than 0. Adjusting the operating conditions such as the recovery rate of the membrane device.
 本実施形態に係る逆浸透膜の改質方法により改質されたポリアミド系の逆浸透膜を備える逆浸透膜装置の用途としては、例えば、海水淡水化、排水回収等が挙げられる。特に、本実施形態に係る逆浸透膜の改質方法により改質されたポリアミド系の逆浸透膜を用いてホウ素含有水等の非荷電物質含有水を逆浸透膜処理することが好ましい。本実施形態に係る逆浸透膜の改質方法によりポリアミド系の逆浸透膜を改質することにより、非荷電物質の阻止率が著しく向上する。 Examples of the use of the reverse osmosis membrane device including the polyamide-based reverse osmosis membrane modified by the reverse osmosis membrane modification method according to this embodiment include seawater desalination and wastewater recovery. In particular, it is preferable to carry out reverse osmosis membrane treatment of uncharged substance-containing water such as boron-containing water using a polyamide-based reverse osmosis membrane modified by the reverse osmosis membrane modification method according to the present embodiment. By modifying the polyamide-based reverse osmosis membrane by the reverse osmosis membrane modification method according to the present embodiment, the rejection rate of uncharged substances is significantly improved.
<逆浸透膜の運転方法および逆浸透膜装置>
 本発明の実施形態に係る逆浸透膜装置の一例の概略を図1に示し、その構成について説明する。図1の逆浸透膜装置1は、ポリアミド系の逆浸透膜に臭素系酸化剤を接触させて改質された改質逆浸透膜を有する逆浸透膜処理装置10を備える。
<Reverse osmosis membrane operation method and reverse osmosis membrane device>
An outline of an example of a reverse osmosis membrane device according to an embodiment of the present invention is shown in FIG. The reverse osmosis membrane device 1 of FIG. 1 includes a reverse osmosis membrane treatment device 10 having a modified reverse osmosis membrane modified by bringing a bromine-based oxidant into contact with a polyamide-based reverse osmosis membrane.
 図1の逆浸透膜装置1において、被処理水配管12が逆浸透膜処理装置10の入口に接続されている。逆浸透膜処理装置10の透過水出口には透過水配管14が接続され、濃縮水出口には濃縮水配管16が接続されている。 In the reverse osmosis membrane device 1 of FIG. 1, a water pipe 12 to be treated is connected to the inlet of the reverse osmosis membrane treatment device 10. A permeated water pipe 14 is connected to the permeated water outlet of the reverse osmosis membrane treatment apparatus 10, and a concentrated water pipe 16 is connected to the concentrated water outlet.
 本実施形態に係る逆浸透膜の運転方法および逆浸透膜装置1の動作について説明する。 The operation method of the reverse osmosis membrane and the operation of the reverse osmosis membrane device 1 according to the present embodiment will be described.
 被処理水は、被処理水配管12を通して逆浸透膜処理装置10に供給され、逆浸透膜処理装置10において、臭素系酸化剤を接触させて改質された改質逆浸透膜を用いて被処理水の逆浸透膜処理が行われる(逆浸透膜処理工程)。逆浸透膜処理で得られた透過水は、透過水配管14を通して排出され、濃縮水は、濃縮水配管16を通して排出される。 The treated water is supplied to the reverse osmosis membrane treatment device 10 through the treated water pipe 12, and the reverse osmosis membrane treatment device 10 uses the modified reverse osmosis membrane modified by contacting with the bromine-based oxidant. A reverse osmosis membrane treatment of treated water is performed (reverse osmosis membrane treatment step). The permeated water obtained by the reverse osmosis membrane treatment is discharged through the permeated water pipe 14, and the concentrated water is discharged through the concentrated water pipe 16.
 所定の時間、被処理水を改質逆浸透膜に通水して逆浸透膜処理が行われた後、pH8以上で改質逆浸透膜がアルカリ洗浄される(アルカリ洗浄工程)。臭素系酸化剤を接触させてポリアミド系の逆浸透膜を改質することにより、改質したポリアミド系の逆浸透膜における、アルカリ洗浄に対する阻止性能の低下を抑制することができる。 After passing the treated water through the modified reverse osmosis membrane for a predetermined time and performing the reverse osmosis membrane treatment, the modified reverse osmosis membrane is alkali washed at pH 8 or more (alkali washing step). By modifying the polyamide-based reverse osmosis membrane by bringing it into contact with a bromine-based oxidant, it is possible to suppress a decrease in the blocking performance against alkali cleaning in the modified polyamide-based reverse osmosis membrane.
 アルカリ洗浄は、例えば、アルカリ水溶液等のアルカリ溶液を改質逆浸透膜に接触させることにより行うことができる。例えば、アルカリ水溶液等のアルカリ溶液を改質逆浸透膜に所定の時間、通水してもよいし、アルカリ水溶液等のアルカリ溶液に改質逆浸透膜を所定の時間、浸漬してもよい。例えば、アルカリ溶液を改質逆浸透膜に通水するアルカリ溶液通水配管や、改質逆浸透膜をアルカリ溶液に浸漬するための浸漬槽等が、pH8以上で改質逆浸透膜をアルカリ洗浄するアルカリ洗浄手段として機能する。 Alkali washing can be performed, for example, by bringing an alkaline solution such as an alkaline aqueous solution into contact with the modified reverse osmosis membrane. For example, an alkaline solution such as an alkaline aqueous solution may be passed through the modified reverse osmosis membrane for a predetermined time, or the modified reverse osmosis membrane may be immersed in an alkaline solution such as an alkaline aqueous solution for a predetermined time. For example, an alkaline solution water pipe for passing an alkaline solution through the modified reverse osmosis membrane, an immersion tank for immersing the modified reverse osmosis membrane in the alkaline solution, and the like. It functions as an alkali cleaning means.
 アルカリとしては、例えば、水酸化ナトリウム、エチレンジアミン四酢酸四ナトリウム、ドデシル硫酸ナトリウム、トリポリリン酸ナトリウム等が挙げられる。アルカリ洗浄には、アルカリの水溶液等のアルカリ溶液を用いればよい。 Examples of the alkali include sodium hydroxide, tetrasodium ethylenediaminetetraacetate, sodium dodecyl sulfate, sodium tripolyphosphate, and the like. For alkali cleaning, an alkali solution such as an aqueous alkali solution may be used.
 アルカリ洗浄工程におけるpHは、8以上であり、8以上13以下の範囲であることが好ましく、10以上12以下の範囲であることがより好ましい。アルカリ洗浄工程におけるpHが8未満であると、洗浄効果が低く、13を超えると、逆浸透膜が劣化する場合がある。 The pH in the alkali cleaning step is 8 or more, preferably 8 or more and 13 or less, and more preferably 10 or more and 12 or less. When the pH in the alkali cleaning step is less than 8, the cleaning effect is low, and when it exceeds 13, the reverse osmosis membrane may be deteriorated.
 アルカリ洗浄工程における温度は、特に制限はないが、例えば、5℃~45℃の範囲であり、20℃~35℃の範囲であることが好ましい。アルカリ洗浄工程における温度が5℃未満であると、洗浄効果が低く、45℃を超えると、逆浸透膜が劣化する場合がある。 The temperature in the alkali cleaning step is not particularly limited, but is, for example, in the range of 5 ° C to 45 ° C, and preferably in the range of 20 ° C to 35 ° C. If the temperature in the alkali cleaning step is less than 5 ° C, the cleaning effect is low, and if it exceeds 45 ° C, the reverse osmosis membrane may deteriorate.
 本実施形態に係る逆浸透膜の運転方法において、アルカリ洗浄した改質逆浸透膜に臭素系酸化剤を接触させて再改質してもよい(再改質工程)。アルカリ洗浄、改質を繰り返しても、ポリアミド系の逆浸透膜の劣化が抑制されるため、長期の運転でも安定的に逆浸透膜装置を運転することができる。 In the operation method of the reverse osmosis membrane according to the present embodiment, the reformed reverse osmosis membrane washed with alkali may be contacted with a bromine-based oxidant and re-reformed (re-reforming step). Even if alkali cleaning and modification are repeated, the degradation of the polyamide-based reverse osmosis membrane is suppressed, and therefore the reverse osmosis membrane device can be stably operated even for a long period of operation.
 逆浸透膜処理装置10は、例えば、ポリアミド系の逆浸透膜に臭素系酸化剤を接触させて改質された改質逆浸透膜が充填され、被処理水を通水して透過水および濃縮水を得る逆浸透膜モジュールである。 The reverse osmosis membrane treatment apparatus 10 includes, for example, a polyamide-type reverse osmosis membrane filled with a modified reverse osmosis membrane that has been modified by bringing a bromine-based oxidant into contact therewith, and the water to be treated is allowed to pass through to be permeated and concentrated. This is a reverse osmosis membrane module for obtaining water.
 逆浸透膜処理装置10において用いられるポリアミド系の逆浸透膜は、臭素系酸化剤を接触させて改質された改質逆浸透膜である。ここで、本明細書における逆浸透膜の「改質」とは、透過水質の改善、すなわち阻止率の向上を指す。臭素系酸化剤をポリアミド系の逆浸透膜に接触させて改質された逆浸透膜を用いることによって、被処理水を高い阻止率で逆浸透膜処理することができる。この改質方法により、逆浸透膜の劣化を抑制しつつ、逆浸透膜の阻止率を向上させ、透過水質を改善することができる。臭素系酸化剤がポリアミド系の逆浸透膜を劣化させることがほとんどないため、一時的な水質改善ではなく、臭素系酸化剤を含む水を長期的にポリアミド系の逆浸透膜に通水して接触しても、逆浸透膜の劣化が抑制され、逆浸透膜の阻止率の低下、すなわち水質の低下が抑制される。 The polyamide-based reverse osmosis membrane used in the reverse osmosis membrane treatment apparatus 10 is a modified reverse osmosis membrane modified by bringing a bromine-based oxidant into contact therewith. Here, “reformation” of the reverse osmosis membrane in the present specification refers to improvement of permeated water quality, that is, improvement of the rejection rate. By using a reverse osmosis membrane modified by bringing a bromine-based oxidant into contact with a polyamide-based reverse osmosis membrane, the water to be treated can be treated with a reverse osmosis membrane at a high rejection rate. By this reforming method, it is possible to improve the reverse osmosis membrane rejection rate and improve the permeated water quality while suppressing the deterioration of the reverse osmosis membrane. Because bromine-based oxidants rarely degrade polyamide-based reverse osmosis membranes, it is not a temporary improvement in water quality. Even if it contacts, degradation of a reverse osmosis membrane is suppressed and the fall of the rejection of a reverse osmosis membrane, ie, the fall of water quality, is suppressed.
 改質(および再改質、以下同じ。)に用いられる臭素系酸化剤としては、特に制限はない。臭素系酸化剤としては、「次亜臭素酸塩」等や、「塩素系酸化剤と臭化物イオンとの反応生成物」、「安定化次亜臭素酸組成物」等が挙げられるが、好ましくは「安定化次亜臭素酸組成物」である。「安定化次亜臭素酸組成物」は、逆浸透膜の阻止率への悪影響が特に小さく、逆浸透膜に連続的に接触させても、長期間安定して運転することができる。 There are no particular restrictions on the brominated oxidant used for reforming (and re-modification, the same shall apply hereinafter). Examples of bromine-based oxidizing agents include “hypobromite”, “reaction product of chlorine-based oxidizing agent and bromide ions”, “stabilized hypobromite composition”, etc. “Stabilized hypobromite composition”. The “stabilized hypobromite composition” has a particularly small adverse effect on the blocking rate of the reverse osmosis membrane, and can be stably operated for a long period of time even when continuously contacted with the reverse osmosis membrane.
 本実施形態に係る逆浸透膜の運転方法における改質逆浸透膜は、ポリアミド系の逆浸透膜への給水、洗浄水等の中に、改質剤として臭素系酸化剤、例えば「臭素系酸化剤」と「スルファミン酸化合物」との混合物を存在させてポリアミド系の逆浸透膜に接触させる方法によって改質された膜である。これにより、給水等の中で、安定化次亜臭素酸組成物が生成すると考えられる。 The modified reverse osmosis membrane in the operation method of the reverse osmosis membrane according to the present embodiment includes a bromine-based oxidant, for example, “bromine-based oxidation” as a modifier in water supply to the polyamide-based reverse osmosis membrane, washing water, and the like. It is a membrane modified by a method in which a mixture of an “agent” and a “sulfamic acid compound” is present and brought into contact with a polyamide-based reverse osmosis membrane. Thereby, it is thought that the stabilized hypobromite composition produces | generates in water supply etc.
 また、本実施形態に係る逆浸透膜の運転方法における改質逆浸透膜は、ポリアミド系の逆浸透膜への給水、洗浄水等の中に、例えば、改質剤として「臭素系酸化剤とスルファミン酸化合物との反応生成物」である安定化次亜臭素酸組成物を存在させてポリアミド系の逆浸透膜に接触させる方法によって改質された膜である。 Further, the modified reverse osmosis membrane in the reverse osmosis membrane operation method according to the present embodiment includes, for example, “bromine-based oxidant and modifier” as a modifier in feed water, washing water, and the like to the polyamide-based reverse osmosis membrane. It is a membrane modified by a method in which a stabilized hypobromite composition, which is a reaction product with a sulfamic acid compound, is present and brought into contact with a polyamide-based reverse osmosis membrane.
 具体的には本実施形態に係る逆浸透膜の運転方法における改質逆浸透膜は、ポリアミド系の逆浸透膜への給水等の中に、例えば、「臭素」、「塩化臭素」、「次亜臭素酸」または「臭化ナトリウムと次亜塩素酸との反応物」と、「スルファミン酸化合物」との混合物を存在させてポリアミド系の逆浸透膜に接触させる方法によって改質された膜である。 Specifically, the modified reverse osmosis membrane in the operation method of the reverse osmosis membrane according to the present embodiment includes, for example, “bromine”, “bromine chloride”, “next” in the water supply to the polyamide-type reverse osmosis membrane. A membrane modified by a method in which a mixture of “bromine acid” or “reaction product of sodium bromide and hypochlorous acid” and “sulfamic acid compound” is present and brought into contact with a polyamide-based reverse osmosis membrane. is there.
 また、本実施形態に係る逆浸透膜の運転方法における改質逆浸透膜は、ポリアミド系の逆浸透膜への給水等の中に、例えば、「臭素とスルファミン酸化合物との反応生成物」、「塩化臭素とスルファミン酸化合物との反応生成物」、「次亜臭素酸とスルファミン酸化合物との反応生成物」、または「臭化ナトリウムと次亜塩素酸との反応物と、スルファミン酸化合物と、の反応生成物」である安定化次亜臭素酸組成物を存在させてポリアミド系の逆浸透膜に接触させる方法によって改質された膜である。 Further, the modified reverse osmosis membrane in the reverse osmosis membrane operation method according to the present embodiment includes, for example, “reaction product of bromine and a sulfamic acid compound” in water supply to the polyamide-based reverse osmosis membrane, etc. “Reaction product of bromine chloride and sulfamic acid compound”, “Reaction product of hypobromite and sulfamic acid compound”, or “Reaction product of sodium bromide and hypochlorous acid, and sulfamic acid compound” This is a membrane modified by a method in which a stabilized hypobromite composition, which is a reaction product of, is present and brought into contact with a polyamide-based reverse osmosis membrane.
 本実施形態に係る逆浸透膜の運転方法における逆浸透膜の改質は、例えば、ポリアミド系の逆浸透膜を備える逆浸透膜装置の運転の際に、逆浸透膜への給水等の中に、改質剤として臭素系酸化剤、例えば「臭素系酸化剤」と「スルファミン酸化合物」とを薬注ポンプ等により注入すればよい。「臭素系酸化剤」と「スルファミン酸化合物」とは別々に給水等の中に添加してもよく、または、原液同士で混合させてから給水等の中に添加してもよい。また、例えば、改質剤として臭素系酸化剤、例えば「臭素系酸化剤」と「スルファミン酸化合物」とを添加した水中に、ポリアミド系の逆浸透膜を所定の時間、浸漬して接触させてもよい。 The modification of the reverse osmosis membrane in the operation method of the reverse osmosis membrane according to the present embodiment is, for example, in the water supply to the reverse osmosis membrane during the operation of the reverse osmosis membrane device including the polyamide-based reverse osmosis membrane. A bromine-based oxidant, for example, “bromine-based oxidant” and “sulfamic acid compound” may be injected as a modifier by a chemical pump or the like. The “bromine-based oxidant” and the “sulfamic acid compound” may be added separately to the water supply or the like, or may be added to the water supply after mixing the stock solutions. Also, for example, a polyamide-based reverse osmosis membrane is immersed in water for a predetermined time in water to which a bromine-based oxidant such as “bromine-based oxidant” and “sulfamic acid compound” is added as a modifier. Also good.
 また、例えば、ポリアミド系の逆浸透膜への給水等の中に、「臭素系酸化剤とスルファミン酸化合物との反応生成物」、または「臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、の反応生成物」を薬注ポンプ等により注入してもよい。また、例えば、「臭素系酸化剤とスルファミン酸化合物との反応生成物」、または「臭素化合物と塩素系酸化剤との反応物と、スルファミン酸化合物と、の反応生成物」を添加した水中に、ポリアミド系の逆浸透膜を所定の時間、浸漬して接触させてもよい。 In addition, for example, in the water supply to a polyamide-based reverse osmosis membrane, “reaction product of bromine-based oxidant and sulfamic acid compound” or “reaction product of bromine-based compound and chlorine-based oxidant and sulfamine” You may inject | pour a reaction product of an acid compound "with a chemical injection pump. In addition, for example, in a water to which “reaction product of bromine-based oxidant and sulfamic acid compound” or “reaction product of bromine-based compound and chlorine-based oxidant and sulfamic acid compound” is added. Alternatively, the polyamide-based reverse osmosis membrane may be immersed and contacted for a predetermined time.
 臭素系酸化剤による改質は、例えば、ポリアミド系の逆浸透膜を備える逆浸透膜装置の運転の際に逆浸透膜への給水等の中に、臭素系酸化剤を連続的または間欠的に添加してもよいし、逆浸透膜の阻止率が低下した場合に、逆浸透膜への給水等の中に臭素系酸化剤を連続的または間欠的に添加したり、臭素系酸化剤を含む水中に逆浸透膜を浸漬してもよい。例えば、臭素系酸化剤を逆浸透膜への給水等に添加する添加配管や、臭素系酸化剤を含む水に逆浸透膜または改質逆浸透膜を浸漬するための浸漬槽等が、逆浸透膜に臭素系酸化剤を接触させて改質する改質手段、またはアルカリ洗浄した改質逆浸透膜に臭素系酸化剤を接触させて再改質する再改質手段として機能する。 The reforming with a bromine-based oxidant is performed, for example, by continuously or intermittently supplying a bromine-based oxidant into the water supply to the reverse osmosis membrane during operation of a reverse osmosis membrane device having a polyamide-based reverse osmosis membrane. It may be added, or when the blocking rate of the reverse osmosis membrane is lowered, a bromine-based oxidant is added continuously or intermittently into the water supply to the reverse osmosis membrane, or a bromine-based oxidant is contained. A reverse osmosis membrane may be immersed in water. For example, reverse osmosis is possible for pipes that add bromine-based oxidants to the water supply to reverse osmosis membranes, immersion tanks for immersing reverse osmosis membranes or modified reverse osmosis membranes in water containing bromine-based oxidants, etc. It functions as a reforming means for reforming by bringing a bromine-based oxidant into contact with the membrane, or as a reforming means for reforming by bringing a bromine-based oxidant into contact with a modified reverse osmosis membrane washed with an alkali.
 逆浸透膜への臭素系酸化剤の接触は、常圧条件下、加圧条件下または減圧条件下で行えばよいが、逆浸透膜装置を停止しなくても改質を行うことができる、逆浸透膜の改質を確実に行うことができる等の点から、加圧条件下で行うことが好ましい。逆浸透膜への臭素系酸化剤の接触は、例えば、0.1MPa~8.0MPaの範囲の加圧条件下で行うことが好ましい。 The contact of the bromine-based oxidant with the reverse osmosis membrane may be performed under normal pressure, pressurized or reduced pressure, but the modification can be performed without stopping the reverse osmosis membrane device. From the viewpoint that the reverse osmosis membrane can be reliably modified, it is preferable to perform the treatment under pressure. The contact of the bromine-based oxidant with the reverse osmosis membrane is preferably performed under a pressurized condition in the range of 0.1 MPa to 8.0 MPa, for example.
 逆浸透膜への臭素系酸化剤の接触は、例えば、5℃~35℃の範囲の温度条件下で行えばよい。 The contact of the bromine-based oxidant with the reverse osmosis membrane may be performed, for example, under a temperature condition in the range of 5 ° C to 35 ° C.
 安定化次亜臭素酸組成物を用いる場合、「臭素系酸化剤」の当量に対する「スルファミン酸化合物」の当量の比は、1以上であることが好ましく、1以上2以下の範囲であることがより好ましい。「臭素系酸化剤」の当量に対する「スルファミン酸化合物」の当量の比が1未満であると、逆浸透膜を劣化させる可能性があり、2を超えると、製造コストが増加する場合がある。 When the stabilized hypobromite composition is used, the ratio of the equivalent of the “sulfamic acid compound” to the equivalent of the “bromine-based oxidant” is preferably 1 or more, and is preferably in the range of 1 or more and 2 or less. More preferred. If the ratio of the equivalent amount of the “sulfamic acid compound” to the equivalent amount of the “bromine-based oxidizing agent” is less than 1, the reverse osmosis membrane may be deteriorated, and if it exceeds 2, the production cost may increase.
 逆浸透膜に接触する全塩素濃度は有効塩素濃度換算で、0.01~100mg/Lであることが好ましい。0.01mg/L未満であると、十分な改質効果を得ることができない場合があり、100mg/Lより多いと、逆浸透膜の劣化、配管等の腐食を引き起こす可能性がある。 The total chlorine concentration in contact with the reverse osmosis membrane is preferably 0.01 to 100 mg / L in terms of effective chlorine concentration. If it is less than 0.01 mg / L, a sufficient reforming effect may not be obtained. If it exceeds 100 mg / L, reverse osmosis membrane deterioration and piping corrosion may occur.
 安定化次亜臭素酸組成物に用いられる臭素系酸化剤としては、臭素(液体臭素)、塩化臭素、臭素酸、臭素酸塩、次亜臭素酸等が挙げられる。次亜臭素酸は、臭化ナトリウム等の臭化物と次亜塩素酸等の塩素系酸化剤とを反応させて生成させたものであってもよい。 Examples of the bromine-based oxidant used in the stabilized hypobromite composition include bromine (liquid bromine), bromine chloride, bromate, bromate, and hypobromite. Hypobromous acid may be produced by reacting a bromide such as sodium bromide with a chlorine-based oxidizing agent such as hypochlorous acid.
 これらのうち、臭素を用いた「臭素とスルファミン酸化合物(臭素とスルファミン酸化合物の混合物)」または「臭素とスルファミン酸化合物との反応生成物」の製剤は、「次亜塩素酸と臭素化合物とスルファミン酸」の製剤および「塩化臭素とスルファミン酸」の製剤等に比べて、塩化物イオンが少なく、ポリアミド系の逆浸透膜をより劣化させず、配管等の金属材料の腐食を引き起こす可能性が低いため、より好ましい。 Among these, the preparation of “bromine and sulfamic acid compound (mixture of bromine and sulfamic acid compound)” or “reaction product of bromine and sulfamic acid compound” using bromine is composed of “hypochlorous acid and bromine compound and Compared to sulfamic acid preparations and bromine chloride and sulfamic acid preparations, etc., there is less chloride ion, which does not degrade polyamide reverse osmosis membranes more and may cause corrosion of metal materials such as piping. Since it is low, it is more preferable.
 すなわち、本実施形態に係る逆浸透膜の運転方法における逆浸透膜は、ポリアミド系の逆浸透膜に、臭素とスルファミン酸化合物とを接触させる(臭素とスルファミン酸化合物の混合物を接触させる)、または、臭素とスルファミン酸化合物との反応生成物を接触させる方法によって改質された膜であることが好ましい。 That is, the reverse osmosis membrane in the operation method of the reverse osmosis membrane according to the present embodiment brings bromine and a sulfamic acid compound into contact with a polyamide-based reverse osmosis membrane (contacts a mixture of bromine and a sulfamic acid compound), or A membrane modified by a method of bringing a reaction product of bromine and a sulfamic acid compound into contact with each other is preferable.
 臭素化合物、塩素系酸化剤、スルファミン酸化合物については上記の通りである。 The bromine compound, chlorine-based oxidant, and sulfamic acid compound are as described above.
 本実施形態に係る逆浸透膜の運転方法における逆浸透膜の改質において、さらにアルカリを存在させてもよい。アルカリとしては、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ等が挙げられる。低温時の製品安定性等の点から、水酸化ナトリウムと水酸化カリウムとを併用してもよい。また、アルカリは、固形でなく、水溶液として用いてもよい。 In the modification of the reverse osmosis membrane in the reverse osmosis membrane operation method according to the present embodiment, an alkali may be further present. Examples of the alkali include alkali hydroxides such as sodium hydroxide and potassium hydroxide. From the viewpoint of product stability at low temperatures, sodium hydroxide and potassium hydroxide may be used in combination. Further, the alkali is not solid and may be used as an aqueous solution.
 本実施形態に係る逆浸透膜の運転方法は、逆浸透膜として昨今主流であるポリアミド系高分子膜に適用される。ポリアミド系高分子膜は、酸化剤に対する耐性が比較的低く、遊離塩素等をポリアミド系高分子膜に連続的に接触させると、膜性能の著しい低下が起こる。しかしながら、臭素系酸化剤、特に安定化次亜臭素酸組成物を用いる逆浸透膜の改質方法ではポリアミド高分子膜においても、このような著しい膜性能の低下はほとんど起こらない。 The operation method of the reverse osmosis membrane according to the present embodiment is applied to a polyamide-based polymer membrane which is currently mainstream as a reverse osmosis membrane. Polyamide polymer membranes have a relatively low resistance to oxidizing agents, and when free chlorine or the like is continuously brought into contact with the polyamide polymer membrane, the membrane performance is significantly reduced. However, in the method for reforming a reverse osmosis membrane using a bromine-based oxidant, particularly a stabilized hypobromite composition, such a significant decrease in membrane performance hardly occurs even in a polyamide polymer membrane.
 本実施形態に係る逆浸透膜の運転方法における逆浸透膜の改質において、ポリアミド系の逆浸透膜への臭素系酸化剤の接触が、被処理水のpHより低いpHで行われることが好ましい。逆浸透膜の改質後、被処理水の通水のときに臭素系酸化剤をスライム抑制剤として連続添加した場合、被処理水のpHが改質のときのpHよりも高い(すなわち、改質のときのpHが被処理水のpHよりも低い)と、改質効果が維持され、被処理水の透過流量の変動を抑制することができる。逆浸透膜の改質後、被処理水の通水のときに臭素系酸化剤をスライム抑制剤として連続添加した場合、被処理水のpHが改質のときのpHよりも低い(すなわち、改質のときのpHが被処理水のpHよりも高い)と、改質効果と被処理水の透過流量の変動が起こる場合がある。ポリアミド系の逆浸透膜への臭素系酸化剤の接触は、例えば、pH3超、8未満の範囲で行われ、またはpH4~6.5の範囲で行われる。臭素系酸化剤の接触のときのpHが低いほど、膜の改質効果が高くなり、阻止率が向上し、透過水質を改善することができる。 In the modification of the reverse osmosis membrane in the operation method of the reverse osmosis membrane according to the present embodiment, it is preferable that the contact of the bromine-based oxidant with the polyamide-based reverse osmosis membrane is performed at a pH lower than the pH of the water to be treated. . When the brominated oxidant is continuously added as the slime inhibitor after the reverse osmosis membrane is passed, the pH of the treated water is higher than the pH at the time of reforming (i.e. When the quality is lower than the pH of the water to be treated), the reforming effect is maintained and fluctuations in the permeate flow rate of the water to be treated can be suppressed. When the brominated oxidant is continuously added as the slime inhibitor after the reverse osmosis membrane is passed, the pH of the water to be treated is lower than the pH at the time of reforming (i.e. When the quality is higher than the pH of the water to be treated), the reforming effect and fluctuations in the permeate flow rate of the water to be treated may occur. The contact of the bromine-based oxidant with the polyamide-based reverse osmosis membrane is performed, for example, in the range of more than pH 3 and less than 8, or in the range of pH 4 to 6.5. The lower the pH at the time of contact with the bromine-based oxidant, the higher the membrane modification effect, the higher the rejection rate, and the permeated water quality.
 逆浸透膜装置において、逆浸透膜への給水のpH5.5以上でスケールが発生する場合には、スケール抑制のために分散剤を臭素系酸化剤と併用してもよい。分散剤としては、例えば、ポリアクリル酸、ポリマレイン酸、ホスホン酸等が挙げられる。分散剤の給水への添加量は、例えば、RO濃縮水中の濃度として0.1~1,000mg/Lの範囲である。 In a reverse osmosis membrane device, when scale is generated at pH 5.5 or higher of water supplied to the reverse osmosis membrane, a dispersant may be used in combination with a bromine-based oxidant to suppress scale. Examples of the dispersant include polyacrylic acid, polymaleic acid, and phosphonic acid. The amount of the dispersant added to the feed water is, for example, in the range of 0.1 to 1,000 mg / L as the concentration in the RO concentrated water.
 また、分散剤を使用せずにスケールの発生を抑制するためには、例えば、RO濃縮水中のシリカ濃度を溶解度以下に、カルシウムスケールの指標であるランゲリア指数を0以下になるように、逆浸透膜装置の回収率等の運転条件を調整することが挙げられる。 In addition, in order to suppress the occurrence of scale without using a dispersant, for example, reverse osmosis is performed so that the silica concentration in RO concentrated water is less than the solubility and the Langeria index, which is a calcium scale index, is less than 0. Adjusting the operating conditions such as the recovery rate of the membrane device.
 逆浸透膜装置の用途としては、例えば、純水製造、海水淡水化、排水回収等が挙げられる。 Examples of the use of the reverse osmosis membrane device include pure water production, seawater desalination, and wastewater collection.
 本実施形態に係る逆浸透膜の運転方法および逆浸透膜装置1において、逆浸透膜処理装置10の被処理水について処理を行う、脱気処理装置、イオン交換処理装置、UV殺菌処理装置のうちの少なくとも1つの装置を備え、逆浸透膜処理装置10(逆浸透膜処理工程)の被処理水について、脱気処理、イオン交換処理、UV殺菌処理のうちの少なくとも1つの処理を行ってもよい。 In the reverse osmosis membrane operation method and the reverse osmosis membrane device 1 according to the present embodiment, among the deaeration treatment device, the ion exchange treatment device, and the UV sterilization treatment device that treats the water to be treated of the reverse osmosis membrane treatment device 10. The reverse osmosis membrane treatment apparatus 10 (reverse osmosis membrane treatment step) water to be treated may be subjected to at least one of degassing treatment, ion exchange treatment, and UV sterilization treatment. .
 また、本実施形態に係る逆浸透膜の運転方法において、逆浸透膜処理装置10の透過水について処理を行う、イオン交換処理装置、電気式脱塩処理装置、UV殺菌処理装置、UV酸化処理装置、微粒子除去処理装置、第2の逆浸透膜処理装置のうちの少なくとも1つの装置を備え、逆浸透膜処理装置10(逆浸透膜処理工程)の透過水について、イオン交換処理、電気式脱塩処理、UV殺菌処理、UV酸化処理、微粒子除去処理、第2逆浸透膜処理のうちの少なくとも1つの処理を行ってもよい。 Further, in the reverse osmosis membrane operation method according to the present embodiment, an ion exchange treatment device, an electrical desalination treatment device, a UV sterilization treatment device, and a UV oxidation treatment device that perform treatment on the permeated water of the reverse osmosis membrane treatment device 10. , A fine particle removal treatment device, and at least one of a second reverse osmosis membrane treatment device, the permeated water of the reverse osmosis membrane treatment device 10 (reverse osmosis membrane treatment step), ion exchange treatment, electric desalting At least one of processing, UV sterilization processing, UV oxidation processing, particulate removal processing, and second reverse osmosis membrane processing may be performed.
<逆浸透膜用改質剤>
 本実施形態に係る逆浸透膜用改質剤は、ハロゲン系酸化剤を含む。本実施形態に係る逆浸透膜用改質剤は、好ましくは「臭素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜臭素酸組成物、または「塩素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜塩素酸組成物を含有するものであり、さらにアルカリを含有してもよい。
<Reverse osmosis membrane modifier>
The modifier for reverse osmosis membrane according to this embodiment contains a halogen-based oxidizing agent. The reverse osmosis membrane modifier according to this embodiment is preferably a stabilized hypobromite composition containing a mixture of “bromine-based oxidant” and “sulfamic acid compound”, or “chlorine-based oxidant”. It contains a stabilized hypochlorous acid composition including a mixture with a “sulfamic acid compound”, and may further contain an alkali.
 また、本実施形態に係る逆浸透膜用改質剤は、好ましくは「臭素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜臭素酸組成物、または「塩素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜塩素酸組成物を含有するものであり、さらにアルカリを含有してもよい。 In addition, the reverse osmosis membrane modifier according to this embodiment is preferably a stabilized hypobromite composition containing a “reaction product of a bromine-based oxidant and a sulfamic acid compound”, or a “chlorine-based oxidant”. It contains a stabilized hypochlorous acid composition containing a reaction product of sulfamic acid compound and may further contain an alkali.
 臭素系酸化剤、臭素化合物、塩素系酸化剤およびスルファミン酸化合物については、上述した通りである。 The bromine-based oxidizing agent, bromine compound, chlorine-based oxidizing agent, and sulfamic acid compound are as described above.
 塩素系酸化剤とスルファミン酸化合物とを含む安定化次亜塩素酸組成物の市販品としては、例えば、栗田工業株式会社製の「クリバーターIK-110」が挙げられる。 Examples of commercially available stabilized hypochlorous acid compositions containing a chlorine-based oxidizing agent and a sulfamic acid compound include “Kuriverter IK-110” manufactured by Kurita Kogyo Co., Ltd.
 本実施形態に係る逆浸透膜用改質剤としては、ポリアミド系逆浸透膜をより劣化させず、RO透過水への有効ハロゲンのリーク量がより少ないため、臭素と、スルファミン酸化合物とを含有するもの(臭素とスルファミン酸化合物の混合物を含有するもの)、例えば、臭素とスルファミン酸化合物とアルカリと水との混合物、または、臭素とスルファミン酸化合物との反応生成物を含有するもの、例えば、臭素とスルファミン酸化合物との反応生成物と、アルカリと、水との混合物が好ましい。 The reverse osmosis membrane modifier according to the present embodiment contains bromine and a sulfamic acid compound because the polyamide-based reverse osmosis membrane is not further deteriorated and the amount of effective halogen leaked into the RO permeate is smaller. (Containing a mixture of bromine and sulfamic acid compound), for example, a mixture of bromine, sulfamic acid compound, alkali and water, or containing a reaction product of bromine and sulfamic acid compound, for example, A mixture of a reaction product of bromine and a sulfamic acid compound, an alkali, and water is preferable.
 本実施形態に係る逆浸透膜用改質剤のうち、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を含有する改質剤、特に臭素とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を含有する改質剤は、塩素系酸化剤とスルファミン酸化合物とを含む改質剤(クロロスルファミン酸等)と比較すると、酸化力が高く、改質効果、スライム抑制力、スライム剥離力が著しく高いにもかかわらず、同じく酸化力の高い次亜塩素酸のような著しい膜劣化をほとんど引き起こすことがない。また、次亜塩素酸や、臭素を含む遊離塩素等の改質剤と比較すると、ポリアミド系の逆浸透膜の改質効果を有しながらも、次亜塩素酸や、臭素を含む遊離塩素のような著しい膜劣化をほとんど引き起こすことがない。通常の使用濃度では、膜劣化への影響は実質的に無視することができる。このため、ポリアミド系の逆浸透膜の改質剤としては最適である。 Among the modifiers for reverse osmosis membranes according to the present embodiment, a modifier containing a stabilized hypobromite composition containing a bromine-based oxidant and a sulfamic acid compound, particularly containing bromine and a sulfamic acid compound. A modifier containing a stabilized hypobromite composition has higher oxidizing power than a modifier (such as chlorosulfamic acid) containing a chlorinated oxidant and a sulfamic acid compound. In spite of remarkably high inhibitory power and slime peeling power, it hardly causes significant film deterioration like hypochlorous acid having high oxidizing power. Compared with modifiers such as hypochlorous acid and free chlorine containing bromine, it has the effect of reforming polyamide-based reverse osmosis membranes, while hypochlorous acid and free chlorine containing bromine. Such remarkable film deterioration is hardly caused. At normal use concentrations, the effect on film degradation can be substantially ignored. Therefore, it is optimal as a modifier for polyamide-based reverse osmosis membranes.
 安定化次亜臭素酸組成物または安定化次亜塩素酸組成物を含む逆浸透膜用改質剤は、次亜塩素酸や、臭素を含む遊離塩素等とは異なり、逆浸透膜をほとんど透過しないため、処理水水質への影響がほとんどない。また、次亜塩素酸等と同様に現場で濃度を測定することができるため、より正確な濃度管理が可能である。 Unlike the hypochlorous acid and free chlorine containing bromine, the reverse osmosis membrane modifier containing the stabilized hypobromite or stabilized hypochlorous acid composition is almost permeable to the reverse osmosis membrane. Therefore, there is almost no impact on the quality of treated water. Further, since the concentration can be measured on site in the same manner as hypochlorous acid or the like, more accurate concentration management is possible.
 安定化次亜臭素酸組成物を含む逆浸透膜用改質剤のpHは、例えば、13.0超であり、13.2超であることがより好ましい。逆浸透膜用改質剤のpHが13.0以下であると改質剤中の有効ハロゲンが不安定になる場合がある。 The pH of the reverse osmosis membrane modifier containing the stabilized hypobromite composition is, for example, more than 13.0, and more preferably more than 13.2. When the pH of the modifier for reverse osmosis membrane is 13.0 or less, the effective halogen in the modifier may become unstable.
 安定化次亜臭素酸組成物を含む逆浸透膜用改質剤中の臭素酸濃度は、5mg/kg未満であることが好ましい。改質剤中の臭素酸濃度が5mg/kg以上であると、RO透過水の臭素酸イオンの濃度が高くなる場合がある。 The concentration of bromic acid in the reverse osmosis membrane modifier containing the stabilized hypobromite composition is preferably less than 5 mg / kg. If the bromate concentration in the modifier is 5 mg / kg or more, the concentration of bromate ions in the RO permeate may increase.
<逆浸透膜用改質剤の製造方法>
 安定化次亜臭素酸組成物または安定化次亜塩素酸組成物を含む逆浸透膜用改質剤は、臭素系酸化剤または塩素系酸化剤とスルファミン酸化合物とを混合することにより得られ、さらにアルカリを混合してもよい。
<Method for producing reverse osmosis membrane modifier>
The modifier for a reverse osmosis membrane containing the stabilized hypobromite composition or the stabilized hypochlorous acid composition is obtained by mixing a bromine-based oxidant or a chlorine-based oxidant and a sulfamic acid compound, Further, an alkali may be mixed.
 臭素と、スルファミン酸化合物とを含む安定化次亜臭素酸組成物を含有する逆浸透膜用改質剤の製造方法としては、水、アルカリおよびスルファミン酸化合物を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させる工程、または、水、アルカリおよびスルファミン酸化合物を含む混合液に臭素を不活性ガス雰囲気下で添加する工程を含むことが好ましい。不活性ガス雰囲気下で添加して反応させる、または、不活性ガス雰囲気下で添加することにより、逆浸透膜用改質剤中の臭素酸イオン濃度が低くなり、RO透過水中の臭素酸イオン濃度が低くなる。 As a method for producing a reverse osmosis membrane modifier containing a stabilized hypobromite composition containing bromine and a sulfamic acid compound, bromine is an inert gas in a mixed solution containing water, an alkali and a sulfamic acid compound. It is preferable to include a step of adding and reacting under an atmosphere or a step of adding bromine to a mixed solution containing water, an alkali and a sulfamic acid compound under an inert gas atmosphere. By adding and reacting under an inert gas atmosphere, or adding under an inert gas atmosphere, the bromate ion concentration in the reverse osmosis membrane modifier is reduced, and the bromate ion concentration in the RO permeated water Becomes lower.
 用いる不活性ガスとしては限定されないが、製造等の面から窒素およびアルゴンのうち少なくとも1つが好ましく、特に製造コスト等の面から窒素が好ましい。 Although the inert gas to be used is not limited, at least one of nitrogen and argon is preferable from the viewpoint of manufacturing and the like, and nitrogen is particularly preferable from the viewpoint of manufacturing cost and the like.
 臭素の添加の際の反応器内の酸素濃度は6%以下が好ましいが、4%以下がより好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。臭素の反応の際の反応器内の酸素濃度が6%を超えると、反応系内の臭素酸の生成量が増加する場合がある。 The oxygen concentration in the reactor during the addition of bromine is preferably 6% or less, more preferably 4% or less, further preferably 2% or less, and particularly preferably 1% or less. If the oxygen concentration in the reactor during the bromine reaction exceeds 6%, the amount of bromic acid produced in the reaction system may increase.
 臭素の添加率は、改質剤全体の量に対して25重量%以下であることが好ましく、1重量%以上20重量%以下であることがより好ましい。臭素の添加率が逆浸透膜用改質剤全体の量に対して25重量%を超えると、反応系内の臭素酸の生成量が増加する場合がある。1重量%未満であると、改質効果が劣る場合がある。 The addition ratio of bromine is preferably 25% by weight or less, more preferably 1% by weight or more and 20% by weight or less, based on the total amount of the modifier. If the bromine addition rate exceeds 25% by weight with respect to the total amount of the reverse osmosis membrane modifier, the amount of bromic acid produced in the reaction system may increase. If it is less than 1% by weight, the reforming effect may be inferior.
 臭素添加の際の反応温度は、0℃以上25℃以下の範囲に制御することが好ましいが、製造コスト等の面から、0℃以上15℃以下の範囲に制御することがより好ましい。臭素添加の際の反応温度が25℃を超えると、反応系内の臭素酸の生成量が増加する場合があり、0℃未満であると、凍結する場合がある。 The reaction temperature at the time of bromine addition is preferably controlled in the range of 0 ° C. to 25 ° C., but more preferably in the range of 0 ° C. to 15 ° C. from the viewpoint of production cost. When the reaction temperature at the time of bromine addition exceeds 25 degreeC, the production amount of the bromic acid in a reaction system may increase, and when it is less than 0 degreeC, it may freeze.
 以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the following examples.
[安定化次亜臭素酸組成物の調製]
 窒素雰囲気下で、液体臭素:16.9重量%(wt%)、スルファミン酸:10.7重量%、水酸化ナトリウム:12.9重量%、水酸化カリウム:3.94重量%、水:残分を混合して、安定化次亜臭素酸組成物を調製した。安定化次亜臭素酸組成物のpHは14、全塩素濃度は7.5重量%であった。全塩素濃度は、HACH社の多項目水質分析計DR/4000を用いて、全塩素測定法(DPD(ジエチル-p-フェニレンジアミン)法)により測定した値(mg/L asCl)である。安定化次亜臭素酸組成物の詳細な調製方法は以下の通りである。
[Preparation of Stabilized Hypobromite Composition]
Under nitrogen atmosphere, liquid bromine: 16.9% by weight (wt%), sulfamic acid: 10.7% by weight, sodium hydroxide: 12.9% by weight, potassium hydroxide: 3.94% by weight, water: remaining Minutes were mixed to prepare a stabilized hypobromite composition. The stabilized hypobromite composition had a pH of 14 and a total chlorine concentration of 7.5% by weight. The total chlorine concentration is a value (mg / L asCl 2 ) measured by a total chlorine measurement method (DPD (diethyl-p-phenylenediamine) method) using a multi-item water quality analyzer DR / 4000 manufactured by HACH. The detailed method for preparing the stabilized hypobromite composition is as follows.
 反応容器内の酸素濃度が1%に維持されるように、窒素ガスの流量をマスフローコントローラでコントロールしながら連続注入で封入した2Lの4つ口フラスコに1436gの水、361gの水酸化ナトリウムを加え混合し、次いで300gのスルファミン酸を加え混合した後、反応液の温度が0~15℃になるように冷却を維持しながら、473gの液体臭素を加え、さらに48%水酸化カリウム溶液230gを加え、組成物全体の量に対する重量比でスルファミン酸10.7%、臭素16.9%、臭素の当量に対するスルファミン酸の当量比が1.04である、目的の安定化次亜臭素酸組成物を得た。生じた溶液のpHは、ガラス電極法にて測定したところ、14であった。生じた溶液の臭素含有率は、臭素をヨウ化カリウムによりヨウ素に転換後、チオ硫酸ナトリウムを用いて酸化還元滴定する方法により測定したところ16.9%であり、理論含有率(16.9%)の100.0%であった。また、臭素反応の際の反応容器内の酸素濃度は、株式会社ジコー製の「酸素モニタJKO-02 LJDII」を用いて測定した。なお、臭素酸濃度は5mg/kg未満であった。 Add 1436 g of water and 361 g of sodium hydroxide to a 2 L four-necked flask sealed by continuous injection while controlling the flow rate of nitrogen gas with a mass flow controller so that the oxygen concentration in the reaction vessel is maintained at 1%. Next, after adding 300 g of sulfamic acid and mixing, 473 g of liquid bromine was added while maintaining cooling so that the temperature of the reaction solution was 0 to 15 ° C., and 230 g of 48% potassium hydroxide solution was added. A target stabilized hypobromite composition having a sulfamic acid 10.7% by weight ratio relative to the total amount of the composition, 16.9% bromine, and an equivalent ratio of sulfamic acid to the equivalent of bromine of 1.04. Obtained. The pH of the resulting solution was 14 as measured by the glass electrode method. The bromine content of the resulting solution was 16.9% as measured by a redox titration method using sodium thiosulfate after bromine was converted to iodine with potassium iodide, and the theoretical content (16.9% ) Of 100.0%. The oxygen concentration in the reaction vessel during the bromine reaction was measured using “Oxygen Monitor JKO-02 LJDII” manufactured by Zico Corporation. The bromic acid concentration was less than 5 mg / kg.
 なお、pHの測定は、以下の条件で行った。
  電極タイプ:ガラス電極式
  pH測定計:東亜ディーケーケー社製、IOL-30型
  電極の校正:関東化学社製中性リン酸塩pH(6.86)標準液(第2種)、同社製ホウ酸塩pH(9.18)標準液(第2種)の2点校正で行った
  測定温度:25℃
  測定値:測定液に電極を浸漬し、安定後の値を測定値とし、3回測定の平均値
The pH was measured under the following conditions.
Electrode type: Glass electrode type pH meter: IOL-30, manufactured by Toa DKK Corporation Electrode calibration: Neutral phosphate pH (6.86) standard solution (type 2) manufactured by Kanto Chemical Co., boric acid manufactured by the same company Salt temperature (9.18) Standard solution (type 2) was measured by two-point calibration Measurement temperature: 25 ° C
Measurement value: Immerse the electrode in the measurement solution and use the value after stabilization as the measurement value.
 pH4、ハロゲン系酸化剤として上記で調製した安定化次亜臭素酸組成物を用い、その濃度を10ppmとした試験水をポリアミド系高分子逆浸透膜(日東電工株式会社製、SWC5)に通水した。通水時の圧力、流量を圧力計および流量計で測定しながら、純水換算フラックスの変化を確認した。純水換算フラックス[m/d/MPa]とTOC(イソプロピルアルコール(IPA))阻止率[%]との関係を図1に示す。図1の結果より、相関式はy=0.9x-10x+100となった。逆浸透膜の種類や、改質の有無に関わらず、逆浸透膜の非荷電物質の阻止率と純水換算フラックスとの間に相関性があることがわかった。 Using the stabilized hypobromite composition prepared above as a pH 4 and halogen-based oxidant, the test water with a concentration of 10 ppm was passed through a polyamide polymer reverse osmosis membrane (Nitto Denko Corporation, SWC5). did. While measuring the pressure and flow rate during water flow with a pressure gauge and a flow meter, the change in pure water equivalent flux was confirmed. The relationship between pure water equivalent flux [m / d / MPa] and TOC (isopropyl alcohol (IPA)) rejection rate [%] is shown in FIG. From the result of FIG. 1, the correlation equation is y = 0.9x 2 -10x + 100. Regardless of the type of reverse osmosis membrane and the presence or absence of modification, it was found that there is a correlation between the blocking rate of uncharged substances in the reverse osmosis membrane and the pure water equivalent flux.
<実施例1,2>
 次亜塩素酸ナトリウム(実施例1)および上記で調製した安定化次亜臭素酸組成物(実施例2)を改質剤(ハロゲン系酸化剤)としてそれぞれ用いて、ポリアミド系高分子逆浸透膜(日東電工株式会社製、SWC5)の改質を行った。改質は、この逆浸透膜を備える逆浸透膜装置に、操作圧2.0MPaで、上記改質剤を10ppm添加した水をpH4、25±1℃で通水した。目標IPA阻止率を97%とし、予め作成した相関式(図1)に基づいて、設定純水換算フラックスを0.28m/d/MPaとした。流量計で流量をモニタしながら下記式で求める純水換算フラックスが0.28m/d/MPaになるまで通水して実施した。その後、操作圧2.0MPaで、非荷電物質としてイソプロピルアルコールをTOC値で10ppm添加した水を、pH7、25±1℃で通水した。原水および透過水のTOC濃度を、TOC計(GEAI製、Sievers M9eシリーズ)を用いて測定し、下記のIPA阻止率を算出した。結果を表1に示す。
  純水換算フラックス[m/d/MPa]=透過水量/膜面積/(給水圧-浸透圧)
  IPA阻止率[%]=100-[透過水TOC濃度/{(給水TOC濃度+濃縮水TOC濃度)/2}]×100)
<Examples 1 and 2>
Polyamide-based polymer reverse osmosis membrane using sodium hypochlorite (Example 1) and the stabilized hypobromite composition prepared above (Example 2) as a modifier (halogen-based oxidant), respectively. (Nitto Denko Corporation, SWC5) was modified. In the modification, water with 10 ppm of the above modifier added at an operating pressure of 2.0 MPa was passed through the reverse osmosis membrane apparatus including the reverse osmosis membrane at pH 4 and 25 ± 1 ° C. The target IPA rejection was set to 97%, and the set pure water equivalent flux was set to 0.28 m / d / MPa based on the correlation equation (FIG. 1) prepared in advance. While monitoring the flow rate with a flow meter, it was carried out by passing water until the pure water equivalent flux determined by the following formula reached 0.28 m / d / MPa. Thereafter, water to which 10 ppm of isopropyl alcohol as an uncharged substance was added at a TOC value at an operating pressure of 2.0 MPa was passed at pH 7 and 25 ± 1 ° C. The TOC concentration of raw water and permeated water was measured using a TOC meter (manufactured by GEAI, Sievers M9e series), and the following IPA rejection was calculated. The results are shown in Table 1.
Pure water equivalent flux [m / d / MPa] = permeate amount / membrane area / (feed water pressure-osmotic pressure)
IPA rejection [%] = 100− [permeated water TOC concentration / {(feed water TOC concentration + concentrated water TOC concentration) / 2}] × 100)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 このように、ポリアミド系の逆浸透膜にハロゲン系酸化剤を接触させることにより、非荷電物質の阻止率を変更する逆浸透膜の改質方法において、純水換算フラックスの測定値に基づいて改質処理を行うことによって、逆浸透膜の非荷電物質の阻止率を所定の値に調整することができた。 Thus, in the reverse osmosis membrane modification method in which the blocking rate of uncharged substances is changed by bringing the halogen-based oxidant into contact with the polyamide-based reverse osmosis membrane, the modification is based on the measured value of the pure water equivalent flux. By performing the quality treatment, the rejection rate of the uncharged substance of the reverse osmosis membrane could be adjusted to a predetermined value.
<実施例3,4>
 上記で調製した安定化次亜臭素酸組成物を改質剤として用いて、ポリアミド系高分子逆浸透膜(日東電工株式会社製、「SWC4」)(実施例3)、ポリアミド系高分子逆浸透膜(日東電工株式会社製、「SWC5」)(実施例4)の改質をそれぞれ行った。改質は、この逆浸透膜を備える逆浸透膜装置に、操作圧2.0MPaで、上記改質剤を10ppm添加した水をpH4、25±1℃で、流量計で流量をモニタしながら純水換算フラックスが0.28m/d/MPaになるまで通水して実施した。その後、操作圧2.0MPaで、非荷電物質としてIPAをTOC値で10ppm添加した水を、pH7、25±1℃で通水した。原水および透過水のTOC濃度を、TOC計を用いて測定し、上記のIPA阻止率を算出した。結果を表2に示す。
<Examples 3 and 4>
Using the stabilized hypobromite composition prepared above as a modifier, a polyamide polymer reverse osmosis membrane (“SWC4” manufactured by Nitto Denko Corporation) (Example 3), polyamide polymer reverse osmosis Each of the membranes (“SWC5” manufactured by Nitto Denko Corporation) was modified (Example 4). The reforming was carried out on a reverse osmosis membrane device equipped with this reverse osmosis membrane at an operating pressure of 2.0 MPa, water added with 10 ppm of the above modifier at pH 4, 25 ± 1 ° C. while monitoring the flow rate with a flow meter. It carried out by passing water until the water equivalent flux became 0.28 m / d / MPa. Thereafter, water with 10 ppm of IPA added as an uncharged substance at an operating pressure of 2.0 MPa was added at pH 7 and 25 ± 1 ° C. The TOC concentration of raw water and permeated water was measured using a TOC meter, and the above IPA rejection was calculated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 このように、ポリアミド系高分子逆浸透膜の膜種が異なっても、純水換算フラックスの測定値に基づいて改質処理を行うことによって、逆浸透膜の非荷電物質の阻止率を所定の値に調整することができた。 In this way, even if the membrane type of the polyamide polymer reverse osmosis membrane is different, by performing the modification treatment based on the measured value of the pure water equivalent flux, the rejection rate of the non-charged substance of the reverse osmosis membrane is set to a predetermined value. The value could be adjusted.
<比較例1,2>
 純水換算フラックスの測定値に基づいて改質処理を行うのではなく、特許文献1の段落[0044]に記載のように、改質の時間に基づいて改質処理を行った。上記で調製した安定化次亜臭素酸組成物を改質剤として用いて、ポリアミド系高分子逆浸透膜(FILMTEC製、「SW30HRLE」)(比較例1)、ポリアミド系高分子逆浸透膜(日東電工株式会社製、「SWC5」)(比較例2)の改質をそれぞれ行った。改質は、この逆浸透膜を備える逆浸透膜装置に、操作圧2.0MPaで、上記改質剤を10ppm添加した水をpH4、25±1℃で所定の時間、通水して実施した。その後、操作圧2.0MPaで、非荷電物質としてIPAをTOC値で10ppm添加した水を、pH7、25±1℃で通水した。原水および透過水のTOC濃度を、TOC計を用いて測定し、上記のIPA阻止率を算出した。結果を表3に示す。
<Comparative Examples 1 and 2>
Instead of performing the reforming process based on the measured value of the pure water equivalent flux, the reforming process was performed based on the reforming time as described in paragraph [0044] of Patent Document 1. Using the stabilized hypobromite composition prepared above as a modifier, a polyamide polymer reverse osmosis membrane (manufactured by FILMTEC, “SW30HRLE”) (Comparative Example 1), a polyamide polymer reverse osmosis membrane (Nitto) Reform of “SWC5” (Comparative Example 2) manufactured by Denko Co., Ltd. was performed. The reforming was carried out by passing water added with 10 ppm of the above modifier at a pH of 4 and 25 ± 1 ° C. for a predetermined time in a reverse osmosis membrane apparatus equipped with this reverse osmosis membrane. . Thereafter, water with 10 ppm of IPA added as an uncharged substance at an operating pressure of 2.0 MPa was added at pH 7 and 25 ± 1 ° C. The TOC concentration of raw water and permeated water was measured using a TOC meter, and the above IPA rejection was calculated. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 このように、改質の時間で管理した場合、目標のTOC阻止性能にならず、さらにポリアミド系高分子逆浸透膜の膜種によって改質効果が異なるため、膜種によって改質後の非荷電物質の阻止率差が大きくなった。 Thus, when managed by the modification time, the target TOC blocking performance is not achieved, and the modification effect varies depending on the type of polyamide polymer reverse osmosis membrane. The difference in the rejection rate of substances has increased.
 以上の通り、実施例のように、純水換算フラックスの測定値に基づいて改質処理を行うことによって、逆浸透膜の非荷電物質の阻止率を所定の値に調整することができた。 As described above, the rejection rate of the uncharged substance in the reverse osmosis membrane could be adjusted to a predetermined value by performing the reforming treatment based on the measured value of the pure water equivalent flux as in the example.
<実施例5,6、比較例3,4>
 上記で調製した安定化次亜臭素酸組成物(実施例5)、次亜臭素酸(臭化ナトリウムと次亜塩素酸の混合物)(実施例6)、次亜塩素酸(比較例3)を改質剤としてそれぞれ用いて、ポリアミド系高分子逆浸透膜(日東電工(株)製「SWC5」)の改質を行った。また、改質を行わないポリアミド系高分子逆浸透膜(日東電工(株)製「SWC5」)(比較例4)も用意した。改質は、この逆浸透膜を備える逆浸透膜装置に、操作圧2.0MPaで、上記改質剤を10ppm添加した水をpH=4、25±1℃で1時間通水して実施した。改質した実施例5,6、比較例3それぞれの改質逆浸透膜、および比較例4の改質していない逆浸透膜について、操作圧2.0MPaで、尿素(分子量60)をTOC値として10ppm添加した水を、pH=7、25±1℃で1時間通水した。その後、純水にアルカリとして水酸化ナトリウムを添加し、pH12に調整したアルカリ水溶液に、それぞれの逆浸透膜を20~25℃で一晩(16時間)浸漬する工程を5回行い、再び操作圧2.0MPaで、尿素をTOC値として10ppm添加した水を、pH=7、25±1℃で1時間通水した。被処理水および透過水のTOC濃度をTOC計によって測定し、下記の尿素阻止率を算出した。結果を表4に示す。
  尿素阻止率[%]=100-[透過水TOC濃度÷{(給水TOC濃度+濃縮水TOC濃度)÷2}×100]
<Examples 5 and 6, Comparative Examples 3 and 4>
Stabilized hypobromite composition (Example 5) prepared above, hypobromite (mixture of sodium bromide and hypochlorous acid) (Example 6), hypochlorous acid (Comparative Example 3) The polyamide polymer reverse osmosis membrane (“SWC5” manufactured by Nitto Denko Corporation) was modified by using each as a modifier. Further, a polyamide polymer reverse osmosis membrane (“SWC5” manufactured by Nitto Denko Corporation) (Comparative Example 4) without modification was also prepared. The reforming was carried out by passing water added with 10 ppm of the above-mentioned modifier at pH = 4 and 25 ± 1 ° C. for 1 hour to the reverse osmosis membrane device provided with this reverse osmosis membrane. . For each of the modified reverse osmosis membranes of Examples 5 and 6 and Comparative Example 3 that were modified, and the non-modified reverse osmosis membrane of Comparative Example 4, urea (molecular weight 60) was TOC value at an operating pressure of 2.0 MPa. As a result, water added at 10 ppm was passed through at pH = 7 and 25 ± 1 ° C. for 1 hour. After that, the process of immersing each reverse osmosis membrane at 20 to 25 ° C. overnight (16 hours) in an alkaline aqueous solution adjusted to pH 12 by adding sodium hydroxide as an alkali to pure water was performed five times, and again the operation pressure Water with 2.0 ppm of urea added as a TOC value at 2.0 MPa was passed for 1 hour at pH = 7 and 25 ± 1 ° C. The TOC concentration of the water to be treated and the permeated water was measured with a TOC meter, and the following urea rejection rate was calculated. The results are shown in Table 4.
Urea rejection rate [%] = 100− [permeated water TOC concentration ÷ {(feed water TOC concentration + concentrated water TOC concentration) ÷ 2} × 100]
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 臭素系酸化剤で改質した逆浸透膜に対し、塩素系酸化剤で改質した逆浸透膜はアルカリ洗浄により、阻止性能が大きく低下した。 In contrast to reverse osmosis membranes modified with bromine-based oxidants, reverse osmosis membranes modified with chlorine-based oxidants showed a significant reduction in blocking performance due to alkali cleaning.
<実施例7,8,比較例5>
 実施例5、実施例6、比較例3で使用した膜を再度上記方法にて改質し、それぞれ実施例7、実施例8、比較例5とする。再改質後の膜の尿素阻止率を、実施例5,6、比較例3と同様にして評価した。結果を表5に示す。
<Examples 7 and 8, Comparative Example 5>
The membranes used in Example 5, Example 6, and Comparative Example 3 were modified again by the above-described method to give Example 7, Example 8, and Comparative Example 5, respectively. The urea rejection rate of the film after re-modification was evaluated in the same manner as in Examples 5 and 6 and Comparative Example 3. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例7,8では、再改質によりアルカリ洗浄前と同等の阻止性能に回復した。 In Examples 7 and 8, the blocking performance recovered to the same level as before alkali washing by re-reforming.
 このように、実施例の逆浸透膜の運転方法および逆浸透膜装置により、改質したポリアミド系の逆浸透膜における、アルカリ洗浄に対する阻止性能の低下を抑制することができた。 Thus, by the reverse osmosis membrane operation method and reverse osmosis membrane apparatus of the example, it was possible to suppress a decrease in the blocking performance against alkali washing in the modified polyamide-based reverse osmosis membrane.
 1 逆浸透膜装置、10 逆浸透膜処理装置、12 被処理水配管、14 透過水配管、16 濃縮水配管。 1 reverse osmosis membrane device, 10 reverse osmosis membrane treatment device, 12 treated water piping, 14 permeate piping, 16 concentrated water piping.

Claims (18)

  1.  ポリアミド系の逆浸透膜にハロゲン系酸化剤を接触させることにより、非荷電物質の阻止率を変更する逆浸透膜の改質方法において、
     前記逆浸透膜の純水換算のフラックスの測定値に基づいて、改質処理を行うことを特徴とする逆浸透膜の改質方法。
    In a method for modifying a reverse osmosis membrane in which the blocking rate of uncharged substances is changed by bringing a halogen-based oxidant into contact with a polyamide-based reverse osmosis membrane,
    A method for reforming a reverse osmosis membrane, characterized in that a reforming treatment is performed based on a measured value of pure water equivalent flux of the reverse osmosis membrane.
  2.  請求項1に記載の逆浸透膜の改質方法であって、
     予め作成した、前記逆浸透膜の純水換算のフラックスと前記非荷電物質の阻止率との相関式に基づいて、前記改質処理を行うことを特徴とする逆浸透膜の改質方法。
    A method for modifying a reverse osmosis membrane according to claim 1,
    A method for reforming a reverse osmosis membrane, characterized in that the reforming treatment is performed based on a correlation equation between a pure water equivalent flux of the reverse osmosis membrane and a blocking rate of the uncharged substance, which is prepared in advance.
  3.  請求項1または2に記載の逆浸透膜の改質方法であって、
     前記非荷電物質は、分子量200以下の低分子物質であることを特徴とする逆浸透膜の改質方法。
    A method for modifying a reverse osmosis membrane according to claim 1 or 2,
    The method for reforming a reverse osmosis membrane, wherein the uncharged substance is a low molecular substance having a molecular weight of 200 or less.
  4.  請求項1~3のいずれか1項に記載の逆浸透膜の改質方法であって、
     前記接触が、pH4~6.5の範囲で行われることを特徴とする逆浸透膜の改質方法。
    A method for reforming a reverse osmosis membrane according to any one of claims 1 to 3,
    A method for modifying a reverse osmosis membrane, wherein the contact is performed in a pH range of 4 to 6.5.
  5.  請求項1~4のいずれか1項に記載の逆浸透膜の改質方法であって、
     前記接触における前記ハロゲン系酸化剤の濃度が、0.1~100mg/Lの範囲であることを特徴とする逆浸透膜の改質方法。
    A method for modifying a reverse osmosis membrane according to any one of claims 1 to 4,
    The method for modifying a reverse osmosis membrane, wherein the concentration of the halogen-based oxidizing agent in the contact is in the range of 0.1 to 100 mg / L.
  6.  請求項1~5のいずれか1項に記載の逆浸透膜の改質方法であって、
     前記接触が、0.1~20MPaの範囲の加圧下で行われることを特徴とする逆浸透膜の改質方法。
    A method for modifying a reverse osmosis membrane according to any one of claims 1 to 5,
    A method for modifying a reverse osmosis membrane, wherein the contact is performed under a pressure in a range of 0.1 to 20 MPa.
  7.  請求項1~6のいずれか1項に記載の逆浸透膜の改質方法により改質されたことを特徴とする逆浸透膜。 A reverse osmosis membrane, which is modified by the reverse osmosis membrane modification method according to any one of claims 1 to 6.
  8.  請求項1~6のいずれか1項に記載の逆浸透膜の改質方法により改質された逆浸透膜を用いて非荷電物質含有水を逆浸透膜処理することを特徴とする非荷電物質含有水の処理方法。 An uncharged substance characterized by subjecting uncharged substance-containing water to a reverse osmosis membrane treatment using the reverse osmosis membrane modified by the reverse osmosis membrane modification method according to any one of claims 1 to 6. Treatment method of contained water.
  9.  ポリアミド系の逆浸透膜に臭素系酸化剤を接触させて改質された改質逆浸透膜に、被処理水を通水して透過水および濃縮水を得る逆浸透膜処理工程と、
     pH8以上で前記改質逆浸透膜をアルカリ洗浄するアルカリ洗浄工程と、
     を含むことを特徴とする、逆浸透膜の運転方法。
    A reverse osmosis membrane treatment step for obtaining permeated water and concentrated water by passing water to be treated to a modified reverse osmosis membrane modified by bringing a bromine-based oxidant into contact with a polyamide-based reverse osmosis membrane;
    an alkali washing step of washing the modified reverse osmosis membrane with an alkali at a pH of 8 or more;
    A method for operating a reverse osmosis membrane, comprising:
  10.  請求項9に記載の逆浸透膜の運転方法であって、
     前記アルカリ洗浄した改質逆浸透膜に臭素系酸化剤を接触させて再改質する再改質工程を含むことを特徴とする、逆浸透膜の運転方法。
    A method for operating a reverse osmosis membrane according to claim 9,
    A method for operating a reverse osmosis membrane, comprising a re-reforming step in which a brominated oxidant is brought into contact with the modified reverse osmosis membrane washed with alkali to re-reform.
  11.  請求項9または10に記載の逆浸透膜の運転方法であって、
     前記臭素系酸化剤の接触が、前記被処理水のpHより低いpHで行われることを特徴とする、逆浸透膜の運転方法。
    A method for operating a reverse osmosis membrane according to claim 9 or 10,
    The method for operating a reverse osmosis membrane, wherein the bromine-based oxidizing agent is contacted at a pH lower than the pH of the water to be treated.
  12.  請求項9~11のいずれか1項に記載の逆浸透膜の運転方法であって、
     前記臭素系酸化剤は、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を含むことを特徴とする、逆浸透膜の運転方法。
    A method for operating a reverse osmosis membrane according to any one of claims 9 to 11,
    The method for operating a reverse osmosis membrane, wherein the bromine-based oxidant includes a stabilized hypobromite composition containing a bromine-based oxidant and a sulfamic acid compound.
  13.  請求項9~11のいずれか1項に記載の逆浸透膜の運転方法であって、
     前記臭素系酸化剤は、臭素とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を含むことを特徴とする、逆浸透膜の運転方法。
    A method for operating a reverse osmosis membrane according to any one of claims 9 to 11,
    The method for operating a reverse osmosis membrane, wherein the brominated oxidant includes a stabilized hypobromite composition containing bromine and a sulfamic acid compound.
  14.  ポリアミド系の逆浸透膜に臭素系酸化剤を接触させて改質された改質逆浸透膜を有し、被処理水を通水して透過水および濃縮水を得る逆浸透膜処理装置と、
     pH8以上で前記改質逆浸透膜をアルカリ洗浄するアルカリ洗浄手段と、
     を備え、
     前記アルカリ洗浄手段は、前記被処理水を前記改質逆浸透膜に所定時間通水した後、pH8以上で前記改質逆浸透膜にアルカリ溶液を接触させることを特徴とする、逆浸透膜装置。
    A reverse osmosis membrane treatment apparatus having a modified reverse osmosis membrane modified by bringing a bromine-based oxidant into contact with a polyamide-based reverse osmosis membrane, and obtaining permeated water and concentrated water by passing water to be treated;
    alkaline washing means for washing the modified reverse osmosis membrane with alkali at pH 8 or higher;
    With
    A reverse osmosis membrane device, wherein the alkali cleaning means causes the water to be treated to flow through the modified reverse osmosis membrane for a predetermined time, and then contacts an alkaline solution with the modified reverse osmosis membrane at a pH of 8 or more. .
  15.  請求項14に記載の逆浸透膜装置であって、
     前記アルカリ洗浄した改質逆浸透膜に臭素系酸化剤を接触させて再改質する再改質手段をさらに備えることを特徴とする、逆浸透膜装置。
    The reverse osmosis membrane device according to claim 14,
    The reverse osmosis membrane device further comprising a re-modification means for bringing a bromine-based oxidant into contact with the alkali-washed modified reverse osmosis membrane for re-modification.
  16.  請求項14または15に記載の逆浸透膜装置であって、
     前記臭素系酸化剤の接触が、前記被処理水のpHより低いpHで行われることを特徴とする、逆浸透膜装置。
    The reverse osmosis membrane device according to claim 14 or 15,
    The reverse osmosis membrane device, wherein the bromine-based oxidizing agent is contacted at a pH lower than the pH of the water to be treated.
  17.  請求項14~16のいずれか1項に記載の逆浸透膜装置であって、
     前記臭素系酸化剤は、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を含むことを特徴とする、逆浸透膜装置。
    The reverse osmosis membrane device according to any one of claims 14 to 16,
    The reverse osmosis membrane device, wherein the bromine-based oxidant includes a stabilized hypobromite composition containing a bromine-based oxidant and a sulfamic acid compound.
  18.  請求項14~16のいずれか1項に記載の逆浸透膜装置であって、
     前記臭素系酸化剤は、臭素とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を含むことを特徴とする、逆浸透膜装置。
    The reverse osmosis membrane device according to any one of claims 14 to 16,
    The reverse osmosis membrane device, wherein the brominated oxidant includes a stabilized hypobromite composition containing bromine and a sulfamic acid compound.
PCT/JP2018/000844 2017-02-02 2018-01-15 Method for modifying reverse osmosis membrane, reverse osmosis membrane, method for treating water containing non-charged substance, operation method for reverse osmosis membrane, and reverse osmosis membrane device WO2018142904A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017017643A JP6933902B2 (en) 2017-02-02 2017-02-02 Method for modifying reverse osmosis membrane and method for treating uncharged substance-containing water
JP2017-017643 2017-02-02
JP2017-092872 2017-05-09
JP2017092872A JP7144922B2 (en) 2017-05-09 2017-05-09 Reverse osmosis membrane operation method and reverse osmosis membrane device

Publications (1)

Publication Number Publication Date
WO2018142904A1 true WO2018142904A1 (en) 2018-08-09

Family

ID=63040587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000844 WO2018142904A1 (en) 2017-02-02 2018-01-15 Method for modifying reverse osmosis membrane, reverse osmosis membrane, method for treating water containing non-charged substance, operation method for reverse osmosis membrane, and reverse osmosis membrane device

Country Status (2)

Country Link
TW (1) TWI786081B (en)
WO (1) WO2018142904A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020142211A (en) * 2019-03-07 2020-09-10 オルガノ株式会社 Water treatment method and apparatus using reverse osmosis membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6973565B1 (en) * 2020-05-28 2021-12-01 栗田工業株式会社 Reverse osmosis membrane treatment method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246448A (en) * 2007-03-30 2008-10-16 Kurita Water Ind Ltd Method for improving prevention rate of permeable membrane, blocking rate improved permeable membrane, method and device for treating permeable membrane
JP2015117216A (en) * 2013-12-19 2015-06-25 栗田工業株式会社 Sterilization method of water system
JP2015217353A (en) * 2014-05-19 2015-12-07 栗田工業株式会社 Concentration adjustment method of cooling water treatment agent in circulating cooling water system, recovery system of discharged cooling water, and water treatment facility
JP2016073915A (en) * 2014-10-06 2016-05-12 栗田工業株式会社 Detergent, cleaning fluid and cleaning method of reverse osmosis membrane
WO2016136304A1 (en) * 2015-02-24 2016-09-01 オルガノ株式会社 Method for modifying reverse osmosis membrane, reverse osmosis membrane, treatment method for boron-containing water, and method for operating separation membrane
JP2016155071A (en) * 2015-02-24 2016-09-01 オルガノ株式会社 Sterilization method for separation membrane

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016128142A (en) * 2015-01-09 2016-07-14 東レ株式会社 Rejection rate improving method of semipermeable membrane

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246448A (en) * 2007-03-30 2008-10-16 Kurita Water Ind Ltd Method for improving prevention rate of permeable membrane, blocking rate improved permeable membrane, method and device for treating permeable membrane
JP2015117216A (en) * 2013-12-19 2015-06-25 栗田工業株式会社 Sterilization method of water system
JP2015217353A (en) * 2014-05-19 2015-12-07 栗田工業株式会社 Concentration adjustment method of cooling water treatment agent in circulating cooling water system, recovery system of discharged cooling water, and water treatment facility
JP2016073915A (en) * 2014-10-06 2016-05-12 栗田工業株式会社 Detergent, cleaning fluid and cleaning method of reverse osmosis membrane
WO2016136304A1 (en) * 2015-02-24 2016-09-01 オルガノ株式会社 Method for modifying reverse osmosis membrane, reverse osmosis membrane, treatment method for boron-containing water, and method for operating separation membrane
JP2016155071A (en) * 2015-02-24 2016-09-01 オルガノ株式会社 Sterilization method for separation membrane

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020142211A (en) * 2019-03-07 2020-09-10 オルガノ株式会社 Water treatment method and apparatus using reverse osmosis membrane
WO2020179789A1 (en) * 2019-03-07 2020-09-10 オルガノ株式会社 Water treatment method and water treatment device using reverse osmosis membrane
CN113507981A (en) * 2019-03-07 2021-10-15 奥加诺株式会社 Water treatment method and water treatment apparatus using reverse osmosis membrane

Also Published As

Publication number Publication date
TWI786081B (en) 2022-12-11
TW201834739A (en) 2018-10-01

Similar Documents

Publication Publication Date Title
JP6622424B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
KR101990231B1 (en) A method of reforming a reverse osmosis membrane, a reverse osmosis membrane, a method of treating boron-containing water, and a method of operating a separation membrane
JP6807219B2 (en) Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method
JP2016120466A (en) Filtration treatment system and filtration treatment method
JP7013141B2 (en) Water treatment method using reverse osmosis membrane
KR102291224B1 (en) Water treatment method and water treatment device using reverse osmosis membrane
JP2018153749A (en) Water treatment method and water treatment system using reverse osmosis membrane
WO2018142904A1 (en) Method for modifying reverse osmosis membrane, reverse osmosis membrane, method for treating water containing non-charged substance, operation method for reverse osmosis membrane, and reverse osmosis membrane device
JP6506987B2 (en) Method of reforming reverse osmosis membrane, and method of treating boron-containing water
JP2018015679A (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP6823401B2 (en) Method for treating water containing low molecular weight organic substances and method for modifying reverse osmosis membranes
JP7144922B2 (en) Reverse osmosis membrane operation method and reverse osmosis membrane device
JP6779706B2 (en) Water treatment method using reverse osmosis membrane
JP7008470B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP7050414B2 (en) Water treatment method using reverse osmosis membrane
JP6933902B2 (en) Method for modifying reverse osmosis membrane and method for treating uncharged substance-containing water
JP2018030074A (en) Polyamide-based reverse osmosis membrane, and method for producing polyamide-based reverse osmosis membrane
JP6974936B2 (en) Water treatment method using reverse osmosis membrane
JP7141919B2 (en) Reverse osmosis membrane treatment method, reverse osmosis membrane treatment system, water treatment method, and water treatment system
JP7492876B2 (en) Water treatment method and water treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18748216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18748216

Country of ref document: EP

Kind code of ref document: A1